CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,615 results for author: <span class="mathjax">Zhang, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00752">arXiv:2503.00752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00752">pdf</a>, <a href="https://arxiv.org/ps/2503.00752">ps</a>, <a href="https://arxiv.org/format/2503.00752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Possible quantum spin liquid state of CeTa$_7$O$_{19}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rutherford%2C+A">A. Rutherford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D+D">D. D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P+F">P. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+Z">S. Z. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00752v2-abstract-short" style="display: inline;"> CeTa$_7$O$_{19}$ is a recently found two-dimensional triangular lattice antiferromagnet without showing magnetic order. We grew high-quality CeTa$_7$O$_{19}$ single crystals and studied the low-temperature magnetic susceptibility, specific heat and thermal conductivity. The dc magnetic susceptibility and magnetization reveal its nature of effective spin-1/2, easy axis anisotropy, and antiferromagn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00752v2-abstract-full').style.display = 'inline'; document.getElementById('2503.00752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00752v2-abstract-full" style="display: none;"> CeTa$_7$O$_{19}$ is a recently found two-dimensional triangular lattice antiferromagnet without showing magnetic order. We grew high-quality CeTa$_7$O$_{19}$ single crystals and studied the low-temperature magnetic susceptibility, specific heat and thermal conductivity. The dc magnetic susceptibility and magnetization reveal its nature of effective spin-1/2, easy axis anisotropy, and antiferromagnetic spin coupling. The ultralow-temperature ac susceptibility and specific heat data indicate the absence of any phase transition down to 20 mK. The ultralow-temperature thermal conductivity ($魏$) at zero magnetic field exhibits a non-zero residual term $魏_0/T =$ 0.0056 W/K$^2$m. Although the magnetic field dependence of $魏$ is rather weak, the 14 T thermal conductivity shows an essential zero residual term. All these results point to a possible ground state of quantum spin liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00752v2-abstract-full').style.display = 'none'; document.getElementById('2503.00752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, accepted for publication in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.20886">arXiv:2502.20886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.20886">pdf</a>, <a href="https://arxiv.org/format/2502.20886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Heterogeneous Melting of Metals under Extreme Non-equilibrium States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qiyu Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaoxiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kaiguo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+D">Dongdong Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jiayu Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.20886v1-abstract-short" style="display: inline;"> The extreme electron-ion nonequilibrium states created by ultrafast laser excitation challenge conventional melting paradigms. Through neural network-enhanced multiscale simulations of tungsten and gold nanofilms, we identify electronic pressure relaxation as a critical driver of heterogeneous phase transformations. Subpicosecond uniaxial expansion generates density decrease that enable surface-in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20886v1-abstract-full').style.display = 'inline'; document.getElementById('2502.20886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.20886v1-abstract-full" style="display: none;"> The extreme electron-ion nonequilibrium states created by ultrafast laser excitation challenge conventional melting paradigms. Through neural network-enhanced multiscale simulations of tungsten and gold nanofilms, we identify electronic pressure relaxation as a critical driver of heterogeneous phase transformations. Subpicosecond uniaxial expansion generates density decrease that enable surface-initiated melting far below equilibrium melting temperatures. This ultrafast heterogeneous melting propagates at 2500 m/s-tenfold faster than thermal mechanisms-with characteristic stationary diffraction peak splitting distinguishing it from thermal expansion dynamics. While tungsten shows pressure-driven solid-solid transitions, gold exhibits complete room-temperature amorphization under electronic stress. These results establish hot-electron-mediated lattice destabilization as a universal pathway for laser-induced structural transformations, providing new insights for interpreting time-resolved experiments and controlling laser-matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20886v1-abstract-full').style.display = 'none'; document.getElementById('2502.20886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18539">arXiv:2502.18539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.18539">pdf</a>, <a href="https://arxiv.org/format/2502.18539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimal neutralization of negative space charges in photon-enhanced thermionic emission devices under bidirectional discharge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xinqiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zhiqiang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shunjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaohang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhimin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jincan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shanhe Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18539v1-abstract-short" style="display: inline;"> In this study, we innovatively modeled photon-enhanced thermionic emission (PETE) devices, incorporating positive ion injection and bidirectional discharge&#39;s effects on the space charge barrier simultaneously. Compared to previous models, our model allows the positive ion distribution function to be compatible with scenarios in which the anode motive is either higher or lower than the cathode moti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18539v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18539v1-abstract-full" style="display: none;"> In this study, we innovatively modeled photon-enhanced thermionic emission (PETE) devices, incorporating positive ion injection and bidirectional discharge&#39;s effects on the space charge barrier simultaneously. Compared to previous models, our model allows the positive ion distribution function to be compatible with scenarios in which the anode motive is either higher or lower than the cathode motive, and also adapts to significant anode discharge. Through numerical simulations and parametric analyses, we found that: (1) As the ratio of the positive ion increases, the capability for space charge neutralization becomes stronger. (2) The lower the electron affinity is, the smaller the ratio of positive ions are required. (3) When the anode temperature is higher or the anode work function is lower, the impact of reverse discharge on the net current density is more pronounced. Conversely, when the anode temperature is higher or the anode work function is greater, the ratio of positive ions required to achieve complete space charge neutralization increases. This study further elucidates the mechanisms and characteristics of space charge neutralization effects in PETE devices, providing a theoretical foundation for optimizing their design. Additionally, the accompanying theory and algorithm possess the potential to spark innovative research across diverse fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18539v1-abstract-full').style.display = 'none'; document.getElementById('2502.18539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16138">arXiv:2502.16138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Advancing C-C Coupling of Electrocatalytic CO2 Reduction Reaction for C2+ Products </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Guangyuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Liang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+S">Shixue Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Hongfang Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+D">Dandan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Liangxu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16138v1-abstract-short" style="display: inline;"> The production of multicarbon (C2+) products through electrocatalytic CO2 reduction reaction (CO2RR) is crucial to addressing global environmental challenges and advancing sustainable energy solutions. However, efficiently producing these high-value chemicals via C-C coupling reactions is a significant challenge. This requires catalysts with optimized surface configurations and electronic properti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16138v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16138v1-abstract-full" style="display: none;"> The production of multicarbon (C2+) products through electrocatalytic CO2 reduction reaction (CO2RR) is crucial to addressing global environmental challenges and advancing sustainable energy solutions. However, efficiently producing these high-value chemicals via C-C coupling reactions is a significant challenge. This requires catalysts with optimized surface configurations and electronic properties capable of breaking the scaling relations among various intermediates. In this report, we introduce the fundamentals of electrocatalytic CO2RR and the mechanism of C-C coupling. We examine the effects of catalytic surface interactions with key intermediates and reaction pathways, and discuss emerging strategies for enhancing C-C coupling reactions toward C2+ products. Despite varieties of these strategies, we summarize direct clues for the proper design of the catalyst for the electrocatalytic CO2RR towards C2+ products, aiming to provide valuable insights to broad readers in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16138v1-abstract-full').style.display = 'none'; document.getElementById('2502.16138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16135">arXiv:2502.16135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16135">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> The surface binding and energy issues in rational design of the separation membrane of Li||S batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shuyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L+W+C">Lijing Wang Chao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+D">Dandan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+S">Shixue Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Hongfang Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Liangxu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16135v1-abstract-short" style="display: inline;"> Lithium-sulfur batteries (LSBs) represent one of the most promising next-generation energy storage technologies, offering exceptionally high energy densities. However, their widespread adoption remains hindered by challenges such as sluggish conversion reactions and the dissolution of lithium polysulfides, which lead to poor cycling stability and reduced performance. While significant efforts have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16135v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16135v1-abstract-full" style="display: none;"> Lithium-sulfur batteries (LSBs) represent one of the most promising next-generation energy storage technologies, offering exceptionally high energy densities. However, their widespread adoption remains hindered by challenges such as sluggish conversion reactions and the dissolution of lithium polysulfides, which lead to poor cycling stability and reduced performance. While significant efforts have been made to address these limitations, the energy storage capabilities of LSBs in practical devices remain far from achieving their full potential. This report delves into recent advancements in the rational design of separation membranes for LSBs, focusing on addressing fundamental issues related to surface binding and surface energy interactions within materials science. By examining the functionalization and optimization of separation membranes, we aim to highlight strategies that can guide the development of more robust and efficient LSBs, bringing them closer to practical implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16135v1-abstract-full').style.display = 'none'; document.getElementById('2502.16135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15149">arXiv:2502.15149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15149">pdf</a>, <a href="https://arxiv.org/format/2502.15149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Boundary-Driven Complex Brillouin Zone in Non-Hermitian Electric Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verma%2C+S">Sonu Verma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kyung%2C+M">Minwook Kyung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenwen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B">Bumki Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M+J">Moon Jip Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15149v1-abstract-short" style="display: inline;"> Complex-valued physical quantities, often non-conserved, represent key phenomena in non-Hermitian systems such as dissipation and localization. Recent advancements in non-Hermitian physics have revealed boundary-condition-sensitive band structures, characterized by a continuous manifold of complex-valued momentum known as the generalized Brillouin zone (GBZ). However, the ability to actively manip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15149v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15149v1-abstract-full" style="display: none;"> Complex-valued physical quantities, often non-conserved, represent key phenomena in non-Hermitian systems such as dissipation and localization. Recent advancements in non-Hermitian physics have revealed boundary-condition-sensitive band structures, characterized by a continuous manifold of complex-valued momentum known as the generalized Brillouin zone (GBZ). However, the ability to actively manipulate the GBZ and its associated topological properties has remained largely unexplored. Here, we demonstrate a controllable manipulation of the GBZ by adjusting the boundary Hamiltonian and leveraging the boundary sensitivity in a circuit lattice. Our observations reveal that the GBZ forms multiple separated manifolds containing both decaying and growing wave functions, in contrast to the previously observed non-Hermitian skin effect under open boundary condition (OBC). By continuously deforming the GBZ, we observe the topological phase transitions of innate topological structure of GBZ that are enriched by complex properties of non-Hermitian physical variables. Notably, such topological phase transition is governed by boundary conditions rather than bulk properties, underscoring the extreme boundary sensitivity unique to non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15149v1-abstract-full').style.display = 'none'; document.getElementById('2502.15149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13612">arXiv:2502.13612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13612">pdf</a>, <a href="https://arxiv.org/format/2502.13612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for spin-fluctuation-mediated superconductivity in electron-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+C+M">C. M. Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+S+J">S. J. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+S">J. S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoghi%2C+A">A. Cuoghi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinlopen%2C+R+D+H">R. D. H. Hinlopen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+T">T. Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+R+L">R. L. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">K. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">N. E. Hussey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13612v1-abstract-short" style="display: inline;"> In conventional, phonon-mediated superconductors, the transition temperature $T_c$ and normal-state scattering rate $1/蟿$ - deduced from the linear-in-temperature resistivity $蟻(T)$ - are linked through the electron-phonon coupling strength $位_{\rm ph}$. In cuprate high-$T_c$ superconductors, no equivalent $位$ has yet been identified, despite the fact that at high doping, $伪$ - the low-$T$ $T$-lin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13612v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13612v1-abstract-full" style="display: none;"> In conventional, phonon-mediated superconductors, the transition temperature $T_c$ and normal-state scattering rate $1/蟿$ - deduced from the linear-in-temperature resistivity $蟻(T)$ - are linked through the electron-phonon coupling strength $位_{\rm ph}$. In cuprate high-$T_c$ superconductors, no equivalent $位$ has yet been identified, despite the fact that at high doping, $伪$ - the low-$T$ $T$-linear coefficient of $蟻(T)$ - also scales with $T_c$. Here, we use dc resistivity and high-field magnetoresistance to extract $蟿^{-1}$ in electron-doped La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) as a function of $x$ from optimal doping to beyond the superconducting dome. A highly anisotropic inelastic component to $蟿^{-1}$ is revealed whose magnitude diminishes markedly across the doping series. Using known Fermi surface parameters and subsequent modelling of the Hall coefficient, we demonstrate that the form of $蟿^{-1}$ in LCCO is consistent with scattering off commensurate antiferromagnetic spin fluctuations of variable strength $位_{\rm sf}$. The clear correlation between $伪$, $位_{\rm sf}$ and $T_c$ then identifies low-energy spin-fluctuations as the primary pairing glue in electron-doped cuprates. The contrasting magnetotransport behaviour in hole-doped cuprates suggests that the higher $T_c$ in the latter cannot be attributed solely to an increase in $位_{\rm sf}$. Indeed, the success in modelling LCCO serves to reinforces the notion that resolving the origin of high-temperature superconductivity in hole-doped cuprates may require more than a simple extension of BCS theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13612v1-abstract-full').style.display = 'none'; document.getElementById('2502.13612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article (5 figures) plus Methods (10 figures); 28 pages in total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13585">arXiv:2502.13585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> DFT+DMFT study on pressure-induced valence instability of CeCoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai-Kang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guojun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junshuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhongpo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Y">Yipeng An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13585v1-abstract-short" style="display: inline;"> Rare-earth compounds RCoSi exhibit unique properties, with distinct structural behaviors depending on whether R is a light, middle or heavy rare-earth element. Among them, CeCoSi undergoes a structural phase transition under high pressure, with the phase transition pressure increasing as temperature rises. Some experimental studies suggest that the transition is closely related to the behavior of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13585v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13585v1-abstract-full" style="display: none;"> Rare-earth compounds RCoSi exhibit unique properties, with distinct structural behaviors depending on whether R is a light, middle or heavy rare-earth element. Among them, CeCoSi undergoes a structural phase transition under high pressure, with the phase transition pressure increasing as temperature rises. Some experimental studies suggest that the transition is closely related to the behavior of Ce-4f electrons. In this work, we systematically studied the evolution of the electronic structure of CeCoSi with temperature and pressure. First, we used the DFT+DMFT to calculate the energy-volume curve of CeCoSi, which was in good agreement with the experimental results and far superior to the DFT method. Next, we studied the electronic structure of CeCoSi under different pressures and temperatures using DFT+DMFT. Our results show that CeCoSi is a Kondo metal with hybridization of Ce-4f and Co-3d. As pressure increases, the renormalization factor Z of Ce-4f5/2 increases, the occupancy number of Ce-4f electrons decreases, and CeCoSi transitions to a mixed-valence state at ~5.5 GPa in 100 K. The pressure of the quantum phase transition PQ is slightly higher than the experimentally observed structural phase transition pressure PS, and the PQ increases with increasing temperature, which is consistent with the behavior of PS in experiment. In addition, the hybridization strength of Ce-4f in the mixed-valence state is significantly greater than in the Kondo metal state. Our results suggest that the valence instability of Ce-4f is the cause of the structural phase transition. As pressure increases, Ce-4f electrons delocalize and CeCoSi transitions to mixed-valence state. This valence instability may cause redistribution of electron density, thus inducing a structural phase transition. Our work reveals the cause of the structural phase transition of CeCoSi under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13585v1-abstract-full').style.display = 'none'; document.getElementById('2502.13585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13511">arXiv:2502.13511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13511">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Uncompensated Magnon Spin Currents in X-type Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shui-Sen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wen-Jian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yu-Ping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13511v1-abstract-short" style="display: inline;"> Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic (AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, these currents are largely counteracted by opposite magnetic sublattices, thus suppressing their net effect. Contrary to this common observation, here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13511v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13511v1-abstract-full" style="display: none;"> Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic (AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, these currents are largely counteracted by opposite magnetic sublattices, thus suppressing their net effect. Contrary to this common observation, here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13511v1-abstract-full').style.display = 'none'; document.getElementById('2502.13511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13408">arXiv:2502.13408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13408">pdf</a>, <a href="https://arxiv.org/format/2502.13408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Relaxation Critical Dynamics in Measurement-induced Phase Transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wantao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaqiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shi-Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+S">Shuai Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13408v1-abstract-short" style="display: inline;"> Measurement-induced phase transition (MIPT) describes the nonanalytical change of the entanglement entropy resulting from the interplay between measurement and unitary evolution. In this paper, we investigate the relaxation critical dynamics near the MIPT for different initial states in a one-dimensional quantum circuit. Specifically, when the initial state is in the volume-law phase with vanishin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13408v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13408v1-abstract-full" style="display: none;"> Measurement-induced phase transition (MIPT) describes the nonanalytical change of the entanglement entropy resulting from the interplay between measurement and unitary evolution. In this paper, we investigate the relaxation critical dynamics near the MIPT for different initial states in a one-dimensional quantum circuit. Specifically, when the initial state is in the volume-law phase with vanishing measurement probability, we find that the half-chain entanglement entropy $S$ decays as $S\propto t^{-1}$ with the coefficients proportional to the size of the system in the short-time stage; In contrast, when the initial state is the product state, $S$ increases with time as $S\propto \ln{t}$, consistent with previous studies. Despite these contrasting behaviors, we develop a unified scaling form to describe these scaling behaviors for different initial states where the off-critical-point effects can also be incorporated. This framework offers significant advantages for experimental MIPT detection. Our novel scheme, leveraging relaxation dynamical scaling, drastically reduces post-selection overhead, and can eliminate it completely with trackable classical simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13408v1-abstract-full').style.display = 'none'; document.getElementById('2502.13408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10572">arXiv:2502.10572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10572">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Si-compatible topological and infrared materials: the promise of Low-Sn GeSn digital alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yunfan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+D">Damien West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10572v1-abstract-short" style="display: inline;"> Recently, GeSn alloys have attracted much interest for direct-gap infrared photonics and as potential topological materials which are compatible with the semiconductor industry. However, for photonics, the high-Sn content required leads to low detectivity, associated with poor material quality, and the (&gt;35%) Sn required for topological properties have been out of reach experimentally. Here, we de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10572v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10572v1-abstract-full" style="display: none;"> Recently, GeSn alloys have attracted much interest for direct-gap infrared photonics and as potential topological materials which are compatible with the semiconductor industry. However, for photonics, the high-Sn content required leads to low detectivity, associated with poor material quality, and the (&gt;35%) Sn required for topological properties have been out of reach experimentally. Here, we demonstrate that by patterning the Sn distribution within Ge, the electronic properties have a far greater tunability than is possible with the random alloy. For the GeSn 未-digital alloy (DA) formed by confining Sn atoms in atomic layer(s) along the [111] direction of Ge, we show that ~10% Sn can lead to a triple-point semimetal. These findings are understood in terms of Sn ordering causing spatial separation of Sn and Ge band edges, leading to band inversion. This mechanism can also lead to a weak topological insulator, Weyl semimetal, and enables tunable direct bandgaps down to 2 meV, covering the entire infrared range. Our findings are generally applicable to other semiconductors DAs and point to a new class of currently unexplored topological systems accessible by epitaxy and establish the promise of low-Sn GeSn DAs for application as infrared laser diodes and photodetectors in Si photonic integrated circuits and infrared image sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10572v1-abstract-full').style.display = 'none'; document.getElementById('2502.10572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08917">arXiv:2502.08917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08917">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> All-optical and ultrafast control of high-order exciton-polariton orbital modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+W">Wenna Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhiyong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yuexing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiepeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+J">Jianhui Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yangguang Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yubo Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Y">Yiyang Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+S">Shuai Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yuanyuan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+X">Xiaotian Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yutong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinfeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08917v1-abstract-short" style="display: inline;"> Exciton-polaritons flows within closed quantum circuits can spontaneously form phase-locked modes that carry orbital angular momentum (OAM). With its infinite set of angular momentum quantum numbers, high-order OAM represents a transformative solution to the bandwidth bottleneck in multiplexed optical communication. However, its practical application is hindered by the limited choice of materials&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08917v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08917v1-abstract-full" style="display: none;"> Exciton-polaritons flows within closed quantum circuits can spontaneously form phase-locked modes that carry orbital angular momentum (OAM). With its infinite set of angular momentum quantum numbers, high-order OAM represents a transformative solution to the bandwidth bottleneck in multiplexed optical communication. However, its practical application is hindered by the limited choice of materials which in general requires cryogenic temperatures and the reliance on mechanical switching. In this work, we achieve stable and high-order (up to order of 33) OAM modes by constructing a closed quantum circuit using the halide perovskite microcavities at room temperature. By controlling the spatial and temporal symmetry of the closed quantum circuits using another laser pulse, we achieve significant tuning OAM of EP flows from 8 to 12. Our work demonstrate all-optical and ultrafast control of high-order OAM using exciton-polariton condensates in perovskite microcavities that would have important applications in high-throughput optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08917v1-abstract-full').style.display = 'none'; document.getElementById('2502.08917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07570">arXiv:2502.07570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07570">pdf</a>, <a