CINXE.COM
Search results for: toughness
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: toughness</title> <meta name="description" content="Search results for: toughness"> <meta name="keywords" content="toughness"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="toughness" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="toughness"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 195</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: toughness</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yousefi%20Oderji">S. Yousefi Oderji</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chen"> B. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RPC" title="RPC">RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=PP" title=" PP"> PP</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20toughness" title=" flexural toughness"> flexural toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness%20index" title=" toughness index"> toughness index</a> </p> <a href="https://publications.waset.org/abstracts/41865/flexural-toughness-of-fiber-reinforced-reactive-powder-concrete-rpc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Athletes with High Mental Toughness Levels Experiencing Less Anxiety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Analuie">H. Analuie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Faruque"> M. Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saha"> S. Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hashim"> H. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Muzaimi"> M. Muzaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Though mental toughness has long been explored in sport psychology, much of our understanding on the topic remains largely unexplored. The concept is used widely, but empirical evidence is required to fully understand the construct and its related variables. This research investigated the correlation between mental toughness and trait anxiety to determine whether mentally tough athletes generally experience more or less anxiety. A sample of 57 men (M age = 25.4 years, s=4.66) and 45 women (M age = 23.5 years, s=5.73) participated in a variety of sports were recruited, where mental toughness was measured using MTQ48. Levels of trait anxiety were assessed using the State-Trait Anxiety Inventory (STAI). Series of Pearson correlations between trait anxiety, overall mental toughness, and the six subscales of mental toughness showed significant (p> .05) relationships. As predicted, greater mental toughness was associated with less reported trait anxiety. Independent t-tests found significant differences (p> .05) in overall mental toughness, the mental toughness subscales or trait anxiety between men and women. More research is required to understand how mentally tough athletes experience less anxiety in comparison to those who are not as mentally tough. Our findings suggest that relationships observed in this study emphasize the need for the inclusion of trait anxiety in mental toughness interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title="mental toughness">mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=trait%20anxiety" title=" trait anxiety"> trait anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=MTQ48" title=" MTQ48"> MTQ48</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20psychology" title=" sport psychology"> sport psychology</a> </p> <a href="https://publications.waset.org/abstracts/17438/athletes-with-high-mental-toughness-levels-experiencing-less-anxiety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Urban Resilience and Planning in the Perspective of Community </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20Tao">Xu Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilun%20Xu"> Yilun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dingwei%20Xiang"> Dingwei Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaofei%20Sun"> Yaofei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban community is constitute the entire city and its management ‘cell’, let ‘cells’ with growth and self-regeneration capacity and persistence, to allow the city with infinite vigor and vitality of the source; with toughness community mankind's adaptation to the basic unit of social risk, toughness of the city from the community to create a point of building is urban toughness of top-down construction mode of supplement, is of positive significance on the toughness of the urban construction. Based on the basic concept of resilience, this paper reviews the research on the four main areas of the study of urban resilience (i.e., the engineering toughness, ecological resilience, economic resilience, and social resilience, etc.). Studies and comments and summarizes the basic characteristic and main content of the four kind of toughness. Based on, from the city - community level and community level for building community resilience, including the level of urban community and create a Unicom, inclusiveness and openness of the community; community-level lifted from the four angles of the engineering community toughness, ecological toughness, resilience, social resilience, mainly including enhanced the toughness of the infrastructure, green infrastructure of toughness, resilience, social network and social relations, building with a sense of belonging, inclusive, multicultural community. Finally, summarize and prospect the resilience of the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20resilience" title=" community resilience"> community resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title=" urban resilience"> urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20strategies" title=" construction strategies"> construction strategies</a> </p> <a href="https://publications.waset.org/abstracts/92979/urban-resilience-and-planning-in-the-perspective-of-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Comparison between Mental Toughness and Level of Physical Activity between Staff and Students in University of Tabriz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahta%20Eskandarnejad">Mahta Eskandarnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to compare physical activity and mental toughness in the staff and students of the University of Tabriz. 