CINXE.COM

Search results for: cross linking

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cross linking</title> <meta name="description" content="Search results for: cross linking"> <meta name="keywords" content="cross linking"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cross linking" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cross linking"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4269</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cross linking</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavi">M. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohseni"> M. Mohseni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rafiei"> R. Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yari"> H. Yari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refinish%20clear%20coat" title="refinish clear coat">refinish clear coat</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatin" title=" pancreatin"> pancreatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20degradation" title=" biological degradation"> biological degradation</a> </p> <a href="https://publications.waset.org/abstracts/18510/degradation-mechanism-of-automotive-refinish-coatings-exposed-to-biological-substances-the-role-of-cross-linking-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> Collagen Hydrogels Cross-Linked by Squaric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Skopinska-Wisniewska">Joanna Skopinska-Wisniewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Bajek"> Anna Bajek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Ziegler-Borowska"> Marta Ziegler-Borowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Sionkowska"> Alina Sionkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=squaric%20acid" title=" squaric acid"> squaric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/20061/collagen-hydrogels-cross-linked-by-squaric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> The Effect of Molecular Weight on the Cross-Linking of Two Different Molecular Weight LLDPE Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Forootan">Ashkan Forootan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rashedi"> Reza Rashedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyethylene has wide usage areas such as blow molding, pipe, film, cable insulation. However, regardless to its growing applications, it has some constraints such as the limited 70C operating temperature. Polyethylene thermo setting procedure whose molecules are knotted and 3D-molecular-network formed , is developed to conquer the above problem and to raise the applicable temperature of the polymer. This paper reports the cross-linking for two different molecular weight grades of LLDPE by adding 0.5, 1, and 2% of DCP (Dicumyl Peroxide). DCP was chosen for its prevalence among various cross-linking agents. Structural parameters such as molecular weight, melt flow index, comonomer, number of branches,etc. were obtained through the use of relative tests as Gel Permeation Chromatography and Fourier Transform Infra Red spectrometer. After calculating the percentage of gel content, properties of the pure and cross-linked samples were compared by thermal and mechanical analysis with DMTA and FTIR and the effects of cross-linking like viscous and elastic modulus were discussed by using various structural paprameters such as MFI, molecular weight, short chain branches, etc. Studies showed that cross-linked polymer, unlike the pure one, had a solid state with thermal mechanical properties in the range of 110 to 120C and this helped overcome the problem of using polyethylene in temperatures near the melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LLDPE" title="LLDPE">LLDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link" title=" cross-link"> cross-link</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20parameters" title=" structural parameters"> structural parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=DCP" title=" DCP"> DCP</a>, <a href="https://publications.waset.org/abstracts/search?q=DMTA" title=" DMTA"> DMTA</a>, <a href="https://publications.waset.org/abstracts/search?q=GPC" title=" GPC"> GPC</a> </p> <a href="https://publications.waset.org/abstracts/51840/the-effect-of-molecular-weight-on-the-cross-linking-of-two-different-molecular-weight-lldpe-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Stelescu">M. D. Stelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manaila"> E. Manaila</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Craciun"> G. Craciun</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ighigeanu"> D. Ighigeanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 &deg;C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p<sub>0</sub>/q<sub>0</sub>) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20irradiation" title="electron beam irradiation">electron beam irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=EPDM%20rubber" title=" EPDM rubber"> EPDM rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking%20density" title=" crosslinking density"> crosslinking density</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20fraction" title=" gel fraction"> gel fraction</a> </p> <a href="https://publications.waset.org/abstracts/85001/electron-beam-processing-of-ethylene-propylene-terpolymer-based-rubber-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Metal Ions Cross-Linking of Epoxidized Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriengsak%20Damampai">Kriengsak Damampai</a>, <a href="https://publications.waset.org/abstracts/search?q=Skulrat%20Pichaiyut"> Skulrat Pichaiyut</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Das"> Amit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Charoen%20Nacason"> Charoen Nacason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Epoxidized%20natural%20rubber" title="Epoxidized natural