CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;30 of 30 results for author: <span class="mathjax">Wilson, A C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Wilson%2C+A+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wilson, A C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wilson%2C+A+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wilson, A C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13407">arXiv:2408.13407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13407">pdf</a>, <a href="https://arxiv.org/format/2408.13407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetically-Induced-Transparency Cooling with a Tripod Structure in a Hyperfine Trapped Ion with Mixed-Species Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">S. D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brandt%2C+A+D">A. D. Brandt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zarantonello%2C+G">G. Zarantonello</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">D. C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13407v1-abstract-short" style="display: inline;"> Cooling of atomic motion is a crucial tool for many branches of atomic physics, ranging from fundamental physics explorations to quantum information and sensing. For trapped ions, electromagnetically-induced-transparency (EIT) cooling has received attention for the relative speed, low laser power requirements, and broad cooling bandwidth of the technique. However, in applications where the ion use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13407v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13407v1-abstract-full" style="display: none;"> Cooling of atomic motion is a crucial tool for many branches of atomic physics, ranging from fundamental physics explorations to quantum information and sensing. For trapped ions, electromagnetically-induced-transparency (EIT) cooling has received attention for the relative speed, low laser power requirements, and broad cooling bandwidth of the technique. However, in applications where the ion used for cooling has hyperfine structure to enable long coherence times, it is difficult to find a closed three-level system in which to perform standard EIT cooling. Here, we demonstrate successful EIT cooling on 25Mg+ by the addition of an extra laser frequency; this method can be applied to any ion with non-zero nuclear spin. Furthermore, we demonstrate simultaneous EIT cooling of all axial modes in mixed-species crystals 9Be+ - 25Mg+ and 9Be+ - 25Mg+ - 9Be+ through the 25Mg+ ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13407v1-abstract-full').style.display = 'none'; document.getElementById('2408.13407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05857">arXiv:2402.05857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05857">pdf</a>, <a href="https://arxiv.org/format/2402.05857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Individual addressing and state readout of trapped ions utilizing rf micromotion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lysne%2C+N+K">Nathan K Lysne</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niedermeyer%2C+J+F">Justin F Niedermeyer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05857v1-abstract-short" style="display: inline;"> Excess &#34;micromotion&#34; of trapped ions due to the residual radio frequency (rf) trapping field at their location is often undesirable and is usually carefully minimized. Here, we induce precise amounts of excess micromotion on individual ions by adjusting the local static electric field they experience. Micromotion modulates the coupling of an ion to laser fields, ideally tuning it from its maximum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05857v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05857v1-abstract-full" style="display: none;"> Excess &#34;micromotion&#34; of trapped ions due to the residual radio frequency (rf) trapping field at their location is often undesirable and is usually carefully minimized. Here, we induce precise amounts of excess micromotion on individual ions by adjusting the local static electric field they experience. Micromotion modulates the coupling of an ion to laser fields, ideally tuning it from its maximum value to zero as the ion is moved away from the trap&#39;s rf null. We use tunable micromotion to vary the Rabi frequency of stimulated Raman transitions over two orders of magnitude, and to individually control the rates of resonant fluorescence from three ions under global laser illumination without any changes to the driving light fields. The technique is amenable to situations where addressing individual ions with focused laser beams is challenging, such as tightly packed linear ion strings or two-dimensional ion arrays illuminated from the side. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05857v1-abstract-full').style.display = 'none'; document.getElementById('2402.05857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05158">arXiv:2308.05158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05158">pdf</a>, <a href="https://arxiv.org/format/2308.05158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.021003">10.1103/PhysRevX.14.021003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Indirect Cooling of Weakly Coupled Trapped-Ion Mechanical Oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Pan-Yu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zarantonello%2C+G">Giorgio Zarantonello</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brandt%2C+A+D">Adam D. Brandt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">Daniel C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05158v2-abstract-short" style="display: inline;"> Cooling the motion of trapped ions to near the quantum ground state is crucial for many applications in quantum information processing and quantum metrology. However, certain motional modes of trapped-ion crystals can be difficult to cool due to weak or zero interaction between the modes and the cooling radiation, typically laser beams. We overcome this challenge by coupling a mode with weak cooli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05158v2-abstract-full').style.display = 'inline'; document.getElementById('2308.05158v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05158v2-abstract-full" style="display: none;"> Cooling the motion of trapped ions to near the quantum ground state is crucial for many applications in quantum information processing and quantum metrology. However, certain motional modes of trapped-ion crystals can be difficult to cool due to weak or zero interaction between the modes and the cooling radiation, typically laser beams. We overcome this challenge by coupling a mode with weak cooling radiation interaction to one with strong cooling radiation interaction using parametric modulation of the trapping potential, thereby enabling indirect cooling of the former. In this way, we demonstrate near-ground-state cooling of motional modes with weak or zero cooling radiation interaction in multi-ion crystals of the same and mixed ion species, specifically $^9$Be$^+$-$^9$Be$^+$, $^9$Be$^+$-$^{25}$Mg$^+$, and $^9$Be$^+$-$^{25}$Mg$^+$-$^9$Be$^+$ crystals. This approach can be generally applied to any Coulomb crystal where certain motional modes cannot be directly cooled efficiently, including crystals containing molecular ions, highly-charged ions, charged fundamental particles, or charged macroscopic objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05158v2-abstract-full').style.display = 'none'; document.getElementById('2308.05158v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 