CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 92 results for author: <span class="mathjax">Wineland, D J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wineland, D J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wineland%2C+D+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wineland, D J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10847">arXiv:2312.10847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10847">pdf</a>, <a href="https://arxiv.org/format/2312.10847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-mode squeezing and SU(1,1) interferometry with trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Metzner%2C+J">J. Metzner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Quinn%2C+A">A. Quinn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brudney%2C+S">S. Brudney</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Moore%2C+I+D">I. D. Moore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C Allcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10847v2-abstract-short" style="display: inline;"> We experimentally implement circuits of one and two mode operations on two motional modes of a single trapped ion. This is achieved by implementing the required displacement, squeezing, two-mode squeezing, and beamsplitter operations using oscillating electric potentials applied to the trap electrodes. The resulting electric fields drive the modes resonantly or parametrically without the need for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10847v2-abstract-full').style.display = 'inline'; document.getElementById('2312.10847v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10847v2-abstract-full" style="display: none;"> We experimentally implement circuits of one and two mode operations on two motional modes of a single trapped ion. This is achieved by implementing the required displacement, squeezing, two-mode squeezing, and beamsplitter operations using oscillating electric potentials applied to the trap electrodes. The resulting electric fields drive the modes resonantly or parametrically without the need for optical forces. As a demonstration, we implement SU(2) and SU(1,1) interferometers with phase sensitivities near the Cram茅r-Rao bound. We report a maximum sensitivity of a SU(2) interferometer within $0.67(5)\,$dB of the standard quantum limit (SQL) as well as a single and two-mode SU(1,1) sensitivity of $5.9(2)\,$dB and $4.5(2)\,$dB below the SQL respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10847v2-abstract-full').style.display = 'none'; document.getElementById('2312.10847v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05529">arXiv:2304.05529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05529">pdf</a>, <a href="https://arxiv.org/ps/2304.05529">ps</a>, <a href="https://arxiv.org/format/2304.05529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.020314">10.1103/PRXQuantum.5.020314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental speedup of quantum dynamics through squeezing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arenz%2C+C">C. Arenz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Collopy%2C+A+L">A. L. Collopy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Stephenson%2C+L+J">L. J. Stephenson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05529v1-abstract-short" style="display: inline;"> We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^{25}$Mg$^{+}$ ion, the scheme applies generally to Hamiltonians involving just a single harmonic oscillator as well as Hamiltonians coupling the oscillato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05529v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05529v1-abstract-full" style="display: none;"> We show experimentally that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol. While our demonstration uses the motional and spin states of a single trapped $^{25}$Mg$^{+}$ ion, the scheme applies generally to Hamiltonians involving just a single harmonic oscillator as well as Hamiltonians coupling the oscillator to another quantum degree of freedom such as a qubit, covering a large range of systems of interest in quantum information and metrology applications. Importantly, the protocol does not require knowledge of the parameters of the Hamiltonian to be amplified, nor does it require a well-defined phase relationship between the squeezing interaction and the rest of the system dynamics, making it potentially useful in instances where certain aspects of a signal or interaction may be unknown or uncontrolled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05529v1-abstract-full').style.display = 'none'; document.getElementById('2304.05529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02608">arXiv:2212.02608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02608">pdf</a>, <a href="https://arxiv.org/format/2212.02608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.063001">10.1103/PhysRevLett.131.063001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Errors in stimulated-Raman-induced logic gates in $^{133}$Ba$^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Boguslawski%2C+M+J">Matthew J. Boguslawski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wall%2C+Z+J">Zachary J. Wall</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Vizvary%2C+S+R">Samuel R. Vizvary</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Moore%2C+I+D">Isam Daniel Moore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bareian%2C+M">Michael Bareian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">David T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hudson%2C+E+R">Eric R. Hudson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Campbell%2C+W+C">Wesley C. Campbell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02608v1-abstract-short" style="display: inline;"> ${}^{133}\mathrm{Ba}^+$ is illuminated by a laser that is far-detuned from optical transitions, and the resulting spontaneous Raman scattering rate is measured. The observed scattering rate is lower than previous theoretical estimates. The majority of the discrepancy is explained by a more accurate treatment of the scattered photon density of states. This work establishes that, contrary to previou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02608v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02608v1-abstract-full" style="display: none;"> ${}^{133}\mathrm{Ba}^+$ is illuminated by a laser that is far-detuned from optical transitions, and the resulting spontaneous Raman scattering rate is measured. The observed scattering rate is lower than previous theoretical estimates. The majority of the discrepancy is explained by a more accurate treatment of the scattered photon density of states. This work establishes that, contrary to previous models, there is no fundamental limit to laser-driven quantum gates from laser-induced spontaneous Raman scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02608v1-abstract-full').style.display = 'none'; document.getElementById('2212.02608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 + 2 pages, 4 + 1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00744">arXiv:2211.00744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00744">pdf</a>, <a href="https://arxiv.org/format/2211.00744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.032413">10.1103/PhysRevA.107.032413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon scattering errors during stimulated Raman transitions in trapped-ion qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Moore%2C+I+D">I. D. Moore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Campbell%2C+W+C">W. C. Campbell</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hudson%2C+E+R">E. R. Hudson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Boguslawski%2C+M+J">M. J. Boguslawski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00744v4-abstract-short" style="display: inline;"> We study photon scattering errors in stimulated Raman driven quantum logic gates. For certain parameter regimes, we find that previous, simplified models of the process significantly overestimate the gate error rate due to photon scattering. This overestimate is shown to be due to previous models neglecting the detuning dependence of the scattered photon frequency and Lamb-Dicke parameter, a secon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00744v4-abstract-full').style.display = 'inline'; document.getElementById('2211.00744v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00744v4-abstract-full" style="display: none;"> We study photon scattering errors in stimulated Raman driven quantum logic gates. For certain parameter regimes, we find that previous, simplified models of the process significantly overestimate the gate error rate due to photon scattering. This overestimate is shown to be due to previous models neglecting the detuning dependence of the scattered photon frequency and Lamb-Dicke parameter, a second scattering process, interference effects on scattering rates to metastable manifolds, and the counter-rotating contribution to the Raman transition rate. The resulting improved model shows that there is no fundamental limit on gate error due to photon scattering for electronic ground state qubits in commonly-used trapped-ion species when the Raman laser beams are red detuned from the main optical transition. Additionally, photon scattering errors are studied for qubits encoded in metastable $D_{5/2}$ manifold, showing that gate errors below $10^{-4}$ are achievable for all commonly-used trapped ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00744v4-abstract-full').style.display = 'none'; document.getElementById('2211.00744v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, to be submitted to Phys. Rev. A. In this version, we changed the two-qubit gate under consideration. Originally, we considered a gate driven by two perpendicular pairs of Raman beams. In this version, we consider a gate driven by a pair of Raman beams counterpropagating against a third Raman beam</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 032413 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01272">arXiv:2109.01272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01272">pdf</a>, <a href="https://arxiv.org/format/2109.01272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0069544">10.1063/5.0069544 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\textit{omg}$ Blueprint for trapped ion quantum computing with metastable states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Campbell%2C+W+C">W. C. Campbell</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chiaverini%2C+J">J. Chiaverini</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chuang%2C+I+L">I. L. Chuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hudson%2C+E+R">E. R. Hudson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Moore%2C+I+D">I. D. Moore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ransford%2C+A">A. Ransford</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Roman%2C+C">C. Roman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sage%2C+J+M">J. M. Sage</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01272v1-abstract-short" style="display: inline;"> Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01272v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01272v1-abstract-full" style="display: none;"> Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01272v1-abstract-full').style.display = 'none'; document.getElementById('2109.01272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 119, 214002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12533">arXiv:2102.12533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12533">pdf</a>, <a href="https://arxiv.org/format/2102.12533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03809-4">10.1038/s41586-021-03809-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity laser-free universal control of two trapped ion qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kwiatkowski%2C+A">A. Kwiatkowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">S. Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12533v1-abstract-short" style="display: inline;"> Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme for universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12533v1-abstract-full').style.display = 'inline'; document.getElementById('2102.12533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12533v1-abstract-full" style="display: none;"> Universal control of multiple qubits -- the ability to entangle qubits and to perform arbitrary individual qubit operations -- is a fundamental resource for quantum computation, simulation, and networking. Here, we implement a new laser-free scheme for universal control of trapped ion qubits based on microwave magnetic fields and radiofrequency magnetic field gradients. We demonstrate high-fidelity entanglement and individual control by creating symmetric and antisymmetric two-qubit maximally entangled states with fidelities in the intervals [0.9983, 1] and [0.9964, 0.9988], respectively, at 68% confidence, corrected for state initialization error. This technique is robust against multiple sources of decoherence, usable with essentially any trapped ion species, and has the potential to perform simultaneous entangling operations on many pairs of ions without increasing control signal power or complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12533v1-abstract-full').style.display = 'none'; document.getElementById('2102.12533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 597, 209-213 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14342">arXiv:2009.14342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14342">pdf</a>, <a href="https://arxiv.org/format/2009.14342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01237-9">10.1038/s41567-021-01237-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum amplification of boson-mediated interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ge%2C+W">W. Ge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14342v1-abstract-short" style="display: inline;"> Strong and precisely-controlled interactions between quantum objects are essential for quantum information processing, simulation, and sensing, and for the formation of exotic quantum matter. A well-established paradigm for coupling otherwise weakly-interacting quantum objects is to use auxiliary bosonic quantum excitations to mediate the interactions. Important examples include photon-mediated in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14342v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14342v1-abstract-full" style="display: none;"> Strong and precisely-controlled interactions between quantum objects are essential for quantum information processing, simulation, and sensing, and for the formation of exotic quantum matter. A well-established paradigm for coupling otherwise weakly-interacting quantum objects is to use auxiliary bosonic quantum excitations to mediate the interactions. Important examples include photon-mediated interactions between atoms, superconducting qubits, and color centers in diamond, and phonon-mediated interactions between trapped ions and between optical and microwave photons. Boson-mediated interactions can in principle be amplified through parametric driving of the boson channel; the drive need not couple directly to the interacting quantum objects. This technique has been proposed for a variety of quantum platforms, but has not to date been realized in the laboratory. Here we experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential. The amplification provides up to a 3.25-fold increase in the interaction strength, validated by measuring the speedup of two-qubit entangling gates. This amplification technique can be used in any quantum platform where parametric modulation of the boson channel is possible, enabling exploration of new parameter regimes and enhanced quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14342v1-abstract-full').style.display = 'none'; document.getElementById('2009.14342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, one parametric drive tone</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 17, 898-902 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00065">arXiv:2008.00065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00065">pdf</a>, <a href="https://arxiv.org/format/2008.00065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.010501">10.1103/PhysRevLett.126.010501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Todaro%2C+S+L">S. L. Todaro</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Verma%2C+V+B">V. B. Verma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">K. C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mirin%2C+R+P">R. P. Mirin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nam%2C+S+W">S. W. Nam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00065v1-abstract-short" style="display: inline;"> We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescence photons with a superconducting nanowire single-photon detector (SNSPD) fabricated into the trap structure. The average readout fidelity is 0.9991(1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00065v1-abstract-full').style.display = 'inline'; document.getElementById('2008.00065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00065v1-abstract-full" style="display: none;"> We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescence photons with a superconducting nanowire single-photon detector (SNSPD) fabricated into the trap structure. The average readout fidelity is 0.9991(1), with a mean readout duration of 46 $渭$s, and is limited by the polarization impurity of the readout laser beam and by off-resonant optical pumping. Because there are no intervening optical elements between the ion and the detector, we can use the ion fluorescence as a self-calibrated photon source to determine the detector quantum efficiency and its dependence on photon incidence angle and polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00065v1-abstract-full').style.display = 'none'; document.getElementById('2008.00065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, including supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 010501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03520">arXiv:2003.03520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03520">pdf</a>, <a href="https://arxiv.org/format/2003.03520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202000028">10.1002/qute.202000028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion transport and reordering in a two-dimensional trap array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">S. D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03520v1-abstract-short" style="display: inline;"> Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected traps in which ions are separated, transported and recombined to carry out quantum operations on small subsets of ions. Here, we use a junction con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03520v1-abstract-full').style.display = 'inline'; document.getElementById('2003.03520v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03520v1-abstract-full" style="display: none;"> Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected traps in which ions are separated, transported and recombined to carry out quantum operations on small subsets of ions. Here, we use a junction connecting orthogonal linear segments in a two-dimensional (2D) trap array to reorder a two-ion crystal. The secular motion of the ions experiences low energy gain and the internal qubit levels maintain coherence during the reordering process, therefore demonstrating a promising method for providing all-to-all connectivity in a large-scale, two- or three-dimensional trapped-ion quantum information processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03520v1-abstract-full').style.display = 'none'; document.getElementById('2003.03520v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14178">arXiv:1910.14178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14178">pdf</a>, <a href="https://arxiv.org/ps/1910.14178">ps</a>, <a href="https://arxiv.org/format/1910.14178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.042334">10.1103/PhysRevA.101.042334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knaack%2C+H+M">H. M. Knaack</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Libby%2C+S+B">S. B. Libby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14178v2-abstract-short" style="display: inline;"> The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or with techniques that have the disadvantage of reducing gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to implement a laser-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14178v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14178v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14178v2-abstract-full" style="display: none;"> The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or with techniques that have the disadvantage of reducing gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to implement a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively small cost in gate speed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14178v2-abstract-full').style.display = 'none'; document.getElementById('1910.14178v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 042334 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02388">arXiv:1905.02388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02388">pdf</a>, <a href="https://arxiv.org/ps/1905.02388">ps</a>, <a href="https://arxiv.org/format/1905.02388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.10.021012">10.1103/PhysRevX.10.021012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum logic spectroscopy with ions in thermal motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kienzler%2C+D">D. Kienzler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">S. D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02388v2-abstract-short" style="display: inline;"> A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this method, show how it can be applied as a technique for identifying transitions in currently intractable atoms or molecules, demonstrate its reduced temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02388v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02388v2-abstract-full" style="display: none;"> A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this method, show how it can be applied as a technique for identifying transitions in currently intractable atoms or molecules, demonstrate its reduced temperature sensitivity, and observe quantum-enhanced frequency sensitivity when it is applied to multi-ion chains. Potential applications include improved readout of trapped-ion clocks and simplified error syndrome measurements for quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02388v2-abstract-full').style.display = 'none'; document.getElementById('1905.02388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Changes: Title; description of the basic method; more detail on data analysis and systematic effects</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 10, 021012 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02891">arXiv:1902.02891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02891">pdf</a>, <a href="https://arxiv.org/format/1902.02891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw9415">10.1126/science.aaw9415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum gate teleportation between separated qubits in a trapped-ion processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Yong Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kienzler%2C+D">Daniel Kienzler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S+D">Stephen D. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayer%2C+K+H">Karl H. Mayer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">Ting Rei Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+J">Jenny J. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Vasconcelos%2C+H+M">Hilma M. Vasconcelos</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">Scott Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02891v2-abstract-short" style="display: inline;"> Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02891v2-abstract-full').style.display = 'inline'; document.getElementById('1902.02891v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02891v2-abstract-full" style="display: none;"> Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval [0.845, 0.872] at the 95% confidence level. The implementation combines ion shuttling with individually-addressed single-qubit rotations and detections, same- and mixedspecies two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02891v2-abstract-full').style.display = 'none'; document.getElementById('1902.02891v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 364, 875 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.02098">arXiv:1812.02098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.02098">pdf</a>, <a href="https://arxiv.org/format/1812.02098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.163201">10.1103/PhysRevLett.122.163201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.02098v2-abstract-short" style="display: inline;"> We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions&#39; motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02098v2-abstract-full').style.display = 'inline'; document.getElementById('1812.02098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.02098v2-abstract-full" style="display: none;"> We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions&#39; motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using this method, we perform resolved-sideband cooling of a single motional mode to its ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.02098v2-abstract-full').style.display = 'none'; document.getElementById('1812.02098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 163201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.01812">arXiv:1812.01812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.01812">pdf</a>, <a href="https://arxiv.org/format/1812.01812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw2884">10.1126/science.aaw2884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum amplification of mechanical oscillator motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.01812v1-abstract-short" style="display: inline;"> Detection of the weakest forces in nature and the search for new physics are aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator&#39;s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. Here we demonstrate a widely applicable technique for amplifying coh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01812v1-abstract-full').style.display = 'inline'; document.getElementById('1812.01812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.01812v1-abstract-full" style="display: none;"> Detection of the weakest forces in nature and the search for new physics are aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator&#39;s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. Here we demonstrate a widely applicable technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal &#34;squeezing&#34; interactions before and after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implement this protocol with a trapped-ion mechanical oscillator and measure an increase of up to 17.5(3) decibels in sensitivity to small displacements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01812v1-abstract-full').style.display = 'none'; document.getElementById('1812.01812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 364, 1163 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00668">arXiv:1811.00668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00668">pdf</a>, <a href="https://arxiv.org/format/1811.00668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ab0513">10.1088/2058-9565/ab0513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherently displaced oscillator quantum states of a single trapped atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">Katherine C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keller%2C+J">Jonas Keller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00668v1-abstract-short" style="display: inline;"> Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective measurement via state-dependent fluorescence, with near-unit fidelity. This leads to a rich set of line shapes when recording the internal-state excitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00668v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00668v1-abstract-full" style="display: none;"> Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective measurement via state-dependent fluorescence, with near-unit fidelity. This leads to a rich set of line shapes when recording the internal-state excitation probability after a sideband excitation, as a function of the frequency detuning of the displacement drive with respect to the ion&#39;s motional frequency. We precisely characterize the coherent displacement based on the resulting line shapes, which exhibit sharp features that are useful for oscillator frequency determination from the single quantum regime up to very large coherent states with average occupation numbers of several hundred. We also introduce a technique based on multiple coherent displacements and free precession for characterizing noise on the trapping potential in the frequency range of 500 Hz to 400 kHz. Signals from the ion are directly used to find and eliminate sources of technical noise in this typically unaccessed part of the spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00668v1-abstract-full').style.display = 'none'; document.getElementById('1811.00668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Sci. Technol. 4, 024010 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08300">arXiv:1810.08300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08300">pdf</a>, <a href="https://arxiv.org/ps/1810.08300">ps</a>, <a href="https://arxiv.org/format/1810.08300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab0be5">10.1088/1367-2630/ab0be5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Versatile laser-free trapped-ion entangling gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sutherland%2C+R+T">R. T. Sutherland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">R. Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">S. C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Libby%2C+S+B">S. B. Libby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08300v2-abstract-short" style="display: inline;"> We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a `bichromatic&#39; interaction picture, we show that either ${\hat蟽_蠁\otimes\hat蟽_蠁}$ or ${\hat蟽_{z}\otimes\hat蟽_{z}}$ geometric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08300v2-abstract-full').style.display = 'inline'; document.getElementById('1810.08300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08300v2-abstract-full" style="display: none;"> We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a `bichromatic&#39; interaction picture, we show that either ${\hat蟽_蠁\otimes\hat蟽_蠁}$ or ${\hat蟽_{z}\otimes\hat蟽_{z}}$ geometric phase gates can be performed. The gate basis is determined by selecting the microwave detuning. The driving parameters can be tuned to provide intrinsic dynamical decoupling from qubit frequency fluctuations. The ${\hat蟽_{z}\otimes\hat蟽_{z}}$ gates can be implemented in a novel manner which eases experimental constraints. We present numerical simulations of gate fidelities assuming realistic parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08300v2-abstract-full').style.display = 'none'; document.getElementById('1810.08300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 21 033033 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11934">arXiv:1807.11934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.11934">pdf</a>, <a href="https://arxiv.org/format/1807.11934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1421-y">10.1038/s41586-019-1421-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-enhanced sensing of a mechanical oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McCormick%2C+K+C">Katherine C. McCormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keller%2C+J">Jonas Keller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">Shaun C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11934v3-abstract-short" style="display: inline;"> The use of special quantum states to achieve sensitivities below the limits established by classically behaving states has enjoyed immense success since its inception. In bosonic interferometers, squeezed states, number states and cat states have been implemented on various platforms and have demonstrated improved measurement precision over interferometers based on coherent states. Another metrolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11934v3-abstract-full').style.display = 'inline'; document.getElementById('1807.11934v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11934v3-abstract-full" style="display: none;"> The use of special quantum states to achieve sensitivities below the limits established by classically behaving states has enjoyed immense success since its inception. In bosonic interferometers, squeezed states, number states and cat states have been implemented on various platforms and have demonstrated improved measurement precision over interferometers based on coherent states. Another metrologically useful state is an equal superposition of two eigenstates with maximally different energies; this state ideally reaches the full interferometric sensitivity allowed by quantum mechanics. By leveraging improvements to our apparatus made primarily to reach higher operation fidelities in quantum information processing, we extend a technique to create number states up to $n=100$ and to generate superpositions of a harmonic oscillator ground state and a number state of the form $\textstyle{\frac{1}{\sqrt{2}}}(\lvert 0\rangle+\lvert n\rangle)$ with $n$ up to 18 in the motion of a single trapped ion. While experimental imperfections prevent us from reaching the ideal Heisenberg limit, we observe enhanced sensitivity to changes in the oscillator frequency that initially increases linearly with $n$, with maximal value at $n=12$ where we observe 3.2(2) dB higher sensitivity compared to an ideal measurement on a coherent state with the same average occupation number. The quantum advantage from using number-state superpositions can be leveraged towards precision measurements on any harmonic oscillator system; here it enables us to track the average fractional frequency of oscillation of a single trapped ion to approximately 2.6 $\times$ 10$^{-6}$ in 5 s. Such measurements should provide improved characterization of imperfections and noise on trapping potentials, which can lead to motional decoherence, a leading source of error in quantum information processing with trapped ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11934v3-abstract-full').style.display = 'none'; document.getElementById('1807.11934v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 572, 86 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.03889">arXiv:1707.03889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.03889">pdf</a>, <a href="https://arxiv.org/ps/1707.03889">ps</a>, <a href="https://arxiv.org/format/1707.03889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/09500340.2017.1423123">10.1080/09500340.2017.1423123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient eigenvalue determination for arbitrary Pauli products based on generalized spin-spin interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.03889v1-abstract-short" style="display: inline;"> Effective spin-spin interactions between N+1 qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03889v1-abstract-full').style.display = 'inline'; document.getElementById('1707.03889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.03889v1-abstract-full" style="display: none;"> Effective spin-spin interactions between N+1 qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in several physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions using a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03889v1-abstract-full').style.display = 'none'; document.getElementById('1707.03889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, no figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01618">arXiv:1612.01618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.01618">pdf</a>, <a href="https://arxiv.org/format/1612.01618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.130403">10.1103/PhysRevLett.118.130403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chained Bell Inequality Experiment with High-Efficiency Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Erickson%2C+S">S. Erickson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bierhorst%2C+P">P. Bierhorst</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kienzler%2C+D">D. Kienzler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">S. Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01618v1-abstract-short" style="display: inline;"> We report correlation measurements on two $^9$Be$^+$ ions that violate a chained Bell inequality obeyed by any local-realistic theory. The correlations can be modeled as derived from a mixture of a local-realistic probabilistic distribution and a distribution that violates the inequality. A statistical framework is formulated to quantify the local-realistic fraction allowable in the observed distr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01618v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01618v1-abstract-full" style="display: none;"> We report correlation measurements on two $^9$Be$^+$ ions that violate a chained Bell inequality obeyed by any local-realistic theory. The correlations can be modeled as derived from a mixture of a local-realistic probabilistic distribution and a distribution that violates the inequality. A statistical framework is formulated to quantify the local-realistic fraction allowable in the observed distribution without the fair-sampling or independent-and-identical-distributions assumptions. We exclude models of our experiment whose local-realistic fraction is above 0.327 at the 95 \% confidence level. This bound is significantly lower than 0.586, the minimum fraction derived from a perfect Clauser-Horne-Shimony-Holt inequality experiment. Furthermore, our data provides a device-independent certification of the deterministically created Bell states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01618v1-abstract-full').style.display = 'none'; document.getElementById('1612.01618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 130403 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09949">arXiv:1611.09949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.09949">pdf</a>, <a href="https://arxiv.org/format/1611.09949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.008705">10.1364/OE.25.008705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Verma%2C+V+B">V. B. Verma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mirin%2C+R+P">R. P. Mirin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nam%2C+S+W">S. W. Nam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09949v2-abstract-short" style="display: inline;"> We demonstrate superconducting nanowire single photon detectors with 76 +/- 4 % system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection efficiency. We propose integrating these detectors into planar surface electrode radio-frequency Paul traps for use in trapped ion quantum information&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09949v2-abstract-full').style.display = 'inline'; document.getElementById('1611.09949v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09949v2-abstract-full" style="display: none;"> We demonstrate superconducting nanowire single photon detectors with 76 +/- 4 % system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection efficiency. We propose integrating these detectors into planar surface electrode radio-frequency Paul traps for use in trapped ion quantum information processing. We operate detectors integrated into test ion trap structures at 3.8 K both with and without typical radio-frequency trapping electric fields. The trapping fields reduce system detection efficiency by 9 %, but do not increase background count rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09949v2-abstract-full').style.display = 'none'; document.getElementById('1611.09949v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 25, 8705-8720 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01892">arXiv:1609.01892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.01892">pdf</a>, <a href="https://arxiv.org/ps/1609.01892">ps</a>, <a href="https://arxiv.org/format/1609.01892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.022328">10.1103/PhysRevA.95.022328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast phase gates with trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Palmero%2C+M">M. Palmero</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mart%C3%ADnez-Garaot%2C+S">S. Mart铆nez-Garaot</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Muga%2C+J+G">J. G. Muga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01892v2-abstract-short" style="display: inline;"> We implement faster-than-adiabatic two-qubit phase gates using smooth state-dependent forces. The forces are designed to leave no final motional excitation, independently of the initial motional state in the harmonic, small-oscillations limit. They are simple, explicit functions of time and the desired logical phase of the gate, and are based on quadratic invariants of motion and Lewis-Riesenfeld&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01892v2-abstract-full').style.display = 'inline'; document.getElementById('1609.01892v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01892v2-abstract-full" style="display: none;"> We implement faster-than-adiabatic two-qubit phase gates using smooth state-dependent forces. The forces are designed to leave no final motional excitation, independently of the initial motional state in the harmonic, small-oscillations limit. They are simple, explicit functions of time and the desired logical phase of the gate, and are based on quadratic invariants of motion and Lewis-Riesenfeld phases of the normal modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01892v2-abstract-full').style.display = 'none'; document.getElementById('1609.01892v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.02677">arXiv:1608.02677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.02677">pdf</a>, <a href="https://arxiv.org/format/1608.02677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.022327">10.1103/PhysRevA.95.022327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid quantum systems with trapped charged particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kotler%2C+S">Shlomi Kotler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Simmonds%2C+R+W">Raymond W. Simmonds</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.02677v1-abstract-short" style="display: inline;"> We study theoretically the possibilities of coupling the quantum mechanical motion of a trapped charged particle (e.g. ion or electron) to quantum degrees of freedom of superconducting devices, nano-mechanical resonators and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoheren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02677v1-abstract-full').style.display = 'inline'; document.getElementById('1608.02677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.02677v1-abstract-full" style="display: none;"> We study theoretically the possibilities of coupling the quantum mechanical motion of a trapped charged particle (e.g. ion or electron) to quantum degrees of freedom of superconducting devices, nano-mechanical resonators and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e. the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples, using parameters that are experimentally attainable in the foreseeable future. We conclude that those hybrid quantum system considered involving an atomic ion are unfavorable, compared to using an electron, since the coupling rates between the charged particle and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates which significantly exceed decoherence rates. Moreover it might have appealing properties such as fast entangling gates, long coherence and flexible electron interconnectivity topology. Realizing such a system, however, is technologically challenging, since it requires accommodating both trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry and cooling schemes in order to promote further investigations towards the realization of such a hybrid system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02677v1-abstract-full').style.display = 'none'; document.getElementById('1608.02677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 022327 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03484">arXiv:1606.03484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.03484">pdf</a>, <a href="https://arxiv.org/ps/1606.03484">ps</a>, <a href="https://arxiv.org/format/1606.03484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.3.001294">10.1364/OPTICA.3.001294 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> VECSEL systems for generation and manipulation of trapped magnesium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burd%2C+S+C">Shaun C. Burd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">David T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leinonen%2C+T">Tomi Leinonen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Penttinen%2C+J">Jussi-Pekka Penttinen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Srinivas%2C+R">Raghavendra Srinivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">Robert J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guina%2C+M">Mircea Guina</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03484v1-abstract-short" style="display: inline;"> Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characteriz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03484v1-abstract-full').style.display = 'inline'; document.getElementById('1606.03484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03484v1-abstract-full" style="display: none;"> Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characterize VECSEL systems that can perform all laser-based tasks for quantum information processing experiments with trapped magnesium ions. For photoionization of neutral magnesium, 570.6$\,$nm light is generated with an intracavity frequency-doubled VECSEL containing a lithium triborate (LBO) crystal for second harmonic generation. External frequency doubling produces 285.3$\,$nm light for resonant interaction with the $^{1}S_{0}\leftrightarrow$ $^{1}P_{1}$ transition of neutral Mg. Using an externally frequency-quadrupled VECSEL, we implement Doppler cooling of $^{25}$Mg$^{+}$ on the 279.6$\,$nm $^{2}S_{1/2}\leftrightarrow$ $^{2}P_{3/2}$ cycling transition, repumping on the 280.4$\,$nm $^{2}S_{1/2}\leftrightarrow$ $^{2}P_{1/2}$ transition, coherent state manipulation, and resolved sideband cooling close to the motional ground state. Our systems serve as prototypes for applications in AMO requiring single-frequency, power-scalable laser sources at multiple wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03484v1-abstract-full').style.display = 'none'; document.getElementById('1606.03484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 3, 1294 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.00032">arXiv:1604.00032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.00032">pdf</a>, <a href="https://arxiv.org/format/1604.00032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.060505">10.1103/PhysRevLett.117.060505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Fidelity Universal Gate Set for $^9$Be$^+$ Ion Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keith%2C+A+C">A. C. Keith</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">S. Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Coakley%2C+K">K. Coakley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.00032v1-abstract-short" style="display: inline;"> We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in $^{9}$Be$^+$ ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with error per gate of $3.8(1)\times 10^{-5}$. By creating a Bell state with a deterministic two-qubit gate, we deduce a gate error of $8(4)\times10^{-4}$. We character&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00032v1-abstract-full').style.display = 'inline'; document.getElementById('1604.00032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.00032v1-abstract-full" style="display: none;"> We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in $^{9}$Be$^+$ ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with error per gate of $3.8(1)\times 10^{-5}$. By creating a Bell state with a deterministic two-qubit gate, we deduce a gate error of $8(4)\times10^{-4}$. We characterize the errors in our implementation and discuss methods to further reduce imperfections towards values that are compatible with fault-tolerant processing at realistic overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00032v1-abstract-full').style.display = 'none'; document.getElementById('1604.00032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 060505 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03848">arXiv:1603.03848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03848">pdf</a>, <a href="https://arxiv.org/format/1603.03848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.140502">10.1103/PhysRevLett.117.140502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preparation of entangled states through Hilbert space engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reiter%2C+F">F. Reiter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Keith%2C+A">A. Keith</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glancy%2C+S">S. Glancy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Coakley%2C+K">K. Coakley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=S%C3%B8rensen%2C+A+S">A. S. S酶rensen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03848v1-abstract-short" style="display: inline;"> Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems (1,2). Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches. Here, we create entanglement in atomic ions by applying laser fields to constrain the evolution to a restricted number of states, in an a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03848v1-abstract-full').style.display = 'inline'; document.getElementById('1603.03848v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03848v1-abstract-full" style="display: none;"> Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems (1,2). Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches. Here, we create entanglement in atomic ions by applying laser fields to constrain the evolution to a restricted number of states, in an approach that has become known as &#34;quantum Zeno dynamics&#34; (3-5). With two trapped $^9\rm{Be}^+$ ions, we obtain Bell state fidelities up to $0.990^{+2}_{-5}$, with three ions, a W-state (6) fidelity of $0.910^{+4}_{-7}$ is obtained. Compared to other methods of producing entanglement in trapped ions, this procedure is relatively insensitive to certain imperfections such as fluctuations in laser intensity, laser frequency, and ion-motion frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03848v1-abstract-full').style.display = 'none'; document.getElementById('1603.03848v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 140502 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.03392">arXiv:1508.03392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.03392">pdf</a>, <a href="https://arxiv.org/format/1508.03392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature16186">10.1038/nature16186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Element Logic Gates for Trapped-Ion Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+Y">Y. Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.03392v2-abstract-short" style="display: inline;"> Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantage&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03392v2-abstract-full').style.display = 'inline'; document.getElementById('1508.03392v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.03392v2-abstract-full" style="display: none;"> Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped-ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling, creation of entanglement through dissipation, and quantum non-demolition (QND) measurement of one species with another. Here, we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a $^9$Be$^+$ ion and a $^{25}$Mg$^+$ ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams. Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP. Using a sequence of such gates, we demonstrate a Controlled-NOT (CNOT) gate and a SWAP gate. We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy (QLS). We also observe a strong violation of a CHSH-type Bell inequality on entangled states composed of different ion species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03392v2-abstract-full').style.display = 'none'; document.getElementById('1508.03392v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02997">arXiv:1507.02997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02997">pdf</a>, <a href="https://arxiv.org/format/1507.02997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.200502">10.1103/PhysRevLett.115.200502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative quantum control of a spin chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Morigi%2C+G">Giovanna Morigi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Eschner%2C+J">Juergen Eschner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cormick%2C+C">Cecilia Cormick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Yiheng Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02997v1-abstract-short" style="display: inline;"> A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored non-unitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02997v1-abstract-full').style.display = 'inline'; document.getElementById('1507.02997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02997v1-abstract-full" style="display: none;"> A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored non-unitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02997v1-abstract-full').style.display = 'none'; document.getElementById('1507.02997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 200502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.5127">arXiv:1407.5127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.5127">pdf</a>, <a href="https://arxiv.org/format/1407.5127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature13565">10.1038/nature13565 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable spin-spin interactions and entanglement of ions in separate wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">Kenton R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">Emanuel Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.5127v1-abstract-short" style="display: inline;"> Quantum simulation - the use of one quantum system to simulate a less controllable one - may provide an understanding of the many quantum systems which cannot be modeled using classical computers. Impressive progress on control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual io&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5127v1-abstract-full').style.display = 'inline'; document.getElementById('1407.5127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.5127v1-abstract-full" style="display: none;"> Quantum simulation - the use of one quantum system to simulate a less controllable one - may provide an understanding of the many quantum systems which cannot be modeled using classical computers. Impressive progress on control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual ions trapped in separate tunable potential wells are promising. Here we implement the basic features of this approach and demonstrate deterministic tuning of the Coulomb interaction between two ions, independently controlling their local wells. The scheme is suitable for emulating a range of spin-spin interactions, but to characterize the performance of our setup we select one that entangles the internal states of the two ions with 0.82(1) fidelity. Extension of this building-block to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. To perform useful quantum simulations, including those of intriguing condensed-matter phenomena such as the fractional quantum Hall effect, an array of tens of ions might be sufficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5127v1-abstract-full').style.display = 'none'; document.getElementById('1407.5127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.1778">arXiv:1406.1778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.1778">pdf</a>, <a href="https://arxiv.org/format/1406.1778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ion-trap electrode preparation with Ne$^+$ bombardment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=McKay%2C+K+S">K. S. McKay</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hite%2C+D+A">D. A. Hite</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">D. H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Allcock%2C+D+T+C">D. T. C. Allcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pappas%2C+D+P">D. P. Pappas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.1778v1-abstract-short" style="display: inline;"> We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1778v1-abstract-full').style.display = 'inline'; document.getElementById('1406.1778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.1778v1-abstract-full" style="display: none;"> We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1778v1-abstract-full').style.display = 'none'; document.getElementById('1406.1778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2333">arXiv:1405.2333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2333">pdf</a>, <a href="https://arxiv.org/format/1405.2333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.22.019783">10.1364/OE.22.019783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-mode optical fiber for high-power, low-loss UV transmission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slichter%2C+D+H">Daniel H. Slichter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2333v3-abstract-short" style="display: inline;"> We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2333v3-abstract-full').style.display = 'inline'; document.getElementById('1405.2333v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2333v3-abstract-full" style="display: none;"> We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2333v3-abstract-full').style.display = 'none'; document.getElementById('1405.2333v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 22, 19783-19793 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.4443">arXiv:1307.4443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.4443">pdf</a>, <a href="https://arxiv.org/format/1307.4443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature12801">10.1038/nature12801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative production of a maximally entangled steady state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reiter%2C+F">F. Reiter</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=S%C3%B8rensen%2C+A+S">A. S. S酶rensen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.4443v1-abstract-short" style="display: inline;"> Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called &#34;quantum gates&#34;, have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4443v1-abstract-full').style.display = 'inline'; document.getElementById('1307.4443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.4443v1-abstract-full" style="display: none;"> Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called &#34;quantum gates&#34;, have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that inevitably arises from coupling between the system and the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion qubits independent of their initial state. While previous works along this line involved the application of sequences of multiple time-dependent gates [3] or generated entanglement of atomic ensembles dissipatively but relied on a measurement record for steady-state entanglement [4], we implement the process in a continuous time-independent fashion, analogous to optical pumping of atomic states. By continuously driving the system towards steady-state, the entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation, and dissipative phase transitions [5-7]. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation [8]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4443v1-abstract-full').style.display = 'none'; document.getElementById('1307.4443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 504, 415-418 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.3786">arXiv:1301.3786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.3786">pdf</a>, <a href="https://arxiv.org/format/1301.3786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.263002">10.1103/PhysRevLett.110.263002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Demonstration of a dressed-state phase gate for trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.3786v2-abstract-short" style="display: inline;"> We demonstrate a trapped-ion entangling-gate scheme proposed by Bermudez et al. [Phys. Rev. A 85, 040302 (2012)]. Simultaneous excitation of a strong carrier and a single-sideband transition enables deterministic creation of entangled states. The method works for magnetic field-insensitive states, is robust against thermal excitations, includes dynamical decoupling from qubit dephasing errors, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.3786v2-abstract-full').style.display = 'inline'; document.getElementById('1301.3786v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.3786v2-abstract-full" style="display: none;"> We demonstrate a trapped-ion entangling-gate scheme proposed by Bermudez et al. [Phys. Rev. A 85, 040302 (2012)]. Simultaneous excitation of a strong carrier and a single-sideband transition enables deterministic creation of entangled states. The method works for magnetic field-insensitive states, is robust against thermal excitations, includes dynamical decoupling from qubit dephasing errors, and provides simplifications in experimental implementation compared to some other entangling gates with trapped ions. We achieve a Bell state fidelity of 0.974(4) and identify the main sources of error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.3786v2-abstract-full').style.display = 'none'; document.getElementById('1301.3786v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.6647">arXiv:1211.6647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.6647">pdf</a>, <a href="https://arxiv.org/format/1211.6647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.153002">10.1103/PhysRevLett.110.153002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sympathetic EIT laser cooling of motional modes in an ion chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.6647v3-abstract-short" style="display: inline;"> We use electromagnetically induced transparency (EIT) laser cooling to cool motional modes of a linear ion chain. As a demonstration, we apply EIT cooling on $^{24}Mg^+$ ions to cool the axial modes of a $^9Be^+$ - $^{24}Mg^+$ ion pair and a $^9Be^+$ - $^{24}Mg^+$ - $^{24}Mg^+$ - $^9Be^+$ ion chain, thereby sympathetically cooling the $^{9}$Be$^{+}$ ions. Compared to previous implementations of co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6647v3-abstract-full').style.display = 'inline'; document.getElementById('1211.6647v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.6647v3-abstract-full" style="display: none;"> We use electromagnetically induced transparency (EIT) laser cooling to cool motional modes of a linear ion chain. As a demonstration, we apply EIT cooling on $^{24}Mg^+$ ions to cool the axial modes of a $^9Be^+$ - $^{24}Mg^+$ ion pair and a $^9Be^+$ - $^{24}Mg^+$ - $^{24}Mg^+$ - $^9Be^+$ ion chain, thereby sympathetically cooling the $^{9}$Be$^{+}$ ions. Compared to previous implementations of conventional Raman sideband cooling, we achieve approximately an order-of-magnitude reduction in the duration required to cool the modes to near the ground state and significant reduction in required laser intensity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6647v3-abstract-full').style.display = 'none'; document.getElementById('1211.6647v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 153002 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.6554">arXiv:1211.6554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.6554">pdf</a>, <a href="https://arxiv.org/format/1211.6554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.013437">10.1103/PhysRevA.87.013437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave Near-Field Quantum Control of Trapped Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Warring%2C+U">U. Warring</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amini%2C+J+M">J. M. Amini</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Carsjens%2C+M">M. Carsjens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.6554v1-abstract-short" style="display: inline;"> Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of the setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6554v1-abstract-full').style.display = 'inline'; document.getElementById('1211.6554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.6554v1-abstract-full" style="display: none;"> Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of the setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave system, and compare experimental measurements of the microwave near-fields with numerical simulations. Additionally, we present a method that utilizes oscillating magnetic-field gradients to detect micromotion induced by the ponderomotive radio-frequency potential in linear traps. Finally, we discuss the present limitations of microwave-driven two-ion entangling gates in our system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6554v1-abstract-full').style.display = 'none'; document.getElementById('1211.6554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 87, 013437 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.6407">arXiv:1210.6407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.6407">pdf</a>, <a href="https://arxiv.org/format/1210.6407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.173002">10.1103/PhysRevLett.110.173002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Individual-Ion Addressing with Microwave Field Gradients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Warring%2C+U">U. Warring</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.6407v2-abstract-short" style="display: inline;"> Individual-qubit addressing is a prerequisite for many instances of quantum information processing. We demonstrate this capability on trapped-ion qubits with microwave near-fields delivered by electrode structures integrated into a microfabricated surface-electrode trap. We describe four approaches that may be used in quantum information experiments with hyperfine levels as qubits. We implement in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.6407v2-abstract-full').style.display = 'inline'; document.getElementById('1210.6407v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.6407v2-abstract-full" style="display: none;"> Individual-qubit addressing is a prerequisite for many instances of quantum information processing. We demonstrate this capability on trapped-ion qubits with microwave near-fields delivered by electrode structures integrated into a microfabricated surface-electrode trap. We describe four approaches that may be used in quantum information experiments with hyperfine levels as qubits. We implement individual control on two 25Mg+ ions separated by 4.3 micrometer and find spin-flip crosstalk errors on the order of 10^(-3). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.6407v2-abstract-full').style.display = 'none'; document.getElementById('1210.6407v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages and 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 173002 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.0780">arXiv:1206.0780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.0780">pdf</a>, <a href="https://arxiv.org/format/1206.0780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.080502">10.1103/PhysRevLett.109.080502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent Diabatic Ion Transport and Separation in a Multi-Zone Trap Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J">J. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hanneke%2C+D">D. Hanneke</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Home%2C+J+P">J. P. Home</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.0780v1-abstract-short" style="display: inline;"> We investigate the motional dynamics of single and multiple ions during transport between and separation into spatially distinct locations in a multi-zone linear Paul trap. A single 9Be+ ion in a 2 MHz harmonic well located in one zone was laser-cooled to near its ground state of motion and transported 370 micrometers by moving the well to another zone. This was accomplished in 8 microseconds, cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0780v1-abstract-full').style.display = 'inline'; document.getElementById('1206.0780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.0780v1-abstract-full" style="display: none;"> We investigate the motional dynamics of single and multiple ions during transport between and separation into spatially distinct locations in a multi-zone linear Paul trap. A single 9Be+ ion in a 2 MHz harmonic well located in one zone was laser-cooled to near its ground state of motion and transported 370 micrometers by moving the well to another zone. This was accomplished in 8 microseconds, corresponding to 16 periods of oscillation. Starting from a state with n=0.1 quanta, during transport the ion was excited to a displaced coherent state with n=1.6 quanta but on completion was returned close to its motional ground state with n=0.2. Similar results were achieved for the transport of two ions. We also separated chains of up to 9 ions from one potential well to two distinct potential wells. With two ions this was accomplished in 55 microseconds, with final excitations of about 2 quanta for each ion. Fast coherent transport and separation can significantly reduce the time overhead in certain architectures for scalable quantum information processing with trapped ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0780v1-abstract-full').style.display = 'none'; document.getElementById('1206.0780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.3733">arXiv:1203.3733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.3733">pdf</a>, <a href="https://arxiv.org/ps/1203.3733">ps</a>, <a href="https://arxiv.org/format/1203.3733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.260503">10.1103/PhysRevLett.108.260503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Randomized Benchmarking of Multi-Qubit Gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gaebler%2C+J+P">J. P. Gaebler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Meier%2C+A+M">A. M. Meier</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T+R">T. R. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bowler%2C+R">R. Bowler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hanneke%2C+D">D. Hanneke</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Home%2C+J+P">J. P. Home</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.3733v2-abstract-short" style="display: inline;"> As experimental platforms for quantum information processing continue to mature, characterization of the quality of unitary gates that can be applied to their quantum bits (qubits) becomes essential. Eventually, the quality must be sufficiently high to support arbitrarily long quantum computations. Randomized benchmarking already provides a platform-independent method for assessing the quality of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.3733v2-abstract-full').style.display = 'inline'; document.getElementById('1203.3733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.3733v2-abstract-full" style="display: none;"> As experimental platforms for quantum information processing continue to mature, characterization of the quality of unitary gates that can be applied to their quantum bits (qubits) becomes essential. Eventually, the quality must be sufficiently high to support arbitrarily long quantum computations. Randomized benchmarking already provides a platform-independent method for assessing the quality of one-qubit rotations. Here we describe an extension of this method to multi-qubit gates. We provide a platform-independent protocol for evaluating the performance of experimental Clifford unitaries, which form the basis of fault-tolerant quantum computing. We implemented the benchmarking protocol with trapped-ion two-qubit phase gates and one-qubit gates and found an error per random two-qubit Clifford unitary of $0.162 \pm 0.008$, thus setting the first benchmark for such unitaries. By implementing a second set of sequences with an extra two-qubit phase gate at each step, we extracted an error per phase gate of $0.069 \pm 0.017$. We conducted these experiments with movable, sympathetically cooled ions in a multi-zone Paul trap - a system that can in principle be scaled to larger numbers of ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.3733v2-abstract-full').style.display = 'none'; document.getElementById('1203.3733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected description of parallel single-qubit benchmark experiment. Results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 260503 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5419">arXiv:1112.5419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.5419">pdf</a>, <a href="https://arxiv.org/ps/1112.5419">ps</a>, <a href="https://arxiv.org/format/1112.5419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.103001">10.1103/PhysRevLett.109.103001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduction of anomalous heating in an in-situ-cleaned ion trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hite%2C+D+A">D. A. Hite</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Warring%2C+U">U. Warring</a>, <a