CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,144 results for author: <span class="mathjax">Li, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Li%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18067">arXiv:2502.18067</a> <span> [<a href="https://arxiv.org/pdf/2502.18067">pdf</a>, <a href="https://arxiv.org/format/2502.18067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Topology Design of Reconffgurable Intelligent Surfaces Based on Current Distribution and Otsu Image Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Junhui Qiu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Lijie Wu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+W+W">Wan Wan Cao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ren Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+N">Jia Nan Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Q">Qiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18067v1-abstract-short" style="display: inline;"> Miniaturization of reconffgurable intelligent surface RIS) elements is a crucial trend in the development of RISs. It not only facilitates the attainment of multifunctional integration but also promotes seamless amalgamation with other elements. The current on the RIS element plays a crucial role in determining the characteristics of the induced electromagnetic ffeld components. Segments with high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18067v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18067v1-abstract-full" style="display: none;"> Miniaturization of reconffgurable intelligent surface RIS) elements is a crucial trend in the development of RISs. It not only facilitates the attainment of multifunctional integration but also promotes seamless amalgamation with other elements. The current on the RIS element plays a crucial role in determining the characteristics of the induced electromagnetic ffeld components. Segments with high current intensity determine the performance of RIS elements. Carving the parts with strong current distribution density into the metal patch of RIS element structure can achieve miniaturization. Based on this insight, this work proposes a topology design method that leverages current distribution and image processing techniques to achieve efffcient miniaturization of the RIS elements. In this proposed method, we ffrst obtain the current distribution across different operational states and the period of the working frequency. Next, we employ the Otsu image segmentation method to extract relevant image information from the current distribution images of the RIS elements. Subsequently, we utilize linear mapping techniques to convert this image information into the structure of RIS elements. Then, based on the structure of the RIS elements, the Quasi-Newton optimization algorithm is utilized to obtain the parameters of the tunable device that correspond to various operational states. As a result, we successfully construct the structural topology of the RIS elements based on their current distribution, designing areas with strong current distribution as metal patches. To validate the performance of the proposed method, a 16 by 16 3-bit RIS was developed, fabricated and measured. Compared with existing RIS designs, the proportion of the top-layer metal patches is smaller, which provides the possibility for integrating other functions and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18067v1-abstract-full').style.display = 'none'; document.getElementById('2502.18067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18039">arXiv:2502.18039</a> <span> [<a href="https://arxiv.org/pdf/2502.18039">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Investigation of Tunable Structured Light Using Bilayer Parity-Time Symmetry Dammann Grating Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xiang Cai</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zhiwei Shi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Z">Zhen Yao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huagang Li</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yaohua Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18039v1-abstract-short" style="display: inline;"> In the current technological landscape, structured light technology holds a critically important position. However, traditional structured light optical components often require complex systems and extensive resources for application, and they function in a fixed manner. This study takes this challenge as an opportunity to design a novel dynamically tunable double-layer Dammann grating (DG) metasu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18039v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18039v1-abstract-full" style="display: none;"> In the current technological landscape, structured light technology holds a critically important position. However, traditional structured light optical components often require complex systems and extensive resources for application, and they function in a fixed manner. This study takes this challenge as an opportunity to design a novel dynamically tunable double-layer Dammann grating (DG) metasurface. During the research, we developed a double-layer DG metasurface structure using silica as the substrate and lithium niobate (LiNbO3, LN) as the nanocolumn material. By specifically introducing parity-time (PT) symmetry, we designed three distinct states, combined with rotational transformations leveraging the Moir茅 effect. Further investigations revealed that for metasurfaces with different radius combinations, changes in rotation and PT symmetry states resulted in significant variations in the shape, position, and intensity of the diffraction spots, alongside changes in conversion efficiency and contrast ratio. This study thoroughly and comprehensively unveils the significant impacts of rotational transformations, PT symmetry, and radius combination on the optical characteristics of double-layer DG metasurfaces, providing a new method for the design of dynamic tunable optical components with structured light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18039v1-abstract-full').style.display = 'none'; document.getElementById('2502.18039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15837">arXiv:2502.15837</a> <span> [<a href="https://arxiv.org/pdf/2502.15837">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reviving networked multi-dimensional