021003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05529">arXiv:2304.05529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05529">pdf</a>, <a href="https://arxiv.org/ps/2304.05529">ps</a>, <a href="https://arxiv.org/format/2304.05529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.020314">10.1103/PRXQuantum.5.020314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental speedup of quantum dynamics through squeezing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arenz%2C+C">C. Arenz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Collopy%2C+A+L">A. L. Collopy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Stephenson%2C+L+J">L. J. Stephenson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05529v1-abstract-short" style="display: inline;"> We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^{25}$Mg$^{+}$ ion, the scheme applies generally to Hamiltonians involving just a single harmonic oscillator as well as Hamiltonians coupling the oscillato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05529v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05529v1-abstract-full" style="display: none;"> We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^{25}$Mg$^{+}$ ion, the scheme applies generally to Hamiltonians involving just a single harmonic oscillator as well as Hamiltonians coupling the oscillator to another quantum degree of freedom such as a qubit, covering a large range of systems of interest in quantum information and metrology applications. Importantly, the protocol does not require knowledge of the parameters of the Hamiltonian to be amplified, nor does it require a well-defined phase relationship between the squeezing interaction and the rest of the system dynamics, making it potentially useful in instances where certain aspects of a signal or interaction may be unknown or uncontrolled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05529v1-abstract-full').style.display = 'none'; document.getElementById('2304.05529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14841">arXiv:2205.14841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14841">pdf</a>, <a href="https://arxiv.org/format/2205.14841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02585-y">10.1038/s41567-024-02585-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Pan-Yu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">Daniel C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zarantonello%2C+G">Giorgio Zarantonello</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brandt%2C+A+D">Adam D. Brandt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Geller%2C+S">Shawn Geller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kwiatkowski%2C+A">Alex Kwiatkowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">Scott Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14841v3-abstract-short" style="display: inline;"> Precise quantum control and measurement of several harmonic oscillators, such as the modes of the electromagnetic field in a cavity or of mechanical motion, are key for their use as quantum platforms. The motional modes of trapped ions can be individually controlled and have good coherence properties. However, achieving high-fidelity two-mode operations and nondestructive measurements of the motio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14841v3-abstract-full').style.display = 'inline'; document.getElementById('2205.14841v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14841v3-abstract-full" style="display: none;"> Precise quantum control and measurement of several harmonic oscillators, such as the modes of the electromagnetic field in a cavity or of mechanical motion, are key for their use as quantum platforms. The motional modes of trapped ions can be individually controlled and have good coherence properties. However, achieving high-fidelity two-mode operations and nondestructive measurements of the motional state has been challenging. Here we demonstrate the coherent exchange of single motional quanta between spectrally separated harmonic motional modes of a trapped-ion crystal. The timing, strength, and phase of the coupling are controlled through an oscillating electric potential with suitable spatial variation. Coupling rates that are much larger than decoherence rates enable demonstrations of high fidelity quantum state transfer and beamsplitter operations, entanglement of motional modes, and Hong-Ou-Mandel-type interference. Additionally, we use the motional coupling to enable repeated non-destructive projective measurement of a trapped-ion motional state. Our work enhances the suitability of trapped-ion motion for continuous-variable quantum computing and error correction and may provide opportunities to improve the performance of motional cooling and motion-mediated entangling interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14841v3-abstract-full').style.display = 'none'; document.getElementById('2205.14841v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06341">arXiv:2112.06341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06341">pdf</a>, <a href="https://arxiv.org/format/2112.06341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.160503">10.1103/PhysRevLett.128.160503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity indirect readout of trapped-ion hyperfine qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Pan-Yu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">Daniel C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Geller%2C+S">Shawn Geller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kwiatkowski%2C+A">Alex Kwiatkowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">Scott Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06341v1-abstract-short" style="display: inline;"> We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a $^9\text{Be}^+$ qubit ion is mapped to a $^{25}\text{Mg}^+$ readout ion using laser-driven Raman transitions. By partitioning the $^9\text{Be}^+$ ground state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06341v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06341v1-abstract-full" style="display: none;"> We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a $^9\text{Be}^+$ qubit ion is mapped to a $^{25}\text{Mg}^+$ readout ion using laser-driven Raman transitions. By partitioning the $^9\text{Be}^+$ ground state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters, the protocol can be made robust to spontaneous photon scattering errors on the Raman transitions, enabling repetition for increased readout fidelity. We demonstrate combined readout and back-action errors for the two subspaces of $1.2^{+1.1}_{-0.6} \times 10^{-4}$ and $0^{+1.9}_{-0} \times 10^{-5}$ with 68% confidence while avoiding decoherence of spectator qubits due to stray resonant light that is inherent to direct fluorescence detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06341v1-abstract-full').style.display = 'none'; document.getElementById('2112.06341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 + 6 pages, 3 + 1 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 160503 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02088">arXiv:2103.02088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02088">pdf</a>, <a href="https://arxiv.org/ps/2103.02088">ps</a>, <a href="https://arxiv.org/format/2103.02088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac09c8">10.1088/1367-2630/ac09c8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative preparation of W states in trapped ion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">Daniel C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Pan-Yu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reiter%2C+F">Florentin