615 people participated in this study and filled demographic questionnaire, mental thoughness48 (MTQ48) questionnaire and habitual physical activity questionnaire (Baecke physical activity questionnaire). The research sample included 355 students and 260 staff (615 questionnaires). For analyzing hypotheses MANOVA, correlation and independent t-test were used. Based on the result; some subscales of mental toughness and physical activity were significantly related. The result showed the significant correlation between mental toughness and physical activity in student and no significant correlation in staff. Students were significantly physically more active than staff, and mental toughness was higher in staff. There was no difference in mental toughness variable between active participants (active staff and student). The results of this study showed that mental toughness could influence the way a person cope with living conditions. It is expected that mental toughness changes can lead to changing in levels of physical activity. It should be noted that the other variables should not be ignored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baecke%20physical%20activity%20questionnaire" title="Baecke physical activity questionnaire">Baecke physical activity questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title=" mental toughness"> mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20staff" title=" university staff"> university staff</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20student" title=" university student"> university student</a> </p> <a href="https://publications.waset.org/abstracts/88198/comparison-between-mental-toughness-and-level-of-physical-activity-between-staff-and-students-in-university-of-tabriz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Study of the Mental Toughness of the Basketball Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Singh">Jaswinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to compare the mental toughness between male and female basketball players of District shri muktsar sahib Panjab. A sample of fifty male players (N=50) age ranging 18 to 25 years and Fifty female player(N=50) age ranging 18 to 25 years. The Data was collected by using mental toughness questionnaire developed by Goldberg (1998). The t-test was applied to assess the differences male and female basketball players. The level of significance was set at 0.05. Study revealed that there were significant differences male and female basketball players with regard to Rebound Ability, Ability to Handle Pressure, Confidence and Overall Mental Toughness and insignificant differences with regard to Concentration and Motivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title="mental toughness">mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=basketball" title=" basketball"> basketball</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological" title=" psychological"> psychological</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive" title=" competitive"> competitive</a> </p> <a href="https://publications.waset.org/abstracts/58391/study-of-the-mental-toughness-of-the-basketball-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu">Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ductile%20metal%20pipes" title="Ductile metal pipes">Ductile metal pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20fracture%20toughness" title=" elastic fracture toughness"> elastic fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack" title=" longitudinal crack"> longitudinal crack</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79581/model-of-elastic-fracture-toughness-for-ductile-metal-pipes-with-external-longitudinal-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Tash">Mahmoud M. Tash </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title="hot forging">hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20%28HV%29" title=" hardness (HV)"> hardness (HV)</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20toughness%20%28J%29" title=" impact toughness (J)"> impact toughness (J)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steels" title=" low alloy steels"> low alloy steels</a> </p> <a href="https://publications.waset.org/abstracts/24168/effect-of-alloying-elements-and-hot-forgingrolling-reduction-ratio-on-hardness-and-impact-toughness-of-heat-treated-low-alloy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Rose">Philip Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Linke"> Markus Linke</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Busquets"> David Busquets</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ENF" title="ENF">ENF</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=interlaminar" title=" interlaminar"> interlaminar</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20II" title=" mode II"> mode II</a> </p> <a href="https://publications.waset.org/abstracts/160137/determining-the-mode-ii-intra-ply-energy-release-rate-of-composites-made-of-prepreg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Toughness Factor of Polypropylene Fiber Reinforced Concrete in Aggressive Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Vasconcelos">R. E. Vasconcelos</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20M.%20da%20Silva"> K. R. M. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20B.