dynamical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+N">Nan Dong</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+A">An Zeng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Honggang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15837v1-abstract-short" style="display: inline;"> From gene regulatory networks to mutualistic networks, controlling a single node in the network topology can transform these complex dynamical systems from undesirable states to desirable ones. Corresponding methods have been well-studied in one-dimensional dynamical systems. However, many practical dynamical systems require description by multi-dimensional dynamical systems, such as the mutualist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15837v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15837v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15837v1-abstract-full" style="display: none;"> From gene regulatory networks to mutualistic networks, controlling a single node in the network topology can transform these complex dynamical systems from undesirable states to desirable ones. Corresponding methods have been well-studied in one-dimensional dynamical systems. However, many practical dynamical systems require description by multi-dimensional dynamical systems, such as the mutualistic symbiotic systems formed by flowering plants and pollinating insects. Existing one-dimensional methods cannot handle the cases of multi-dimensional dynamical systems. Based on this, we propose a method to control a single node to activate network connections in multi-dimensional dynamical systems. In such systems, the changes of each node are described by multiple nonlinear differential equations. All remaining nodes are stratified according to the shortest path to the controlled node, thereby reducing the dimensionality of the system. Such a large-scale dynamical system can ultimately be replaced by a very simple system. By analyzing the reduced-dimensional system, we can predict the extent of control needed to restore the system state. We apply this method to a wide range of fields, achieving activation of various real multidimensional complex dynamical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15837v1-abstract-full').style.display = 'none'; document.getElementById('2502.15837v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14506">arXiv:2502.14506</a> <span> [<a href="https://arxiv.org/pdf/2502.14506">pdf</a>, <a href="https://arxiv.org/format/2502.14506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced dynamo drive for the sawtooth relaxation process due to non-uniform resistivity distribution in a reversed field pinch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+W">Wentan Yan</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wandong Liu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+B">Bing Luo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haolong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14506v1-abstract-short" style="display: inline;"> In this work, we use the three-dimensional resistive MHD code NIMROD to investigate the impact of resistivity inhomogeneity on the sawtooth process of an reversed field pinch (RFP) plasma. The simulation employs a non-uniform resistivity profile similar to experiments, which monotonically increases from the core to the edge as the temperature decreases. The resistivity inhomogeneity introduces an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14506v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14506v1-abstract-full" style="display: none;"> In this work, we use the three-dimensional resistive MHD code NIMROD to investigate the impact of resistivity inhomogeneity on the sawtooth process of an reversed field pinch (RFP) plasma. The simulation employs a non-uniform resistivity profile similar to experiments, which monotonically increases from the core to the edge as the temperature decreases. The resistivity inhomogeneity introduces an additional electric field in the plasma, which accelerates the inward diffusion of magnetic flux and changing the self sustained reversal state, hence significantly enhances the dynamo effect and the sawtooth process in the RFP plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14506v1-abstract-full').style.display = 'none'; document.getElementById('2502.14506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11892">arXiv:2502.11892</a> <span> [<a href="https://arxiv.org/pdf/2502.11892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Pulse Compression by an Optical Push Broom On a Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Boyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Pfeiffer%2C+M">Maurice Pfeiffer</a>, <a href="/search/physics?searchtype=author&query=Gaafar%2C+M+A">Mahmoud A. Gaafar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Juntao Li</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11892v1-abstract-short" style="display: inline;"> In this study, we report a first experimental demonstration of pulse compression by a gradual refractive index front moving in a periodically modulated silicon waveguide, the so-called optical push broom effect. Optical push broom captures and confines the input signal pulse in a faster propagating refractive index front, driven by a pump pulse. This is a spatio-temporal analogue of light trapping… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11892v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11892v1-abstract-full" style="display: none;"> In this study, we report a first experimental demonstration of pulse compression by a gradual refractive index front moving in a periodically modulated silicon waveguide, the so-called optical push broom effect. Optical push broom captures and confines the input signal pulse in a faster propagating refractive index front, driven by a pump pulse. This is a spatio-temporal analogue of light trapping in a tapered plasmonic waveguide where light is continuously changing its wavevector approaching zero group velocity and, thus, stopped without reflection. Here the signal is accelerated by the front until the signal velocity matches the front velocity, thus stopping the light in respect to the front. We employ the slowly varying envelope approximation to model this phenomenon. Notably, we well reproduced the experimental frequency shift at the output corresponding to the temporal delay at the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11892v1-abstract-full').style.display = 'none'; document.getElementById('2502.11892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10957">arXiv:2502.10957</a> <span> [<a href="https://arxiv.org/pdf/2502.10957">pdf</a>, <a href="https://arxiv.org/format/2502.10957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Skillful Nowcasting of Convective Clouds With a Cascade Diffusion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Haoming Chen</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+X">Xiaohui Zhong</a>, <a href="/search/physics?searchtype=author&query=Zhai%2C+Q">Qiang Zhai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaomeng Li</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+Y+W">Ying Wa Chan</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+P+W">Pak Wai Chan</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yuanyuan Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xiaoming Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10957v1-abstract-short" style="display: inline;"> Accurate nowcasting of convective clouds from satellite imagery is essential for mitigating the impacts of meteorological disasters, especially in developing countries and remote regions with limited ground-based observations. Recent advances in deep learning have shown promise in video prediction; however, existing models frequently produce blurry results and exhibit reduced accuracy when forecas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10957v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10957v1-abstract-full" style="display: none;"> Accurate nowcasting of convective clouds from satellite imagery is essential for mitigating the impacts of meteorological disasters, especially in developing countries and remote regions with limited ground-based observations. Recent advances in deep learning have shown promise in video prediction; however, existing models frequently produce blurry results and exhibit reduced accuracy when forecasting physical fields. Here, we introduce SATcast, a diffusion model that leverages a cascade architecture and multimodal inputs for nowcasting cloud fields in satellite imagery. SATcast incorporates physical fields predicted by FuXi, a deep-learning weather model, alongside past satellite observations as conditional inputs to generate high-quality future cloud fields. Through comprehensive evaluation, SATcast outperforms conventional methods on multiple metrics, demonstrating its superior accuracy and robustness. Ablation studies underscore the importance of its multimodal design and the cascade architecture in achieving reliable predictions. Notably, SATcast maintains predictive skill for up to 24 hours, underscoring its potential for operational nowcasting applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10957v1-abstract-full').style.display = 'none'; document.getElementById('2502.10957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05410">arXiv:2502.05410</a> <span> [<a href="https://arxiv.org/pdf/2502.05410">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable nonlinear optical computing device for retina-inspired computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hua%2C+X">Xiayang Hua</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiyuan Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+P">Peiyuan Zhao</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+H">Hualong Ren</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xiangwei Zeng</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Z">Zhibiao Hao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Changzheng Sun</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+B">Bing Xiong</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yanjun Han</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongtao Li</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yi Luo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05410v1-abstract-short" style="display: inline;"> Optical neural networks are at the forefront of computational innovation, utilizing photons as the primary carriers of information and employing optical components for computation. However, the fundamental nonlinear optical device in the neural networks is barely satisfied because of its high energy threshold and poor reconfigurability. This paper proposes and demonstrates an optical sigmoid-type… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05410v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05410v1-abstract-full" style="display: none;"> Optical neural networks are at the forefront of computational innovation, utilizing photons as the primary carriers of information and employing optical components for computation. However, the fundamental nonlinear optical device in the neural networks is barely satisfied because of its high energy threshold and poor reconfigurability. This paper proposes and demonstrates an optical sigmoid-type nonlinear computation mode of Vertical-Cavity Surface-Emitting Lasers (VCSELs) biased beneath the threshold. The device is programmable by simply adjusting the injection current. The device exhibits sigmoid-type nonlinear performance at a low input optical power ranging from merely 3-250 渭W. The tuning sensitivity of the device to the programming current density can be as large as 15 渭W*mm2/mA. Deep neural network architecture based on such device has been proposed and demonstrated by simulation on recognizing hand-writing digital dataset, and a 97.3% accuracy has been achieved. A step further, the nonlinear reconfigurability is found to be highly useful to enhance the adaptability of the networks, which is demonstrated by significantly improving the recognition accuracy by 41.76%, 19.2%, and 25.89% of low-contrast hand-writing digital images under high exposure, low exposure, and high random noise respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05410v1-abstract-full').style.display = 'none'; document.getElementById('2502.05410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03739">arXiv:2502.03739</a> <span> [<a href="https://arxiv.org/pdf/2502.03739">pdf</a>, <a href="https://arxiv.org/format/2502.03739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Stacking effects on magnetic, vibrational, and optical properties of CrSBr bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Huicong Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yali Yang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Z">Zhonghao