Reiter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02088v2-abstract-short" style="display: inline;"> We present protocols for dissipative entanglement of three trapped-ion qubits and discuss a scheme that uses sympathetic cooling as the dissipation mechanism. This scheme relies on tailored destructive interference to generate any one of six entangled W states in a three-ion qubit space. Using a beryllium-magnesium ion crystal as an example system, we theoretically investigate the protocol&#39;s perfo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02088v2-abstract-full').style.display = 'inline'; document.getElementById('2103.02088v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02088v2-abstract-full" style="display: none;"> We present protocols for dissipative entanglement of three trapped-ion qubits and discuss a scheme that uses sympathetic cooling as the dissipation mechanism. This scheme relies on tailored destructive interference to generate any one of six entangled W states in a three-ion qubit space. Using a beryllium-magnesium ion crystal as an example system, we theoretically investigate the protocol&#39;s performance and the effects of likely error sources, including thermal secular motion of the ion crystal, calibration imperfections, and spontaneous photon scattering. We estimate that a fidelity of $\sim$ 98 % may be achieved in typical trapped ion experiments with $\sim$ 1 ms interaction time. These protocols avoid timescale hierarchies for faster preparation of entangled states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02088v2-abstract-full').style.display = 'none'; document.getElementById('2103.02088v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes additional references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12533">arXiv:2102.12533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12533">pdf</a>, <a href="https://arxiv.org/format/2102.12533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03809-4">10.1038/s41586-021-03809-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity laser-free universal control of two trapped ion qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kwiatkowski%2C+A">A. Kwiatkowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">S. Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12533v1-abstract-short" style="display: inline;"> Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme for universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12533v1-abstract-full').style.display = 'inline'; document.getElementById('2102.12533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12533v1-abstract-full" style="display: none;"> Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme for universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelity entanglement and individual control by creating symmetric and antisymmetric two-qubit maximally entangled states with fidelities in the intervals [0.9983, 1] and [0.9964, 0.9988], respectively, at 68% confidence, corrected for state initialization error. This technique is robust against multiple sources of decoherence, usable with essentially any trapped ion species, and has the potential to perform simultaneous entangling operations on many pairs of ions without increasing control signal power or complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12533v1-abstract-full').style.display = 'none'; document.getElementById('2102.12533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 597, 209-213 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10438">arXiv:2010.10438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.10438">pdf</a>, <a href="https://arxiv.org/ps/2010.10438">ps</a>, <a href="https://arxiv.org/format/2010.10438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.250507">10.1103/PhysRevLett.126.250507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum harmonic oscillator spectrum analyzers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Keller%2C+J">Jonas Keller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Pan-Yu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">Katherine C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cole%2C+D+C">Daniel C. Cole</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10438v3-abstract-short" style="display: inline;"> Characterization and suppression of noise are essential for the control of harmonic oscillators in the quantum regime. We measure the noise spectrum of a quantum harmonic oscillator from low frequency to near the oscillator resonance by sensing its response to amplitude modulated periodic drives with a qubit. Using the motion of a trapped ion, we experimentally demonstrate two different implementa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10438v3-abstract-full').style.display = 'inline'; document.getElementById('2010.10438v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10438v3-abstract-full" style="display: none;"> Characterization and suppression of noise are essential for the control of harmonic oscillators in the quantum regime. We measure the noise spectrum of a quantum harmonic oscillator from low frequency to near the oscillator resonance by sensing its response to amplitude modulated periodic drives with a qubit. Using the motion of a trapped ion, we experimentally demonstrate two different implementations with combined sensitivity to noise from 500 Hz to 600 kHz. We apply our method to measure the intrinsic noise spectrum of an ion trap potential in a previously unaccessed frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10438v3-abstract-full').style.display = 'none'; document.getElementById('2010.10438v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 + 10 pages, 4 + 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 250507 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14342">arXiv:2009.14342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14342">pdf</a>, <a href="https://arxiv.org/format/2009.14342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01237-9">10.1038/s41567-021-01237-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum amplification of boson-mediated interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ge%2C+W">W. Ge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14342v1-abstract-short" style="display: inline;"> Strong and precisely-controlled interactions between quantum objects are essential for quantum information processing, simulation, and sensing, and for the formation of exotic quantum matter. A well-established paradigm for coupling otherwise weakly-interacting quantum objects is to use auxiliary bosonic quantum excitations to mediate the interactions. Important examples include photon-mediated in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14342v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14342v1-abstract-full" style="display: none;"> Strong and precisely-controlled interactions between quantum objects are essential for quantum information processing, simulation, and sensing, and for the formation of exotic quantum matter. A well-established paradigm for coupling otherwise weakly-interacting quantum objects is to use auxiliary bosonic quantum excitations to mediate the interactions. Important examples include photon-mediated interactions between atoms, superconducting qubits, and color centers in diamond, and phonon-mediated interactions between trapped ions and between optical and microwave photons. Boson-mediated interactions can in principle be amplified through parametric driving of the boson channel; the drive need not couple directly to the interacting quantum objects. This technique has been proposed for a variety of quantum platforms, but