CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 311 results for author: <span class="mathjax">Lin, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Lin%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09664">arXiv:2411.09664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09664">pdf</a>, <a href="https://arxiv.org/format/2411.09664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Kohn-Luttinger topological superconductivity in bands with nontrivial geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jahin%2C+A">Ammar Jahin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09664v1-abstract-short" style="display: inline;"> We study the effect of the electron wavefunction on Kohn-Luttinger superconductivity. The role of the wavefunction is encoded in a complex form factor describing the topology and geometry of the bands. We show that the electron wavefunction significantly impacts the superconducting transition temperature and superconducting order parameter. We illustrate this using the lowest Landau level form fac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09664v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09664v1-abstract-full" style="display: none;"> We study the effect of the electron wavefunction on Kohn-Luttinger superconductivity. The role of the wavefunction is encoded in a complex form factor describing the topology and geometry of the bands. We show that the electron wavefunction significantly impacts the superconducting transition temperature and superconducting order parameter. We illustrate this using the lowest Landau level form factor and find exponential enhancement of $T_c$ for the resulting topological superconductor. We find that the ideal band geometry, which favors a fractional Chern insulator in the flat band limit, has an optimal $T_c$. Finally, we apply this understanding to a model relevant to rhombohedral graphene multilayers and unravel the importance of the band geometry for achieving robust superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09664v1-abstract-full').style.display = 'none'; document.getElementById('2411.09664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19158">arXiv:2410.19158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19158">pdf</a>, <a href="https://arxiv.org/format/2410.19158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic ordering dynamics in a high Curie temperature ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueh-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damron%2C+J+T">Joshua T. Damron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gai%2C+Z">Zheng Gai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuxin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahmen%2C+K+A">Karin A Dahmen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlson%2C+E+W">Erica W. Carlson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jeongkeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B+J">Benjamin J. Lawrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19158v1-abstract-short" style="display: inline;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19158v1-abstract-full" style="display: none;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high-$\mathrm{T_c}$ ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near $\mathrm{T_c}$. Meanwhile, the temperature-dependent spin dynamics, measured through all optical relaxometry suggest that the phase transition is in the XY universality class. Our results capture both static and dynamic aspects of critical behavior, providing insights into universal properties that govern phase transitions in magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'none'; document.getElementById('2410.19158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06344">arXiv:2410.06344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06344">pdf</a>, <a href="https://arxiv.org/format/2410.06344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electric field driven spin textures in heavy fermion van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vijayvargia%2C+A">Aayush Vijayvargia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barros%2C+K">Kipton Barros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erten%2C+O">Onur Erten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06344v1-abstract-short" style="display: inline;"> The recently discovered van der Waals material CeSiI exhibits both heavy fermion behavior and spiral order with strong magnetic anisotropy which makes it a potential host for topological spin textures such as skyrmions through electrical gating. A monolayer of CeSiI consists of two layers of Ce atoms on triangular lattices that sandwich a silicene layer. Motivated by the experiments, we explore ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06344v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06344v1-abstract-full" style="display: none;"> The recently discovered van der Waals material CeSiI exhibits both heavy fermion behavior and spiral order with strong magnetic anisotropy which makes it a potential host for topological spin textures such as skyrmions through electrical gating. A monolayer of CeSiI consists of two layers of Ce atoms on triangular lattices that sandwich a silicene layer. Motivated by the experiments, we explore magnetic phase diagram in van der Waals heavy fermion materials as a function of anisotropy and applied magnetic field using an effective spin model. We demonstrate that application of an external electric field can tune the Kondo coupling on each Ce layer differently, in turn allowing for controlling the intra- and interlayer magnetic couplings. Our analysis indicates that this fine-tuning leads to the coexistence of different magnetic orders in a single monolayer. In particular, we show that a novel vortex phase can be stabilized only in the presence of an external electric field. Our results highlight the unique advantages and the tunability of van der Waals heavy fermion materials for manipulation of chiral magnetic phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06344v1-abstract-full').style.display = 'none'; document.getElementById('2410.06344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05043">arXiv:2409.05043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05043">pdf</a>, <a href="https://arxiv.org/format/2409.05043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Edge-driven transition between extended quantum anomalous Hall crystal and fractional Chern insulator in rhombohedral graphene multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zezhu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+A">Ang-Kun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gon%C3%A7alves%2C+M">Miguel Gon莽alves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05043v1-abstract-short" style="display: inline;"> Fractional Chern insulators (FCI) with fractionally quantized Hall conductance at fractional fillings and an extended quantum anomalous Hall (EQAH) crystal with an integer quantized Hall conductance over an extended region of doping were recently observed in pentalayer graphene. One particularly puzzling observation is the transition between the EQAH and FCI regimes, driven either by temperature o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05043v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05043v1-abstract-full" style="display: none;"> Fractional Chern insulators (FCI) with fractionally quantized Hall conductance at fractional fillings and an extended quantum anomalous Hall (EQAH) crystal with an integer quantized Hall conductance over an extended region of doping were recently observed in pentalayer graphene. One particularly puzzling observation is the transition between the EQAH and FCI regimes, driven either by temperature or electrical current. Here we propose a scenario to understand these transitions based on the topologically protected gapless edge modes that are present in both the FCI and EQAH phases and should be most relevant at temperature scales below the energy gap. Our consideration is based on the simple assumption that the edge velocity in FCI is smaller than that in EQAHE and thus contributes to a higher entropy. We further argue that domains with opposite fractionally quantized Hall conductance are ubiquitous in the devices due to disorder, which gives rise to a network of edge modes. The velocity of the edge modes between domains is further reduced due to edge reconstruction. The edge velocity can also be reduced by current when the occupation of the edge mode approaches the gap edge. The edge entropy therefore drives the transition from EQAH to FCI either by temperature or current at a nonzero temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05043v1-abstract-full').style.display = 'none'; document.getElementById('2409.05043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12758">arXiv:2408.12758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12758">pdf</a>, <a href="https://arxiv.org/format/2408.12758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Month-long-lifetime microwave spectral holes in an erbium-doped scheelite crystal at millikelvin temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiren Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantec%2C+M+L">Marianne Le Dantec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%C4%8Di%C4%87%2C+M">Milo拧 Ran膷i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldner%2C+P">Philippe Goldner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertaina%2C+S">Sylvain Bertaina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaneli%C3%A8re%2C+T">Thierry Chaneli猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ren-Bao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esteve%2C+D">Daniel Esteve</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vion%2C+D">Denis Vion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flurin%2C+E">Emmanuel Flurin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertet%2C+P">Patrice Bertet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12758v1-abstract-short" style="display: inline;"> Rare-earth-ion (REI) ensembles in crystals have remarkable optical and spin properties characterized by narrow homogeneous linewidths relative to the inhomogeneous ensemble broadening. This makes it possible to precisely tailor the ensemble spectral density and therefore the absorption profile by applying narrow-linewidth radiation to transfer population into auxiliary levels, a process broadly kn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12758v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12758v1-abstract-full" style="display: none;"> Rare-earth-ion (REI) ensembles in crystals have remarkable optical and spin properties characterized by narrow homogeneous linewidths relative to the inhomogeneous ensemble broadening. This makes it possible to precisely tailor the ensemble spectral density and therefore the absorption profile by applying narrow-linewidth radiation to transfer population into auxiliary levels, a process broadly known as spectral hole burning (SHB). REI-doped crystals find applications in information processing, both classical (pattern recognition, filtering, spectral analysis) and quantum (photon storage), all protocols requiring suitable ensemble preparation by SHB as a first step. In Er$^{3+}$-doped materials, the longest reported hole lifetime is one minute, and longer lifetimes are desirable. Here, we report SHB and accumulated echo measurements in a scheelite crystal of CaWO$_4$ by pumping the electron spin transition of Er$^{3+}$ ions at microwave frequencies and millikelvin temperatures, with nuclear spin states of neighboring $^{183}$W atoms serving as the auxiliary levels. The lifetime of the holes and accumulated echoes rises steeply as the sample temperature is decreased, exceeding a month at 10 mK. Our results demonstrate that millikelvin temperatures can be beneficial for signal processing applications requiring long spectral hole lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12758v1-abstract-full').style.display = 'none'; document.getElementById('2408.12758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12198">arXiv:2407.12198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12198">pdf</a>, <a href="https://arxiv.org/format/2407.12198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Doping-induced Quantum Anomalous Hall Crystals and Topological Domain Walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gon%C3%A7alves%2C+M">Miguel Gon莽alves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12198v1-abstract-short" style="display: inline;"> Doping carriers into a correlated quantum ground state offers a promising route to generate new quantum states. The recent advent of moir茅 superlattices provided a versatile platform with great tunability to explore doping physics in systems with strong interplay between strong correlation and nontrivial topology. Here we study the effect of electron doping in the quantum anomalous Hall insulator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12198v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12198v1-abstract-full" style="display: none;"> Doping carriers into a correlated quantum ground state offers a promising route to generate new quantum states. The recent advent of moir茅 superlattices provided a versatile platform with great tunability to explore doping physics in systems with strong interplay between strong correlation and nontrivial topology. Here we study the effect of electron doping in the quantum anomalous Hall insulator realized in TMD moir茅 superlatice at filling $谓=1$, which can be described by the canonical Kane-Mele-Hubbard model. By solving the Kane-Mele-Hubbard model using an unrestricted real-space Hartree-Fock method, we find that doping generates quantum anomalous Hall crystals (QAHC) and topological domain walls. In the QAHC, the doping induces skyrmion spin textures, which hosts one or two electrons in each skyrmion as in-gap states. The skyrmions crystallize into a lattice, with the lattice parameter being tunable by the density of doped electrons. Remarkably, we find that the QAHC can survive even in the limit of vanishing Kane-Mele topological gap for a significant range of fillings. Furthermore, doping can also induce domain walls separating topologically distinct domains with different electron densities, hosting chiral localized modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12198v1-abstract-full').style.display = 'none'; document.getElementById('2407.12198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10352">arXiv:2407.10352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10352">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Signature of Orbital Driven Finite Momentum Pairing in a 3D Ising Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F+Z">F. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+D">H. D. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">Saswata Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Y">F. Y. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A">A. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozano%2C+P+M">P. Mercado Lozano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajapitamahuni%2C+A">A. Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+C">C. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">S. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+Y">Y. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clements%2C+E+M">E. M. Clements</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+T+Z">T. Z. Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+-">H. -N. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H+C">H. C. Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C+X">C. X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10352v2-abstract-short" style="display: inline;"> The finite momentum superconducting pairing states (FMPs), where Cooper pairs carry non-zero momentum, are believed to give rise to exotic physical phenomena including the pseudogap phase of cuprate high-Tc superconductors and Majorana fermions in topological superconductivity. FMPs can emerge in intertwined electronic liquids with strong spin-spin interactions or be induced by lifting the spin de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10352v2-abstract-full').style.display = 'inline'; document.getElementById('2407.10352v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10352v2-abstract-full" style="display: none;"> The finite momentum superconducting pairing states (FMPs), where Cooper pairs carry non-zero momentum, are believed to give rise to exotic physical phenomena including the pseudogap phase of cuprate high-Tc superconductors and Majorana fermions in topological superconductivity. FMPs can emerge in intertwined electronic liquids with strong spin-spin interactions or be induced by lifting the spin degeneracy under magnetic field as originally proposed by Fulde-Ferrell and Larkin-Ovchinnikov. In quantum materials with strong Ising-type spin-orbit coupling, such as the 2D transition metal dichalcogenides (TMDs), the spin degree of freedom is frozen enabling novel orbital driven FMPs via magnetoelectric effect. While evidence of orbital driven FMPs has been revealed in bilayer TMDs, its realization in 3D bulk materials remains an unresolved challenge. Here we report experimental signatures of FMP in a locally noncentrosymmetric bulk superconductor 4Hb-TaS2. Using hard X-ray diffraction and angle-resolved photoemission spectroscopy, we reveal unusual 2D chiral charge density wave (CDW) and weak interlayer hopping in 4Hb-TaS2. Below the superconducting transition temperature, the upper critical field, Hc2, linearly increases via decreasing temperature, and well exceeds the Pauli limit, thus establishing the dominant orbital pair-breaking mechanism. Remarkably, we discover a field-induced superconductivity-to-superconductivity transition that breaks continuous rotational symmetry of the s-wave uniform pairing in the Bardeen-Cooper-Schrieffer theory down to the six-fold rotation symmetry. Combining with a Ginzburg-Landau free energy analysis that incorporates magnetoelectric effect, our observations provide strong evidence of orbital driven FMP in the 3D quantum heterostructure 4Hb-TaS2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10352v2-abstract-full').style.display = 'none'; document.getElementById('2407.10352v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07894">arXiv:2407.07894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07894">pdf</a>, <a href="https://arxiv.org/format/2407.07894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L032063">10.1103/PhysRevResearch.6.L032063 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+A">Ang-Kun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Siddhartha Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X">Xiaohan Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07894v2-abstract-short" style="display: inline;"> The quantum metric of single-particle wave functions in topological flatbands plays a crucial role in determining the stability of fractional Chern insulating (FCI) states. Here, we unravel that the quantum metric causes the many-body Chern number of the FCI states to deviate sharply from the expected value associated with partial filling of the single-particle topological flatband. Furthermore, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07894v2-abstract-full').style.display = 'inline'; document.getElementById('2407.07894v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07894v2-abstract-full" style="display: none;"> The quantum metric of single-particle wave functions in topological flatbands plays a crucial role in determining the stability of fractional Chern insulating (FCI) states. Here, we unravel that the quantum metric causes the many-body Chern number of the FCI states to deviate sharply from the expected value associated with partial filling of the single-particle topological flatband. Furthermore, the variation of the quantum metric in momentum space induces band dispersion through interactions, affecting the stability of the FCI states. This causes a reentrant transition into the Fermi liquid from the FCI phase as the interaction strength increases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07894v2-abstract-full').style.display = 'none'; document.getElementById('2407.07894v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, L032063 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03415">arXiv:2407.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03415">pdf</a>, <a href="https://arxiv.org/format/2407.03415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Theory of quasiparticle interference in Kitaev quantum spin liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jahin%2C+A">Ammar Jahin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03415v1-abstract-short" style="display: inline;"> We study quasiparticle interference (QPI) in the Kitaev quantum spin liquid (QSL) for electrons tunneling into the QSL. The local tunneling conductance around a spin vacancy or localized vison reveals unique features associated with fractionalized Majorana fermions, chargons, and visons. In certain parameter regimes, the single-spinon density of states and momentum dispersion can both be directly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03415v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03415v1-abstract-full" style="display: none;"> We study quasiparticle interference (QPI) in the Kitaev quantum spin liquid (QSL) for electrons tunneling into the QSL. The local tunneling conductance around a spin vacancy or localized vison reveals unique features associated with fractionalized Majorana fermions, chargons, and visons. In certain parameter regimes, the single-spinon density of states and momentum dispersion can both be directly extracted from the tunneling conductance. Our results suggest that QPI is a promising tool for identifying the Kitaev QSL and its fractionalized excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03415v1-abstract-full').style.display = 'none'; document.getElementById('2407.03415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01457">arXiv:2407.01457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01457">pdf</a>, <a href="https://arxiv.org/format/2407.01457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Nonlinear Acoustic Hall Effect and Inverse Acoustic Faraday Effect in Dirac Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balatsky%2C+A+V">Alexander V. Balatsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01457v1-abstract-short" style="display: inline;"> We propose to realize the quantum nonlinear Hall effect and the inverse Faraday effect through the acoustic wave in a time-reversal invariant but inversion broken Dirac insulator. We focus on the acoustic frequency much lower than the Dirac gap such that the interband transition is suppressed and these effects arise solely from the intrinsic valley-contrasting band topology. The corresponding acou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01457v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01457v1-abstract-full" style="display: none;"> We propose to realize the quantum nonlinear Hall effect and the inverse Faraday effect through the acoustic wave in a time-reversal invariant but inversion broken Dirac insulator. We focus on the acoustic frequency much lower than the Dirac gap such that the interband transition is suppressed and these effects arise solely from the intrinsic valley-contrasting band topology. The corresponding acoustoelectric conductivity and magnetoacoustic susceptibility are both proportional to the quantized valley Chern number and independent of the quasiparticle lifetime. The linear and nonlinear components of the longitudinal and transverse topological currents can be tuned by adjusting the polarization and propagation directions of the surface acoustic wave. The static magnetization generated by a circularly polarized acoustic wave scales linearly with the acoustic frequency as well as the strain-induced charge density. Our results unveil a quantized nonlinear topological acoustoelectric response of gapped Dirac materials, like hBN and transition-metal dichalcogenide, paving the way toward room-temperature acoustoelectric devices due to their large band gaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01457v1-abstract-full').style.display = 'none'; document.getElementById('2407.01457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures in main text, and 7 pages, 5 figures, 2 tables in supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00772">arXiv:2407.00772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00772">pdf</a>, <a href="https://arxiv.org/format/2407.00772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Core-level signature of long-range density-wave order and short-range excitonic correlations probed by attosecond broadband spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Chih Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+S+A">Shunsuke A. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+E">Emma Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nebgen%2C+B+R">Bailey R. Nebgen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hui%2C+M">Marcus Hui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yun Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+D">Dao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuerch%2C+M+W">Michael W. Zuerch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00772v2-abstract-short" style="display: inline;"> Advances in attosecond core-level spectroscopies have successfully unlocked the fastest dynamics involving high-energy electrons. Yet, these techniques are not conventionally regarded as an appropriate probe for low-energy quasiparticle interactions that govern the ground state of quantum materials, nor for studying long-range order because of their limited sensitivity to local charge environments&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00772v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00772v2-abstract-full" style="display: none;"> Advances in attosecond core-level spectroscopies have successfully unlocked the fastest dynamics involving high-energy electrons. Yet, these techniques are not conventionally regarded as an appropriate probe for low-energy quasiparticle interactions that govern the ground state of quantum materials, nor for studying long-range order because of their limited sensitivity to local charge environments. Here, by employing a unique cryogenic attosecond beamline, we identified clear core-level signatures of long-range charge-density-wave (CDW) formation in a quasi-2D excitonic insulator candidate, even though equilibrium photoemission and absorption measurements of the same core levels showed no spectroscopic singularity at the phase transition. Leveraging the high time resolution and intrinsic sensitivity to short-range charge excitations in attosecond core-level absorption, we observed compelling time-domain evidence for excitonic correlations in the normal-state of the material, whose presence has been subjected to a long-standing debate in equilibrium experiments because of interfering phonon fluctuations in a similar part of the phase space. Our findings support the scenario that short-range excitonic fluctuations prelude long-range order formation in the ground state, providing important insights in the mechanism of exciton condensation in a quasi-low-dimensional system. These results further demonstrate the importance of a simultaneous access to long- and short-range order with underlying dynamical processes spanning a multitude of time- and energy-scales, making attosecond spectroscopy an indispensable tool for both understanding the equilibrium phase diagram and for discovering novel, nonequilibrium states in strongly correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00772v2-abstract-full').style.display = 'none'; document.getElementById('2407.00772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11442">arXiv:2406.11442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11442">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Layer-dependent electromechanical response in twisted graphene moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hanhao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuanhao Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shengsheng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiarui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinran Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11442v1-abstract-short" style="display: inline;"> The coupling of mechanical deformation and electrical stimuli at the nanoscale has been a subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform to explore exotic quantum states. These states are intimately tied to the formation of moir茅 superlattices, which can be visualized directly exploiting the electromech&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11442v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11442v1-abstract-full" style="display: none;"> The coupling of mechanical deformation and electrical stimuli at the nanoscale has been a subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform to explore exotic quantum states. These states are intimately tied to the formation of moir茅 superlattices, which can be visualized directly exploiting the electromechanical response. However, the origin of the response, even in twisted bilayer graphene (tBLG), remains unsettled. Here, employing lateral piezoresponse force microscopy (LPFM), we investigate the electromechanical responses of marginally twisted graphene moir茅 superlattices with different layer thicknesses. We observe distinct LPFM amplitudes and spatial profiles in tBLG and twisted monolayer-bilayer graphene (tMBG), exhibiting effective in-plane piezoelectric coefficients of 0.05 pm/V and 0.35 pm/V, respectively. Force tuning experiments further underscore a marked divergence in their responses. The contrasting behaviors suggest different electromechanical couplings in tBLG and tMBG. In tBLG, the response near the domain walls is attributed to the flexoelectric effect, while in tMBG, the behaviors can be comprehended within the context of piezoelectric effect. Our results not only provide insights to electromechanical and corporative effects in twisted vdW materials with different stacking symmetries, but may also show their potential for engineering them at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11442v1-abstract-full').style.display = 'none'; document.getElementById('2406.11442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03455">arXiv:2406.03455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03455">pdf</a>, <a href="https://arxiv.org/format/2406.03455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Topological disclination states and charge fractionalization in a non-Hermitian lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+R">Rimi Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">Subhaskar Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terh%2C+Y+Y">Yun Yong Terh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuxin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gui-Geng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Baile Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+Y+D">Y. D. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03455v1-abstract-short" style="display: inline;"> We show that a non-Hermitian lattice with a disclination can host topological disclination states that are induced by on-site gain and loss. The disclination states are inherently non-Hermitian as they do not exist in the limit of zero gain/loss. They arise from charge fractionalization in the non-Hermitian lattice, which we establish using non-Hermitian Wilson loops calculated with biorthogonal p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03455v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03455v1-abstract-full" style="display: none;"> We show that a non-Hermitian lattice with a disclination can host topological disclination states that are induced by on-site gain and loss. The disclination states are inherently non-Hermitian as they do not exist in the limit of zero gain/loss. They arise from charge fractionalization in the non-Hermitian lattice, which we establish using non-Hermitian Wilson loops calculated with biorthogonal products. The model can be realized using an array of optical resonators, with the emergence of the topological disclination states manifesting as an abrupt shift in emission intensity and frequency upon tuning the gain/loss level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03455v1-abstract-full').style.display = 'none'; document.getElementById('2406.03455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18250">arXiv:2405.18250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18250">pdf</a>, <a href="https://arxiv.org/format/2405.18250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous flows in active smectics with dislocations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shao-Zhen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%BClicher%2C+F">Frank J眉licher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prost%2C+J">Jacques Prost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rupprecht%2C+J">Jean-Francois Rupprecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18250v1-abstract-short" style="display: inline;"> We construct a hydrodynamic theory of active smectics A in two-dimensional space, including the creation/annihilation and motility of dislocations with Burgers&#39; number $\pm1$. We derive analytical criteria on the set of parameters that lead to flows. We show that the motility of dislocations can lead to flow transitions with distinct features from the previously reported active Helfrich--Hurault s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18250v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18250v1-abstract-full" style="display: none;"> We construct a hydrodynamic theory of active smectics A in two-dimensional space, including the creation/annihilation and motility of dislocations with Burgers&#39; number $\pm1$. We derive analytical criteria on the set of parameters that lead to flows. We show that the motility of dislocations can lead to flow transitions with distinct features from the previously reported active Helfrich--Hurault shear instability with, notably, a first-order transition in the velocity from quiescence to turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18250v1-abstract-full').style.display = 'none'; document.getElementById('2405.18250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10318">arXiv:2405.10318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10318">pdf</a>, <a href="https://arxiv.org/format/2405.10318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Gauge theory of giant phonon magnetic moment in doped Dirac semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenqin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiao-Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10318v2-abstract-short" style="display: inline;"> We present a quantum theory of phonon magnetic moment in doped Dirac semimetals. Our theory is based on an emergent gauge field approach to the electron-phonon coupling, applicable to both gapless and gapped systems. We find that the magnetic moment is directly proportional to the electrical Hall conductivity through the phonon Hall viscosity. Our theory is combined with the first-principles calcu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10318v2-abstract-full').style.display = 'inline'; document.getElementById('2405.10318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10318v2-abstract-full" style="display: none;"> We present a quantum theory of phonon magnetic moment in doped Dirac semimetals. Our theory is based on an emergent gauge field approach to the electron-phonon coupling, applicable to both gapless and gapped systems. We find that the magnetic moment is directly proportional to the electrical Hall conductivity through the phonon Hall viscosity. Our theory is combined with the first-principles calculations, allowing us to quantitatively implement it to realistic materials. Magnetic moments are found to be on the order of Bohr magneton for certain phonon modes in graphene and $\text{Cd}_3 \text{As}_2$. Our results provide practical guidance for the dynamical generation of large magnetization in the topological quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10318v2-abstract-full').style.display = 'none'; document.getElementById('2405.10318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, supplemental materials included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19098">arXiv:2404.19098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19098">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Investigation of ideal shear strength of dilute binary and ternary Ni-based alloys using first-principles calculations, CALPHAD modeling and correlation analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimanek%2C+J+D">John D. Shimanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beese%2C+A+M">Allison M. Beese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19098v1-abstract-short" style="display: inline;"> In the present work, the ideal shear strength (Tis) of dilute Ni34XZ ternary alloys (X or Z = Al, Co, Cr, Fe, Mn, Mo, Nb, Si, Ti) are predicted by first-principles calculations based on density functional theory (DFT) in terms of pure alias shear deformations. The results show that within the concentration up to 8.3% of the alloying elements, Tis increases with composition in binary systems with M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19098v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19098v1-abstract-full" style="display: none;"> In the present work, the ideal shear strength (Tis) of dilute Ni34XZ ternary alloys (X or Z = Al, Co, Cr, Fe, Mn, Mo, Nb, Si, Ti) are predicted by first-principles calculations based on density functional theory (DFT) in terms of pure alias shear deformations. The results show that within the concentration up to 8.3% of the alloying elements, Tis increases with composition in binary systems with Mn, Fe, Co in ascending order, and decreases with composition with Nb, Si, Mo, Ti, Al, Cr in descending order. Combined with Ni34XZ in the present work and Ni11X in the literature from DFT-based calculations, the composition dependence of Tis in binary and ternary systems is modeled using the CALculation of PHAse Diagrams (CALPHAD) approach considering lattice instability, indicating that atomic bonding strength significantly influences Tis. Furthermore, correlational analyses show that Burgers vector and elastic constant C11 affect Tis the most out of the elemental features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19098v1-abstract-full').style.display = 'none'; document.getElementById('2404.19098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Figures Submitted to Computational Materials Science on April 25th</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.6; J.6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14404">arXiv:2404.14404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14404">pdf</a>, <a href="https://arxiv.org/format/2404.14404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multipolar Skyrmion Crystals in Non-Kramers Doublet Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14404v2-abstract-short" style="display: inline;"> We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compass-like anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field. In a unit cell, the skyrmion frac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14404v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14404v2-abstract-full" style="display: none;"> We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compass-like anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field. In a unit cell, the skyrmion fractionalizes into meron composites subject to the conservation of total topological charge. Diverse multipolar phases in the phase diagram give rise to novel spontaneous Hall response of conduction electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14404v2-abstract-full').style.display = 'none'; document.getElementById('2404.14404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+6 pages, 4+3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Lett. 133, 196702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19422">arXiv:2403.19422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19422">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Normal Fermi Surface in the Nodal Superconductor CeCoIn$_5$ Revealed via Thermal Conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+Y">Duk Y. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">Roman Movshovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19422v1-abstract-short" style="display: inline;"> The thermal conductivity of heavy-fermion superconductor CeCoIn$_5$ was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the anti-nodal direction, $J$ || [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle $胃$ $\sim$ 12$^{\circ}$, measured from the heat current direction [100]. This resonance corresponds to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19422v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19422v1-abstract-full" style="display: none;"> The thermal conductivity of heavy-fermion superconductor CeCoIn$_5$ was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the anti-nodal direction, $J$ || [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle $胃$ $\sim$ 12$^{\circ}$, measured from the heat current direction [100]. This resonance corresponds to the reported resonance at an angle $胃&#39;$ $\sim$ 33$^{\circ}$ from the direction of the heat current applied along the nodal direction, $J$ || [110]. Both resonances, therefore, occur when the magnetic field is applied in the same crystallographic orientation in the two experiments, regardless of the direction of the heat current, proving conclusively that these resonances are due to the structure of the Fermi surface of CeCoIn$_5$. We argue that the uncondensed Landau quasiparticles, emerging with field, are responsible for the observed resonance. We support our experimental results with density-functional-theory model calculations of the density of states in a rotating magnetic field. Our calculations, using a model Fermi surface of CeCoIn$_5$, reveal several sharp peaks as a function of the field direction. Our study demonstrates that the thermal-conductivity measurement in rotating magnetic field can probe the normal parts of the Fermi surface deep inside the superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19422v1-abstract-full').style.display = 'none'; document.getElementById('2403.19422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00705">arXiv:2403.00705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00705">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> First-principles Investigation of Thermodynamic Properties of CrNbO4 and CrTaO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beese%2C+A+M">Allison M. Beese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00705v1-abstract-short" style="display: inline;"> In the present study, the DFT+U method was employed to predict the thermodynamic properties of Cr2O3, Nb2O5, and Ta2O5. Results were benchmarked with experimental data showing high accuracy, except for the negative thermal expansion (NTE) of Nb2O5, which is attributed to its polymorphic complexity. Additionally, we extended our analysis to rutile-type oxides CrNbO4 and CrTaO4, examining their entr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00705v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00705v1-abstract-full" style="display: none;"> In the present study, the DFT+U method was employed to predict the thermodynamic properties of Cr2O3, Nb2O5, and Ta2O5. Results were benchmarked with experimental data showing high accuracy, except for the negative thermal expansion (NTE) of Nb2O5, which is attributed to its polymorphic complexity. Additionally, we extended our analysis to rutile-type oxides CrNbO4 and CrTaO4, examining their entropy and heat capacity at finite temperatures. CrNbO4 displayed slightly higher entropy and heat capacity at high temperatures. The mean linear thermal expansion coefficients for CrNbO4 and CrTaO4 from 500 K to 2000 K were predicted to be 6.00*10-6/K and 13.49*10-6/K, respectively, corroborating with DFT predictions and experimental evidence. Our research highlights the precision of the DFT+U and phonon methods in predicting the thermodynamic properties of oxide materials, offering insights into the design of corrosion-resistant materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00705v1-abstract-full').style.display = 'none'; document.getElementById('2403.00705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00359">arXiv:2403.00359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and metallic behavior in heavily doped bulk single crystal diamond and graphene/diamond heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shisheng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xutao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Minhui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Huikai Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiarui Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00359v1-abstract-short" style="display: inline;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00359v1-abstract-full" style="display: none;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band gap semiconductor. Herein, we realize a single crystal superconducting diamond with a Hall carrier concentration larger than 3*1020 cm-3 by co-doped of boron and nitrogen. Furthermore, we show that diamond can transform from superconducting to metallic state under similar carrier concentration with tuned carrier mobility degrading from 9.10 cm2 V-1 s-1 or 5.30 cm2 V-1 s-1 to 2.66 cm2 V-1 s-1 or 1.34 cm2 V-1 s-1. Through integrating graphene on a nitrogen and boron heavily co-doped diamond, the monolayer graphene can be superconducting through combining Andreev reflection and exciton mediated superconductivity, which may intrigue more interesting superconducting behavior of diamond heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'none'; document.getElementById('2403.00359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17600">arXiv:2402.17600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17600">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sustained