rubber">Epoxidized natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferric%20chloride" title="Ferric chloride">Ferric chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title="cross-linking">cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=Coordination" title="Coordination">Coordination</a> </p> <a href="https://publications.waset.org/abstracts/152865/metal-ions-cross-linking-of-epoxidized-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UVA Cross-Linking </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Labate">C. Labate</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20De%20Santo"> M. P. De Santo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lombardo"> G. Lombardo</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Barberi"> R. Barberi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lombardo"> M. Lombardo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ziebarth"> N. M. Ziebarth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decades, the importance of corneal biomechanics in the normal and pathological functions of the eye has gained its credibility. In fact, the mechanical properties of biological tissues are essential to their physiological function. We are convinced that an improved understanding of the nanomechanics of corneal tissue is important to understand the basic molecular interactions between collagen fibrils. Ultimately, this information will help in the development of new techniques to cure ocular diseases and in the development of biomimetic materials. Therefore, nanotechnology techniques are powerful tools and, in particular, Atomic Force Microscopy has demonstrated its ability to reliably characterize the biomechanics of biological tissues either at the micro- or nano-level. In the last years, we have investigated the mechanical anisotropy of the human corneal stroma at both the tissue and molecular levels. In particular, we have focused on corneal cross-linking, an established procedure aimed at slowing down or halting the progression of the disease known as keratoconus. We have obtained the first evidence that riboflavin/UV-A corneal cross-linking induces both an increase of the elastic response and a decrease of the viscous response of the most anterior stroma at the scale of stromal molecular interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20spectroscopy" title="atomic force spectroscopy">atomic force spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20stroma" title=" corneal stroma"> corneal stroma</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/44652/viscoelastic-response-of-the-human-corneal-stroma-induced-by-riboflavinuva-cross-linking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouria%20Bouchikhi">Nouria Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Bedjaoui"> Soufiane Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Tewfik%20Bouchaour"> C. Tewfik Bouchaour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Alachaher%20Bedjaoui"> Lamia Alachaher Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Maschke"> Ulrich Maschke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linking%20density" title="cross-linking density">cross-linking density</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystalline%20elastomers" title=" liquid crystalline elastomers"> liquid crystalline elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagrams" title=" phase diagrams"> phase diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a> </p> <a href="https://publications.waset.org/abstracts/29741/effect-of-different-parameters-on-the-swelling-behaviour-of-thermo-responsive-elastomers-in-a-nematogenic-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heri%20Hermansyah">Heri Hermansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Kurnia"> Annisa Kurnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vania%20Anisya"> A. Vania Anisya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Surjosatyo"> Adi Surjosatyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yopi%20Sunarya"> Yopi Sunarya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Arbianti"> Rita Arbianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Surya%20Utami"> Tania Surya Utami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH<sup>‑</sup>). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH<sub>2</sub>) and anion (OH<sup>-</sup>) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH<sub>2</sub>) and anion (OH<sup>-</sup>) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption-cross%20linking" title="adsorption-cross linking">adsorption-cross linking</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a> </p> <a href="https://publications.waset.org/abstracts/33854/effect-of-anion-and-amino-functional-group-on-resin-for-lipase-immobilization-with-adsorption-cross-linking-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Overuse Equals to Low Proficiency Level in English: A Corpus-Based Study on the Use of Linking Adverbials between Male and Female Speakers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsungming%20Wu">Tsungming Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the use of linking adverbials between native male speakers and female speakers in their presentation. From previous studies, overuse of linking adverbials may be an indicator of the low proficiency level in English. In this study, female speakers are found to use more linking adverbials in general. However, the overuse of linking adverbials found in female speakers’ speeches does not imply female speakers’ lower English proficiency, but imply different approaches that male and female speakers adopt in dealing with their presentation tasks. Female speakers are found to be more interactional, leading to their more uses of interactive devices in the presenting process. On the other hand, male speakers take different approaches in dealing with their tasks. Male speakers