has not to date been realized in the laboratory. Here we experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential. The amplification provides up to a 3.25-fold increase in the interaction strength, validated by measuring the speedup of two-qubit entangling gates. This amplification technique can be used in any quantum platform where parametric modulation of the boson channel is possible, enabling exploration of new parameter regimes and enhanced quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14342v1-abstract-full').style.display = 'none'; document.getElementById('2009.14342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, one parametric drive tone</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 17, 898-902 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00065">arXiv:2008.00065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00065">pdf</a>, <a href="https://arxiv.org/format/2008.00065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.010501">10.1103/PhysRevLett.126.010501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Todaro%2C+S+L">S. L. Todaro</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Verma%2C+V+B">V. B. Verma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">K. C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mirin%2C+R+P">R. P. Mirin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nam%2C+S+W">S. W. Nam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00065v1-abstract-short" style="display: inline;"> We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescence photons with a superconducting nanowire single-photon detector (SNSPD) fabricated into the trap structure. The average readout fidelity is 0.9991(1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00065v1-abstract-full').style.display = 'inline'; document.getElementById('2008.00065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00065v1-abstract-full" style="display: none;"> We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescence photons with a superconducting nanowire single-photon detector (SNSPD) fabricated into the trap structure. The average readout fidelity is 0.9991(1), with a mean readout duration of 46 $渭$s, and is limited by the polarization impurity of the readout laser beam and by off-resonant optical pumping. Because there are no intervening optical elements between the ion and the detector, we can use the ion fluorescence as a self-calibrated photon source to determine the detector quantum efficiency and its dependence on photon incidence angle and polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00065v1-abstract-full').style.display = 'none'; document.getElementById('2008.00065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, including supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 010501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09060">arXiv:2003.09060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.09060">pdf</a>, <a href="https://arxiv.org/format/2003.09060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.475467">10.1364/JOSAB.475467 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> VECSEL systems for quantum information processing with trapped beryllium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Penttinen%2C+J+-">J. -P. Penttinen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ranta%2C+S">S. Ranta</a>, <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%A4ki%2C+M">M. M盲ki</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kantola%2C+E">E. Kantola</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guina%2C+M">M. Guina</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09060v1-abstract-short" style="display: inline;"> Two vertical-external-cavity surface-emitting laser (VECSEL) systems producing ultraviolet (UV) radiation at 235 nm and 313 nm are demonstrated. The systems are suitable for quantum information processing applications with trapped beryllium ions. Each system consists of a compact, single-frequency, continuous-wave VECSEL producing high-power near-infrared light, tunable over tens of nanometers. On&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09060v1-abstract-full').style.display = 'inline'; document.getElementById('2003.09060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09060v1-abstract-full" style="display: none;"> Two vertical-external-cavity surface-emitting laser (VECSEL) systems producing ultraviolet (UV) radiation at 235 nm and 313 nm are demonstrated. The systems are suitable for quantum information processing applications with trapped beryllium ions. Each system consists of a compact, single-frequency, continuous-wave VECSEL producing high-power near-infrared light, tunable over tens of nanometers. One system generates 2.4 W at 940 nm, using a gain mirror based on GaInAs/GaAs quantum wells, which is converted to 54 mW of 235 nm light for photoionization of neutral beryllium atoms. The other system uses a novel gain mirror based on GaInNAs/GaAs quantum-wells, enabling wavelength extension with manageable strain in the GaAs lattice. This system generates 1.6 W at 1252 nm, which is converted to 41 mW of 313 nm light that is used to laser cool trapped $^{9}$Be$^{+}$ ions and to implement quantum state preparation and detection. The 313 nm system is also suitable for implementing high-fidelity quantum gates, and more broadly, our results extend the capabilities of VECSEL systems for applications in atomic, molecular, and optical physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09060v1-abstract-full').style.display = 'none'; document.getElementById('2003.09060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JOSA B 40, 773 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03520">arXiv:2003.03520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03520">pdf</a>, <a href="https://arxiv.org/format/2003.03520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202000028">10.1002/qute.202000028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion transport and reordering in a two-dimensional trap array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">S. D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03520v1-abstract-short" style="display: inline;"> Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected traps in which ions are separated, transported and recombined to carry out quantum operations on small subsets of ions. Here, we use a junction con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03520v1-abstract-full').style.display = 'inline'; document.getElementById('2003.03520v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03520v1-abstract-full" style="display: none;"> Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected traps in which ions are separated, transported and recombined to carry out quantum operations on small subsets of ions. Here, we use a junction connecting orthogonal linear segments in a two-dimensional (2D) trap array to reorder a two-ion crystal. The secular motion of the ions experiences low energy gain and the internal qubit levels maintain coherence during the reordering process, therefore demonstrating a promising method for providing all-to-all connectivity in a large-scale, two- or three-dimensional trapped-ion quantum information processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03520v1-abstract-full').style.display = 'none'; document.getElementById('2003.03520v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14178">arXiv:1910.14178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14178">pdf</a>, <a href="https://arxiv.org/ps/1910.14178">ps</a>, <a