Robust Exciton Emission in Suspended Monolayer WSe_2 within the Low Carrier Density Regime for Quantum Emitter Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zheng-Zhe Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chiao-Yun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+Y">Ya-Ting Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+P">Po-Cheng Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shih-Yen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+M">Min-Hsiung Shih</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17600v1-abstract-short" style="display: inline;"> The development of semiconductor optoelectronic devices is moving toward low power consumption and miniaturization, especially for high-efficiency quantum emitters. However, most of these quantum sources work at low carrier density region, where the Shockley-Read-Hall recombination may dominant and seriously reduce the emission efficiency. In order to diminish the affection of carrier trapping and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17600v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17600v1-abstract-full" style="display: none;"> The development of semiconductor optoelectronic devices is moving toward low power consumption and miniaturization, especially for high-efficiency quantum emitters. However, most of these quantum sources work at low carrier density region, where the Shockley-Read-Hall recombination may dominant and seriously reduce the emission efficiency. In order to diminish the affection of carrier trapping and sustain a strong photoluminescence emission under low power pumping condition, we investigated on the influence of Suspending to monolayered tungsten diselenide, novel two-dimensional quantum material. Not only the PL intensity, but also the fundamental photoluminescence quantum yield has exhibited a huge, order-scale enhancement through suspending, even surprisingly, we found the PLQY improvement revealed far significantly under small pumping power and came out an exponential increase tendency toward even lower carrier density region. With its strong excitonic effect, suspended WSe_2 offers a solution to reduce carrier trapping and participate in non-radiative processes. Moreover, in the low-power range where SRH recombination dominates, suspended WSe_2 exhibited remarkably higher percentage of excitonic radiation compared to contacted WSe_2. Herein, we quantitatively demonstrate the significance of suspended WSe_2 monolayer at low carrier density region, highlighting its potential for developing compact, low-power quantum emitters in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17600v1-abstract-full').style.display = 'none'; document.getElementById('2402.17600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02251">arXiv:2402.02251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02251">pdf</a>, <a href="https://arxiv.org/format/2402.02251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.245131">10.1103/PhysRevB.109.245131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contrasting twisted bilayer graphene and transition metal dichalcogenides for fractional Chern insulators: an emergent gauge picture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Heqiu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kee%2C+H">Hae-Young Kee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02251v1-abstract-short" style="display: inline;"> The recent experimental discovery of the zero-field fractional Chern insulator (FCI) in twisted $\mathrm{MoTe_2}$ moir茅 superlattices has sparked immense interest in this exotic topological quantum state. The FCI has also been observed in previous experiments in magic angle twisted bilayer graphene (TBG) under a finite magnetic field of about 5 Tesla. Generally, the stabilization of FCI requires f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02251v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02251v1-abstract-full" style="display: none;"> The recent experimental discovery of the zero-field fractional Chern insulator (FCI) in twisted $\mathrm{MoTe_2}$ moir茅 superlattices has sparked immense interest in this exotic topological quantum state. The FCI has also been observed in previous experiments in magic angle twisted bilayer graphene (TBG) under a finite magnetic field of about 5 Tesla. Generally, the stabilization of FCI requires fine-tuning the topological band to satisfy certain conditions. It would still be helpful to have an intuitive picture to understand the different behaviors in twisted $\mathrm{MoTe_2}$ and TBG. Here, we compare them through the lens of emergent gauge fields. In TBG, the system can be mapped to two Dirac fermions coupled to emergent gauge fields with opposite signs. In contrast, the twisted $\mathrm{MoTe_2}$ reduces to a hole with parabolic dispersion coupled to an emergent gauge field. This contrasting gauge structure provides a new perspective on the observed difference: the zero-field FCI is stable in $\mathrm{MoTe_2}$ but absent in TBG. Based on this understanding, we will explore potential strategies for stabilizing FCI in both moir茅 superlattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02251v1-abstract-full').style.display = 'none'; document.getElementById('2402.02251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.109.245131 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16405">arXiv:2311.16405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Metal-to-insulator transition in oxide semimetals by anion doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhas%2C+J+A">Jeffrey A. Dhas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+B">Binod Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+T">Ting Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yiyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zihua Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yingge Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chambers%2C+S+A">Scott A. Chambers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui-juan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16405v1-abstract-short" style="display: inline;"> Oxide semimetals exhibiting both nontrivial topological characteristics stand as exemplary parent compounds and multiple degrees of freedom, offering great promise for the realization of novel electronic states. In this study, we present compelling evidence of profound structural and transport phase shifts in a recently uncovered oxide semimetal, SrNbO3, achieved through effective in-situ anion do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16405v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16405v1-abstract-full" style="display: none;"> Oxide semimetals exhibiting both nontrivial topological characteristics stand as exemplary parent compounds and multiple degrees of freedom, offering great promise for the realization of novel electronic states. In this study, we present compelling evidence of profound structural and transport phase shifts in a recently uncovered oxide semimetal, SrNbO3, achieved through effective in-situ anion doping. Notably, a remarkable increase in resistivity of more than three orders of magnitude at room temperature is observed upon nitrogen-doping. The extent of electronic modulation in SrNbO3 is strongly correlated with the misfit strain, underscoring its phase instability to both chemical doping and crystallographic symmetry variations. Using first-principles calculations, we discern that elevating the level of nitrogen doping induces an upward shift in the conductive bands of SrNbO3-dNd. Consequently, a transition from a metallic state to an insulating state becomes apparent as the nitrogen concentration reaches a threshold of 1/3. This investigation sheds light on the potential of anion engineering in oxide semimetals, offering pathways for manipulating their physical properties. These insights hold promise for future applications that harness these materials for tailored functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16405v1-abstract-full').style.display = 'none'; document.getElementById('2311.16405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19783">arXiv:2310.19783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19783">pdf</a>, <a href="https://arxiv.org/format/2310.19783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Approximate t-designs in generic circuit architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belkin%2C+D">Daniel Belkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+J">James Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+S">Soumik Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+C">Christopher Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sophia Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sud%2C+J">James Sud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+F">Fred Chong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fefferman%2C+B">Bill Fefferman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+B+K">Bryan K. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19783v3-abstract-short" style="display: inline;"> Unitary t-designs are distributions on the unitary group whose first t moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate t-designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19783v3-abstract-full').style.display = 'inline'; document.getElementById('2310.19783v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19783v3-abstract-full" style="display: none;"> Unitary t-designs are distributions on the unitary group whose first t moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate t-designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps of such architectures to those of 1D brickwork architectures. Our bound depends on the details of the architecture only via the typical number of layers needed for a block of the circuit to form a connected graph over the sites. When this quantity is independent of width, the circuit forms an approximate t-design in linear depth. We also give an implicit bound for nondeterministic architectures in terms of properties of the corresponding distribution over fixed architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19783v3-abstract-full').style.display = 'none'; document.getElementById('2310.19783v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04938">arXiv:2310.04938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04938">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic field-induced changes in the superconducting order parameter of UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+A+J">Andrew J. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04938v1-abstract-short" style="display: inline;"> UTe2 is a newly discovered unconventional superconductor, where electron Cooper pairs combine into a spin-triplet ground state. Here we report the specific heat C(H,T) of a high-quality single crystal of UTe2 with a single specific heat anomaly at the superconducting transition temperature T_c {\approx} 2 K and a small zero-field residual Sommerfeld coefficient 纬_0 = C/T (T=0) = 10 mJ/mol-K^2. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04938v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04938v1-abstract-full" style="display: none;"> UTe2 is a newly discovered unconventional superconductor, where electron Cooper pairs combine into a spin-triplet ground state. Here we report the specific heat C(H,T) of a high-quality single crystal of UTe2 with a single specific heat anomaly at the superconducting transition temperature T_c {\approx} 2 K and a small zero-field residual Sommerfeld coefficient 纬_0 = C/T (T=0) = 10 mJ/mol-K^2. We applied magnetic field up to 12 T along the three principal crystallographic axes of UTe2 to probe the nature of the superconducting state. The evolution of the residual Sommerfeld coefficient as a function of magnetic field, 纬_0 (H), is highly anisotropic and reveals distinct regions. In magnetic field up to 4 T applied along a, b, and c axes, we find 纬_0{\approx}伪_i {\square}H, with i=a,b,c, as expected for an unconventional superconductor with nodes (zeros) of the superconducting order parameter on the Fermi surface. A pronounced kink in 纬_0(H), however, is observed at roughly 4 T for field applied along both a and b axes, whereas a smooth change from square-root to linear behaviour is observed at 4 T for H//c. These results strongly indicate that a zero-field ground state is stable up to 4 T and undergoes a field-induced evolution above 4 T. {伪_c} &gt; {伪_a} &gt; {伪_b}, indicating that the nodes in the low-field state are predominantly located in the vicinity of the a-b plane. The modification of the order parameter is strongest when field is applied in the a-b plane, which causes nodes to move away from the direction of the applied field. Both d_(B_2u)+id_(B_1u) and d_(B_2u)+id_(A_u) two-component order parameters can account for our observations, with d_(B_2u)+id_(B_1u) a more likely candidate. In either scenario, our measurements indicate that B_2u is the primary superconducting order parameter in UTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04938v1-abstract-full').style.display = 'none'; document.getElementById('2310.04938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02218">arXiv:2310.02218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02218">pdf</a>, <a href="https://arxiv.org/format/2310.02218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-based classification of exact flat bands in single and bilayer moir茅 systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Siddhartha Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X">Xiaohan Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02218v1-abstract-short" style="display: inline;"> We study the influence of spatial symmetries on the appearance and the number of exact flat bands (FBs) in single and bilayer systems with Dirac or quadratic band crossing points, and systematically classify all possible number of exact flat bands in systems with different point group symmetries. We find that a maximum of 6 FBs can be protected by symmetries, and show an example of 6 FBs in a syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02218v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02218v1-abstract-full" style="display: none;"> We study the influence of spatial symmetries on the appearance and the number of exact flat bands (FBs) in single and bilayer systems with Dirac or quadratic band crossing points, and systematically classify all possible number of exact flat bands in systems with different point group symmetries. We find that a maximum of 6 FBs can be protected by symmetries, and show an example of 6 FBs in a system with QBCP under periodic strain field of $\mathcal{C}_{6v}$ point group symmetry. All known examples of exact FBs in single and bilayer systems fall under this classification, including chiral twisted bilayer graphene, and new examples of exact FBs are found. We show the construction of wavefunctions for the highly degenerate FBs, and prove that any such set of FBs are $\mathds{Z}_2$ nontrivial, where all WFs polarized on one sublattice together have Chern number $C = 1$ and WFs polarized on the other sublattice together have $C = -1$. These bands also satisfy ideal non-Abelian quantum geometry condition. We further show that, just like in TBG, topological heavy fermion description of the FBs with higher degeneracy is possible as long as the Berry curvature distribution is peaked around a point in the BZ. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02218v1-abstract-full').style.display = 'none'; document.getElementById('2310.02218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04155">arXiv:2309.04155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04155">pdf</a>, <a href="https://arxiv.org/format/2309.04155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Driven Majorana Modes: A Route to Synthetic $p_x+ip_y$ Superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lingyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+G">Gia-Wei Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04155v1-abstract-short" style="display: inline;"> We propose a protocol to realize synthetic $p_x+ip_y$ superconductors in one-dimensional topological systems that host Majorana fermions. By periodically driving a localized Majorana mode across the system, our protocol realizes a topological pumping of Majorana fermions, analogous to the adiabatic Thouless pumping of electrical charges. Importantly, similar to the realization of a Chern insulator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04155v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04155v1-abstract-full" style="display: none;"> We propose a protocol to realize synthetic $p_x+ip_y$ superconductors in one-dimensional topological systems that host Majorana fermions. By periodically driving a localized Majorana mode across the system, our protocol realizes a topological pumping of Majorana fermions, analogous to the adiabatic Thouless pumping of electrical charges. Importantly, similar to the realization of a Chern insulator through Thouless pumping, we show that pumping of Majorana zero modes could lead to a $p_x + ip_y$ superconductor in the two dimensions of space and synthetic time. The Floquet theory is employed to map the driven one-dimensional system to a two-dimensional synthetic system by considering frequency as a new dimension. We demonstrate such Floquet $p_x + i p_y$ superconductors using the Kitaev $p$-wave superconductor chain, a prototypical 1D topological system, as well as its more realistic realization in the 1D Kondo lattice model as examples. We further show the appearance of a new $蟺$ Majorana mode at the Floquet zone boundary in an intermediate drive frequency region. Our work suggests a driven magnetic spiral coupled to a superconductor as a promising platform for the realization of novel topological superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04155v1-abstract-full').style.display = 'none'; document.getElementById('2309.04155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00996">arXiv:2309.00996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00996">pdf</a>, <a href="https://arxiv.org/format/2309.00996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-024-01252-3">10.1038/s41524-024-01252-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine-learning potentials for nanoscale simulations of deformation and fracture: example of TiB$_2$ ceramic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuyao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casillas-Trujillo%2C+L">Luis Casillas-Trujillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tasn%C3%A1di%2C+F">Ferenc Tasn谩di</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hultman%2C+L">Lars Hultman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayrhofer%2C+P+H">Paul H. Mayrhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+D+G">Davide G. Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koutn%C3%A1%2C+N">Nikola Koutn谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00996v1-abstract-short" style="display: inline;"> Machine-learning interatomic potentials (MLIPs) offer a powerful avenue for simulations beyond length and timescales of ab initio methods. Their development for investigation of mechanical properties and fracture, however, is far from trivial since extended defects -- governing plasticity and crack nucleation in most materials -- are too large to be included in the training set. Using TiB$_2$ as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00996v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00996v1-abstract-full" style="display: none;"> Machine-learning interatomic potentials (MLIPs) offer a powerful avenue for simulations beyond length and timescales of ab initio methods. Their development for investigation of mechanical properties and fracture, however, is far from trivial since extended defects -- governing plasticity and crack nucleation in most materials -- are too large to be included in the training set. Using TiB$_2$ as a model ceramic material, we propose a strategy for fitting MLIPs suitable to simulate mechanical response of monocrystals until fracture. Our MLIP accurately reproduces ab initio stresses and failure mechanisms during room-temperature uniaxial tensile deformation of TiB$_2$ at the atomic scale ($\approx{10}^3$ atoms). More realistic tensile tests (low strain rate, Poisson&#39;s contraction) at the nanoscale ($\approx{10}^4$--10$^6$ atoms) require MLIP up-fitting, i.e. learning from additional ab initio configurations. Consequently, we elucidate trends in theoretical strength, toughness, and crack initiation patterns under different loading directions. To identify useful environments for further up-fitting, i.e., making the MLIP applicable to a wider spectrum of simulations, we asses transferability to other deformation conditions and phases not explicitly trained on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00996v1-abstract-full').style.display = 'none'; document.getElementById('2309.00996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07639">arXiv:2308.07639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07639">pdf</a>, <a href="https://arxiv.org/format/2308.07639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Curvature-induced clustering of cell adhesion proteins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shao-Zhen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prost%2C+J">Jacques Prost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rupprecht%2C+J">Jean-Francois Rupprecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07639v1-abstract-short" style="display: inline;"> Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several works have suggested that cell membrane protein clusters can emerge from a local feedback between the membrane curvature and the density of proteins. Here, we investigate the effect of such curvature-sensing mechanism in the context of cell adhesion proteins. We show how clustering emerg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07639v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07639v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07639v1-abstract-full" style="display: none;"> Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several works have suggested that cell membrane protein clusters can emerge from a local feedback between the membrane curvature and the density of proteins. Here, we investigate the effect of such curvature-sensing mechanism in the context of cell adhesion proteins. We show how clustering emerges in an intermediate range of adhesion and curvature-sensing strengths. We identify key differences with the tilt-induced gradient sensing mechanism we previously proposed (Lin et al., arXiv:2307.03670, 2023). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07639v1-abstract-full').style.display = 'none'; document.getElementById('2308.07639v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05837">arXiv:2308.05837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05837">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Predictions and correlation analyses of Ellingham diagrams in binary oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+C">Michael C. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05837v1-abstract-short" style="display: inline;"> Knowing oxide-forming ability is vital to gain desired or avoid deleterious oxides formation through tuning oxidizing environment and materials chemistry. Here, we have conducted a comprehensive thermodynamic analysis of 137 binary oxides using the presently predicted Ellingham diagrams. It is found that the active elements to form oxides easily are the f-block elements (lanthanides and actinides)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05837v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05837v1-abstract-full" style="display: none;"> Knowing oxide-forming ability is vital to gain desired or avoid deleterious oxides formation through tuning oxidizing environment and materials chemistry. Here, we have conducted a comprehensive thermodynamic analysis of 137 binary oxides using the presently predicted Ellingham diagrams. It is found that the active elements to form oxides easily are the f-block elements (lanthanides and actinides), elements in the groups II, III, and IV (alkaline earth, Sc, Y, Ti, Zr, and Hf), and Al and Li; while the noble elements with their oxides nonstable and easily reduced are coinage metals (Cu, Ag, and especially Au), Pt-group elements, and Hg and Se. Machine learning based sequential feature selection indicates that oxide-forming ability can be represented by electronic structures of pure elements, for example, their d- and s-valence electrons, Mendeleev numbers, and the groups, making the periodic table a useful tool to tailor oxide-forming ability. The other key elemental features to correlate oxide-forming ability are thermochemical properties such as melting points and standard entropy at 298 K of pure elements. It further shows that the present Ellingham diagrams enable qualitatively understanding and even predicting oxides formed in multicomponent materials, such as the Fe-20Cr-20Ni alloy (in wt.%) and the equimolar high entropy alloy of AlCoCrFeNi, which are in accordance with thermodynamic calculations using the CALPHAD approach and experimental observations in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05837v1-abstract-full').style.display = 'none'; document.getElementById('2308.05837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13581">arXiv:2307.13581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13581">pdf</a>, <a href="https://arxiv.org/format/2307.13581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Comparing Forward and Inverse Design Paradigms: A Case Study on Refractory High-Entropy Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Debnath%2C+A">Arindam Debnath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raman%2C+L">Lavanya Raman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenjie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krajewski%2C+A+M">Adam M. Krajewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+M">Marcia Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shuang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+S">Shunli Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beese%2C+A+M">Allison M. Beese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinhart%2C+W+F">Wesley F. Reinhart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13581v1-abstract-short" style="display: inline;"> The rapid design of advanced materials is a topic of great scientific interest. The conventional, ``forward&#39;&#39; paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an ``inverse&#39;&#39; design paradigm for advanced materials, where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13581v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13581v1-abstract-full" style="display: none;"> The rapid design of advanced materials is a topic of great scientific interest. The conventional, ``forward&#39;&#39; paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an ``inverse&#39;&#39; design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high throughput screening, and multi objective optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13581v1-abstract-full').style.display = 'none'; document.getElementById('2307.13581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11928">arXiv:2307.11928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11928">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07037-4">10.1038/s41586-024-07037-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-Driven Nanoscale Vectorial Currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pettine%2C+J">Jacob Pettine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Padmanabhan%2C+P">Prashant Padmanabhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Teng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gingras%2C+L">Lauren Gingras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McClintock%2C+L">Luke McClintock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chun-Chieh Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwock%2C+K+W+C">Kevin W. C. Kwock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+L">Long Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yue Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nogan%2C+J">John Nogan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldwin%2C+J+K">Jon K. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adel%2C+P">Peter Adel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzwarth%2C+R">Ronald Holzwarth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Azad%2C+A+K">Abul K. Azad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+A+J">Antoinette J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prasankumar%2C+R+P">Rohit P. Prasankumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hou-Tong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11928v2-abstract-short" style="display: inline;"> Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics, and as a means of revealing or even inducing broken symmetries. Emerging methods for light-based current control offer promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11928v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11928v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11928v2-abstract-full" style="display: none;"> Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics, and as a means of revealing or even inducing broken symmetries. Emerging methods for light-based current control offer promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometer spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here, we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to sub-diffractive nanometer scales. Local symmetries and vectorial current distributions are revealed by polarization- and wavelength-sensitive electrical readout and terahertz (THz) emission, while spatially-tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams. We show that in graphene, a detailed interplay between electrodynamic, thermodynamic, and hydrodynamic degrees of freedom gives rise to rapidly-evolving nanoscale driving forces and charge flows under extreme temporal and spatial confinement. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nano-magnetism, and ultrafast information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11928v2-abstract-full').style.display = 'none'; document.getElementById('2307.11928v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 626, 984-989 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10722">arXiv:2307.10722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10722">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of long-range ferromagnetism via anomalous supercurrents in a spin-orbit coupled superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+B+K">B. K. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y+S">Y. S. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+S">Q. S. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J+J">J. J. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B+R">B. R. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+K+Y">K. Y. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+J">Z. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H+X">H. X. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C+X">C. X. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T+Y">T. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M+H">M. H. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokatly%2C+I+V">I. V. Tokatly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F+S">F. S. Bergeret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+H">Y. H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10722v2-abstract-short" style="display: inline;"> Conventional superconductors naturally disfavor ferromagnetism because the supercurrent-carrying electrons are paired into anti-parallel spin singlets. In superconductors with strong Rashba spin-orbit coupling, impurity magnetic moments induce supercurrents through the spin-galvanic effect. As a result, long-range ferromagnetic interaction among the impurity moments may be mediated through such an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10722v2-abstract-full').style.display = 'inline'; document.getElementById('2307.10722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10722v2-abstract-full" style="display: none;"> Conventional superconductors naturally disfavor ferromagnetism because the supercurrent-carrying electrons are paired into anti-parallel spin singlets. In superconductors with strong Rashba spin-orbit coupling, impurity magnetic moments induce supercurrents through the spin-galvanic effect. As a result, long-range ferromagnetic interaction among the impurity moments may be mediated through such anomalous supercurrents in a similar fashion as in itinerant ferromagnets. Fe(Se,Te) is such a superconductor with topological surface bands, previously shown to exhibit quantum anomalous vortices around impurity spins. Here, we take advantage of the flux sensitivity of scanning superconducting quantum interference devices to investigate superconducting Fe(Se,Te) in the regime where supercurrents around impurities overlap. We find homogeneous remanent flux patterns after applying a supercurrent through the sample. The patterns are consistent with anomalous edge and bulk supercurrents generated by in-plane magnetization, which occur above a current threshold and follow hysteresis loops reminiscent of those of a ferromagnet. Similar long-range magnetic orders can be generated by Meissner current under a small out-of-plane magnetic field. The magnetization weakens with increasing temperature and disappears after thermal cycling to above superconducting critical temperature; further suggesting superconductivity is central to establishing and maintaining the magnetic order. These observations demonstrate surface anomalous supercurrents as a mediator for ferromagnetism in a spin-orbit coupled superconductor, which may potentially be utilized for low-power cryogenic memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10722v2-abstract-full').style.display = 'none'; document.getElementById('2307.10722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03670">arXiv:2307.03670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03670">pdf</a>, <a href="https://arxiv.org/ps/2307.03670">ps</a>, <a href="https://arxiv.org/format/2307.03670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Tilt-induced clustering of cell adhesion proteins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shao-Zhen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Changede%2C+R">Rishita Changede</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheetz%2C+M+P">Michael P. Sheetz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prost%2C+J">Jacques Prost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rupprecht%2C+J">Jean-Francois Rupprecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03670v1-abstract-short" style="display: inline;"> Cell adhesion proteins are transmembrane proteins that bind cells to their environment. These proteins typically cluster into disk-shaped or linear structures. Here we show that such clustering patterns spontaneously emerge when the protein sense the membrane deformation gradient, for example by reaching a lower-energy conformation when the membrane is tilted relative to the underlying binding sub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03670v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03670v1-abstract-full" style="display: none;"> Cell adhesion proteins are transmembrane proteins that bind cells to their environment. These proteins typically cluster into disk-shaped or linear structures. Here we show that such clustering patterns spontaneously emerge when the protein sense the membrane deformation gradient, for example by reaching a lower-energy conformation when the membrane is tilted relative to the underlying binding substrate. Increasing the strength of the membrane gradient-sensing mechanism first yields isolated disk-shaped clusters and then long linear structures. Our theory is coherent with experimental estimates, suggesting that a tilt-induced clustering mechanism is relevant in the context of cell adhesion proteins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03670v1-abstract-full').style.display = 'none'; document.getElementById('2307.03670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, with SI (ancillary files)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14787">arXiv:2306.14787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14787">pdf</a>, <a href="https://arxiv.org/format/2306.14787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distributive Pre-Training of Generative Modeling Using Matrix-Product States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Hsuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuijpers%2C+O">Olivier Kuijpers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterhansl%2C+S">Sebastian Peterhansl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14787v1-abstract-short" style="display: inline;"> Tensor networks have recently found applications in machine learning for both supervised learning and unsupervised learning. The most common approaches for training these models are gradient descent methods. In this work, we consider an alternative training scheme utilizing basic tensor network operations, e.g., summation and compression. The training algorithm is based on compressing the superpos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14787v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14787v1-abstract-full" style="display: none;"> Tensor networks have recently found applications in machine learning for both supervised learning and unsupervised learning. The most common approaches for training these models are gradient descent methods. In this work, we consider an alternative training scheme utilizing basic tensor network operations, e.g., summation and compression. The training algorithm is based on compressing the superposition state constructed from all the training data in product state representation. The algorithm could be parallelized easily and only iterates through the dataset once. Hence, it serves as a pre-training algorithm. We benchmark the algorithm on the MNIST dataset and show reasonable results for generating new images and classification tasks. Furthermore, we provide an interpretation of the algorithm as a compressed quantum kernel density estimation for the probability amplitude of input data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14787v1-abstract-full').style.display = 'none'; document.getElementById('2306.14787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+2 pages, 1+2 figures; Position paper in QTNML Workshop, NeurIPS 2021; See https://tensorworkshop.github.io/NeurIPS2021/accepted_papers/MPS_MNIST.pdf</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06163">arXiv:2306.06163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06163">pdf</a>, <a href="https://arxiv.org/ps/2306.06163">ps</a>, <a href="https://arxiv.org/format/2306.06163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement of Purification in Random Tensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Akers%2C+C">Chris Akers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faulkner%2C+T">Thomas Faulkner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Simon Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rath%2C+P">Pratik Rath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06163v1-abstract-short" style="display: inline;"> The entanglement of purification $E_P(A\colon B)$ is a powerful correlation measure, but it is notoriously difficult to compute because it involves an optimization over all possible purifications. In this paper, we prove a new inequality: $E_P(A\colon B)\geq \frac{1}{2}S_R^{(2)}(A\colon B)$, where $S_R^{(n)}(A\colon B)$ is the Renyi reflected entropy. Using this, we compute $E_P(A\colon B)$ for a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06163v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06163v1-abstract-full" style="display: none;"> The entanglement of purification $E_P(A\colon B)$ is a powerful correlation measure, but it is notoriously difficult to compute because it involves an optimization over all possible purifications. In this paper, we prove a new inequality: $E_P(A\colon B)\geq \frac{1}{2}S_R^{(2)}(A\colon B)$, where $S_R^{(n)}(A\colon B)$ is the Renyi reflected entropy. Using this, we compute $E_P(A\colon B)$ for a large class of random tensor networks at large bond dimension and show that it is equal to the entanglement wedge cross section $EW(A\colon B)$, proving a previous conjecture motivated from AdS/CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06163v1-abstract-full').style.display = 'none'; document.getElementById('2306.06163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, double-sided, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06084">arXiv:2305.06084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.114801">10.1103/PhysRevMaterials.7.114801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubling of the superconducting transition temperature in ultra-clean wafer-scale aluminum nanofilms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yeh%2C+C">Ching-Chen Yeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+T">Thi-Hien Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+P">Pin-Chi Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chia-Hung Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T+-">T. -R. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Siang-Chi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu-Yao Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Hsun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chu-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+I">Ivar Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Di Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+C">Chi-Te Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06084v1-abstract-short" style="display: inline;"> Superconducting properties of thin films can be vastly different from those of bulk materials. Seminal work has shown the critical temperature Tc of elemental superconductors decreases with decreasing film thickness when the normal-state sheet resistance is lower than the quantum resistance h/(4e2). Sporadic examples on disordered films, however, hinted an enhancement in Tc although, structural an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06084v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06084v1-abstract-full" style="display: none;"> Superconducting properties of thin films can be vastly different from those of bulk materials. Seminal work has shown the critical temperature Tc of elemental superconductors decreases with decreasing film thickness when the normal-state sheet resistance is lower than the quantum resistance h/(4e2). Sporadic examples on disordered films, however, hinted an enhancement in Tc although, structural and strain characterization was not possible since samples were prepared on a cold substrate in situ. To clarify the role of reduced dimensionality and disorder on the superconducting properties of thin films we employed molecular beam epitaxy to grow wafer-scale high-quality aluminum (Al) nanofilms with normal-state sheet resistance at least 20 times lower than h/(4e2) and investigated their electronic and structural properties ex situ. Defying general expectations, Tc increases with decreasing Al film thickness, reaching 2.4 K for 3.5-nm-thick Al film grown on GaAs: twice that of bulk Al (1.2 K). DFT calculations indicate surface phonon softening impacts superconductivity in pure ultra-thin films, offering a new route for materials engineering in two dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06084v1-abstract-full').style.display = 'none'; document.getElementById('2305.06084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater.7, 114801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08635">arXiv:2304.08635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08635">pdf</a>, <a href="https://arxiv.org/format/2304.08635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00595-2">10.1038/s41535-023-00595-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic signatures of chiral quantum spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+S">Saikat Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08635v2-abstract-short" style="display: inline;"> Quantum spin liquid (QSL) has become an exciting topic in interacting spin systems that do not order magnetically down to the lowest experimentally accessible temperature; however, conclusive experimental evidence remains lacking. Motivated by the recent surge of theoretical and experimental interest in a half-filled Hubbard model on the triangular lattice, where chiral QSL can be stabilized, we i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08635v2-abstract-full').style.display = 'inline'; document.getElementById('2304.08635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08635v2-abstract-full" style="display: none;"> Quantum spin liquid (QSL) has become an exciting topic in interacting spin systems that do not order magnetically down to the lowest experimentally accessible temperature; however, conclusive experimental evidence remains lacking. Motivated by the recent surge of theoretical and experimental interest in a half-filled Hubbard model on the triangular lattice, where chiral QSL can be stabilized, we investigate the electromagnetic signature of the chiral QSL to aid experimental detection. We systematically studied the electrical charge and orbital electrical current associated with a spinon excitation in the chiral QSL based on parton mean-field theory and unbiased density-matrix renormalization group calculations. We then calculated both longitudinal and transverse optical conductivities below the Mott gap. We also conduct quantum field theory analysis to unravel the connection between spinon excitation and emergent and physical gauge fields. Our results show that the chiral QSL phase has a clear electromagnetic response even in a Mott insulator regime, which can facilitate the experimental detection of this long-sought-after phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08635v2-abstract-full').style.display = 'none'; document.getElementById('2304.08635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, contains supplementary materials (Tex file