try to be authoritative and amicable at the same time, resulting in the uses of both interactive devices and distancing devices in their speeches. The paper specifically presents and compares the use of the linking adverbial items, actually and so, in male speakers’ and female speakers’ speeches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LAs" title="LAs">LAs</a>, <a href="https://publications.waset.org/abstracts/search?q=linking%20adverbial" title=" linking adverbial"> linking adverbial</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20proficiency" title=" low proficiency"> low proficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=overuse" title=" overuse"> overuse</a> </p> <a href="https://publications.waset.org/abstracts/48840/overuse-equals-to-low-proficiency-level-in-english-a-corpus-based-study-on-the-use-of-linking-adverbials-between-male-and-female-speakers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> Construction and Cross-Linking of Polyelectrolyte Multilayers Based on Polysaccharides as Antifouling Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenfa%20Yu">Wenfa Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Thuva%20Gnanasampanthan"> Thuva Gnanasampanthan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Finlay"> John Finlay</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Clarke"> Jessica Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlotte%20Anderson"> Charlotte Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Clare"> Tony Clare</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Rosenhahn"> Axel Rosenhahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine biofouling is a worldwide problem at vast economic and ecological costs. Historically it was combated with toxic coatings such as tributyltin. As those coatings being banned nowadays, finding environmental friendly antifouling solution has become an urgent topic. In this study antifouling coatings consisted of natural occurring polysaccharides hyaluronic acid (HA), alginic acid (AA), chitosan (Ch) and polyelectrolyte polyethylenimine (PEI) are constructed into polyelectrolyte multilayers (PEMs) in a Layer-by-Layer (LbL) method. LbL PEM construction is a straightforward way to assemble biomacromolecular coatings on surfaces. Advantages about PEM include ease of handling, highly diverse PEM composition, precise control over the thickness and so on. PEMs have been widely employed in medical application and there are numerous studies regarding their protein adsorption, elasticity and cell adhesive properties. With the adjustment of coating composition, termination layer charge, coating morphology and cross-linking method, it is possible to prepare low marine biofouling coatings with PEMs. In this study, using spin coating technology, PEM construction was achieved at smooth multilayers with roughness as low as 2nm rms and highly reproducible thickness around 50nm. To obtain stability in sea water, the multilayers were covalently cross-linked either thermally or chemically. The cross-linking method affected surface energy, which was reflected in water contact angle, thermal cross-linking led to hydrophobic surfaces and chemical cross-linking generated hydrophilic surfaces. The coatings were then evaluated regarding its protein resistance and biological species resistance. While the hydrophobic thermally cross-linked PEM had low resistance towards proteins, the resistance of chemically cross-linked PEM strongly depended on the PEM termination layer and the charge of the protein, opposite charge caused high adsorption and same charge low adsorption, indicating electrostatic interaction plays a crucial role in the protein adsorption processes. Ulva linza was chosen as the biological species for antifouling performance evaluation. Despite of the poor resistance towards protein adsorption, thermally cross-linked PEM showed good resistance against Ulva spores settlement, the chemically cross-linked multilayers showed poor resistance regardless of the termination layer. Marine species adhesion is a complex process, although it involves proteins as bioadhesives, protein resistance its own is not a fully indicator for its antifouling performance. The species will pre select the surface, responding to cues like surface energy, chemistry, or charge and so on. Thus making it difficult for one single factors to determine its antifouling performance. Preparing PEM coating is a comprehensive work involving choosing polyelectrolyte combination, determining termination layer and the method for cross-linking. These decisions will affect PEM properties such as surface energy, charge, which is crucial, since biofouling is a process responding to surface properties in a highly sensitive and dynamic way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title="hyaluronic acid">hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte%20multilayers" title=" polyelectrolyte multilayers"> polyelectrolyte multilayers</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20resistance" title=" protein resistance"> protein resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20linza%20zoospores" title=" Ulva linza zoospores"> Ulva linza zoospores</a> </p> <a href="https://publications.waset.org/abstracts/105303/construction-and-cross-linking-of-polyelectrolyte-multilayers-based-on-polysaccharides-as-antifouling-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> Swelling Behavior of Cross-Linked Poly (2-hydroxyethyl methacrylate)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Hamri">Salah Hamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tewfik%20Bouchaour"> Tewfik Bouchaour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Maschke"> Ulrich Maschke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this works is the study of swelling ratio of cross-linked polymer networks poly (2-hydroxyethyl methacrylate) (PHEMA). The