href="https://arxiv.org/format/2502.07570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous Symmetry Breaking of Cavity Vacuum and Emergent Gyrotropic Effects in Embedded moir茅 Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zuzhang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+H">Hsun-Chi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+Y">Yixin Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07570v1-abstract-short" style="display: inline;"> In an electronic system, spontaneous symmetry breaking can arise from many-body interaction between electrons, leading to degenerate ground states distinguishable by emergent effects otherwise prohibited by the symmetry. Here we show that ultrastrong coupling of a mesoscopic electronic system to the vacuum of a cavity resonator can lead to another paradigm of spontaneous breaking of spatial symmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07570v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07570v1-abstract-full" style="display: none;"> In an electronic system, spontaneous symmetry breaking can arise from many-body interaction between electrons, leading to degenerate ground states distinguishable by emergent effects otherwise prohibited by the symmetry. Here we show that ultrastrong coupling of a mesoscopic electronic system to the vacuum of a cavity resonator can lead to another paradigm of spontaneous breaking of spatial symmetries in both systems. As a pertinent example, we consider the orbital gyrotropic effects in a moir茅 superlattice embedded in a THz split ring cavity resonator. Our mean-field and exact diagonalization calculations consistently demonstrate a spontaneous parity symmetry breaking in both the electronic ground state and the cavity vacuum, leading to two degenerate hybrid ground states distinguished by their opposite orbital gyrotropic Hall and magnetic effects. These sizable responses in the cavity-embedded moir茅 superlattice are highly tunable by both the cavity field polarization and interlayer bias on the moir茅 superlattice, providing an advanced platform for manipulating gyrotropic effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07570v1-abstract-full').style.display = 'none'; document.getElementById('2502.07570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07477">arXiv:2502.07477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07477">pdf</a>, <a href="https://arxiv.org/format/2502.07477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Robust zero modes in PbTe-Pb hybrid nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zeyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07477v1-abstract-short" style="display: inline;"> Majorana zero modes in tunneling conductance are expected to manifest as robust zero bias peaks (ZBPs). While ZBPs alone are not conclusive evidence of Majorana modes due to alternative explanations, robust ZBPs remain a crucial and necessary first-step indicator in the search for topological states. Here, we report the observation of robust ZBPs in PbTe-Pb hybrid nanowires. The peak height can re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07477v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07477v1-abstract-full" style="display: none;"> Majorana zero modes in tunneling conductance are expected to manifest as robust zero bias peaks (ZBPs). While ZBPs alone are not conclusive evidence of Majorana modes due to alternative explanations, robust ZBPs remain a crucial and necessary first-step indicator in the search for topological states. Here, we report the observation of robust ZBPs in PbTe-Pb hybrid nanowires. The peak height can reach $2e^2/h$, though it does not yet form a quantized plateau. Importantly, these ZBPs can remain non-split over sizable ranges in both magnetic field and gate voltage scans, highlighting their robustness. We discuss possible interpretations based on Majorana zero modes as well as Andreev bound states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07477v1-abstract-full').style.display = 'none'; document.getElementById('2502.07477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07468">arXiv:2502.07468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07468">pdf</a>, <a href="https://arxiv.org/format/2502.07468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Scrambling Enabled Entropy Accumulation in Open Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuke Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zeyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Langxuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07468v1-abstract-short" style="display: inline;"> In closed quantum many-body systems, initially localized information spreads throughout the system and becomes highly complex. This phenomenon, known as information scrambling, is closely related to entropy growth and quantum thermalization. Recent studies have shown that dissipation in open systems can hinder information scrambling, driving the system into a dissipative phase when the system-bath&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07468v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07468v1-abstract-full" style="display: none;"> In closed quantum many-body systems, initially localized information spreads throughout the system and becomes highly complex. This phenomenon, known as information scrambling, is closely related to entropy growth and quantum thermalization. Recent studies have shown that dissipation in open systems can hinder information scrambling, driving the system into a dissipative phase when the system-bath coupling is strong. However, the signature of this scrambling transition in entropy dynamics remains unexplored. In this work, we unveil a novel phenomenon in open quantum systems, termed entropy accumulation, which occurs exclusively within the scrambling phase. We consider a setup in which a probe is weakly coupled to a system that is already interacting with a bath. We calculate the increase in the second R茅nyi entropy induced by an external impulse on the system, after tracing out the probe. Despite the system-probe coupling being weak, the entropy continues to increase and eventually saturates at a finite value due to operator growth. In contrast, the entropy increase is limited by the coupling strength in the dissipative phase. The theoretical prediction is derived from both general arguments and an explicit example using generalized Boltzmann equations. Our results offer new insights into the intriguing relationship between entropy dynamics and information scrambling in open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07468v1-abstract-full').style.display = 'none'; document.getElementById('2502.07468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures + supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00551">arXiv:2502.00551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00551">pdf</a>, <a href="https://arxiv.org/format/2502.00551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transition Metal-Vacancy Point Defects in Zinc Oxide as Deep-Level Spin Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T">Taejoon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+E">Erik Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kejun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xingyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bazantes%2C+J+D+V">Jorge D Vega Bazantes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruiqi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianwei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+K+C">Kai-Mei C. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+H">Hosung Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ping%2C+Y">Yuan Ping</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00551v2-abstract-short" style="display: inline;"> Wide band gap oxides are promising host materials for spin defect qubits, offering unique advantages such as a dilute nuclear spin environment. Zinc oxide (ZnO), in particular, can achieve exceptional high purity, which enables long spin coherence time. In this work, we theoretically search for deep-level point defects in ZnO with optimal physical properties for optically-addressable spin qubits.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00551v2-abstract-full').style.display = 'inline'; document.getElementById('2502.00551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00551v2-abstract-full" style="display: none;"> Wide band gap oxides are promising host materials for spin defect qubits, offering unique advantages such as a dilute nuclear spin environment. Zinc oxide (ZnO), in particular, can achieve exceptional high purity, which enables long spin coherence time. In this work, we theoretically search for deep-level point defects in ZnO with optimal physical properties for optically-addressable spin qubits. Using first-principles calculations, we predict the Molybdenum-vacancy complex defect $Mo_{Zn}v_O$ in ZnO to own promising spin and optical properties, including spin-triplet ground state, optical transition in the visible to near-infrared range with high quantum yield, allowed intersystem crossings with a sizable optically-detected magnetic resonance contrast, and long spin T$_2$ and T$^*_2$. Notably, we find the Huang-Rhys factor of the defect to be around 5, which is significantly smaller than the typical range of 10-30 for most known defects in ZnO. Furthermore, we compare the spin decoherence driven by the nuclear spin bath and paramagnetic impurity baths. We find that the paramagnetic impurities are very effective in causing spin decoherence even with very low concentrations, implying that they can likely dominate the spin decoherence in ZnO even after isotopic purification. Using the computed excited-state energies and kinetic rates as inputs, we predict the ODMR contrast and propose a new protocol for spin qubit initialization and readout, which could be generalized to other systems with forbidden axial intersystem crossings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00551v2-abstract-full').style.display = 'none'; document.getElementById('2502.00551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00095">arXiv:2502.00095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00095">pdf</a>, <a href="https://arxiv.org/format/2502.00095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A neutral-atom Hubbard quantum simulator in the cryogenic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Muqing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kendrick%2C+L+H">Lev Haldar Kendrick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kale%2C+A">Anant Kale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gang%2C+Y">Youqi Gang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+C">Chunhan Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+W">Aaron W. Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrat%2C+M">Martin Lebrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greiner%2C+M">Markus Greiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00095v1-abstract-short" style="display: inline;"> Ultracold fermionic atoms in optical lattices offer pristine realizations of Hubbard models, which are fundamental to modern condensed matter physics and the study of strongly-correlated quantum materials. Despite significant advancements, the accessible temperatures in these optical lattice material analogs are still too high to address many open problems beyond the reach of current numerical tec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00095v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00095v1-abstract-full" style="display: none;"> Ultracold fermionic atoms in optical lattices offer pristine realizations of Hubbard models, which are fundamental to modern condensed matter physics and the study of strongly-correlated quantum materials. Despite significant advancements, the accessible temperatures in these optical lattice material analogs are still too high to address many open problems beyond the reach of current numerical techniques. Here, we demonstrate a several-fold reduction in temperature, bringing large-scale quantum simulations of the Hubbard model into an entirely new regime. This is accomplished by transforming a low entropy product state into strongly-correlated states of interest via dynamic control of the model parameters, which is extremely challenging to simulate classically and so explored using the quantum simulator itself. At half filling, the long-range antiferromagnetic order is close to saturated, leading to a temperature of $T/t=0.05_{-0.05}^{0.06}$ based on comparisons to numerically exact simulations. Doped away from half-filling no unbiased numerical simulation is available. Importantly, we are able to use quantum simulation to identify a new pathway for achieving similarly low temperatures with doping. This is confirmed by comparing short-range spin correlations to state-of-the-art, but approximate, constrained-path auxiliary field quantum Monte Carlo simulations. Compared to the cuprates, the reported temperatures correspond to a reduction from far above to significantly below room temperature, where physics such as the pseudogap and stripe phases may be expected. Our work opens the door to quantum simulations that solve open questions in material science, develop synergies with numerical methods and theoretical studies, and lead to discoveries of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00095v1-abstract-full').style.display = 'none'; document.getElementById('2502.00095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+20 pages, 5+9 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16430">arXiv:2501.16430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16430">pdf</a>, <a href="https://arxiv.org/format/2501.16430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Critical gate distance for Wigner crystallization in the two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+A">Agnes Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calvera%2C+V">Vladimir Calvera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yubo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+M+A">Miguel A. Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esterlis%2C+I">Ilya Esterlis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16430v1-abstract-short" style="display: inline;"> We report on the properties of the two-dimensional electron gas in a dual-gate geometry, using quantum Monte Carlo methods to obtain aspects of the phase diagram as a function of electron density and gate distance. We identify the critical gate distance below which the Wigner crystal phase disappears. For larger gate distances, the system undergoes a re-entrant transition from crystal to liquid at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16430v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16430v1-abstract-full" style="display: none;"> We report on the properties of the two-dimensional electron gas in a dual-gate geometry, using quantum Monte Carlo methods to obtain aspects of the phase diagram as a function of electron density and gate distance. We identify the critical gate distance below which the Wigner crystal phase disappears. For larger gate distances, the system undergoes a re-entrant transition from crystal to liquid at sufficiently low density. We also present preliminary evidence for a fully polarized ferromagnetic liquid state at low electron density and intermediate gate distances. The quantum Monte Carlo results are compared with simpler approximate methods, which are shown to be semi-quantitatively reliable for determining key features of the phase diagram. These methods are then used to obtain the phase boundary between the Wigner crystal and liquid in the single-gate geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16430v1-abstract-full').style.display = 'none'; document.getElementById('2501.16430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14167">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Han Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+C">Chen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dingwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13588">arXiv:2501.13588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13588">pdf</a>, <a href="https://arxiv.org/format/2501.13588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized STM measurement scheme for quantum geometric tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jia-Ji Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+W">Wen-Long You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13588v1-abstract-short" style="display: inline;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13588v1-abstract-full" style="display: none;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted from geometric amplitudes of Friedel oscillations induced by the intentionally introduced magnetic impurity and then the QGT is derived from the momentum differential of spin texture. The surface states of topological insulator (TISS), as a model spin system, is promising to demonstrate the scheme. In a TI slab, the gapped TISS host finite quantum metric and Berry curvature as the symmetric real part and the antisymmetric imaginary part of QGT, respectively. Thus, a detailed calculations guide the use of the developed scheme to measure the QGT of gapped TISS with or without an external in-plane magnetic field. This study provides a feasible scheme for measuring QGT of two-dimensional solid-state systems, and hints at the great potential of the information extraction from the geometric amplitudes of STM and other measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'none'; document.getElementById('2501.13588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13459">arXiv:2501.13459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13459">pdf</a>, <a href="https://arxiv.org/format/2501.13459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Symmetry Breaking Dynamics in Quantum Many-Body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hui Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shi-Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13459v2-abstract-short" style="display: inline;"> Entanglement asymmetry has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of entanglement asymmetry in two distinct scenarios: a non-symmetric random quantum circuit and a non-symmetric Hamiltonian quench, with a particular focus on U(1) symmetry. In the former case, the sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13459v2-abstract-full').style.display = 'inline'; document.getElementById('2501.13459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13459v2-abstract-full" style="display: none;"> Entanglement asymmetry has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of entanglement asymmetry in two distinct scenarios: a non-symmetric random quantum circuit and a non-symmetric Hamiltonian quench, with a particular focus on U(1) symmetry. In the former case, the symmetry is initially broken and subsequently restored, whereas in the latter case, symmetry remains broken in the subsystem at late times, consistent with the principles of quantum thermalization. Notably, the growth of entanglement asymmetry exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time entanglement asymmetry can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13459v2-abstract-full').style.display = 'none'; document.getElementById('2501.13459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures with supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13245">arXiv:2501.13245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13245">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Discovery of Solid-State Thin-Film Metal Dealloying for 3D Nanoarchitecture Materials Design through Laser Thermal Gradient Treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+C">Cheng-Chu Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruipeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veith%2C+G+M">Gabriel M. Veith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Honghu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camino%2C+F">Fernando Camino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwale%2C+N">Nikhil Tiwale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yager%2C+K">Kevin Yager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen-Wiegart%2C+Y+K">Yu-chen Karen Chen-Wiegart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13245v1-abstract-short" style="display: inline;"> Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13245v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13245v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13245v1-abstract-full" style="display: none;"> Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high-throughput characterization of thermal treatment parameters while probing local nanostructures of thin-film samples is needed. In this work, a laser-based thermal treatment is demonstrated to create temperature gradients on single thin-film samples of Nb-Al/Sc and Nb-Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X-ray multimodal and high-throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified within this framework. While the oxidation process may contribute to nanostructure formation during thin-film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin-film SSMD systems with targeted nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13245v1-abstract-full').style.display = 'none'; document.getElementById('2501.13245v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The main content contains 6 figures within 25 pages. The supporting information includes 5 figures within 5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08860">arXiv:2501.08860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08860">pdf</a>, <a href="https://arxiv.org/format/2501.08860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Unconventional spin Hall effect in PT symmetric spin-orbit coupled quantum gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H">Hui Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+G">Guan-Hua Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shizhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhigang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08860v2-abstract-short" style="display: inline;"> We theoretically study the intrinsic spin Hall effect in PT symmetric, spin-orbit coupled quantum gases confined in an optical lattice. The interplay of the PT symmetry and the spin-orbit coupling leads to a doubly degenerate non-interacting band structure in which the spin polarization and the Berry curvature of any Bloch state are opposite to those of its degenerate partner. Using experimentally&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08860v2-abstract-full').style.display = 'inline'; document.getElementById('2501.08860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08860v2-abstract-full" style="display: none;"> We theoretically study the intrinsic spin Hall effect in PT symmetric, spin-orbit coupled quantum gases confined in an optical lattice. The interplay of the PT symmetry and the spin-orbit coupling leads to a doubly degenerate non-interacting band structure in which the spin polarization and the Berry curvature of any Bloch state are opposite to those of its degenerate partner. Using experimentally available systems as examples, we show that such a system with a two-component Fermi gas exhibits an intrinsic spin Hall effect akin to that found in the context of electronic materials. For a two-component Bose gas, however, an unconventional spin Hall effect emerges in which the spin polarization and the currents are coplanar and the spin Hall conductivity displays a characteristic anisotropy. We propose to detect such an unconventional spin Hall effect in harmonically trapped systems using dipole oscillations and perform extensive numerical simulations to validate the proposal. Our work paves the way for quantum simulation of the solid-state intrinsic spin Hall effect and experimental explorations of unconventional spin Hall effects in quantum gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08860v2-abstract-full').style.display = 'none'; document.getElementById('2501.08860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08095">arXiv:2501.08095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08095">pdf</a>, <a href="https://arxiv.org/format/2501.08095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Double Microwave Shielding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karman%2C+T">Tijs Karman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bigagli%2C+N">Niccol貌 Bigagli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+W">Weijun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stevenson%2C+I">Ian Stevenson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+S">Sebastian Will</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08095v1-abstract-short" style="display: inline;"> We develop double microwave shielding, which has recently enabled evaporative cooling to the first Bose-Einstein condensate of polar molecules [Bigagli et al., Nature 631, 289 (2024)]. Two microwave fields of different frequency and polarization are employed to effectively shield polar molecules from inelastic collisions and three-body recombination. Here, we describe in detail the theory of doubl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08095v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08095v1-abstract-full" style="display: none;"> We develop double microwave shielding, which has recently enabled evaporative cooling to the first Bose-Einstein condensate of polar molecules [Bigagli et al., Nature 631, 289 (2024)]. Two microwave fields of different frequency and polarization are employed to effectively shield polar molecules from inelastic collisions and three-body recombination. Here, we describe in detail the theory of double microwave shielding. We demonstrate that double microwave shielding effectively suppresses two- and three-body losses. Simultaneously, dipolar interactions and the scattering length can be flexibly tuned, enabling comprehensive control over interactions in ultracold gases of polar molecules. We show that this approach works for a wide range of molecules. This opens the door to studying many-body physics with strongly interacting dipolar quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08095v1-abstract-full').style.display = 'none'; document.getElementById('2501.08095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07866">arXiv:2501.07866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07866">pdf</a>, <a href="https://arxiv.org/format/2501.07866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multifractal-enriched mobility edges and emergent quantum phases in Rydberg atomic arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shan-Zhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi-Cai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shanchao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07866v2-abstract-short" style="display: inline;"> Anderson localization describes disorder-induced phase transitions, distinguishing between localized and extended states. In quasiperiodic systems, a third multifractal state emerges, characterized by unique energy and wave functions. However, critical indicators for differentiating these states, such as Lyapunov exponents (LEs) and inverse participation ratios (IPRs), have yet to be experimentall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07866v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07866v2-abstract-full" style="display: none;"> Anderson localization describes disorder-induced phase transitions, distinguishing between localized and extended states. In quasiperiodic systems, a third multifractal state emerges, characterized by unique energy and wave functions. However, critical indicators for differentiating these states, such as Lyapunov exponents (LEs) and inverse participation ratios (IPRs), have yet to be experimentally detected. To address these challenges, we introduce exactly solvable one-dimensional quasiperiodic lattice models with flat bands, analytically determining phase boundaries using Avila&#39;s global theorem. We propose experimental realizations using Rydberg atom arrays, enabling the distinction of localized, extended, and multifractal states with as few as 18 qubits. Importantly, we develop a robust spectroscopic method for the experimental measurement of LEs and IPRs. Our work opens new avenues for the experimental exploration of Anderson localization and multifractal states in artificial quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07866v2-abstract-full').style.display = 'none'; document.getElementById('2501.07866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+22 pages, 4+16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06171">arXiv:2501.06171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06171">pdf</a>, <a href="https://arxiv.org/format/2501.06171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Force-Field Approach for Itinerant Electron Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yunhao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimizu%2C+K">Kotaro Shimizu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+G">Gia-Wei Chern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06171v1-abstract-short" style="display: inline;"> We review the recent development of machine-learning (ML) force-field frameworks for Landau-Lifshitz-Gilbert (LLG) dynamics simulations of itinerant electron magnets, focusing on the general theory and implementations of symmetry-invariant representations of spin configurations. The crucial properties that such magnetic descriptors must satisfy are differentiability with respect to spin rotations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06171v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06171v1-abstract-full" style="display: none;"> We review the recent development of machine-learning (ML) force-field frameworks for Landau-Lifshitz-Gilbert (LLG) dynamics simulations of itinerant electron magnets, focusing on the general theory and implementations of symmetry-invariant representations of spin configurations. The crucial properties that such magnetic descriptors must satisfy are differentiability with respect to spin rotations and invariance to both lattice point-group symmetry and internal spin rotation symmetry. We propose an efficient implementation based on the concept of reference irreducible representations, modified from the group-theoretical power-spectrum and bispectrum methods. The ML framework is demonstrated using the s-d models, which are widely applied in spintronics research. We show that LLG simulations based on local fields predicted by the trained ML models successfully reproduce representative non-collinear spin structures, including 120$^\circ$, tetrahedral, and skyrmion crystal orders of the triangular-lattice s-d models. Large-scale thermal quench simulations enabled by ML models further reveal intriguing freezing dynamics and glassy stripe states consisting of skyrmions and bi-merons. Our work highlights the utility of ML force-field approach to dynamical modeling of complex spin orders