href="https://arxiv.org/format/1910.14178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.042334">10.1103/PhysRevA.101.042334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Libby%2C+S+B">S. B. Libby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14178v2-abstract-short" style="display: inline;"> The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or with techniques that have the disadvantage of reducing gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to implement a laser-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14178v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14178v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14178v2-abstract-full" style="display: none;"> The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or with techniques that have the disadvantage of reducing gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to implement a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively small cost in gate speed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14178v2-abstract-full').style.display = 'none'; document.getElementById('1910.14178v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 042334 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02388">arXiv:1905.02388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02388">pdf</a>, <a href="https://arxiv.org/ps/1905.02388">ps</a>, <a href="https://arxiv.org/format/1905.02388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.10.021012">10.1103/PhysRevX.10.021012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum logic spectroscopy with ions in thermal motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kienzler%2C+D">D. Kienzler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">S. D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02388v2-abstract-short" style="display: inline;"> A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this method, show how it can be applied as a technique for identifying transitions in currently intractable atoms or molecules, demonstrate its reduced temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02388v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02388v2-abstract-full" style="display: none;"> A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this method, show how it can be applied as a technique for identifying transitions in currently intractable atoms or molecules, demonstrate its reduced temperature sensitivity, and observe quantum-enhanced frequency sensitivity when it is applied to multi-ion chains. Potential applications include improved readout of trapped-ion clocks and simplified error syndrome measurements for quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02388v2-abstract-full').style.display = 'none'; document.getElementById('1905.02388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Changes: Title; description of the basic method; more detail on data analysis and systematic effects</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 10, 021012 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02891">arXiv:1902.02891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02891">pdf</a>, <a href="https://arxiv.org/format/1902.02891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw9415">10.1126/science.aaw9415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum gate teleportation between separated qubits in a trapped-ion processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Yong Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kienzler%2C+D">Daniel Kienzler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayer%2C+K+H">Karl H. Mayer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">Ting Rei Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Vasconcelos%2C+H+M">Hilma M. Vasconcelos</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">Scott Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02891v2-abstract-short" style="display: inline;"> Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02891v2-abstract-full').style.display = 'inline'; document.getElementById('1902.02891v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02891v2-abstract-full" style="display: none;"> Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval [0.845, 0.872] at the 95% confidence level. The implementation combines ion shuttling with individually-addressed single-qubit rotations and detections, same- and mixedspecies two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02891v2-abstract-full').style.display = 'none'; document.getElementById('1902.02891v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 364, 875 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.02098">arXiv:1812.02098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.02098">pdf</a>, <a href="https://arxiv.org/format/1812.02098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.163201">10.1103/PhysRevLett.122.163201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.02098v2-abstract-short" style="display: inline;"> We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions&#39; motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02098v2-abstract-full').style.display = 'inline'; document.getElementById('1812.02098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.02098v2-abstract-full" style="display: none;"> We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions&#39; motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using this method, we perform resolved-sideband cooling of a single motional mode to its ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02098v2-abstract-full').style.display = 'none'; document.getElementById('1812.02098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 163201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.01812">arXiv:1812.01812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.01812">pdf</a>, <a href="https://arxiv.org/format/1812.01812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw2884">10.1126/science.aaw2884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum amplification of mechanical oscillator motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.01812v1-abstract-short" style="display: inline;"> Detection of the weakest forces in nature and the search for new physics are aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator&#39;s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. Here we demonstrate a widely applicable technique for amplifying coh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01812v1-abstract-full').style.display = 'inline'; document.getElementById('1812.01812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.01812v1-abstract-full" style="display: none;"> Detection of the weakest forces in nature and the search for new physics are aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator&#39;s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. Here we demonstrate a widely applicable technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal &#34;squeezing&#34; interactions before and after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implement this protocol with a trapped-ion mechanical oscillator and measure an increase of up to 17.5(3) decibels in sensitivity to small displacements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01812v1-abstract-full').style.display = 'none'; document.getElementById('1812.01812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 364, 1163 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00668">arXiv:1811.00668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00668">pdf</a>, <a href="https://arxiv.org/format/1811.00668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ab0513">10.1088/2058-9565/ab0513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherently displaced oscillator quantum states of a