Xia</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yateng Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+J">Jiacheng Wei</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jiangang He</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Rongming Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03739v1-abstract-short" style="display: inline;"> The van der Waals layered semiconductor CrSBr, which exhibits A-type antiferromagnetism and a relatively high N茅el temperature, has been successfully exfoliated into atomically thin sheets. In this study, we investigate the structural, lattice dynamical, electronic, magnetic, and optical properties of four distinct stacking structures of CrSBr bilayers using first-principles calculations and Monte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03739v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03739v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03739v1-abstract-full" style="display: none;"> The van der Waals layered semiconductor CrSBr, which exhibits A-type antiferromagnetism and a relatively high N茅el temperature, has been successfully exfoliated into atomically thin sheets. In this study, we investigate the structural, lattice dynamical, electronic, magnetic, and optical properties of four distinct stacking structures of CrSBr bilayers using first-principles calculations and Monte Carlo simulations. Our findings show that though the most energetically favorable bilayer structure retains the stacking pattern of the bulk counterpart, three other high-symmetry stacking structures can be achieved by sliding one of the layers along three distinct directions, with energy costs comparable to that observed in MoS$_2$ bilayer. All these four bilayers exhibit semiconductor behavior with A-type antiferromagnetic ordering, similar to the bulk material, and demonstrate closely aligned N茅el temperatures. Moreover, these bilayers exhibit relatively low lattice thermal conductivities, pronounced anisotropy, and a strong dependence on stacking patterns. This behavior is attributed to significant phonon-phonon scattering arising from avoided crossings between acoustic and optical phonons, as well as the presence of flat optical phonon bands in the low-frequency region. While the electronic structures and optical properties of these bilayers show weak dependence on the stacking pattern for antiferromagnetic ordering, they undergo significant changes for ferromagnetic ordering, influencing the band gap, valence and conduction band splitting, and effective mass. Furthermore, we found that antiferromagnetic ordering can transition to ferromagnetic under intense visible light illumination. Thus, the integration of layer stacking and visible light illumination offers an effective means to control the heat transfer, magnetic, and optical properties of CrSBr bilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03739v1-abstract-full').style.display = 'none'; document.getElementById('2502.03739v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03077">arXiv:2502.03077</a> <span> [<a href="https://arxiv.org/pdf/2502.03077">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal Generation of Fano Resonance with No Symmetry Breaking in THz Hybrid Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ge%2C+B">Boyuan Ge</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+J">Jiayu Fan</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+K">Ken Qin</a>, <a href="/search/physics?searchtype=author&query=Zhanga%2C+X">Xiexuan Zhanga</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haitao Li</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+F">Fang Ling</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xiaoxiao Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03077v1-abstract-short" style="display: inline;"> Fano resonance, arising from the interference between a discrete resonance and a continuum of states, results in sharp and asymmetric line shapes and has significant applications in advanced photonic devices, particularly in sensing, filtering, and nonlinear optics. Nowadays, metasurfaces comprised of engineering microstructures play a crucial role in generation and manipulation of Fano resonance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03077v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03077v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03077v1-abstract-full" style="display: none;"> Fano resonance, arising from the interference between a discrete resonance and a continuum of states, results in sharp and asymmetric line shapes and has significant applications in advanced photonic devices, particularly in sensing, filtering, and nonlinear optics. Nowadays, metasurfaces comprised of engineering microstructures play a crucial role in generation and manipulation of Fano resonance in photonics. However, current metasurfaces dominantly rely on local symmetry breaking of the microstructures to induce Fano resonances, which significant limits their tunability and scalable fabrication for practical applications. To address the challenge, a metal-dielectric hybrid metasurface is demonstrated to achieve nonlocal generation of Fano resonance with no symmetry breaking in the terahertz (THz) band. The Fano resonance, including its existence and peak frequency, is sensitively controlled by the thickness and dielectric constant of the dielectric layer, which is experimentally observed. Our analysis elucidates that the metallic layer with a pair of dumbbell holes leads to the band folding and coupling of guided modes within the dielectric layer. When the thickness or dielectric constant surpasses a critical value, the guided mode resonance falls below the diffraction limit, resulting in a unique nonlocal Fano resonance due to the interaction between the resonance and background transmission facilitated by dumbbell holes. Furthermore, the Fano transmission peak corresponds to an anapole excitation, revealed by multipole calculations. Benefiting from the ability to control the Fano resonance with no symmetry breaking, the proposed hybrid THz metasurface will advance broad applications in the fields of sensors, optical switches, and tunable filters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03077v1-abstract-full').style.display = 'none'; document.getElementById('2502.03077v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18866">arXiv:2501.18866</a> <span> [<a