in itinerant electron magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06171v1-abstract-full').style.display = 'none'; document.getElementById('2501.06171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04345">arXiv:2501.04345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04345">pdf</a>, <a href="https://arxiv.org/format/2501.04345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anisotropy of PbTe nanowires with and without a superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zeyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04345v1-abstract-short" style="display: inline;"> We investigate the anisotropic behaviors in PbTe and PbTe-Pb hybrid nanowires. In previous studies on PbTe, wire-to-wire variations in anisotropy indicate poor device control, posing a serious challenge for applications. Here, we achieve reproducible anisotropy in PbTe nanowires through a substantial reduction of disorder. We then couple PbTe to a superconductor Pb, and observe a pronounced deviat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04345v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04345v1-abstract-full" style="display: none;"> We investigate the anisotropic behaviors in PbTe and PbTe-Pb hybrid nanowires. In previous studies on PbTe, wire-to-wire variations in anisotropy indicate poor device control, posing a serious challenge for applications. Here, we achieve reproducible anisotropy in PbTe nanowires through a substantial reduction of disorder. We then couple PbTe to a superconductor Pb, and observe a pronounced deviation in the anisotropy behavior compared to bare PbTe nanowires. This deviation is gate-tunable and attributed to spin-orbit interaction and orbital effect, controlled by charge transfer between Pb and PbTe. These results provide a guidance for the controlled engineering of exotic quantum states in this hybrid material platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04345v1-abstract-full').style.display = 'none'; document.getElementById('2501.04345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03927">arXiv:2501.03927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03927">pdf</a>, <a href="https://arxiv.org/format/2501.03927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Optimal Estimation of Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shaoyong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zhaoyu Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoguang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03927v2-abstract-short" style="display: inline;"> Over the past century, the Boltzmann entropy has been widely accepted as the standard definition of entropy for an isolated system. However, it coexists with controversial alternatives, such as the Gibbs entropy. These definitions, including the Boltzmann entropy, exhibit certain inconsistencies, both mathematically and thermodynamically. To address this challenge, we introduce the estimation theo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03927v2-abstract-full').style.display = 'inline'; document.getElementById('2501.03927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03927v2-abstract-full" style="display: none;"> Over the past century, the Boltzmann entropy has been widely accepted as the standard definition of entropy for an isolated system. However, it coexists with controversial alternatives, such as the Gibbs entropy. These definitions, including the Boltzmann entropy, exhibit certain inconsistencies, both mathematically and thermodynamically. To address this challenge, we introduce the estimation theory in statistical inference into the study of thermodynamics and statistical physics for finite-sized systems. By regarding the finite-sized system as a thermometer used to measure the temperature of the heat reservoir, we show that optimal estimation of temperature yields the corresponding entropy formula for an isolated system. In the single-sample case, optimal estimation of inverse temperature (or temperature) corresponds to the Boltzmann entropy (or Gibbs entropy). These different definitions of entropy, rather than being contradictory, apply to optimal estimation of different parameters. Furthermore, via the Laplace transform, we identify a complementarity between estimation of temperature and system&#39;s energy, a concept suggested by Niels Bohr. We also correct the energy-temperature uncertainty relation, as expressed by the Cram茅r-Rao bound, in the large-$N$ limit. In the multiple-sample case, we generalize the definitions of both Boltzmann entropy and Gibbs entropy to achieve optimal estimation of temperature, revealing the tight connection between statistical inference and Terrell Hill&#39;s nanothermodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03927v2-abstract-full').style.display = 'none'; document.getElementById('2501.03927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03319">arXiv:2501.03319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03319">pdf</a>, <a href="https://arxiv.org/format/2501.03319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+G">Guanghui He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">Ruotian Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhipan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jeonghoon Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tongxie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riofrio%2C+A+L">Ariana L. Riofrio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rehfuss%2C+Z">Zachary Rehfuss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+C">Changyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poirier%2C+T">Thomas Poirier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+B">Bingtian Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edgar%2C+J+H">James H. Edgar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shixiong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N+Y">Norman Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zu%2C+C">Chong Zu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03319v1-abstract-short" style="display: inline;"> Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03319v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03319v1-abstract-full" style="display: none;"> Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional spectroscopy techniques. In this work, we integrate optical spin defects within a thin layer of two-dimensional (2D) materials directly into the high-pressure chamber, enabling an in situ quantum sensing platform for mapping local stress and magnetic environments up to 4~GPa. Compared to nitrogen-vacancy (NV) centers embedded in diamond anvils, our 2D sensors exhibit around three times stronger response to local stress and provide nanoscale proximity to the target sample in heterogeneous devices. We showcase the versatility of our approach by imaging both stress gradients within the high-pressure chamber and a pressure-driven magnetic phase transition in a room-temperature self-intercalated van der Waals ferromagnet, Cr$_{1+未}$Te$_2$. Our work demonstrates an integrated quantum sensing device for high-pressure experiments, offering potential applications in probing pressure-induced phenomena such as superconductivity, magnetism, and mechanical deformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03319v1-abstract-full').style.display = 'none'; document.getElementById('2501.03319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02801">arXiv:2501.02801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02801">pdf</a>, <a href="https://arxiv.org/format/2501.02801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Polarization-induced Quantum Spin Hall Insulator and Topological Devices in InAs Quantum Wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+C">Chenhao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02801v1-abstract-short" style="display: inline;"> In this work, we predict the emergence of a quantum spin Hall insulator (QSHI) in conventional semiconductors, specifically InAs quantum wells, driven by a built-in polarization field. We propose QSHI InAs quantum wells as a platform to engineer topological field effect devices. More precisely, we first present a novel topological logic device that operates without a topological phase transition.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02801v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02801v1-abstract-full" style="display: none;"> In this work, we predict the emergence of a quantum spin Hall insulator (QSHI) in conventional semiconductors, specifically InAs quantum wells, driven by a built-in polarization field. We propose QSHI InAs quantum wells as a platform to engineer topological field effect devices. More precisely, we first present a novel topological logic device that operates without a topological phase transition. Subsequently, we design a high-performance topological transistor due to the presence of edge states. Our approach provides a potential framework for harnessing the unique features of QSHI in device design, paving the way for future topological devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02801v1-abstract-full').style.display = 'none'; document.getElementById('2501.02801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00524">arXiv:2501.00524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00524">pdf</a>, <a href="https://arxiv.org/format/2501.00524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal Induced Structural Competitiveness and Metastability of Body-centered Cubic Iron under Non-Equilibrium Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panjwani%2C+A">Aliza Panjwani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+P">Penghao Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+M">Maitrayee Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ping%2C+Y">Yuan Ping</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S+X">S. X. Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00524v1-abstract-short" style="display: inline;"> The structure and stability of iron near melting at multi-megabar pressures are of significant interest in high pressure physics and earth and planetary sciences. While the body-centered cubic (BCC) phase is generally recognized as unstable at lower temperatures, its stability relative to the hexagonal close-packed (HCP) phase at high temperatures (approximately 0.5 eV) in the Earth&#39;s inner core (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00524v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00524v1-abstract-full" style="display: none;"> The structure and stability of iron near melting at multi-megabar pressures are of significant interest in high pressure physics and earth and planetary sciences. While the body-centered cubic (BCC) phase is generally recognized as unstable at lower temperatures, its stability relative to the hexagonal close-packed (HCP) phase at high temperatures (approximately 0.5 eV) in the Earth&#39;s inner core (IC) remains a topic of ongoing theoretical and experimental debate. Our ab initio calculations show a significant drop in energy, the emergence of a plateau and a local minimum in the potential energy surface, and stabilization of all phonon modes at elevated electron temperatures (&gt;1-1.5 eV). These effects increase the competition among the BCC, HCP, and the face-centered cubic (FCC) phases and lead to the metastability of the BCC structure. Furthermore, the thermodynamic stability of BCC iron is enhanced by its substantial lattice vibration entropy. This thermally induced structural competitiveness and metastability under non-equilibrium conditions provide a clear theoretical framework for understanding iron phase relations and solidification processes, both experimentally and in the IC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00524v1-abstract-full').style.display = 'none'; document.getElementById('2501.00524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20055">arXiv:2412.20055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20055">pdf</a>, <a href="https://arxiv.org/format/2412.20055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> An Addressable and Tunable Module for Donor-based Scalable Silicon Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Peihao Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20055v1-abstract-short" style="display: inline;"> Donor-based spin qubit offers a promising silicon quantum computing route for building large-scale qubit arrays, attributed to its long coherence time and advancements in nanoscale donor placement. However, the state-of-the-art device designs face scalability challenges, notably in achieving tunable two-qubit coupling and ensuring qubit addressability. Here, we propose a surface-code-compatible ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20055v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20055v1-abstract-full" style="display: none;"> Donor-based spin qubit offers a promising silicon quantum computing route for building large-scale qubit arrays, attributed to its long coherence time and advancements in nanoscale donor placement. However, the state-of-the-art device designs face scalability challenges, notably in achieving tunable two-qubit coupling and ensuring qubit addressability. Here, we propose a surface-code-compatible architecture, where each module has both tunable two-qubit gates and addressable single-qubit gates by introducing only a single extra donor in a pair of donors. We found that to compromise between the requirement of tunability and that of addressability, an asymmetric scheme is necessary. In this scheme, the introduced extra donor is strongly tunnel-coupled to one of the donor spin qubits for addressable single-qubit operation, while being more weakly coupled to the other to ensure the turning on and off of the two-qubit operation. The fidelity of single-qubit and two-qubit gates can exceed the fault-tolerant threshold in our design. Additionally, the asymmetric scheme effectively mitigates valley oscillations, allowing for engineering precision tolerances up to a few nanometers. Thus, our proposed scheme presents a promising prototype for large-scale, fault-tolerant, donor-based spin quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20055v1-abstract-full').style.display = 'none'; document.getElementById('2412.20055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19222">arXiv:2412.19222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19222">pdf</a>, <a href="https://arxiv.org/format/2412.19222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The light-matter correlation energy functional of the cavity-coupled two-dimensional electron gas via quantum Monte Carlo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+L">Lukas Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+M+A">Miguel A. Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flick%2C+J">Johannes Flick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19222v1-abstract-short" style="display: inline;"> We perform extensive simulations of the two-dimensional cavity-coupled electron gas in a modulating potential as a minimal model for cavity quantum materials. These simulations are enabled by a newly developed quantum-electrodynamical (QED) auxiliary-field quantum Monte Carlo method. We present a procedure to greatly reduce finite-size effects in such calculations. Based on our results, we show th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19222v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19222v1-abstract-full" style="display: none;"> We perform extensive simulations of the two-dimensional cavity-coupled electron gas in a modulating potential as a minimal model for cavity quantum materials. These simulations are enabled by a newly developed quantum-electrodynamical (QED) auxiliary-field quantum Monte Carlo method. We present a procedure to greatly reduce finite-size effects in such calculations. Based on our results, we show that a modified version of weak-coupling perturbation theory is remarkably accurate for a large parameter region. We further provide a simple parameterization of the light-matter correlation energy as a functional of the cavity parameters and the electronic density. These results provide a numerical foundation for the development of the QED density functional theory, which was previously reliant on analytical approximations, to allow quantitative modeling of a wide range of systems with light-matter coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19222v1-abstract-full').style.display = 'none'; document.getElementById('2412.19222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18878">arXiv:2412.18878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18878">pdf</a>, <a href="https://arxiv.org/format/2412.18878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic tuning of ENZ wavelength in conductive polymer films via polaron excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjun Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+M">Menghui Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+C">Chengcan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sanjun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Hui Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Heping Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18878v1-abstract-short" style="display: inline;"> Traditional metal and n-type doped semiconductor materials serve as emerging epsilon-near-zero (ENZ) materials, showcasing great potential for nonlinear photonic applications. However, a significant limitation for such materials is the lack of versatile ENZ wavelength tuning, and thus dynamic tuning of the ENZ wavelength remains a technical challenge, thereby restricting their potential applicatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18878v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18878v1-abstract-full" style="display: none;"> Traditional metal and n-type doped semiconductor materials serve as emerging epsilon-near-zero (ENZ) materials, showcasing great potential for nonlinear photonic applications. However, a significant limitation for such materials is the lack of versatile ENZ wavelength tuning, and thus dynamic tuning of the ENZ wavelength remains a technical challenge, thereby restricting their potential applications, such as multi-band communications. Here, dynamic tuning of the ENZ wavelength in p-type organic PEDOT: PSS films is achieved through a reversible change in hole concentrations originated from the polaron formation/decoupling following optical excitation, and a tunable ENZ wavelength shift up to 150 nm is observed. Experimental investigations about ultrafast dynamics of polaron excitation reveal an approximately 80 fs time constant for polaron buildup and an approximately 280 fs time constant for polaron decoupling, indicating the potential of reversal ultrafast switching for the ENZ wavelength within subpicosecond time scale. These findings suggest that $p$--type organic semiconductors can serve as a novel platform for dynamically tuning the ENZ wavelength through polaron excitation, opening new possibilities for ENZ--based nonlinear optical applications in flexible optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18878v1-abstract-full').style.display = 'none'; document.getElementById('2412.18878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17208">arXiv:2412.17208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17208">pdf</a>, <a href="https://arxiv.org/format/2412.17208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Local symmetries and extensive ground-state degeneracy of a 1D supersymmetric fermionic chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sukeno%2C+H">Hiroki Sukeno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+K">Kazuki Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+T">Tzu-Chieh Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17208v1-abstract-short" style="display: inline;"> We study a $1$D supersymmetric (SUSY) hard-core fermion model first proposed by Fendley, Schoutens, and de Boer [Phys. Rev. Lett. 90, 120402 (2003)]. We focus on the full Hilbert space instead of a restricted subspace. Exact diagonalization shows the degeneracy of zero-energy states scales exponentially with size of the system, with a recurrence relation between different system sizes. We solve th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17208v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17208v1-abstract-full" style="display: none;"> We study a $1$D supersymmetric (SUSY) hard-core fermion model first proposed by Fendley, Schoutens, and de Boer [Phys. Rev. Lett. 90, 120402 (2003)]. We focus on the full Hilbert space instead of a restricted subspace. Exact diagonalization shows the degeneracy of zero-energy states scales exponentially with size of the system, with a recurrence relation between different system sizes. We solve the degeneracy problem by showing the ground states can be systematically constructed by inserting immobile walls of fermions into the chain. Mapping the counting problem to a combinatorial one and obtaining the exact generating function, we prove the recurrence relation on both open and periodic chains. We also provide an explicit mapping between ground states, giving a combinatorial explanation of the recurrence relation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17208v1-abstract-full').style.display = 'none'; document.getElementById('2412.17208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16998">arXiv:2412.16998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16998">pdf</a>, <a href="https://arxiv.org/format/2412.16998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.L041117">10.1103/PhysRevB.111.L041117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion insulator, Weyl points, quantum anomalous Hall effect and magnetic topological phase transition in Eu3In2As4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Jingyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16998v1-abstract-short" style="display: inline;"> The magnetic topological phases attract much interest, such as the axion insulator, higher-order topology, Weyl semimetals, and the quantum anomalous Hall effect (QAHE). Here, we predict that the axion insulator phase, magnetic Weyl points, and QAHE can be achieved in Eu3In2As4. Recently, the single-crystal Eu3In2As4 has been successfully synthesized, which exhibits an antiferromagnetic (AFM) grou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16998v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16998v1-abstract-full" style="display: none;"> The magnetic topological phases attract much interest, such as the axion insulator, higher-order topology, Weyl semimetals, and the quantum anomalous Hall effect (QAHE). Here, we predict that the axion insulator phase, magnetic Weyl points, and QAHE can be achieved in Eu3In2As4. Recently, the single-crystal Eu3In2As4 has been successfully synthesized, which exhibits an antiferromagnetic (AFM) ground state. Our first-principles calculations show that it lies on the phase boundary between multiple magnetic topological phases, and the magnetic anisotropy is weak, with an energy difference less than 1 meV. In the AFM state, it can be tuned to an axion insulator by tensile strain. The quantized axion angle $胃= 蟺$ and the magnetic higher-order topology are characterized by the parity index $Z_4 = 2$. By applying an external magnetic field, the induced ferromagnetic (FM) state becomes an ideal magnetic topological semimetal with a single pair of Weyl points or a nodal ring. The QAHE can be achieved in FM multilayer films of Eu3In2As4 on a magnetic insulating substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16998v1-abstract-full').style.display = 'none'; document.getElementById('2412.16998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, submitted. The experimental results can be found in arXiv:2403:07637 (2024)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, L041117 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15001">arXiv:2412.15001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15001">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of liquid-solid transition of nanoconfined water at ambient temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wentian Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jian Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yipeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+R">Rainer St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denisenko%2C+A">Andrej Denisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wrachtrup%2C+J">J枚rg Wrachtrup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X+C">Xiao Cheng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+K">Ke Bian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+E">En-Ge Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15001v1-abstract-short" style="display: inline;"> Nanoconfined water plays an indispensable role in various phenomena in biology, chemistry, and engineering. It exhibits many abnormal properties compared to bulk water, especially under strong confinement. However, the origin of those anomalies is still elusive due to the lack of structural information on hydrogen-bonding networks. Considering the inhomogeneity of the nanocavity and the tiny amoun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15001v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15001v1-abstract-full" style="display: none;"> Nanoconfined water plays an indispensable role in various phenomena in biology, chemistry, and engineering. It exhibits many abnormal properties compared to bulk water, especially under strong confinement. However, the origin of those anomalies is still elusive due to the lack of structural information on hydrogen-bonding networks. Considering the inhomogeneity of the nanocavity and the tiny amount of water molecules, conventional optical spectroscopies and nuclear magnetic resonance (NMR) fail to realize the structure analysis of nanoconfined water. Here, we addressed this issue by combining scanning probe microscopy (SPM) with advanced quantum sensing(QS) based on an atomic-size quantum sensor like nitrogen-vacancy (NV) center in diamond, which can apply the nanoscale-NMR for characterizing both the dynamics and structure of confined water at ambient conditions. We built a two-dimensional (2D) nanoconfined water system with a hexagonal-boron nitride (hBN) flake and a hydrophilic diamond surface. By using the SPM tip to measure the confinement size precisely, we observed a critical confinement size of ~2 nm, below which the water diffusion was significantly suppressed and the hydrogen-bonding network of water showed an ordered structure. Meanwhile, molecular dynamics (MD) simulation revealed a solid-like water contact layer on the diamond surface under strong confinement, which also reproduced the measured nanoscale-NMR spectra and confirmed the liquid-solid phase transition observed in the experiments. Notably, with this new SPM-QS platform, our results showed a promising way to elucidate the abnormal properties of nanoconfined water in future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15001v1-abstract-full').style.display = 'none'; document.getElementById('2412.15001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13927">arXiv:2412.13927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13927">pdf</a>, <a href="https://arxiv.org/format/2412.13927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coulomb Drag in Altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hao-Jie Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Song-Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13927v1-abstract-short" style="display: inline;"> Altermagnet is a newly discovered antiferromagnet, characterized by unique anisotropic spin-split energy bands. It has attracted tremendous interest, because of its promising potential in information storage and processing. However, measuring the distinctive spin-split energy bands arising from altermagnetism remains a challenge. Here, we propose to employ the Coulomb drag to probe altermagnetism.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13927v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13927v1-abstract-full" style="display: none;"> Altermagnet is a newly discovered antiferromagnet, characterized by unique anisotropic spin-split energy bands. It has attracted tremendous interest, because of its promising potential in information storage and processing. However, measuring the distinctive spin-split energy bands arising from altermagnetism remains a challenge. Here, we propose to employ the Coulomb drag to probe altermagnetism. In the Coulomb drag, an electric current in an active layer of electron gases can induce currents in a close but well-isolated passive layer, due to interlayer Coulomb interactions. We find that the Coulomb drag effects in altermagnets are highly sensitive to the orientation of the spin-split Fermi surfaces. As a result, transverse currents can be dragged in the passive layer, leading to Hall drag effects even in absence of spin-orbit coupling, a feature quite different from all previous systems. More importantly, all the drag effects of altermagnets have unique angle dependence, which can be measured in a multi-terminal setup to serve as signatures for altermagnetism. This proposal will inspire increasing explorations on emergent magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13927v1-abstract-full').style.display = 'none'; document.getElementById('2412.13927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+2 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12263">arXiv:2412.12263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12263">pdf</a>, <a href="https://arxiv.org/ps/2412.12263">ps</a>, <a href="https://arxiv.org/format/2412.12263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Scaling Behavior of Magnetoresistance and Hall Resistivity in Altermagnet CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuzhi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengnan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuran Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yahui Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chunxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tingyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinhu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jianhua Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhiwei Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M">Minghu Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12263v1-abstract-short" style="display: inline;"> The discovery of altermagnet (AM) marks a significant advancement in magnetic materials, combining characteristics of both ferromagnetism and antiferromagnetism. In this Letter, we focus on CrSb, which has been verified to be an AM and to exhibit substantial spin splitting near the Fermi level. After successfully growing high-quality CrSb single crystals, we performed comprehensive magnetization,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12263v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12263v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12263v1-abstract-full" style="display: none;"> The discovery of altermagnet (AM) marks a significant advancement in magnetic materials, combining characteristics of both ferromagnetism and antiferromagnetism. In this Letter, we focus on CrSb, which has been verified to be an AM and to exhibit substantial spin splitting near the Fermi level. After successfully growing high-quality CrSb single crystals, we performed comprehensive magnetization, magnetoresistance (MR), and Hall resistivity measurements, along with the electronic structure, and Fermi surface (FS) calculations, as well as the magneto-transport property numerical simulations. An antiferromagnetic transition occurring at $T_{N}$ = 712 K was reconfirmed. It was found that both experimental MR and Hall resistivity are consistent with the numerical simulation results, and exhibit obvious scaling behavior. The nonlinear Hall resistivity is due to its multi-band structure, rather than an anomalous Hall effect (AHE). Especially, the scaling behavior in Hall resistivity is first observed within an AM material. These findings demonstrate that the magneto-transport properties in CrSb originate from the intrinsic electronic structure and are dominated by the Lorentz force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12263v1-abstract-full').style.display = 'none'; document.getElementById('2412.12263v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12258">arXiv:2412.12258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12258">pdf</a>, <a href="https://arxiv.org/ps/2412.12258">ps</a>, <a href="https://arxiv.org/format/2412.12258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal Scaling Behavior of Transport Properties in Non-Magnetic RuO$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhihao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengnan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuran Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yahui Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chunxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tingyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yazhou Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinhu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuke Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jianhua Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhiwei Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M">Minghu Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12258v1-abstract-short" style="display: inline;"> As a prototypical altermagnet, RuO$_{2}$ has been subject to many controversial reports regarding its magnetic ground state and the existence of crystal Hall effects. We obtained high-quality RuO$_{2}$ single crystal with a residual resistivity ratio (RRR = 152), and carefully measured its magnetization, longitudinal resistivity ($蟻_{xx}$) and Hall resistivity ($蟻_{yx}$) up to 35 T magnetic field.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12258v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12258v1-abstract-full" style="display: none;"> As a prototypical altermagnet, RuO$_{2}$ has been subject to many controversial reports regarding its magnetic ground state and the existence of crystal Hall effects. We obtained high-quality RuO$_{2}$ single crystal with a residual resistivity ratio (RRR = 152), and carefully measured its magnetization, longitudinal resistivity ($蟻_{xx}$) and Hall resistivity ($蟻_{yx}$) up to 35 T magnetic field. We also calculated its electronic band, Fermi surface, and conducted numerical simulations for its transport properties. It was found that no magnetic transition occurs below 400 K, and that all the transport properties are consistent with the numerical simulations results, indicating that the magnetotransport properties originate from the intrinsic electronic structures and are dominated by the Lorentz force. Particularly, no crystal Hall effects were observed in our RuO$_{2}$ samples and both magnetoresistance and Hall resistivity follow scaling behavior. These results demonstrate that RuO$_{2}$ is a typical semimetal, rather than an altermagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12258v1-abstract-full').style.display = 'none'; document.getElementById('2412.12258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08043">arXiv:2412.08043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08043">pdf</a>, <a href="https://arxiv.org/ps/2412.08043">ps</a>, <a href="https://arxiv.org/format/2412.08043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> YbNi$_4$Mg: Superheavy fermion with enhanced Wilson ratio and magnetocaloric effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoci Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Te Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Z">Zhaotong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+Z">Zixuan Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zixuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+J">Junsen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peijie Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08043v1-abstract-short" style="display: inline;"> A comprehensive study of the low-temperature properties of YbNi$_4$Mg has revealed evidence of a superheavy-fermion state, characterized by a large electronic specific-heat coefficient $纬_0$ $\approx$ 5.65 J mol$^{-1}$ K$^{-2}$ and an elevated Wilson ratio $R_W$ = 32.1. No magnetic ordering was observed down to 70 mK; however, a broad maximum appears in the specific heat at $T^*$ = 0.3 K, along wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08043v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08043v1-abstract-full" style="display: none;"> A comprehensive study of the low-temperature properties of YbNi$_4$Mg has revealed evidence of a superheavy-fermion state, characterized by a large electronic specific-heat coefficient $纬_0$ $\approx$ 5.65 J mol$^{-1}$ K$^{-2}$ and an elevated Wilson ratio $R_W$ = 32.1. No magnetic ordering was observed down to 70 mK; however, a broad maximum appears in the specific heat at $T^*$ = 0.3 K, along with a shoulder in the derivative of susceptibility d$蠂$/d$T$ and resistivity d$蟻$/d$T$. These features indicate a cooperative yet short-ranged magnetism entwined with the superheavy Fermi liquid. The large Wilson ratio, which is also detected in other superheavy-fermion compounds lacking long-range order, might be a signature of residual spin fluctuations. Applying a weak magnetic field of $\sim$0.1 T induces a metamagnetic-like crossover, as demonstrated by the quasi-adiabatic demagnetization measurements showing a broad minimum in the temperature-field trace. Here, an enhanced magnetocaloric cooling effect stemming from the field-sensitive superheavy-fermion state is observed, rivaling that of the well-established insulating magnetic coolants like the rare-earth garnet Gd$_3$Ga$_5$O$_{12}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08043v1-abstract-full').style.display = 'none'; document.getElementById('2412.08043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06240">arXiv:2412.06240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06240">pdf</a>, <a href="https://arxiv.org/format/2412.06240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Stochastic Heating of a Bose-Einstein Condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao-Qiong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+R">Rui-Lang Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zi-Yao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+C">Chushun Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shizhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hemmerich%2C+A">Andreas Hemmerich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhi-Fang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06240v1-abstract-short" style="display: inline;"> Understanding and controlling non-equilibrium processes at ultralow temperatures are central to quantum physics and technology. In such extreme environments, quantum coherence and dissipation can interact intimately to give rise to intriguing thermalization phenomena. Here, we experimentally and theoretically demonstrate a novel scenario of thermalization in an ultracold atomic system, distinct fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06240v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06240v1-abstract-full" style="display: none;"> Understanding and controlling non-equilibrium processes at ultralow temperatures are central to quantum physics and technology. In such extreme environments, quantum coherence and dissipation can interact intimately to give rise to intriguing thermalization phenomena. Here, we experimentally and theoretically demonstrate a novel scenario of thermalization in an ultracold atomic system, distinct from various quantum thermalization scenarios currently under intense investigations. We observe that after a sudden quench, an atomic Bose-Einstein condensate (BEC) behaves as a rigid body and undergoes a random walk in momentum space due to atom loss and interactions with the surrounding thermal component. Consequently its center of mass degree of freedom gets heated up at a constant rate. This heating mechanism, rooted in random momentum scattering, falls into the paradigm of stochastic heating initiated by Fermi and thoroughly explored in plasma physics, which differs conceptually from the traditional thermal conduction. At longer times, the stochastic heating of the BEC is balanced by forced evaporative cooling, and a Maxwell-Boltzmann distribution is achieved. Our findings offer new perspectives on the non-equilibrium dynamics of open Bose systems at ultralow temperature and quantum thermalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06240v1-abstract-full').style.display = 'none'; document.getElementById('2412.06240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03698">arXiv:2412.03698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03698">pdf</a>, <a href="https://arxiv.org/format/2412.03698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-BCS behavior of the pairing susceptibility near the onset of superconductivity in a quantum-critical metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abanov%2C+A">Artem Abanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shang-Shun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chubukov%2C+A">Andrey Chubukov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03698v1-abstract-short" style="display: inline;"> We analyze the dynamical pairing susceptibility $蠂_{pp} (蠅_m)$ at $T=0$ in a quantum-critical metal, where superconductivity emerges out of a non-Fermi liquid ground state once the pairing interaction exceeds a certain threshold. We obtain $蠂_{pp} (蠅_m)$ as the ratio of the fully dressed dynamical pairing vertex $桅(蠅_m)$ and the bare $桅_0 (蠅_m)$ (both infinitesimally small). For superconductivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03698v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03698v1-abstract-full" style="display: none;"> We analyze the dynamical pairing susceptibility $蠂_{pp} (蠅_m)$ at $T=0$ in a quantum-critical metal, where superconductivity emerges out of a non-Fermi liquid ground state once the pairing interaction exceeds a certain threshold. We obtain $蠂_{pp} (蠅_m)$ as the ratio of the fully dressed dynamical pairing vertex $桅(蠅_m)$ and the bare $桅_0 (蠅_m)$ (both infinitesimally small). For superconductivity out of a Fermi liquid, the pairing susceptibility is positive above $T_c$, diverges at $T_c$, and becomes negative below it. For superconductivity out of a non-Fermi liquid, the behavior of $蠂_{pp} (蠅_m)$ is different in two aspects: (i) it diverges at the onset of pairing at $T=0$ only for a certain subclass of bare $桅_0 (蠅_m)$ and remains non-singular for other $桅_0 (蠅_m)$, and (ii) below the instability, it becomes a non-unique function of a continuous parameter $蠁$ for an arbitrary $桅_0 (蠅_m)$. The susceptibility is negative in some range of $蠁$ and diverges at the boundary of this range. We argue that this behavior of the susceptibility reflects a multi-critical nature of a superconducting transition in a quantum-critical metal when immediately below the instability an infinite number of superconducting states emerges simultaneously with different amplitudes of the order parameter down to an infinitesimally small one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03698v1-abstract-full').style.display = 'none'; document.getElementById('2412.03698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18921">arXiv:2411.18921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18921">pdf</a>, <a href="https://arxiv.org/format/2411.18921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Effective temperature in approximate quantum many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Qin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shi-Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18921v1-abstract-short" style="display: inline;"> In the pursuit of numerically identifying the ground state of quantum many-body systems, approximate quantum wavefunction ansatzes are commonly employed. This study focuses on the spectral decomposition of these approximate quantum many-body states into exact eigenstates of the target Hamiltonian. The energy spectral decomposition could reflect the intricate physics at the interplay between quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18921v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18921v1-abstract-full" style="display: none;"> In the pursuit of numerically identifying the ground state of quantum many-body systems, approximate quantum wavefunction ansatzes are commonly employed. This study focuses on the spectral decomposition of these approximate quantum many-body states into exact eigenstates of the target Hamiltonian. The energy spectral decomposition could reflect the intricate physics at the interplay between quantum systems and numerical algorithms. Here we examine various parameterized wavefunction ansatzes constructed from neural networks, tensor networks, and quantum circuits, employing differentiable programming to numerically approximate ground states and imaginary-time evolved states. Our findings reveal a consistent exponential decay pattern in the spectral contributions of approximate quantum states across different ansatzes, optimization objectives, and quantum systems, characterized by small decay rates denoted as inverse effective temperatures. The effective temperature is related to ansatz expressiveness and accuracy and shows phase transition behaviors in learning imaginary-time evolved states. The universal picture and unique features suggest the significance and potential of the effective temperature in characterizing approximate quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18921v1-abstract-full').style.display = 'none'; document.getElementById('2411.18921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures with supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18022">arXiv:2411.18022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18022">pdf</a>, <a href="https://arxiv.org/format/2411.18022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Persistent breather and dynamical symmetry in a unitary Fermi gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+D">Dali Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+J">Jing Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiangchuan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xizhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maki%2C+J">Jeff