single trapped atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">Katherine C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keller%2C+J">Jonas Keller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00668v1-abstract-short" style="display: inline;"> Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective measurement via state-dependent fluorescence, with near-unit fidelity. This leads to a rich set of line shapes when recording the internal-state excitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00668v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00668v1-abstract-full" style="display: none;"> Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective measurement via state-dependent fluorescence, with near-unit fidelity. This leads to a rich set of line shapes when recording the internal-state excitation probability after a sideband excitation, as a function of the frequency detuning of the displacement drive with respect to the ion&#39;s motional frequency. We precisely characterize the coherent displacement based on the resulting line shapes, which exhibit sharp features that are useful for oscillator frequency determination from the single quantum regime up to very large coherent states with average occupation numbers of several hundred. We also introduce a technique based on multiple coherent displacements and free precession for characterizing noise on the trapping potential in the frequency range of 500 Hz to 400 kHz. Signals from the ion are directly used to find and eliminate sources of technical noise in this typically unaccessed part of the spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00668v1-abstract-full').style.display = 'none'; document.getElementById('1811.00668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Sci. Technol. 4, 024010 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08300">arXiv:1810.08300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08300">pdf</a>, <a href="https://arxiv.org/ps/1810.08300">ps</a>, <a href="https://arxiv.org/format/1810.08300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab0be5">10.1088/1367-2630/ab0be5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Versatile laser-free trapped-ion entangling gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Libby%2C+S+B">S. B. Libby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08300v2-abstract-short" style="display: inline;"> We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a `bichromatic&#39; interaction picture, we show that either ${\hat蟽_蠁\otimes\hat蟽_蠁}$ or ${\hat蟽_{z}\otimes\hat蟽_{z}}$ geometric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08300v2-abstract-full').style.display = 'inline'; document.getElementById('1810.08300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08300v2-abstract-full" style="display: none;"> We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a `bichromatic&#39; interaction picture, we show that either ${\hat蟽_蠁\otimes\hat蟽_蠁}$ or ${\hat蟽_{z}\otimes\hat蟽_{z}}$ geometric phase gates can be performed. The gate basis is determined by selecting the microwave detuning. The driving parameters can be tuned to provide intrinsic dynamical decoupling from qubit frequency fluctuations. The ${\hat蟽_{z}\otimes\hat蟽_{z}}$ gates can be implemented in a novel manner which eases experimental constraints. We present numerical simulations of gate fidelities assuming realistic parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08300v2-abstract-full').style.display = 'none'; document.getElementById('1810.08300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 21 033033 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11934">arXiv:1807.11934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.11934">pdf</a>, <a href="https://arxiv.org/format/1807.11934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1421-y">10.1038/s41586-019-1421-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-enhanced sensing of a mechanical oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">Katherine C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keller%2C+J">Jonas Keller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">Shaun C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11934v3-abstract-short" style="display: inline;"> The use of special quantum states to achieve sensitivities below the limits established by classically behaving states has enjoyed immense success since its inception. In bosonic interferometers, squeezed states, number states and cat states have been implemented on various platforms and have demonstrated improved measurement precision over interferometers based on coherent states. Another metrolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11934v3-abstract-full').style.display = 'inline'; document.getElementById('1807.11934v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11934v3-abstract-full" style="display: none;"> The use of special quantum states to achieve sensitivities below the limits established by classically behaving states has enjoyed immense success since its inception. In bosonic interferometers, squeezed states, number states and cat states have been implemented on various platforms and have demonstrated improved measurement precision over interferometers based on coherent states. Another metrologically useful state is an equal superposition of two eigenstates with maximally different energies; this state ideally reaches the full interferometric sensitivity allowed by quantum mechanics. By leveraging improvements to our apparatus made primarily to reach higher operation fidelities in quantum information processing, we extend a technique to create number states up to $n=100$ and to generate superpositions of a harmonic oscillator ground state and a number state of the form $\textstyle{\frac{1}{\sqrt{2}}}(\lvert 0\rangle+\lvert n\rangle)$ with $n$ up to 18 in the motion of a single trapped ion. While experimental imperfections prevent us from reaching the ideal Heisenberg limit, we observe enhanced sensitivity to changes in the oscillator frequency that initially increases linearly with $n$, with maximal value at $n=12$ where we observe 3.2(2) dB higher sensitivity compared to an ideal measurement on a coherent state with the same average occupation number. The quantum advantage from using number-state superpositions can be leveraged towards precision measurements on any harmonic oscillator system; here it enables us to track the average fractional frequency of oscillation of a single trapped ion to approximately 2.6 $\times$ 10$^{-6}$ in 5 s. Such measurements should provide improved characterization of imperfections and noise on trapping potentials, which can lead to motional decoherence, a leading source of error in quantum information processing with trapped ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11934v3-abstract-full').style.display = 'none'; document.getElementById('1807.11934v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 572, 86 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03484">arXiv:1606.03484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.03484">pdf</a>, <a href="https://arxiv.org/ps/1606.03484">ps</a>, <a href="https://arxiv.org/format/1606.03484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.3.001294">10.1364/OPTICA.3.001294 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> VECSEL systems for generation and manipulation of trapped magnesium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">Shaun C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">David T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leinonen%2C+T">Tomi Leinonen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Penttinen%2C+J">Jussi-Pekka