updated)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-23-23890 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 8, 63 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07199">arXiv:2302.07199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07199">pdf</a>, <a href="https://arxiv.org/format/2302.07199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.125129">10.1103/PhysRevB.108.125129 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nearly flat Chern band in periodically strained monolayer and bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X">Xiaohan Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Siddhartha Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07199v2-abstract-short" style="display: inline;"> The flat band is a key ingredient for the realization of interesting quantum states for novel functionalities. In this work, we investigate the conditions for the flat band in both monolayer and bilayer graphene under periodic strain. We find topological nearly flat bands with homogeneous distribution of Berry curvature in both systems. The quantum metric of the nearly flat band closely resembles&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07199v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07199v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07199v2-abstract-full" style="display: none;"> The flat band is a key ingredient for the realization of interesting quantum states for novel functionalities. In this work, we investigate the conditions for the flat band in both monolayer and bilayer graphene under periodic strain. We find topological nearly flat bands with homogeneous distribution of Berry curvature in both systems. The quantum metric of the nearly flat band closely resembles that for Landau levels. For monolayer graphene, the strain field can be regarded as an effective gauge field, while for Bernal-stacked (AB-stacked) bilayer graphene, its role is beyond the description of gauge field. We also provide an understanding of the origin of the nearly flat band in monolayer graphene in terms of the Jackiw-Rebbi model for Dirac fermions with sign-changing mass. Our work suggests strained graphene as a promising platform for strongly correlated quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07199v2-abstract-full').style.display = 'none'; document.getElementById('2302.07199v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 125129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11900">arXiv:2301.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11900">pdf</a>, <a href="https://arxiv.org/ps/2301.11900">ps</a>, <a href="https://arxiv.org/format/2301.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0144726">10.1063/5.0144726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-damage electron beam lithography for nanostructures on Bi$_2$Te$_3$-class topological insulator thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+M+P">Molly P. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodenbach%2C+L+K">Linsey K. Rodenbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+I+T">Ilan T. Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S+C">Stanley C. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kastner%2C+M+A">Marc A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11900v1-abstract-short" style="display: inline;"> Nanostructured topological insulators (TIs) have the potential to impact a wide array of condensed matter physics topics, ranging from Majorana physics to spintronics. However, the most common TI materials, the Bi$_2$Se$_3$ family, are easily damaged during nanofabrication of devices. In this paper, we show that electron beam lithography performed with a 30 or 50 kV accelerating voltage -- common&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11900v1-abstract-full" style="display: none;"> Nanostructured topological insulators (TIs) have the potential to impact a wide array of condensed matter physics topics, ranging from Majorana physics to spintronics. However, the most common TI materials, the Bi$_2$Se$_3$ family, are easily damaged during nanofabrication of devices. In this paper, we show that electron beam lithography performed with a 30 or 50 kV accelerating voltage -- common for nanopatterning in academic facilities -- damages both nonmagnetic TIs and their magnetically-doped counterparts at unacceptable levels. We additionally demonstrate that electron beam lithography with a 10 kV accelerating voltage produces minimal damage detectable through low-temperature electronic transport. Although reduced accelerating voltages present challenges in creating fine features, we show that with careful choice of processing parameters, particularly the resist, 100 nm features are reliably achievable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11900v1-abstract-full').style.display = 'none'; document.getElementById('2301.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06703">arXiv:2301.06703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06703">pdf</a>, <a href="https://arxiv.org/format/2301.06703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Non-Gaussianity from Schwinger-Keldysh Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bu%2C+Y">Yanyan Bu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+C">Chang Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06703v2-abstract-short" style="display: inline;"> We present a systematic treatment of non-Gaussianity in stochastic systems using the Schwinger-Keldysh effective field theory framework, in which the non-Gaussianity is realized as nonlinear terms in the fluctuation field. We establish two stochastic formulations of the Schwinger-Keldysh effective field theory, with those nonlinear terms manifested as multiple non-Gaussian noises in the Langevin e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06703v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06703v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06703v2-abstract-full" style="display: none;"> We present a systematic treatment of non-Gaussianity in stochastic systems using the Schwinger-Keldysh effective field theory framework, in which the non-Gaussianity is realized as nonlinear terms in the fluctuation field. We establish two stochastic formulations of the Schwinger-Keldysh effective field theory, with those nonlinear terms manifested as multiple non-Gaussian noises in the Langevin equation and as higher order diffusive terms in the Fokker-Planck equation. The equivalence of the stochastic formulations with the original Schwinger-Keldysh effective field theory is demonstrated with non-trivial examples for arbitrary non-Gaussian parameters. The stochastic formulations will be more flexible and effective in studying non-equilibrium dynamics. We also reveal an ambiguity when coarse-graining time scale and non-Gaussian parameters vanish simultaneously, which may be responsible for the unphysical divergence found in perturbative analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06703v2-abstract-full').style.display = 'none'; document.getElementById('2301.06703v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04621">arXiv:2301.04621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04621">pdf</a>, <a href="https://arxiv.org/format/2301.04621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0163349">10.1063/5.0163349 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entropy of different phases formed by soft rods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chattopadhyay%2C+J">Jayeeta Chattopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shiang-Tai Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiti%2C+P+K">Prabal K. Maiti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04621v1-abstract-short" style="display: inline;"> Computation of entropy in liquids and liquid crystal phases is a big challenge in statistical physics. In this work, we extend the two-phase thermodynamic model (2PT) to shape anisotropic soft repulsive spherocylinders (SRSs) and report the absolute values of entropy for different liquid crystal (LC) phases for a range of aspect ratios L/D = 2-5. We calculate the density of states (DoS) for differ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04621v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04621v1-abstract-full" style="display: none;"> Computation of entropy in liquids and liquid crystal phases is a big challenge in statistical physics. In this work, we extend the two-phase thermodynamic model (2PT) to shape anisotropic soft repulsive spherocylinders (SRSs) and report the absolute values of entropy for different liquid crystal (LC) phases for a range of aspect ratios L/D = 2-5. We calculate the density of states (DoS) for different LC phases and decompose it into contributions arising from translational and rotational degrees of freedom. The translational and rotational modes are further partitioned into diffusive, gas-like, and non-diffusive, solid-like components using a fluidicity factor. In the dilute limit, the entropy values obtained from the 2PT method match exactly those of an ideal rigid rotor. We find that, for a given packing fraction, the magnitude of the total entropy is roughly equal regardless of the different LC phases associated with different aspect ratios. We also compute the excess entropy (for L/D = 5) and compare those with the values obtained using the standard integration approach of molecular dynamics (MD) or Monte Carlo (MC) equation of state (EOS) of SRS. The values obtained using both approaches match very well. The rotational and translational fluidicity factors are further used to determine the phase boundaries of different liquid crystal phases for the respective aspect ratios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04621v1-abstract-full').style.display = 'none'; document.getElementById('2301.04621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07134">arXiv:2212.07134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07134">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075104">10.1103/PhysRevB.107.075104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An emergent quasi-2D metallic state derived from the Mott insulator framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+P+-">P. -C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S+C">S. C. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+C+-">C. -Y. Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+C+-">C. -S. Ku</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+W">S. W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+M">J. M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+J">H. J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y+F">Y. F. Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+C+-">C. -M. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haw%2C+S+C">S. C. Haw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J+M">J. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y+-">Y. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+T+H">T. H. Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+C+W">C. W. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juang%2C+J+-">J. -Y. Juang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K+H">K. H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+-">Y. -W. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J+-">J. -C. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J+-">J. -Y. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07134v1-abstract-short" style="display: inline;"> Recent quasi-2D systems with judicious exploitation of the atomic monolayer or few-layer architecture exhibit unprecedented physical properties that challenge the conventional wisdom on the condensed matter physics. Here we show that the infinite layer SrCuO2 (SCO), a topical cuprate Mott insulator in the bulk form, can manifest an unexpected metallic state in the quasi-2D limit when SCO is grown&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07134v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07134v1-abstract-full" style="display: none;"> Recent quasi-2D systems with judicious exploitation of the atomic monolayer or few-layer architecture exhibit unprecedented physical properties that challenge the conventional wisdom on the condensed matter physics. Here we show that the infinite layer SrCuO2 (SCO), a topical cuprate Mott insulator in the bulk form, can manifest an unexpected metallic state in the quasi-2D limit when SCO is grown on TiO2-terminated SrTiO3 (STO) substrates. Hard x-ray core-level photoemission spectra demonstrate a definitive Fermi level that resembles the hole doped metal. Soft x-ray absorption spectroscopy also reveals features analogous to those of a hole doped Mott insulator. Based on these results, we conclude that the hole doping does not occur at the interfaces between SCO and STO; instead, it comes from the transient layers between the chain type and the planar type structures within the SCO slab. The present work reveals a novel metallic state in the infinite layer SCO and invites further examination to elucidate the spatial extent of this state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07134v1-abstract-full').style.display = 'none'; document.getElementById('2212.07134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 11 figures. Physical Review B, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, 075104 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06511">arXiv:2212.06511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06511">pdf</a>, <a href="https://arxiv.org/format/2212.06511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Dataset of Grains for Granular Jamming in Soft Robotics: Grip Strength and Shock Absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Howard%2C+D">David Howard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Connor%2C+J">Jack O&#39;Connor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Letchford%2C+J">Jordan Letchford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+T">Therese Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sophia Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldwin%2C+S">Sarah Baldwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delaney%2C+G">Gary Delaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06511v1-abstract-short" style="display: inline;"> We test grip strength and shock absorption properties of various granular material in granular jamming robotic components. The granular material comprises a range of natural, manufactured, and 3D printed material encompassing a wide range of shapes, sizes, and Shore hardness. Two main experiments are considered, both representing compelling use cases for granular jamming in soft robotics. The firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06511v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06511v1-abstract-full" style="display: none;"> We test grip strength and shock absorption properties of various granular material in granular jamming robotic components. The granular material comprises a range of natural, manufactured, and 3D printed material encompassing a wide range of shapes, sizes, and Shore hardness. Two main experiments are considered, both representing compelling use cases for granular jamming in soft robotics. The first experiment measures grip strength (retention force measured in Newtons) when we fill a latex balloon with the chosen grain type and use it as a granular jamming gripper to pick up a range of test objects. The second experiment measures shock absorption properties recorded by an Inertial Measurement Unit which is suspended in an envelope of granular