system composed of erythrosine and Triethanolamine, in aqueous medium, is used as photo-initiator and 1,6-Hexanediol diacrylate as cross-linker. The analysis of UV-visible and infrared spectra, which were taken at different times during polymerization/cross linking, makes it possible to obtain useful information on the reaction mechanism. The swelling behavior was study by changing the nature of solvent, dye sensitizer (erythrosine, rose Bengal and eosin), and pH of the medium. The exploitation of experimental results using Fick diffusion model is also expected and shows a good correlation between theoretical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linker" title="cross-linker">cross-linker</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-sensitizer" title=" photo-sensitizer"> photo-sensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20network" title=" polymer network"> polymer network</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20ratio" title=" swelling ratio"> swelling ratio</a> </p> <a href="https://publications.waset.org/abstracts/29880/swelling-behavior-of-cross-linked-poly-2-hydroxyethyl-methacrylate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4258</span> Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujosh%20Nandi">Sujosh Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Proshanta%20Guha"> Proshanta Guha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20linking%20agent" title="cross linking agent">cross linking agent</a>, <a href="https://publications.waset.org/abstracts/search?q=guar%20gum" title=" guar gum"> guar gum</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20acids" title=" organic acids"> organic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=potato%20starch" title=" potato starch"> potato starch</a> </p> <a href="https://publications.waset.org/abstracts/112414/characterization-of-potato-starchguar-gum-composite-film-modified-by-ecofriendly-cross-linkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4257</span> Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Khan">Zahra Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title=" hydrogels"> hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20materials" title=" flexible materials"> flexible materials</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a> </p> <a href="https://publications.waset.org/abstracts/134140/development-of-surface-enhanced-raman-spectroscopy-active-gelatin-based-hydrogels-for-label-free-detection-of-bio-analytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4256</span> Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20A.%20Abbas%20Al-Darkazly"> Ibtisam A. Abbas Al-Darkazly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl<sub>2</sub>) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl<sub>2</sub> solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm &times; 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for <em>in vitro</em> and <em>in vivo</em> tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20chloride" title=" calcium chloride"> calcium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20bio-printing" title=" 3D bio-printing"> 3D bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion" title=" extrusion"> extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/132067/optimization-of-mechanical-properties-of-alginate-hydrogel-for-3d-bio-printing-self-standing-scaffold-architecture-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4255</span> Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budi%20Hastuti">Budi Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudasir"> Mudasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Siswanta"> Dwi Siswanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Triyono"> Triyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porogen" title="porogen">porogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pectin" title=" Pectin"> Pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=Carboxymethyl%20Chitosan%20%28CC%29" title=" Carboxymethyl Chitosan (CC)"> Carboxymethyl Chitosan (CC)</a>, <a href="https://publications.waset.org/abstracts/search?q=CC-%20Pec-BADGE-Na" title=" CC- Pec-BADGE-Na"> CC- Pec-BADGE-Na</a> </p> <a href="https://publications.waset.org/abstracts/91832/kinetic-and-thermodynamic-modified-pectin-with-chitosan-by-forming-polyelectrolyte-complex-adsorbent-to-remediate-of-pbii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4254</span> Photoactivated Chromophore for Keratitis-Cross Linking Window Absorption Alone versus Combined Pack-CXL Window Absorption and Standard Anti-microbial Therapy for Treatment of Infectious Keratitis: A Prospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Mahdy%20Tawfeek">Mohammed M. Mahdy Tawfeek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this work is to compare the outcome of photoactivated chromophore for keratitis-cross linking (PACK-CXL) window absorption (WA) alone with combined PACK-CXL WA and standard anti-microbial therapy (SAT) for the treatment of infectious keratitis. Patients and Methods: This is a randomized prospective comparative clinical trial. Thirty eyes with clinically suspected infectious keratitis were randomly assigned into two equal groups of 15 eyes each: Group (A) was treated by PACK-CXL WA alone and group (B) was treated by PACK-CXL WA combined with SAT. Identification of organisms was made by lab study before treatment. Corneal healing was evaluated by corneal examination and anterior segment OCT (AS-OCT). Written informed consent was obtained from all participants and the study was approved by the research ethics committee of the Faculty of Medicine, Zagazig University. The work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for studies involving humans. Results: Complete healing and resolution (Successful treatment) were observed in 10 eyes (66.7%) of a group (A) and 14 eyes (93.3%) of