href="https://arxiv.org/pdf/2501.18866">pdf</a>, <a href="https://arxiv.org/format/2501.18866">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> The radium ion's metastable $6d\,\,^2\!D_{5/2}$ and $6d\,\, ^2\!D_{3/2}$ state lifetimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Haoran Li</a>, <a href="/search/physics?searchtype=author&query=Dan%2C+H">Huaxu Dan</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+M">Mingyu Fan</a>, <a href="/search/physics?searchtype=author&query=Kofford%2C+S">Spencer Kofford</a>, <a href="/search/physics?searchtype=author&query=Kwapisz%2C+R">Robert Kwapisz</a>, <a href="/search/physics?searchtype=author&query=Ready%2C+R+A">Roy A. Ready</a>, <a href="/search/physics?searchtype=author&query=Sawhney%2C+A">Akshay Sawhney</a>, <a href="/search/physics?searchtype=author&query=Brzeczek%2C+M">Merrell Brzeczek</a>, <a href="/search/physics?searchtype=author&query=Holliman%2C+C">Craig Holliman</a>, <a href="/search/physics?searchtype=author&query=Jayich%2C+A+M">Andrew M. Jayich</a>, <a href="/search/physics?searchtype=author&query=Porsev%2C+S+G">S. G. Porsev</a>, <a href="/search/physics?searchtype=author&query=Safronova%2C+M+S">M. S. Safronova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18866v1-abstract-short" style="display: inline;"> We report lifetime measurements of the metastable $6d\, ^2\!D_{5/2}$ and $6d\, ^2\!D_{3/2}$ states of the radium ion. The measured lifetimes, $蟿_{5} = $ 303.8(1.5) ms and $蟿_{3} = $ 642(9) ms, are important for optical frequency standards and for benchmarking high-precision relativistic atomic theory. Independent of the reported measurements, the $D$ state lifetimes were calculated using the coupl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18866v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18866v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18866v1-abstract-full" style="display: none;"> We report lifetime measurements of the metastable $6d\, ^2\!D_{5/2}$ and $6d\, ^2\!D_{3/2}$ states of the radium ion. The measured lifetimes, $蟿_{5} = $ 303.8(1.5) ms and $蟿_{3} = $ 642(9) ms, are important for optical frequency standards and for benchmarking high-precision relativistic atomic theory. Independent of the reported measurements, the $D$ state lifetimes were calculated using the coupled-cluster single double triple method, in which the coupled-cluster equations for both core and valence triple excitations were solved iteratively. The method was designed for precise prediction of atomic properties, especially for heavy elements, where relativistic and correlation corrections become large, making their treatment more challenging. This work presents the first benchmark comparisons of the method for transition properties. Our prediction agrees with experimental values within the uncertainties. The ability to accurately predict the atomic properties of heavy elements is important for many applications, from tests of fundamental symmetries to the development of optical clocks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18866v1-abstract-full').style.display = 'none'; document.getElementById('2501.18866v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18554">arXiv:2501.18554</a> <span> [<a href="https://arxiv.org/pdf/2501.18554">pdf</a>, <a href="https://arxiv.org/format/2501.18554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing topological matter and fermion dynamics on a neutral-atom quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Evered%2C+S+J">Simon J. Evered</a>, <a href="/search/physics?searchtype=author&query=Kalinowski%2C+M">Marcin Kalinowski</a>, <a href="/search/physics?searchtype=author&query=Geim%2C+A+A">Alexandra A. Geim</a>, <a href="/search/physics?searchtype=author&query=Manovitz%2C+T">Tom Manovitz</a>, <a href="/search/physics?searchtype=author&query=Bluvstein%2C+D">Dolev Bluvstein</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S+H">Sophie H. Li</a>, <a href="/search/physics?searchtype=author&query=Maskara%2C+N">Nishad Maskara</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/physics?searchtype=author&query=Ebadi%2C+S">Sepehr Ebadi</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+M">Muqing Xu</a>, <a href="/search/physics?searchtype=author&query=Campo%2C+J">Joseph Campo</a>, <a href="/search/physics?searchtype=author&query=Cain%2C+M">Madelyn Cain</a>, <a href="/search/physics?searchtype=author&query=Ostermann%2C+S">Stefan Ostermann</a>, <a href="/search/physics?searchtype=author&query=Yelin%2C+S+F">Susanne F. Yelin</a>, <a href="/search/physics?searchtype=author&query=Sachdev%2C+S">Subir Sachdev</a>, <a href="/search/physics?searchtype=author&query=Greiner%2C+M">Markus Greiner</a>, <a href="/search/physics?searchtype=author&query=Vuleti%C4%87%2C+V">Vladan Vuleti膰</a>, <a href="/search/physics?searchtype=author&query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18554v1-abstract-short" style="display: inline;"> Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly-correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, due to the non-local nature of fermions, such models are challenging to simulate with qubit de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18554v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18554v1-abstract-full" style="display: none;"> Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly-correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, due to the non-local nature of fermions, such models are challenging to simulate with qubit devices. Here we realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays. We utilize a fermion-to-qubit mapping based on Kitaev's model on a honeycomb lattice, in which fermionic statistics are encoded using long-range entangled states. We prepare these states efficiently using measurement and feedforward, realize subsequent fermionic evolution through Floquet engineering with tunable entangling gates interspersed with atom rearrangement, and improve results with built-in error detection. Leveraging this fermion description of the Kitaev spin model, we efficiently prepare topological states across its complex phase diagram and verify the non-Abelian spin liquid phase by evaluating an odd Chern number. We further explore this two-dimensional fermion system by realizing tunable dynamics and directly probing fermion exchange statistics. Finally, we simulate strong interactions and study dynamics of the Fermi-Hubbard model on a square lattice. These