href="/search/quant-ph?searchtype=author&amp;query=J%C3%B6rdens%2C+R">R. J枚rdens</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pappas%2C+D+P">D. P. Pappas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5419v1-abstract-short" style="display: inline;"> Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by id&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5419v1-abstract-full').style.display = 'inline'; document.getElementById('1112.5419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5419v1-abstract-full" style="display: none;"> Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes&#39; surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5419v1-abstract-full').style.display = 'none'; document.getElementById('1112.5419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 109, 103001 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.5922">arXiv:1108.5922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.5922">pdf</a>, <a href="https://arxiv.org/format/1108.5922">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.243902">10.1103/PhysRevLett.107.243902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped-Ion State Detection through Coherent Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hume%2C+D+B">D. B. Hume</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chou%2C+C+W">C. W. Chou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibrandt%2C+D+R">D. R. Leibrandt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thorpe%2C+M+J">M. J. Thorpe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rosenband%2C+T">T. Rosenband</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.5922v3-abstract-short" style="display: inline;"> We demonstrate a general method for state detection of trapped ions that can be applied to a large class of atomic and molecular species. We couple a &#34;spectroscopy&#34; ion (Al+) to a &#34;control&#34; ion (Mg+) in the same trap and perform state detection through off-resonant laser excitation of the spectroscopy ion that induces coherent motion. The motional amplitude, dependent on the spectroscopy ion state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.5922v3-abstract-full').style.display = 'inline'; document.getElementById('1108.5922v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.5922v3-abstract-full" style="display: none;"> We demonstrate a general method for state detection of trapped ions that can be applied to a large class of atomic and molecular species. We couple a &#34;spectroscopy&#34; ion (Al+) to a &#34;control&#34; ion (Mg+) in the same trap and perform state detection through off-resonant laser excitation of the spectroscopy ion that induces coherent motion. The motional amplitude, dependent on the spectroscopy ion state, is measured either by time-resolved photon counting, or by resolved sideband excitations on the control ion. The first method provides a simplified way to distinguish &#34;clock&#34; states in Al+, which avoids ground state cooling and sideband transitions. The second method reduces spontaneous emission and optical pumping on the spectroscopy ion, which we demonstrate by nondestructively distinguishing Zeeman sublevels in the 1S0 ground state of Al+. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.5922v3-abstract-full').style.display = 'none'; document.getElementById('1108.5922v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. Replaced with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 107, 243902 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.5005">arXiv:1106.5005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.5005">pdf</a>, <a href="https://arxiv.org/format/1106.5005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.84.032314">10.1103/PhysRevA.84.032314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved high-fidelity transport of trapped-ion qubits through a multi-dimensional array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Blakestad%2C+R+B">R. B. Blakestad</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=VanDevender%2C+A+P">A. P. VanDevender</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wesenberg%2C+J+H">J. H. Wesenberg</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Biercuk%2C+M+J">M. J. Biercuk</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.5005v1-abstract-short" style="display: inline;"> We have demonstrated transport of Be+ ions through a 2D Paul-trap array that incorporates an X-junction, while maintaining the ions near the motional ground-state of the confining potential well. We expand on the first report of the experiment [1], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.5005v1-abstract-full').style.display = 'inline'; document.getElementById('1106.5005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.5005v1-abstract-full" style="display: none;"> We have demonstrated transport of Be+ ions through a 2D Paul-trap array that incorporates an X-junction, while maintaining the ions near the motional ground-state of the confining potential well. We expand on the first report of the experiment [1], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport are explained, along with the methods used to mitigate such excitation. We reduced the motional excitation below the results in Ref. [1] by a factor of approximately 50. The effect of a mu-metal shield on qubit coherence is also reported. Finally, we examined a method for exchanging energy between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes without directly accessing the modes with lasers. These results establish how trapped ions can be transported in a large-scale quantum processor with high fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.5005v1-abstract-full').style.display = 'none'; document.getElementById('1106.5005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.5356">arXiv:1105.5356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.5356">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-011-4771-1">10.1007/s00340-011-4771-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">Andrew. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">Christian Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=VanDevender%2C+A+P">Aaron. P. VanDevender</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mlynek%2C+J+A">Jonas. A. Mlynek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">Kenton. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">Dietrich Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">David. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.5356v1-abstract-short" style="display: inline;"> We present a solid-state laser system that generates 750 mW of continuous-wave single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495 GHz range, which includes the 9Be+ laser cooling and repump&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5356v1-abstract-full').style.display = 'inline'; document.getElementById('1105.5356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.5356v1-abstract-full" style="display: none;"> We present a solid-state laser system that generates 750 mW of continuous-wave single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495 GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5356v1-abstract-full').style.display = 'none'; document.getElementById('1105.5356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.4752">arXiv:1105.4752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.4752">pdf</a>, <a href="https://arxiv.org/ps/1105.4752">ps</a>, <a href="https://arxiv.org/format/1105.4752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/13/7/073026">10.1088/1367-2630/13/7/073026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Normal modes of trapped ions in the presence of anharmonic trap potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Home%2C+J+P">J. P. Home</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hanneke%2C+D">D. Hanneke</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jost%2C+J+D">J. D. Jost</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.4752v1-abstract-short" style="display: inline;"> We theoretically and experimentally examine the effects of anharmonic terms in the trapping potential for linear chains of trapped ions. We concentrate on two different effects that become significant at different levels of anharmonicity. The first is a modification of the oscillation frequencies and amplitudes of the ions&#39; normal modes of vibration for multi-ion crystals, resulting from each ion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4752v1-abstract-full').style.display = 'inline'; document.getElementById('1105.4752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.4752v1-abstract-full" style="display: none;"> We theoretically and experimentally examine the effects of anharmonic terms in the trapping potential for linear chains of trapped ions. We concentrate on two different effects that become significant at different levels of anharmonicity. The first is a modification of the oscillation frequencies and amplitudes of the ions&#39; normal modes of vibration for multi-ion crystals, resulting from each ion experiencing a different curvature in the potential. In the second effect, which occurs with increased anharmonicity or higher excitation amplitude, amplitude-dependent shifts of the normal-mode frequencies become important. We evaluate normal-mode frequency and amplitude shifts, and comment on the implications for quantum information processing and quantum state engineering. Since the ratio of the anharmonic to harmonic terms typically increases as the ion--electrode distance decreases, anharmonic effects will become more significant as ion trap sizes are reduced. To avoid unwanted problems, anharmonicities should therefore be taken into account at the design stage of trap development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4752v1-abstract-full').style.display = 'none'; document.getElementById('1105.4752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.3573">arXiv:1104.3573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.3573">pdf</a>, <a href="https://arxiv.org/format/1104.3573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature10290">10.1038/nature10290 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave quantum logic gates for trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Warring%2C+U">U. Warring</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amini%2C+J+M">J. M. Amini</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.3573v3-abstract-short" style="display: inline;"> Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3573v3-abstract-full').style.display = 'inline'; document.getElementById('1104.3573v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.3573v3-abstract-full" style="display: none;"> Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms&#39; motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3573v3-abstract-full').style.display = 'none'; document.getElementById('1104.3573v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures, accepted as a letter to Nature</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 476, 181 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2552">arXiv:1104.2552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2552">pdf</a>, <a href="https://arxiv.org/format/1104.2552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.84.030303">10.1103/PhysRevA.84.030303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-qubit-gate error below 10^-4 in a trapped ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Meier%2C+A+M">A. M. Meier</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Knill%2C+E">E. Knill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2552v2-abstract-short" style="display: inline;"> With a 9Be+ trapped-ion hyperfine-states qubit, we demonstrate an error probability per randomized single-qubit gate of 2.0(2) x 10^-5, below the threshold estimate of 10^-4 commonly considered sufficient for fault-tolerant quantum computing. The 9Be+ ion is trapped above a microfabricated surface-electrode ion trap and is manipulated with microwaves applied to a trap electrode. The achievement of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2552v2-abstract-full').style.display = 'inline'; document.getElementById('1104.2552v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2552v2-abstract-full" style="display: none;"> With a 9Be+ trapped-ion hyperfine-states qubit, we demonstrate an error probability per randomized single-qubit gate of 2.0(2) x 10^-5, below the threshold estimate of 10^-4 commonly considered sufficient for