Penttinen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">Raghavendra Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">Robert J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guina%2C+M">Mircea Guina</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03484v1-abstract-short" style="display: inline;"> Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characteriz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03484v1-abstract-full').style.display = 'inline'; document.getElementById('1606.03484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03484v1-abstract-full" style="display: none;"> Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characterize VECSEL systems that can perform all laser-based tasks for quantum information processing experiments with trapped magnesium ions. For photoionization of neutral magnesium, 570.6$\,$nm light is generated with an intracavity frequency-doubled VECSEL containing a lithium triborate (LBO) crystal for second harmonic generation. External frequency doubling produces 285.3$\,$nm light for resonant interaction with the $^{1}S_{0}\leftrightarrow$ $^{1}P_{1}$ transition of neutral Mg. Using an externally frequency-quadrupled VECSEL, we implement Doppler cooling of $^{25}$Mg$^{+}$ on the 279.6$\,$nm $^{2}S_{1/2}\leftrightarrow$ $^{2}P_{3/2}$ cycling transition, repumping on the 280.4$\,$nm $^{2}S_{1/2}\leftrightarrow$ $^{2}P_{1/2}$ transition, coherent state manipulation, and resolved sideband cooling close to the motional ground state. Our systems serve as prototypes for applications in AMO requiring single-frequency, power-scalable laser sources at multiple wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03484v1-abstract-full').style.display = 'none'; document.getElementById('1606.03484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 3, 1294 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.5127">arXiv:1407.5127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.5127">pdf</a>, <a href="https://arxiv.org/format/1407.5127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature13565">10.1038/nature13565 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable spin-spin interactions and entanglement of ions in separate wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">Kenton R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.5127v1-abstract-short" style="display: inline;"> Quantum simulation - the use of one quantum system to simulate a less controllable one - may provide an understanding of the many quantum systems which cannot be modeled using classical computers. Impressive progress on control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual io&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5127v1-abstract-full').style.display = 'inline'; document.getElementById('1407.5127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.5127v1-abstract-full" style="display: none;"> Quantum simulation - the use of one quantum system to simulate a less controllable one - may provide an understanding of the many quantum systems which cannot be modeled using classical computers. Impressive progress on control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual ions trapped in separate tunable potential wells are promising. Here we implement the basic features of this approach and demonstrate deterministic tuning of the Coulomb interaction between two ions, independently controlling their local wells. The scheme is suitable for emulating a range of spin-spin interactions, but to characterize the performance of our setup we select one that entangles the internal states of the two ions with 0.82(1) fidelity. Extension of this building-block to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. To perform useful quantum simulations, including those of intriguing condensed-matter phenomena such as the fractional quantum Hall effect, an array of tens of ions might be sufficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5127v1-abstract-full').style.display = 'none'; document.getElementById('1407.5127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.1778">arXiv:1406.1778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.1778">pdf</a>, <a href="https://arxiv.org/format/1406.1778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ion-trap electrode preparation with Ne$^+$ bombardment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McKay%2C+K+S">K. S. McKay</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hite%2C+D+A">D. A. Hite</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pappas%2C+D+P">D. P. Pappas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.1778v1-abstract-short" style="display: inline;"> We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1778v1-abstract-full').style.display = 'inline'; document.getElementById('1406.1778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.1778v1-abstract-full" style="display: none;"> We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1778v1-abstract-full').style.display = 'none'; document.getElementById('1406.1778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2333">arXiv:1405.2333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2333">pdf</a>, <a href="https://arxiv.org/format/1405.2333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.22.019783">10.1364/OE.22.019783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-mode optical fiber for high-power, low-loss UV transmission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2333v3-abstract-short" style="display: inline;"> We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2333v3-abstract-full').style.display = 'inline'; document.getElementById('1405.2333v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2333v3-abstract-full" style="display: none;"> We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2333v3-abstract-full').style.display = 'none'; document.getElementById('1405.2333v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 22, 19783-19793 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5419">arXiv:1112.5419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.5419">pdf</a>, <a href="https://arxiv.org/ps/1112.5419">ps</a>, <a href="https://arxiv.org/format/1112.5419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.103001">10.1103/PhysRevLett.109.103001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduction of anomalous heating in an in-situ-cleaned ion trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hite%2C+D+A">D. A. Hite</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Warring%2C+U">U. Warring</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pappas%2C+D+P">D. P. Pappas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5419v1-abstract-short" style="display: inline;"> Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by id&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5419v1-abstract-full').style.display = 'inline'; document.getElementById('1112.5419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5419v1-abstract-full" style="display: none;"> Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes&#39; surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5419v1-abstract-full').style.display = 'none'; document.getElementById('1112.5419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 109, 103001 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.5356">arXiv:1105.5356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.5356">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-011-4771-1">10.1007/s00340-011-4771-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">Christian Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=VanDevender%2C+A+P">Aaron. P. VanDevender</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mlynek%2C+J+A">Jonas. A. Mlynek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">Kenton. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.5356v1-abstract-short" style="display: inline;"> We present a solid-state laser system that generates 750 mW of continuous-wave single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495 GHz range, which includes the 9Be+ laser cooling and repump&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5356v1-abstract-full').style.display = 'inline'; document.getElementById('1105.5356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.5356v1-abstract-full" style="display: none;"> We present a solid-state laser system that generates 750 mW of continuous-wave single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495 GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5356v1-abstract-full').style.display = 'none'; document.getElementById('1105.5356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2552">arXiv:1104.2552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2552">pdf</a>, <a href="https://arxiv.org/format/1104.2552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.84.030303">10.1103/PhysRevA.84.030303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-qubit-gate error below 10^-4 in a trapped ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Meier%2C+A+M">A. M. Meier</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2552v2-abstract-short" style="display: inline;"> With a 9Be+ trapped-ion hyperfine-states qubit, we demonstrate an error probability per randomized single-qubit gate of 2.0(2) x 10^-5, below the threshold estimate of 10^-4 commonly considered sufficient for fault-tolerant quantum computing. The 9Be+ ion is trapped above a microfabricated surface-electrode ion trap and is manipulated with microwaves applied to a trap electrode. The achievement of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2552v2-abstract-full').style.display = 'inline'; document.getElementById('1104.2552v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2552v2-abstract-full" style="display: none;"> With a 9Be+ trapped-ion hyperfine-states qubit, we demonstrate an error probability per randomized single-qubit gate of 2.0(2) x 10^-5, below the threshold estimate of 10^-4 commonly considered sufficient for fault-tolerant quantum computing. The 9Be+ ion is trapped above a microfabricated surface-electrode ion trap and is manipulated with microwaves applied to a trap electrode. The achievement of low single-qubit-gate errors is an essential step toward the construction of a scalable quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2552v2-abstract-full').style.display = 'none'; document.getElementById('1104.2552v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 1 table; changed to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 84, 030303(R) (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0473">arXiv:1011.0473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.0473">pdf</a>, <a href="https://arxiv.org/format/1011.0473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature09721">10.1038/nature09721 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled quantized mechanical oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0473v2-abstract-short" style="display: inline;"> The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity [1-3] and the mechanical modes of a trapped atom [4] or macrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0473v2-abstract-full').style.display = 'inline'; document.getElementById('1011.0473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0473v2-abstract-full" style="display: none;"> The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity [1-3] and the mechanical modes of a trapped atom [4] or macroscopic solid [5]. Quantized interaction between two motional modes of an individual trapped ion has been achieved by coupling through optical fields [6], and entangled motion of two ions in separate locations has been accomplished indirectly through their internal states [7]. However, direct controllable coupling between quantized mechanical oscillators held in separate locations has not been realized previously. Here we implement such coupling through the mutual Coulomb interaction of two ions held in trapping potentials separated by 40 um (similar work is reported in a related paper [8]). By tuning the confining wells into resonance, energy is exchanged between the ions at the quantum level, establishing that direct coherent motional coupling is possible for separately trapped ions. The system demonstrates a building block for quantum information processing and quantum simulation. More broadly, this work is a natural precursor to experiments in hybrid quantum systems, such as coupling a trapped ion to a quantized macroscopic mechanical or electrical oscillator [9-13]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0473v2-abstract-full').style.display = 'none'; document.getElementById('1011.0473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 471, 196-199 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0706.2744">arXiv:0706.2744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0706.2744">pdf</a>, <a href="https://arxiv.org/format/0706.2744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.77.012712">10.1103/PhysRevA.77.012712 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical instabilities of Bose-Einstein condensates at the band-edge in one-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ferris%2C+A+J">Andrew J. Ferris</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Davis%2C+M+J">Matthew J. Davis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Geursen%2C+R+W">Reece W. Geursen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Blakie%2C+P+B">P. Blair Blakie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0706.2744v2-abstract-short" style="display: inline;"> We report on experiments that demonstrate dynamical instability in a Bose-Einstein condensate at the band-edge of a one-dimensional optical lattice. The instability manifests as rapid depletion of the condensate and conversion to a thermal cloud. We consider the collisional processes that can occur in such a system, and perform numerical modeling of the experiments using both a mean-field and be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.2744v2-abstract-full').style.display = 'inline'; document.getElementById('0706.2744v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0706.2744v2-abstract-full" style="display: none;"> We report on experiments that demonstrate dynamical instability in a Bose-Einstein condensate at the band-edge of a one-dimensional optical lattice. The instability manifests as rapid depletion of the condensate and conversion to a thermal cloud. We consider the collisional processes that can occur in such a system, and perform numerical modeling of the experiments using both a mean-field and beyond mean-field approach. We compare our numerical results to the experimental data, and find that the Gross-Pitaevskii equation is not able to describe this experiment. Our beyond mean-field approach, known as the truncated Wigner method, allows us to make quantitative predictions for the processes of parametric growth and thermalization that are observed in the laboratory, and we find good agreement with the experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.2744v2-abstract-full').style.display = 'none'; document.getElementById('0706.2744v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Added several references</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10