results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry, and high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18554v1-abstract-full').style.display = 'none'; document.getElementById('2501.18554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. Methods: 15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16942">arXiv:2501.16942</a> <span> [<a href="https://arxiv.org/pdf/2501.16942">pdf</a>, <a href="https://arxiv.org/format/2501.16942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-Driven Bulk-Edge Correspondence in Electron Magnetofluids at Finite Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rao%2C+X">Xianhao Rao</a>, <a href="/search/physics?searchtype=author&query=Yolbarsop%2C+A">Adil Yolbarsop</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wandong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16942v1-abstract-short" style="display: inline;"> We present a theoretical framework connecting the pseudo-Chern number in momentum space to the spectral flow index in phase space for continuous media, with specific applications to topological Langmuir-cyclotron waves (TLCWs) in magnetized plasmas at uniform finite temperatures. By deriving a rigorous correspondence between these two topological invariants, we provide a solid justification for pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16942v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16942v1-abstract-full" style="display: none;"> We present a theoretical framework connecting the pseudo-Chern number in momentum space to the spectral flow index in phase space for continuous media, with specific applications to topological Langmuir-cyclotron waves (TLCWs) in magnetized plasmas at uniform finite temperatures. By deriving a rigorous correspondence between these two topological invariants, we provide a solid justification for previous studies that applied this relationship heuristically across various continuous media. For magnetized plasmas with finite-temperature effects, we confirm the existence of TLCWs through numerical computation of bulk Chern number differences and analytical calculation of the spectral flow index. These findings advance the understanding of topological phenomena in continuous media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16942v1-abstract-full').style.display = 'none'; document.getElementById('2501.16942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16604">arXiv:2501.16604</a> <span> [<a href="https://arxiv.org/pdf/2501.16604">pdf</a>, <a href="https://arxiv.org/format/2501.16604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast neuromorphic computing with nanophotonic optical parametric oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Parto%2C+M">Midya Parto</a>, <a href="/search/physics?searchtype=author&query=Li%2C+G+H+Y">Gordon H. Y. Li</a>, <a href="/search/physics?searchtype=author&query=Sekine%2C+R">Ryoto Sekine</a>, <a href="/search/physics?searchtype=author&query=Gray%2C+R+M">Robert M. Gray</a>, <a href="/search/physics?searchtype=author&query=Ledezma%2C+L+L">Luis L. Ledezma</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+J">James Williams</a>, <a href="/search/physics?searchtype=author&query=Roy%2C+A">Arkadev Roy</a>, <a href="/search/physics?searchtype=author&query=Marandi%2C+A">Alireza Marandi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16604v1-abstract-short" style="display: inline;"> Over the past decade, artificial intelligence (AI) has led to disruptive advancements in fundamental sciences and everyday technologies. Among various machine learning algorithms, deep neural networks have become instrumental in revealing complex patterns in large datasets with key applications in computer vision, natural language processing, and predictive analytics. On-chip photonic neural netwo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16604v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16604v1-abstract-full" style="display: none;"> Over the past decade, artificial intelligence (AI) has led to disruptive advancements in fundamental sciences and everyday technologies. Among various machine learning algorithms, deep neural networks have become instrumental in revealing complex patterns in large datasets with key applications in computer vision, natural language processing, and predictive analytics. On-chip photonic neural networks offer a promising platform that leverage high bandwidths and low propagation losses associated with optical signals to perform analog computations for deep learning. However, nanophotonic circuits are yet to achieve the required linear and nonlinear operations simultaneously in an all-optical and ultrafast fashion. Here, we report an ultrafast nanophotonic neuromorphic processor using an optical parametric oscillator (OPO) fabricated on thin-film lithium niobate (TFLN). The input data is used to modulate the optical pulses synchronously pumping the OPO. The consequent signal pulses generated by the OPO are coupled to one another via the nonlinear delayed dynamics of the OPO, thus forming the internal nodes of a deep recurrent neural network. We use such a nonlinearly coupled OPO network for chaotic time series prediction, nonlinear error correction in a noisy communication channel, as well as noisy waveform classification and achieve accuracies exceeding 93% at an operating clock rate of ~ 10 GHz. Our OPO network is capable of achieving sub-nanosecond latencies, a timescale comparable to a single clock cycle in state-of-the-art digital electronic processors. By circumventing the need for optical-electronic-optical (OEO) conversions, our ultrafast nanophotonic neural network paves the way for the next generation of compact all-optical neuromorphic processors with ultralow latencies and high energy efficiencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16604v1-abstract-full').style.display = 'none'; document.getElementById('2501.16604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16398">arXiv:2501.16398</a> <span> [<a href="https://arxiv.org/pdf/2501.16398">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Visualizing the Local Atomic Environment Features of Machine Learning Interatomic Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xinyuan Liu</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+Z">Zhiran Gan</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+F">Fanshun Meng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16398v1-abstract-short" style="display: inline;"> This paper addresses the challenges of creating efficient and high-quality datasets for machine learning potential functions. We present a novel approach, termed DV-LAE (Difference Vectors based on Local Atomic Environments), which utilizes the properties of atomic local environments and employs histogram statistics to generate difference vectors. This technique facilitates dataset screening and o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16398v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16398v1-abstract-full" style="display: none;"> This paper addresses the challenges of creating efficient and high-quality datasets for machine learning potential functions. We present a novel approach, termed DV-LAE (Difference Vectors based on Local Atomic Environments), which utilizes the properties of atomic local environments and employs histogram statistics to generate difference vectors. This technique facilitates dataset screening and optimization, effectively minimizing redundancy while maintaining data diversity. We have validated the optimized datasets in high-temperature and high-pressure hydrogen systems as well as the 伪-Fe/H binary system, demonstrating a significant reduction in computational resource usage without compromising prediction accuracy. Additionally, our method has revealed new structures that emerge during simulations but were underrepresented in the initial training datasets. The redundancy in the datasets and the distribution of these new structures can be visually analyzed through the visualization of difference vectors. This approach enhances our understanding of the characteristics of these newly formed structures and their impact on physical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16398v1-abstract-full').style.display = 'none'; document.getElementById('2501.16398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15713">arXiv:2501.15713</a> <span> [<a href="https://arxiv.org/pdf/2501.15713">pdf</a>, <a href="https://arxiv.org/format/2501.15713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling shared micromobility as a label propagation process for detecting the overlapping communities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Luo%2C+P">Peng Luo</a>, <a href="/search/physics?searchtype=author&query=Song%2C+C">Chengyu Song</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">Di Zhu</a>, <a href="/search/physics?searchtype=author&query=Duarte%2C+F">Fabio Duarte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15713v1-abstract-short" style="display: inline;"> Shared micro-mobility such as e-scooters has gained significant popularity in many cities. However, existing methods for detecting community structures in mobility networks often overlook potential overlaps between communities. In this study, we conceptualize shared micro-mobility in urban spaces as a process of information exchange, where locations are connected through e-scooters, facilitating t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15713v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15713v1-abstract-full" style="display: none;"> Shared micro-mobility such as e-scooters has gained significant popularity in many cities. However, existing methods for detecting community structures in mobility networks often overlook potential overlaps between communities. In this study, we conceptualize shared micro-mobility in urban spaces as a process of information exchange, where locations are connected through e-scooters, facilitating the interaction and propagation of community affiliations. As a result, similar locations are assigned the same label. Based on this concept, we developed a Geospatial Interaction Propagation model (GIP) by designing a Speaker-Listener Label Propagation Algorithm (SLPA) that accounts for geographic distance decay, incorporating anomaly detection to ensure the derived community structures reflect meaningful spatial patterns. We applied this model to detect overlapping communities within the e-scooter system in Washington, D.C. The results demonstrate that our algorithm outperforms existing model of overlapping community detection in both efficiency and modularity. However, existing methods for detecting community structures in mobility networks often overlook potential overlaps between communities. In this study, we conceptualize shared micro-mobility in urban spaces as a process of information exchange, where locations are connected through e-scooters, facilitating the interaction and propagation of community affiliations. As a result, similar locations are assigned the same label. Based on this concept, we developed a Geospatial Interaction Propagation model (GIP) by designing a Speaker-Listener Label Propagation Algorithm (SLPA) that accounts for geographic distance decay, incorporating anomaly detection to ensure the derived community structures reflect meaningful spatial patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15713v1-abstract-full').style.display = 'none'; document.getElementById('2501.15713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13966">arXiv:2501.13966</a> <span> [<a href="https://arxiv.org/pdf/2501.13966">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> High-efficient machine learning projection method for incompressible Navier-Stokes equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruilin Chen</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xiaowei Jin</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+N+A">Nikolaus A. Adams</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13966v1-abstract-short" style="display: inline;"> This study proposes a high-efficient machine learning (ML) projection method using forward-generated data for incompressible Navier-Stokes equations. A Poisson neural network (Poisson-NN) embedded method and a wavelet transform convolutional neural network multigrid (WTCNN-MG) method are proposed, integrated into the projection method framework in patchwork and overall differentiable manners with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13966v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13966v1-abstract-full" style="display: none;"> This study proposes a high-efficient machine learning (ML) projection method using forward-generated data for incompressible Navier-Stokes equations. A Poisson neural network (Poisson-NN) embedded method and a wavelet transform convolutional neural network