group (B) and failure was observed in 5 eyes (33.3%) of a group (A) and one eye (6.67%) of group (B). They were statistically significant (P =0.042 and 0.003) in a comparison between both groups regarding success and failure of treatment, respectively. Complete corneal healing was reported in the third month postoperatively in 10 eyes (66.7%) of group (A) and 14 eyes (93.3%) of group (B). Complications were absent in 12 patients (80%) in group (A) and 14 patients (93.3%) of group (B); however, perforation and impending perforation were found in 3 patients of group (A) and only one patient of group (B). Conclusion: PACK-CXL is a promising, non-invasive treatment option for infectious keratitis, especially when performed with the window absorption (WA) technique, either alone or combined with SAT. It has a synergistic effect with a standard antimicrobial treatment that gives good outcome results in the treatment of infectious keratitis. Also, it avoids the antibiotics resistance that has become rapidly spreading worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corneal%20cross%20linking" title="corneal cross linking">corneal cross linking</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20keratitis" title=" infectious keratitis"> infectious keratitis</a>, <a href="https://publications.waset.org/abstracts/search?q=PACK-CXL" title=" PACK-CXL"> PACK-CXL</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20absorption" title=" window absorption"> window absorption</a> </p> <a href="https://publications.waset.org/abstracts/133351/photoactivated-chromophore-for-keratitis-cross-linking-window-absorption-alone-versus-combined-pack-cxl-window-absorption-and-standard-anti-microbial-therapy-for-treatment-of-infectious-keratitis-a-prospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4253</span> Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20H.%20Aboul-Ela">Mahmoud H. Aboul-Ela</a>, <a href="https://publications.waset.org/abstracts/search?q=Riham%20R.%20Mohamed"> Riham R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20W.%20Sabaa"> Magdy W. Sabaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trimethyl%20chitosan" title="trimethyl chitosan">trimethyl chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title=" hydrogels"> hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20uptake" title=" metal uptake"> metal uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials" title=" superabsorbent materials "> superabsorbent materials </a> </p> <a href="https://publications.waset.org/abstracts/15018/synthesis-characterization-and-applications-of-novel-hydrogels-based-on-chitosan-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4252</span> Synthesis, Characterization and Applications of Hydrogels Based on Chitosan Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20H.%20Abu%20Elella">Mahmoud H. Abu Elella</a>, <a href="https://publications.waset.org/abstracts/search?q=Riham%20R.%20Mohamed"> Riham R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20W.%20Sabaa"> Magdy W. Sabaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Firstly, synthesis of N-Quaternized Chitosan (NQC), then it was proven by FTIR and 1H-NMR analysis. The degree of quaternization(DQ 35% ) was determined by equation. Secondly, synthesis of cross-linked hydrogels composed of NQC and poly (vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde (GA) as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, SEM, XRD,and TGA. Swellability in simulated body fluid (SBF) solutions applied on NQC / PVA hydrogels and swelling rate(Wt%) and metal ions uptake was done on it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions%20uptake" title=" metal ions uptake"> metal ions uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=N-quaternized%20chitosan" title=" N-quaternized chitosan"> N-quaternized chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28vinyl%20alcohol%29" title=" poly (vinyl alcohol)"> poly (vinyl alcohol)</a>, <a href="https://publications.waset.org/abstracts/search?q=swellability" title=" swellability "> swellability </a> </p> <a href="https://publications.waset.org/abstracts/35240/synthesis-characterization-and-applications-of-hydrogels-based-on-chitosan-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4251</span> Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Patel">Monika Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Matsumura"> Kazuaki Matsumura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20polypeptide" title="amphiphilic polypeptide">amphiphilic polypeptide</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20drug%20release" title=" dual drug release"> dual drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=micelle%20hydrogel%20composite" title=" micelle hydrogel composite"> micelle hydrogel composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20DDS" title=" tunable DDS"> tunable DDS</a> </p> <a href="https://publications.waset.org/abstracts/56879/charged-amphiphilic-polypeptide-based-micelle-hydrogel-composite-for-dual-drug-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4250</span> Neighborhood Linking Social Capital as a Predictor of Drug Abuse: A Swedish National Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Li">X. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sundquist"> J. Sundquist</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sj%C3%B6stedt"> C. Sjöstedt</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Winkleby"> M. Winkleby</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Kendler"> K. S. Kendler</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sundquist"> K. Sundquist</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: This study examines the association between the incidence of drug abuse (DA) and linking (communal) social capital, a theoretical concept describing the amount of trust between individuals and societal institutions. Methods: We present results from an 8-year population-based cohort study that followed all residents in Sweden, aged 15-44, from 2003 through 2010, for a total of 1,700,896 men and 1,642,798 women. Social capital was conceptualized as the proportion of people in a geographically defined neighborhood who voted in local government elections. Multilevel logistic regression was used to estimate odds ratios (ORs) and between-neighborhood variance. Results: We found robust associations between linking social capital (scored as a three level variable) and DA in men and women. For men, the OR for DA in the crude model was 2.11 [95% confidence interval (CI) 2.02-2.21] for those living in areas with the lowest vs. highest level of social capital. After accounting for neighborhood-level deprivation, the OR fell to 1.59 (1.51-1-68), indicating that neighborhood deprivation lies in the pathway between linking social capital and DA. The ORs remained significant after accounting for age, sex, family income, marital status, country of birth, education level, and region of residence, and after further accounting for comorbidities and family history of comorbidities and family history of DA. For women, the OR decreased from 2.15 (2.03-2.27) in the crude model to 1.31 (1.22-1.40) in the final model, adjusted for multiple neighborhood-level and individual-level variables. Conclusions: Our study suggests that low linking social capital may have important independent effects on DA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20abuse" title="drug abuse">drug abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20linking%20capital" title=" social linking capital"> social linking capital</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=family" title=" family"> family</a> </p> <a href="https://publications.waset.org/abstracts/28312/neighborhood-linking-social-capital-as-a-predictor-of-drug-abuse-a-swedish-national-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4249</span> Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Sethi">Siddhant Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuharu%20Takashima"> Yasuharu Takashima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigetaka%20Nakamura"> Shigetaka Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenzo%20Fujimoto"> Kenzo Fujimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%20to%20U%20transformation" title="C to U transformation">C to U transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20editing" title=" DNA editing"> DNA editing</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20engineering" title=" genome engineering"> genome engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-fast%20photo-cross-linking" title=" ultra-fast photo-cross-linking"> ultra-fast photo-cross-linking</a> </p> <a href="https://publications.waset.org/abstracts/70896/effects-of-hydrogen-bonding-and-vinylcarbazole-derivatives-on-3-cyanovinylcarbazole-mediated-photo-cross-linking-induced-cytosine-deamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4248</span> Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vigen%20Barkhudaryan">Vigen Barkhudaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title="cross-linking">cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=destruction" title=" destruction"> destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPE" title=" LDPE"> LDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-radiations" title=" γ-radiations"> γ-radiations</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-radiations" title=" UV-radiations"> UV-radiations</a> </p> <a href="https://publications.waset.org/abstracts/69714/alterations-of-molecular-characteristics-of-polyethylene-under-the-influence-of-external-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4247</span> Biodegradation of Chlorophenol Derivatives Using Macroporous Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Berillo">Dmitriy Berillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Areej%20K.%20A.%20Al-Jwaid"> Areej K. A. Al-Jwaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20L.%20Caplin"> Jonathan L. Caplin</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cundy"> Andrew Cundy</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Savina"> Irina Savina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking%20agents" title=" cross-linking agents"> cross-linking agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linked%20microbial%20cell" title=" cross-linked microbial cell"> cross-linked microbial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenol%20degradation" title=" chlorophenol degradation"> chlorophenol degradation</a> </p> <a href="https://publications.waset.org/abstracts/58858/biodegradation-of-chlorophenol-derivatives-using-macroporous-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4246</span> D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Krishnamoorthy">G. Krishnamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anandhakumar"> S. Anandhakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=collagenase" title=" collagenase"> collagenase</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen%20like%20peptide" title=" collagen like peptide"> collagen like peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=D-lysine" title=" D-lysine"> D-lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=heterochiral%20collagen%20scaffold" title=" heterochiral collagen scaffold"> heterochiral collagen scaffold</a> </p> <a href="https://publications.waset.org/abstracts/34488/d-lysine-assisted-1-ethyl-3-3-dimethylaminopropylcarbodiimide-n-hydroxy-succinimide-initiated-crosslinked-collagen-scaffold-with-controlled-structural-and-surface-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4245</span> Design, Development and Evaluation of Ketoconazole Loaded Nanosponges in Hydrogel for the Management of Topical