material and dropped from a set height. Our results highlight a range of shape, size and softness effects, including that grain deformability is a key determinant of grip strength, and interestingly, that larger grain sizes in 3D printed grains create better shock absorbing materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06511v1-abstract-full').style.display = 'none'; document.getElementById('2212.06511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17255">arXiv:2211.17255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17255">pdf</a>, <a href="https://arxiv.org/format/2211.17255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2023)223">10.1007/JHEP02(2023)223 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Reflected Entanglement Spectrum for Free Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dutta%2C+S">Souvik Dutta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faulkner%2C+T">Thomas Faulkner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Simon Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17255v2-abstract-short" style="display: inline;"> We consider the reflected entropy and the associated entanglement spectrum for free fermions reduced to two intervals in 1+1 dimensions. Working directly in the continuum theory the reflected entropy can be extracted from the spectrum of a singular integral equation whose kernel is determined by the known free fermion modular evolved correlation function. We find the spectrum numerically and analy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17255v2-abstract-full').style.display = 'inline'; document.getElementById('2211.17255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17255v2-abstract-full" style="display: none;"> We consider the reflected entropy and the associated entanglement spectrum for free fermions reduced to two intervals in 1+1 dimensions. Working directly in the continuum theory the reflected entropy can be extracted from the spectrum of a singular integral equation whose kernel is determined by the known free fermion modular evolved correlation function. We find the spectrum numerically and analytically in certain limits. For intervals that almost touch the reflected entanglement spectrum approaches the spectrum of the thermal density matrix. This suggests that the reflected entanglement spectrum is well suited to the task of extracting physical data of the theory directly from the ground state wave function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17255v2-abstract-full').style.display = 'none'; document.getElementById('2211.17255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures. v2: added reference and fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14786">arXiv:2211.14786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.14786">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0138633">10.1063/5.0138633 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesis of functional nitride membranes using sacrificial water-soluble BaO layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+T">Ting Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+G">Guozhu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14786v2-abstract-short" style="display: inline;"> Transition metal nitrides (TMNs) exhibit fascinating physical properties that hold great potential in future device applications. To stack two-dimensional TMNs with other functional materials that have dissimilar orientations and symmetries requires to separate epitaxial TMNs from the growth substrates. However, the lattice constants of TMNs are not compatible with those of most sacrificial layers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14786v2-abstract-full').style.display = 'inline'; document.getElementById('2211.14786v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14786v2-abstract-full" style="display: none;"> Transition metal nitrides (TMNs) exhibit fascinating physical properties that hold great potential in future device applications. To stack two-dimensional TMNs with other functional materials that have dissimilar orientations and symmetries requires to separate epitaxial TMNs from the growth substrates. However, the lattice constants of TMNs are not compatible with those of most sacrificial layers, leading to a great challenge to fabricate high-quality single crystalline TMN membranes. In this letter, we report the application of a water-soluble BaO sacrificial layer as a general approach to create freestanding TMN membranes. Taken CrN as an example, the relatively small lattice mismatch and identical cubic structure between BaO and CrN ensure the growth of heterostructures. Millimeter-size CrN membrane allows us to directly observe the planar-view of atomic structure and to correlate its electronic state with intrinsic transport properties. Our work provides the opportunity to fabricate freestanding TMN membranes and the ability to transfer them to arbitrary substrates. The integration of TMN membranes with other materials will stimulate further studies in the emergent phenomena at heterointerfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14786v2-abstract-full').style.display = 'none'; document.getElementById('2211.14786v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages; 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14337">arXiv:2211.14337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.14337">pdf</a>, <a href="https://arxiv.org/format/2211.14337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245118">10.1103/PhysRevB.107.245118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Dimensional Isometric Tensor Networks on an Infinite Strip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yantao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+S">Sajant Anand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Hsuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14337v2-abstract-short" style="display: inline;"> The exact contraction of a generic two-dimensional (2D) tensor network state (TNS) is known to be exponentially hard, making simulation of 2D systems difficult. The recently introduced class of isometric TNS (isoTNS) represents a subset of TNS that allows for efficient simulation of such systems on finite square lattices. The isoTNS ansatz requires the identification of an &#34;orthogonality column&#34; o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14337v2-abstract-full').style.display = 'inline'; document.getElementById('2211.14337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14337v2-abstract-full" style="display: none;"> The exact contraction of a generic two-dimensional (2D) tensor network state (TNS) is known to be exponentially hard, making simulation of 2D systems difficult. The recently introduced class of isometric TNS (isoTNS) represents a subset of TNS that allows for efficient simulation of such systems on finite square lattices. The isoTNS ansatz requires the identification of an &#34;orthogonality column&#34; of tensors, within which one-dimensional matrix product state (MPS) methods can be used for calculation of observables and optimization of tensors. Here we extend isoTNS to infinitely long strip geometries and introduce an infinite version of the Moses Move algorithm for moving the orthogonality column around the network. Using this algorithm, we iteratively transform an infinite MPS representation of a 2D quantum state into a strip isoTNS and investigate the entanglement properties of the resulting state. In addition, we demonstrate that the local observables can be evaluated efficiently. Finally, we introduce an infinite time-evolving block decimation algorithm (iTEBD\textsuperscript{2}) and use it to approximate the ground state of the 2D transverse field Ising model on lattices of infinite strip geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14337v2-abstract-full').style.display = 'none'; document.getElementById('2211.14337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures; Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-22 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 245118 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11618">arXiv:2211.11618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.11618">pdf</a>, <a href="https://arxiv.org/format/2211.11618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.216401">10.1103/PhysRevLett.130.216401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological exact flat bands in two dimensional materials under periodic strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X">Xiaohan Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Siddhartha Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11618v2-abstract-short" style="display: inline;"> We study flat bands and their topology in 2D materials with quadratic band crossing points (QBCPs) under periodic strain. In contrast to Dirac points in graphene, where strain acts as a vector potential, strain for QBCPs serves as a director potential with angular momentum $\ell=2$. We prove that when the strengths of the strain fields hit certain ``magic&#34; values, exact flat bands with $C=\pm 1$ e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11618v2-abstract-full').style.display = 'inline'; document.getElementById('2211.11618v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11618v2-abstract-full" style="display: none;"> We study flat bands and their topology in 2D materials with quadratic band crossing points (QBCPs) under periodic strain. In contrast to Dirac points in graphene, where strain acts as a vector potential, strain for QBCPs serves as a director potential with angular momentum $\ell=2$. We prove that when the strengths of the strain fields hit certain ``magic&#34; values, exact flat bands with $C=\pm 1$ emerge at charge neutrality point in the chiral limit, in strong analogy to magic angle twisted bilayer graphene. These flat bands have ideal quantum geometry for the realization of fractional Chern insulators, and they are always fragile topological. The number of flat bands can be doubled for certain point group, and the interacting Hamiltonian is exactly solvable at integer fillings. We further demonstrate the stability of these flat bands against deviations from the chiral limit, and discuss possible realization in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11618v2-abstract-full').style.display = 'none'; document.getElementById('2211.11618v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 216401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06550">arXiv:2210.06550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06550">pdf</a>, <a href="https://arxiv.org/format/2210.06550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Kondo enabled transmutation between spinons and superconducting vortices: origin of magnetic memory in 4Hb-$\mathrm{TaS_2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shi-Zeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06550v1-abstract-short" style="display: inline;"> Recent experiments [Persky {\it{et al.}}, Nature {\bf{607}}, 692 (2022)] demonstrate a magnetic memory effect in 4Hb-$\mathrm{TaS_2}$ above its superconducting transition temperature, where Abriokosov vortices are generated spontaneously by lowering temperature at zero magnetic field after field training the normal state. Motivated by the experiment, we propose the chiral quantum spin liquid (QSL)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06550v1-abstract-full').style.display = 'inline'; document.getElementById('2210.06550v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06550v1-abstract-full" style="display: none;"> Recent experiments [Persky {\it{et al.}}, Nature {\bf{607}}, 692 (2022)] demonstrate a magnetic memory effect in 4Hb-$\mathrm{TaS_2}$ above its superconducting transition temperature, where Abriokosov vortices are generated spontaneously by lowering temperature at zero magnetic field after field training the normal state. Motivated by the experiment, we propose the chiral quantum spin liquid (QSL) stabilized in the constituent layers of 4Hb-$\mathrm{TaS_2}$ as a mechanism. We model 4Hb-$\mathrm{TaS_2}$ as coupled layers of the chiral QSL and superconductor. Through the Kondo coupling between the localized moments and conduction electrons, there is mutual transmutation between spinons and vortices during the thermal cycling process, which yields magnetic memory effect as observed in experiments. We also propose a mechanism to stabilize the chiral and nematic superconductivity in 4Hb-$\mathrm{TaS_2}$ through the Kondo coupling of conduction electrons to the chiral QSL. Our results suggest 4Hb-$\mathrm{TaS_2}$ as an exciting platform to explore the interplay between QSL and superconductivity through the Kondo effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06550v1-abstract-full').style.display = 'none'; document.getElementById('2210.06550v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6.2 pages and 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03751">arXiv:2210.03751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03751">pdf</a>, <a href="https://arxiv.org/format/2210.03751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033187">10.1103/PhysRevResearch.5.033187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time Evolution of Uniform Sequential Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Hsuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A">Adam Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03751v4-abstract-short" style="display: inline;"> Simulating time evolution of generic quantum many-body systems using classical numerical approaches has an exponentially growing cost either with evolution time or with the system size. In this work, we present a polynomially scaling hybrid quantum-classical algorithm for time evolving a one-dimensional uniform system in the thermodynamic limit. This algorithm uses a layered uniform sequential qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03751v4-abstract-full').style.display = 'inline'; document.getElementById('2210.03751v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03751v4-abstract-full" style="display: none;"> Simulating time evolution of generic quantum many-body systems using classical numerical approaches has an exponentially growing cost either with evolution time or with the system size. In this work, we present a polynomially scaling hybrid quantum-classical algorithm for time evolving a one-dimensional uniform system in the thermodynamic limit. This algorithm uses a layered uniform sequential quantum circuit as a variational ansatz to represent infinite translation-invariant quantum states. We show numerically that this ansatz requires a number of parameters polynomial in the simulation time for a given accuracy. Furthermore, this favourable scaling of the ansatz is maintained during our variational evolution algorithm. All steps of the hybrid optimization are designed with near-term digital quantum computers in mind. After benchmarking the evolution algorithm on a classical computer, we demonstrate the measurement of observables of this uniform state using a finite number of qubits on a cloud-based quantum processing unit. With more efficient tensor contraction schemes, this algorithm may also offer improvements as a classical numerical algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03751v4-abstract-full').style.display = 'none'; document.getElementById('2210.03751v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033187 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+S&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10