Maki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shizhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shi-Guo Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kaijun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18022v1-abstract-short" style="display: inline;"> SO(2,1) dynamical symmetry makes a remarkable prediction that the breathing oscillation of a scale invariant quantum gas in an isotropic harmonic trap is isentropic and can persist indefinitely. In 2D, this symmetry is broken due to quantum anomaly in the strongly interacting range, and consequently the lifetime of the breathing mode becomes finite. The persistent breather in a strongly interactin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18022v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18022v1-abstract-full" style="display: none;"> SO(2,1) dynamical symmetry makes a remarkable prediction that the breathing oscillation of a scale invariant quantum gas in an isotropic harmonic trap is isentropic and can persist indefinitely. In 2D, this symmetry is broken due to quantum anomaly in the strongly interacting range, and consequently the lifetime of the breathing mode becomes finite. The persistent breather in a strongly interacting system has so far not been realized. Here we experimentally achieve the long-lived breathing mode in a 3D unitary Fermi gas, which is protected by the SO(2,1) symmetry. The nearly perfect SO(2,1) symmetry is realized by loading the ultracold Fermi gas in an isotropic trap and tuning the interatomic interaction to resonance. The breathing mode oscillates at twice the trapping frequency even for large excitation amplitudes. The ratio of damping rate to oscillation frequency is as small as 0.002, providing an interacting persistent breather. The oscillation frequency and damping rate keep nearly constant for different atomic densities and temperatures, demonstrating the robustness of the SO(2,1) symmetry in 3D. The factors that lead to the residual damping have also been clarified. This work opens the way to study many-body non-equilibrium dynamics related to the dynamical symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18022v1-abstract-full').style.display = 'none'; document.getElementById('2411.18022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15221">arXiv:2411.15221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15221">pdf</a>, <a href="https://arxiv.org/format/2411.15221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+Y">Yoel Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bazgir%2C+A">Adib Bazgir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afzal%2C+Z">Zartashia Afzal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agbere%2C+F">Fariha Agbere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+Q">Qianxiang Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alampara%2C+N">Nawaf Alampara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Feghali%2C+A">Alexander Al-Feghali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansari%2C+M">Mehrad Ansari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antypov%2C+D">Dmytro Antypov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswad%2C+A">Amro Aswad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+J">Jiaru Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baibakova%2C+V">Viktoriia Baibakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswajeet%2C+D+D">Devi Dutta Biswajeet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bitzek%2C+E">Erik Bitzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bocarsly%2C+J+D">Joshua D. Bocarsly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisova%2C+A">Anna Borisova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bran%2C+A+M">Andres M Bran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brinson%2C+L+C">L. Catherine Brinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calderon%2C+M+M">Marcel Moran Calderon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canalicchio%2C+A">Alessandro Canalicchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+V">Victor Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+Y">Yuan Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Circi%2C+D">Defne Circi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Charmes%2C+B">Benjamin Charmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaudhary%2C+V">Vikrant Chaudhary</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15221v2-abstract-short" style="display: inline;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'inline'; document.getElementById('2411.15221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15221v2-abstract-full" style="display: none;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year&#39;s hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'none'; document.getElementById('2411.15221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updating author information, the submission remains largely unchanged. 98 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14113">arXiv:2411.14113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14113">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Promoting and imaging intervalley coherent order in rhombohedral tetralayer graphene on MoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+W">Wei-Yu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wen-Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+L">Ling-Hui Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenjia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+H">Hao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuanyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lijie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+Z">Zhihui Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+L">Long-Jing Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14113v1-abstract-short" style="display: inline;"> Multilayer rhombohedral graphene (RG) has recently emerged as a new, structurally simple flat-band system, which facilitates the exploration of interaction-driven correlation states with highly ordered electron arrangements. Despite a variety of many-body order behaviors observed in RG by transport measurements, the direct microscopic visualization of such correlated phases in real space is still&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14113v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14113v1-abstract-full" style="display: none;"> Multilayer rhombohedral graphene (RG) has recently emerged as a new, structurally simple flat-band system, which facilitates the exploration of interaction-driven correlation states with highly ordered electron arrangements. Despite a variety of many-body order behaviors observed in RG by transport measurements, the direct microscopic visualization of such correlated phases in real space is still lacking. Here, we show the discovery of a robust intervalley coherent order, a long-predicted ground state in RG, at 77 K in tetralayer RG placed on MoS2 via imaging atomic-scale spatial reconstruction of wave functions for correlated states. By using scanning tunnelling microscopy, we observe spectroscopic signatures of electronic correlations at partially filled flat bands, where distinct splitting appears. At ~60% and ~70% fillings of the flat bands, we visualize atomic-scale reconstruction patterns with a &lt;sqrt&gt;3 x &lt;sqrt&gt;3 supercell on graphene lattice at liquid nitrogen temperature, which indicates a robust intervalley coherent phase of the interacting electrons. The &lt;sqrt&gt;3 x &lt;sqrt&gt;3 pattern is observed in MoS2-supported RG, while it is absent in hBN-based ones under the same experimental conditions, suggesting the significant influence of spin-orbit proximity effect. Our results provide microscopic insights into the correlated phases in tetralayer RG and highlight the significant potential for realizing highly accessible collective phenomena through Van der Waals proximity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14113v1-abstract-full').style.display = 'none'; document.getElementById('2411.14113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11359">arXiv:2411.11359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thickness-dependent Topological Phases and Flat Bands in Rhombohedral Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H+B">H. B. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">X. Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+H">S. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M+Z">M. Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Q. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">M. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F+Y">F. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+P">J. P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+B">Z. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K+H">K. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11359v2-abstract-short" style="display: inline;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk rem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11359v2-abstract-full" style="display: none;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk remains elusive. Using state-of-the-art angle-resolved photoemission spectroscopy with submicron spatial resolution, we directly probe and trace the thickness evolution of the topological electronic structures of rhombohedral multilayer graphene. As the layer number increases, the gapped subbands transform into the 3D Dirac nodes that spirals in the momentum space; while the flatbands are constantly observed around Fermi level, and eventually evolve into the topological drumhead surface states. This unique thickness-dependent topological phase transition can be well captured by the 3D generalization of 1D Su-Schrieffer-Heeger chain in thin layers, to the topological Dirac nodal spiral semimetal in the bulk limit. Our findings establish a solid foundation for exploring the exotic quantum phases with nontrivial topology and correlation effects in rhombohedral multilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'none'; document.getElementById('2411.11359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, under review. A note added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10147">arXiv:2411.10147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10147">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous-Hall Neel textures in altermagnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mengmeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianhui Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10147v2-abstract-short" style="display: inline;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v2-abstract-full').style.display = 'inline'; document.getElementById('2411.10147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10147v2-abstract-full" style="display: none;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferromagnets. In spite of being a crucial aspect in AHE research, the relationship between the AHE and the N茅el vector remains largely elusive. Here, we propose a powerful &#34;extrinsic parameter&#34; method and further reveal diverse unconventional anomalous Hall textures in the N茅el vector space, dubbed anomalous-Hall N茅el textures (AHNTs) for altermagnets. Notably, we find that AHNTs resemble the spin textures in momentum space, and further reveal their symmetry origin. We identify 10 types across four categories of AHNTs in altermagnets. Meanwhile, we examine our key discoveries in prototypical altermagnets. Our work offers a complete classification of AHNTs and a thorough understanding of AHE in altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v2-abstract-full').style.display = 'none'; document.getElementById('2411.10147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10131">arXiv:2411.10131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10131">pdf</a>, <a href="https://arxiv.org/format/2411.10131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonresonant Raman control of material phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jiaojian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heide%2C+C">Christian Heide</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Haowei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yuejun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guzelturk%2C+B">Burak Guzelturk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henstridge%2C+M">Meredith Henstridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6n%2C+C+F">Carl Friedrich Sch枚n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangu%2C+A">Anudeep Mangu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+Y">Yuki Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xinyue Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shangjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">Andrew F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+P+D">Pooja Donthi Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shautsova%2C+V">Viktoryia Shautsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taghinejad%2C+M">Mohammad Taghinejad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+D">Duan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+E">Eamonn Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brongersma%2C+M+L">Mark L. Brongersma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+K">Kunal Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trigo%2C+M">Mariano Trigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinz%2C+T+F">Tony F. Heinz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Ju Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldini%2C+E">Edoardo Baldini</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10131v1-abstract-short" style="display: inline;"> Important advances have recently been made in the search for materials with complex multi-phase landscapes that host photoinduced metastable collective states with exotic functionalities. In almost all cases so far, the desired phases are accessed by exploiting light-matter interactions via the imaginary part of the dielectric function through above-bandgap or resonant mode excitation. Nonresonant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10131v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10131v1-abstract-full" style="display: none;"> Important advances have recently been made in the search for materials with complex multi-phase landscapes that host photoinduced metastable collective states with exotic functionalities. In almost all cases so far, the desired phases are accessed by exploiting light-matter interactions via the imaginary part of the dielectric function through above-bandgap or resonant mode excitation. Nonresonant Raman excitation of coherent modes has been experimentally observed and proposed for dynamic material control, but the resulting atomic excursion has been limited to perturbative levels. Here, we demonstrate that it is possible to overcome this challenge by employing nonresonant ultrashort pulses with low photon energies well below the bandgap. Using mid-infrared pulses, we induce ferroelectric reversal in lithium niobate and phase switching in tin selenide and characterize the large-amplitude mode displacements through femtosecond Raman scattering, second harmonic generation, and x-ray diffraction. This approach, validated by first-principle calculations, defines a novel method for synthesizing hidden phases with unique functional properties and manipulating complex energy landscapes at reduced energy consumption and ultrafast speeds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10131v1-abstract-full').style.display = 'none'; document.getElementById('2411.10131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10