Fungal Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagasamy%20Venkatesh%20Dhandapani">Nagasamy Venkatesh Dhandapani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims at investigating the use of β-Cyclodextrin as a cross linker, in an attempt to formulate nanosponges containing ketoconazole. The nanosponges were prepared by cross-linking method. The excipients used in this study did not alter the physicochemical properties of a drug as revealed by FTIR spectroscopy. Studies on various formulation variables revealed that all the variables are inter-related with the formulation. The ideal batch among the formulation was selected based on the higher entrapment efficiency and drug loading. The in vitro release studies of ketoconazole nanosponges in hydrogel exhibited a sustained release over a period of 24 hours. Mathematical analysis of drug release from the formulation followed non-Fickian diffusion obeying first order kinetics. The anti-fungal activity of the formulation exhibited better zone of inhibition when compared to pure drug (ketoconazole) against Tinea corporis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanosponges" title="nanosponges">nanosponges</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-cyclodextrin" title=" beta-cyclodextrin"> beta-cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=ketoconazole" title=" ketoconazole"> ketoconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=tinea%20corporis" title=" tinea corporis"> tinea corporis</a> </p> <a href="https://publications.waset.org/abstracts/103489/design-development-and-evaluation-of-ketoconazole-loaded-nanosponges-in-hydrogel-for-the-management-of-topical-fungal-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4244</span> The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Adeniran">O. I. Adeniran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mogale"> M. A. Mogale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20glycation%20end-products" title="advanced glycation end-products">advanced glycation end-products</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-glycation" title=" anti-glycation"> anti-glycation</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link%20breaking" title=" cross-link breaking"> cross-link breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=Sclerocarrya%20birrea" title=" Sclerocarrya birrea"> Sclerocarrya birrea</a> </p> <a href="https://publications.waset.org/abstracts/70243/the-anti-glycation-effect-of-sclerocarya-birrea-stem-bark-extracts-and-their-ability-to-break-existing-advanced-glycation-end-products-protein-cross-links" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4243</span> Keratin Fiber Fabrication from Biowaste for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashmita%20Mukherjee">Ashmita Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Harishchandra%20Kabutare"> Yogesh Harishchandra Kabutare</a>, <a href="https://publications.waset.org/abstracts/search?q=Suritra%20Bandyopadhyay"> Suritra Bandyopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulomi%20Ghosh"> Paulomi Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=biowaste" title=" biowaste"> biowaste</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin" title=" keratin"> keratin</a> </p> <a href="https://publications.waset.org/abstracts/105510/keratin-fiber-fabrication-from-biowaste-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4242</span> A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20%C3%96zdo%C4%9Fan">Reyhan Özdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithat%20%C3%87elebi"> Mithat Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Ceylan"> Özgür Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Arif%20Kaya"> Mehmet Arif Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20suspension%20polymerization" title="inverse suspension polymerization">inverse suspension polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylic%20acid" title=" polyacrylic acid"> polyacrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20absorbent%20polymers%20%28SAPs%29" title=" super absorbent polymers (SAPs)"> super absorbent polymers (SAPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20crosslinking" title=" surface crosslinking"> surface crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20polyacrylate" title=" sodium polyacrylate"> sodium polyacrylate</a> </p> <a href="https://publications.waset.org/abstracts/33811/a-new-approach-for-preparation-of-super-absorbent-polymers-in-situ-surface-cross-linking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4241</span> Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Sadeghi">Farnaz Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moslem%20Tavakol"> Moslem Tavakol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20vinyl%20alcohol" title="poly vinyl alcohol">poly vinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20irradiation" title=" electron beam irradiation"> electron beam irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20wound%20dressing" title=" hydrogel wound dressing"> hydrogel wound dressing</a> </p> <a href="https://publications.waset.org/abstracts/141746/preparation-of-biomedical-hydrogels-using-phenolic-compounds-and-electron-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4240</span> Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Mohsen%20Yavarizadeh">Mohamad Mohsen Yavarizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20weight%20distribution" title="molecular weight distribution">molecular weight distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=homopolymer" title=" homopolymer"> homopolymer</a> </p> <a href="https://publications.waset.org/abstracts/26248/effect-of-molecular-weight-distribution-on-toughening-performance-of-polybutadiene-in-polystyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cross%20linking&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10