%20Pinto"> J. M. B. Pinto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine and to present the results of an experimental study of Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC), in levels of 0.33% - 3kg/m3, 0.50% - 4.5kg/m3, and 0.66% - 6kg/m3, using cement CP V – ARI, at ages 28 and 88 days after specimens molding. The specimens were exposed for 60 days in aggressive environment (in solution of water and 3% of sodium chloride), after 28 days. The bending toughness tests were performed in prismatic specimens of 150 x 150 x 500 mm. The toughness factor values of the specimens in aggressive environment were the same to those obtained in normal environment (in air). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforced%20with%20polypropylene%20fibers" title="concrete reinforced with polypropylene fibers">concrete reinforced with polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness%20in%20bending" title=" toughness in bending"> toughness in bending</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20fibers" title=" synthetic fibers"> synthetic fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforced" title=" concrete reinforced"> concrete reinforced</a> </p> <a href="https://publications.waset.org/abstracts/31274/toughness-factor-of-polypropylene-fiber-reinforced-concrete-in-aggressive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kamarudzaman">R. Kamarudzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kalam"> A. Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Fadzil"> N. A. Mohd Fadzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a> </p> <a href="https://publications.waset.org/abstracts/9134/the-role-of-secondary-filler-on-the-fracture-toughness-of-hdpeclay-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moon%20Byung%20Woo">Moon Byung Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Chang-Sung"> Seok Chang-Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Koo%20Jae-Mean"> Koo Jae-Mean</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Sang-Young"> Kim Sang-Young</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Jae%20Gu"> Choi Jae Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huh%20Nam-Su"> Huh Nam-Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loading%20speed" title="dynamic loading speed">dynamic loading speed</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=load-ratio-method" title=" load-ratio-method"> load-ratio-method</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20stress%20gradient%20%28ESG%29%20specimen" title=" equivalent stress gradient (ESG) specimen"> equivalent stress gradient (ESG) specimen</a> </p> <a href="https://publications.waset.org/abstracts/52072/a-study-on-effect-of-dynamic-loading-speed-on-the-fracture-toughness-of-equivalent-stress-gradient-esg-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Toughness of a Silt-Based Construction Material Reinforced with Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Shamas">Y. Shamas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Imanzadeh"> S. Imanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarno"> A. Jarno</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taibi"> S. Taibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silt-based%20material" title="silt-based material">silt-based material</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20concrete" title=" raw earth concrete"> raw earth concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/142789/toughness-of-a-silt-based-construction-material-reinforced-with-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20S%20Abou%20El-Mal">H. S. S Abou El-Mal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Sherbini"> A. S. Sherbini</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20Sallam"> H. E. M. Sallam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20fiber" title=" Hybrid fiber"> Hybrid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Mode%20II%20fracture%20toughness" title=" Mode II fracture toughness"> Mode II fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20geometry" title=" testing geometry"> testing geometry</a> </p> <a href="https://publications.waset.org/abstracts/29837/mode-ii-fracture-toughness-of-hybrid-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> A Comparative Study of Mental Toughness among Players of Team and Individual Sports </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Thumar">P. B. Thumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s athletes face acute and unique challenges as the competition standards are higher and tougher. There are certain moments during a competition that appear to carry great psychological significance when the momentum starts to shift in one direction or another. These situations require athletes to remain completely focused and calm in facing the difficult circumstances. The purpose of the study was to compare the Mental Toughness level among the players of the team and individual sports. Purposive sampling was done in which subjects for the present study were the male students of The M. S. University of Baroda, Vadodara studying various courses in the academic year 2014-15. Thus, a total number of 120 boys were identified and included in the study from which 60 boys had participated in individual sports and 60 in team sports. ‘The Mental Toughness Questionnaire’ prepared by Dr. Alan Goldberg was used to determine mental toughness level of the players of the team and individual sports. The scores arrived from 60 individual players and 60 team players were compared by applying the t-test. Significant difference was found on overall Mental Toughness and in subcomponents there was significant difference in ability to handle pressure, concentration and confidence whereas there was no significant difference in reboundability and motivation among team and individual sports players. This could be largely due the nature of both sports. Team players of MSU found to be having more overall mental toughness, and team players are able to handle pressure more than individual players, can concentrate more and are also more confident while playing in the team. Team preparation and training prior to competition could have increased the level of ability to handle pressure, concentration and confidence of team players. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title="mental toughness">mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=reboundability" title=" reboundability"> reboundability</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence" title=" confidence"> confidence</a>, <a href="https://publications.waset.org/abstracts/search?q=team%20sports" title=" team sports"> team sports</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20sports" title=" individual sports"> individual sports</a> </p> <a href="https://publications.waset.org/abstracts/33344/a-comparative-study-of-mental-toughness-among-players-of-team-and-individual-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Thickness Effect on Concrete Fracture Toughness K1c </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benzerara%20Mohammed">Benzerara Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Redjel%20Bachir"> Redjel Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebaili%20Bachir"> Kebaili Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elementary%20representative%20volume" title="elementary representative volume">elementary representative volume</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fissure" title=" fissure"> fissure</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/47060/thickness-effect-on-concrete-fracture-toughness-k1c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashim">Ahmed Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aseel%20Abdullah"> Aseel Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20composites" title="green composites">green composites</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20natural%20fiber" title=" corn natural fiber"> corn natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-PMMA" title=" bio-PMMA"> bio-PMMA</a> </p> <a href="https://publications.waset.org/abstracts/59539/fracture-toughness-properties-and-ftir-analysis-of-corn-fiber-green-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benzerara">M. Benzerara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Redjel"> B. Redjel</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kebaili"> B. Kebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fissure" title=" fissure"> fissure</a>, <a href="https://publications.waset.org/abstracts/search?q=specimen" title=" specimen"> specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/45970/influence-of-specimen-geometry-101040-121260-and-520120-on-determination-of-toughness-of-concrete-measurement-of-critical-stress-intensity-factor-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kavandi">A. Kavandi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Goshtasbi"> K. Goshtasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hadei"> M. R. Hadei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nejati"> H. Nejati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating-cooling" title="heating-cooling">heating-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20rock" title=" anisotropic rock"> anisotropic rock</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a> </p> <a href="https://publications.waset.org/abstracts/172930/the-effect-of-heating-liquid-nitrogen-cooling-on-fracture-toughness-of-anisotropic-rock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20Ahmed%20E.%20Alhegagi">Faraj Ahmed E. Alhegagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagia%20M.%20Khamkam%20Mohamed"> Anagia M. Khamkam Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20F.%20Alhajaji"> Bassam F. Alhajaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title="fracture toughness">fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=pop%20ins" title=" pop ins"> pop ins</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20assessment" title=" crack assessment"> crack assessment</a> </p> <a href="https://publications.waset.org/abstracts/83031/crack-initiation-assessment-during-fracture-of-heat-treated-duplex-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Jur%C4%8Di">Peter Jurči</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Pta%C4%8Dinov%C3%A1"> Jana Ptačinová</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Hud%C3%A1kov%C3%A1"> Mária Hudáková</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Dom%C3%A1nkov%C3%A1"> Mária Dománková</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kus%C3%BD"> Martin Kusý</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sahul"> Martin Sahul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ledeburitic%20tool%20steels" title="ledeburitic tool steels">ledeburitic tool steels</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-zero%20treatment" title=" sub-zero treatment"> sub-zero treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/81060/simultaneous-improvement-of-wear-performance-and-toughness-of-ledeburitic-tool-steels-by-sub-zero-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> An Appraisal of the Relationship between Socio-Economic Status and Mental Toughness of Cricketers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punam%20Shaw">Punam Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relationship often refers to the acquaintance or association between two or more things, which are interrelated and interdependent. The socio-economic status is obviously a blending of two states, would, therefore, be a ranking of an individual by the society he or she lives in, and in terms of his/her material belonging, cultural possessions along with the degree of respect, power and influence wield. Hence, education, income and