fault-tolerant quantum computing. The 9Be+ ion is trapped above a microfabricated surface-electrode ion trap and is manipulated with microwaves applied to a trap electrode. The achievement of low single-qubit-gate errors is an essential step toward the construction of a scalable quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2552v2-abstract-full').style.display = 'none'; document.getElementById('1104.2552v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 1 table; changed to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 84, 030303(R) (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.3766">arXiv:1101.3766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.3766">pdf</a>, <a href="https://arxiv.org/ps/1101.3766">ps</a>, <a href="https://arxiv.org/format/1101.3766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.160801">10.1103/PhysRevLett.106.160801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum coherence between two atoms beyond Q=10^15 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chou%2C+C+W">C. W. Chou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hume%2C+D+B">D. B. Hume</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thorpe%2C+M+J">M. J. Thorpe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rosenband%2C+T">T. Rosenband</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.3766v2-abstract-short" style="display: inline;"> We place two atoms in quantum superposition states and observe coherent phase evolution for 3.4x10^15 cycles. Correlation signals from the two atoms yield information about their relative phase even after the probe radiation has decohered. This technique was applied to a frequency comparison of two Al+ ions, where a fractional uncertainty of 3.7+1.0-0.8x10^-16/\sqrt{蟿/s} was observed. Two measures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.3766v2-abstract-full').style.display = 'inline'; document.getElementById('1101.3766v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.3766v2-abstract-full" style="display: none;"> We place two atoms in quantum superposition states and observe coherent phase evolution for 3.4x10^15 cycles. Correlation signals from the two atoms yield information about their relative phase even after the probe radiation has decohered. This technique was applied to a frequency comparison of two Al+ ions, where a fractional uncertainty of 3.7+1.0-0.8x10^-16/\sqrt{蟿/s} was observed. Two measures of the Q-factor are reported: The Q-factor derived from quantum coherence is 3.4+2.4-1.1x10^16, and the spectroscopic Q-factor for a Ramsey time of 3 s is 6.7x10^15. As part of this experiment, we demonstrate a method to detect the individual quantum states of two Al+ ions in a Mg+-Al+-Al+ linear ion chain without spatially resolving the ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.3766v2-abstract-full').style.display = 'none'; document.getElementById('1101.3766v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0473">arXiv:1011.0473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.0473">pdf</a>, <a href="https://arxiv.org/format/1011.0473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature09721">10.1038/nature09721 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupled quantized mechanical oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+K+R">K. R. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+A+C">A. C. Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0473v2-abstract-short" style="display: inline;"> The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity [1-3] and the mechanical modes of a trapped atom [4] or macrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0473v2-abstract-full').style.display = 'inline'; document.getElementById('1011.0473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0473v2-abstract-full" style="display: none;"> The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity [1-3] and the mechanical modes of a trapped atom [4] or macroscopic solid [5]. Quantized interaction between two motional modes of an individual trapped ion has been achieved by coupling through optical fields [6], and entangled motion of two ions in separate locations has been accomplished indirectly through their internal states [7]. However, direct controllable coupling between quantized mechanical oscillators held in separate locations has not been realized previously. Here we implement such coupling through the mutual Coulomb interaction of two ions held in trapping potentials separated by 40 um (similar work is reported in a related paper [8]). By tuning the confining wells into resonance, energy is exchanged between the ions at the quantum level, establishing that direct coherent motional coupling is possible for separately trapped ions. The system demonstrates a building block for quantum information processing and quantum simulation. More broadly, this work is a natural precursor to experiments in hybrid quantum systems, such as coupling a trapped ion to a quantized macroscopic mechanical or electrical oscillator [9-13]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0473v2-abstract-full').style.display = 'none'; document.getElementById('1011.0473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 471, 196-199 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.0668">arXiv:1004.0668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.0668">pdf</a>, <a href="https://arxiv.org/format/1004.0668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.023001">10.1103/PhysRevLett.105.023001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Fiber Optic Detection of Trapped Ion Fluorescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=VanDevender%2C+A+P">A. P. VanDevender</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Colombe%2C+Y">Y. Colombe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amini%2C+J">J. Amini</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.0668v1-abstract-short" style="display: inline;"> Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection nume&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.0668v1-abstract-full').style.display = 'inline'; document.getElementById('1004.0668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.0668v1-abstract-full" style="display: none;"> Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned between 80 \mum and 100 \mum from the tip of the fiber by use of an adjustable rf-pseudopotential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.0668v1-abstract-full').style.display = 'none'; document.getElementById('1004.0668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures.</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 105, 023001 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.4527">arXiv:0911.4527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.4527">pdf</a>, <a href="https://arxiv.org/ps/0911.4527">ps</a>, <a href="https://arxiv.org/format/0911.4527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.070802">10.1103/PhysRevLett.104.070802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency Comparison of Two High-Accuracy Al+ Optical Clocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chou%2C+C+-">C. -W. Chou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hume%2C+D+B">D. B. Hume</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Koelemeij%2C+J+C+J">J. C. J. Koelemeij</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rosenband%2C+T">T. Rosenband</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.4527v2-abstract-short" style="display: inline;"> We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0-&gt;3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement unc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4527v2-abstract-full').style.display = 'inline'; document.getElementById('0911.4527v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.4527v2-abstract-full" style="display: none;"> We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0-&gt;3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4527v2-abstract-full').style.display = 'none'; document.getElementById('0911.4527v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 tables, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0909.2464">arXiv:0909.2464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0909.2464">pdf</a>, <a href="https://arxiv.org/format/0909.2464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/12/3/033031">10.1088/1367-2630/12/3/033031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable ion traps for quantum information processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Amini%2C+J+M">J. M. Amini</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Uys%2C+H">H. Uys</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wesenberg%2C+J+H">J. H. Wesenberg</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Seidelin%2C+S">S. Seidelin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Britton%2C+J">J. Britton</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ospelkaus%2C+C">C. Ospelkaus</a>, <a href="/search/quant-ph?searchtype=author&amp;query=VanDevender%2C+A+P">A. P. VanDevender</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0909.2464v1-abstract-short" style="display: inline;"> We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode&#39; geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y&#39;-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates use of a basic component design library that can be quickly assembled to form st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0909.2464v1-abstract-full').style.display = 'inline'; document.getElementById('0909.2464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0909.2464v1-abstract-full" style="display: none;"> We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode&#39; geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y&#39;-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0909.2464v1-abstract-full').style.display = 'none'; document.getElementById('0909.2464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0909.0046">arXiv:0909.0046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0909.0046">pdf</a>, <a href="https://arxiv.org/ps/0909.0046">ps</a>, <a href="https://arxiv.org/format/0909.0046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.80.052302">10.1103/PhysRevA.80.052302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preparation of Dicke States in an Ion Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hume%2C+D+B">D. B. Hume</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chou%2C+C+W">C. W. Chou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rosenband%2C+T">T. Rosenband</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wineland%2C+D+J">D. J. Wineland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0909.0046v1-abstract-short" style="display: inline;"> We have investigated theoretically and experimentally a method for preparing Dicke states in trapped atomic ions. We consider a linear chain of $N$ ion qubits that is prepared in a particular Fock state of motion, $|m&gt;$. The $m$ phonons are removed by applying a laser pulse globally to the $N$ qubits, and converting the motional excitation to $m$ flipped spins. The global nature of this pulse en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0909.0046v1-abstract-full').style.display = 'inline'; document.getElementById('0909.0046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0909.0046v1-abstract-full" style="display: none;"> We have investigated theoretically and experimentally a method for preparing Dicke states in trapped atomic ions. We consider a linear chain of $N$ ion qubits that is prepared in a particular Fock state of motion, $|m&gt;$. The $m$ phonons are removed by applying a laser pulse globally to the $N$ qubits, and converting the motional excitation to $m$ flipped spins. The global nature of this pulse ensures that the $m$ flipped spins are shared by all the target ions in a state that is a close approximation to the Dicke state $\D{N}{m}$. We calculate numerically the fidelity limits of the protocol and find small deviations from the ideal state for $m = 1$ and $m = 2$. We have demonstrated the basic features of this protocol by preparing the state $\D{2}{1}$ in two $^{25}$Mg$^+$ target ions trapped simultaneously with an $^{27}$Al$^+$ ancillary ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0909.0046v1-abstract-full').style.display = 'none'; document.getElementById('0909.0046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wineland%2C+D+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10