occupation of an individual play a significant role in society. Positive mental attitude leads to achieve the set goal, and improve performance particularly in team cohesiveness, which may be determined by various interrelated aspects, which can predict the future assessment in their respective field accordingly. The study intended to examine and explore the relationship between Socio-economic Status and Mental Toughness of cricketers. For the present study descriptive survey research method was used and selected 40 (male=20 female=20) U-17 years registered players under Cricket Association of Bengal (CAB), as the sample population. Modified Socio-Economic Status Scale was used to collect the data regarding players, socioeconomic Status and to assess the mental toughness; Scott Barry Kaufman questionnaire was used. The data had been analysed through applying Pearson’s Correlation Coefficient and t-test as statistical techniques. The findings of the study showed that there is a positive correlation between socioeconomic Status and Mental Toughness among cricketers, it was found that significant difference was presented between male and female SES group. It was further revealed that there is no significant difference between male and female cricketers and in their different socioeconomic class with respect to their mental toughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cricketers" title="cricketers">cricketers</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title=" mental toughness"> mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20status" title=" socio-economic status"> socio-economic status</a> </p> <a href="https://publications.waset.org/abstracts/117663/an-appraisal-of-the-relationship-between-socio-economic-status-and-mental-toughness-of-cricketers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gupta">S. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sarkar"> R. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pathak"> S. Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Kela"> D. H. Kela</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pramanick"> A. Pramanick</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Talukdar"> P. Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite%20and%20impact%20toughness" title=" retained austenite and impact toughness"> retained austenite and impact toughness</a> </p> <a href="https://publications.waset.org/abstracts/72642/effect-of-austenitizing-temperature-soaking-time-and-grain-size-on-charpy-impact-toughness-of-quenched-and-tempered-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayden%20Levy">Jayden Levy</a>, <a href="https://publications.waset.org/abstracts/search?q=Garth%20M.%20K.%20Pearce"> Garth M. K. Pearce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFP" title="AFP">AFP</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20fibre%20placement" title=" automated fibre placement"> automated fibre placement</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-weaving" title=" inter-weaving"> inter-weaving</a> </p> <a href="https://publications.waset.org/abstracts/80136/delamination-fracture-toughness-benefits-of-inter-woven-plies-in-composite-laminates-produced-through-automated-fibre-placement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Rao">Qiong Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongqi%20Peng"> Xiongqi Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title="nanofillers">nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joints" title=" adhesive joints"> adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a> </p> <a href="https://publications.waset.org/abstracts/147772/experimental-and-numerical-analysis-on-enhancing-mechanical-properties-of-cfrp-adhesive-joints-using-hybrid-nanofillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Prevalence of Common Mental Disorders and Its Correlation with Mental Toughness among Professional South African Rugby Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Grobler">H. B. Grobler</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Du%20Plooy"> K. Du Plooy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kruger"> P. Kruger</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ellis"> S. Ellis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The primary objective of the study was to determine the common mental disorders (CMD) identified by professional South African rugby players and its correlation with their mental toughness, as a first step towards developing such a programme within a larger research project. Design: Survey research, within the theoretical perspective of field theory, was conducted, utilising an adaptation of an already existing mental health questionnaire. The aim was to obtain feedback from as many possible professional South African rugby players in order to make certain generalizations and come to conclusions with regard to the current mental health experiences of these rugby players. Methods: Non-randomized sampling was done, linking it with internet research in the form of the online completion of a questionnaire. A sample of 215 rugby players participated and completed the online questionnaire. Permission was obtained to make use of an existing questionnaire, previously used by the specific authors with retired professional rugby players. A section on mental toughness was added. Data were descriptively analysed by means of the SPSS software platform. Results: Results indicated that the most significant problem that the players are experiencing, is a problem with alcohol (47.9%). Other problems that featured are distress (16.3%), sleep disturbances (7%), as well as anxiety and depression (4.2%). 4.7% of the players indicated that they smoke. 3.3% of the players experience themselves as not being mentally tough. A positive correlation between mental toughness and sound sleep (0.262) was found while a negative correlation was found between mental toughness and the following: anxiety/depression (-0.401), anxiety/depression positive (-0.423), distress (-0.259) and common mental disorder problems in general (-0.220). Conclusions: Although the presence of CMD at first glance do not seem significantly high amongst all the players, it must be considered that if one player in a team experiences the presence of CMD, it will have an impact on his mental toughness and most likely on his performance, as well as on the performance of the whole team. It is therefore important to ensure mental health in the whole team, by addressing individual CMD problems. A mental health support programme is therefore needed to be implemented to the benefit of these players within the South African context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20mental%20disorders" title="common mental disorders">common mental disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20toughness" title=" mental toughness"> mental toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20athletes" title=" professional athletes"> professional athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=rugby%20players" title=" rugby players"> rugby players</a> </p> <a href="https://publications.waset.org/abstracts/98981/prevalence-of-common-mental-disorders-and-its-correlation-with-mental-toughness-among-professional-south-african-rugby-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Bach">Michael Bach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness-for-service%20assessment" title=" fitness-for-service assessment "> fitness-for-service assessment </a>, <a href="https://publications.waset.org/abstracts/search?q=fracutre%20toughness" title=" fracutre toughness"> fracutre toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20reactor" title=" nuclear reactor"> nuclear reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitate%20strengthening" title=" precipitate strengthening"> precipitate strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20damage" title=" radiation damage"> radiation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/83986/characterizing-the-fracture-toughness-properties-of-aluminum-i-rod-removed-from-national-research-universal-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaegu%20Choi">Jaegu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungwoo%20Moon"> Byungwoo Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20cyclic%20loading" title="reverse cyclic loading">reverse cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=j-r%20curve" title=" j-r curve"> j-r curve</a>, <a href="https://publications.waset.org/abstracts/search?q=ESG%20specimen" title=" ESG specimen"> ESG specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20plastic%20displacement" title=" incremental plastic displacement"> incremental plastic displacement</a> </p> <a href="https://publications.waset.org/abstracts/52074/study-on-effect-of-reverse-cyclic-loading-on-fracture-resistance-curve-of-equivalent-stress-gradient-esg-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Baillie">Philip Baillie</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuart%20W.%20Campbell"> Stuart W. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Galloway"> Alexander M. Galloway</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20R.%20Cater"> Stephen R. Cater</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20McPherson"> Norman A. McPherson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20toughness" title="Charpy impact toughness">Charpy impact toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%28FSW%29" title=" friction stir welding(FSW)"> friction stir welding(FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness" title=" micro-hardness"> micro-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/7606/a-comparison-of-double-sided-friction-stir-welding-in-air-and-underwater-for-6mm-s275-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Influence of Multi-Walled Carbon Nanotube on Interface Fracture of Sandwich Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alak%20Kumar%20Patra">Alak Kumar Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilanjan%20Mitra"> Nilanjan Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT has been investigated through experimental methods. Results demonstrate an improvement in interface fracture toughness values (GC) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum assisted resin transfer method (VARTM) used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results are supported by high resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=foam" title=" foam"> foam</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-epoxy" title=" glass-epoxy"> glass-epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20fracture" title=" interfacial fracture"> interfacial fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite" title=" sandwich composite"> sandwich composite</a> </p> <a href="https://publications.waset.org/abstracts/25671/influence-of-multi-walled-carbon-nanotube-on-interface-fracture-of-sandwich-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasvinder%20Singh">Jasvinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjinder%20Singh"> Manjinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAW" title="SAW">SAW</a>, <a href="https://publications.waset.org/abstracts/search?q=Tensile%20Strength%20%28TS%29" title=" Tensile Strength (TS)"> Tensile Strength (TS)</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20hardness" title=" micro hardness"> micro hardness</a> </p> <a href="https://publications.waset.org/abstracts/34147/optimization-of-submerged-arc-welding-parameters-for-joining-ss304-and-ms1018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=toughness&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>