multigrid (WTCNN-MG) method are proposed, integrated into the projection method framework in patchwork and overall differentiable manners with MG method, respectively. The solution of the pressure Poisson equation split from the Navier-Stokes equations is first generated either following a random field (e.g. Gaussian random field, GRF, computational complexity O(NlogN), N is the number of spatial points) or physical laws (e.g. a kind of spectra, computational complexity O(NM), M is the number of modes), then the source terms, boundary conditions and initial conditions are constructed via balance of equations, avoiding the difficulties of obtaining high-fidelity training datasets. The feasibility of generated data for training Poisson-NN and WTCNN as well as the acceleration performances of the Poisson-NN embedded method and WTCNN-MG method are validated. The results indicate that even without any DNS data, the generated data can train these two models with excellent generalization and accuracy. The data following physical laws can significantly improve the high-frequency approximation, convergence rate, generalization and accuracy than that generated following GRF. The ML projection method offers significant improvements in computational efficiency. Particularly, the Poisson-NN embedded method achieves an average speed-up of 5.83 times over the traditional MG method, while the WTCNN-MG method offers an even greater average speed-up of 7.03 times, demonstrating impressive acceleration performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13966v1-abstract-full').style.display = 'none'; document.getElementById('2501.13966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2501.03300</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12936">arXiv:2501.12936</a> <span> [<a href="https://arxiv.org/pdf/2501.12936">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Catalyst Design Framework for Electrochemical Hydrogen Peroxide Synthesis Facilitated by Local Atomic Environment Descriptors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhijian Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bingqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mingzhe Li</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+X">Xue Jia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Heng Liu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Li Wei</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12936v1-abstract-short" style="display: inline;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with mac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12936v1-abstract-full" style="display: none;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with machine learning (ML), microkinetic modeling, and computational high-throughput screening. This framework is successfully integrated into the Digital Catalysis Database (DigCat), enabling efficient screening for 2e- water oxidation reaction (2e- WOR) catalysts across four material categories (i.e., metal alloys, metal oxides and perovskites, and single-atom catalysts) within a ML model. The proposed wACSF descriptors integrating both geometric and chemical features are proven effective in predicting the adsorption free energies with ML. Excitingly, based on the wACSF descriptors, the ML models accurately predict the adsorption free energies of hydroxyl (螖GOH*) and oxygen (螖GO*) for such a wide range of catalysts, achieving R2 values of 0.84 and 0.91, respectively. Through density functional theory calculations and microkinetic modeling, a universal 2e- WOR microkinetic volcano model was derived with excellent agreement with experimental observations reported to date, which was further used to rapidly screen high-performance catalysts with the input of ML-predicted 螖GOH*. Most importantly, this universal framework can significantly improve the efficiency of catalyst design by considering multiple types of materials at the same time, which can dramatically accelerate the screening of high-performance catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'none'; document.getElementById('2501.12936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11323">arXiv:2501.11323</a> <span> [<a href="https://arxiv.org/pdf/2501.11323">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Physics-Informed Machine Learning for Efficient Reconfigurable Intelligent Surface Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J+H">Jun Hui Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+D">Dong Tang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+W">Wei Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11323v1-abstract-short" style="display: inline;"> Reconfigurable intelligent surface (RIS) is a two-dimensional periodic structure integrated with a large number of reflective elements, which can manipulate electromagnetic waves in a digital way, offering great potentials for wireless communication and radar detection applications. However, conventional RIS designs highly rely on extensive full-wave EM simulations that are extremely time-consumin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11323v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11323v1-abstract-full" style="display: none;"> Reconfigurable intelligent surface (RIS) is a two-dimensional periodic structure integrated with a large number of reflective elements, which can manipulate electromagnetic waves in a digital way, offering great potentials for wireless communication and radar detection applications. However, conventional RIS designs highly rely on extensive full-wave EM simulations that are extremely time-consuming. To address this challenge, we propose a machine-learning-assisted approach for efficient RIS design. An accurate and fast model to predict the reflection coefficient of RIS element is developed by combining a multi-layer perceptron neural network (MLP) and a dual-port network, which can significantly reduce tedious EM simulations in the network training. A RIS has been practically designed based on the proposed method. To verify the proposed method, the RIS has also been fabricated and measured. The experimental results are in good agreement with the simulation results, which validates the efficacy of the proposed method in RIS design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11323v1-abstract-full').style.display = 'none'; document.getElementById('2501.11323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10618">arXiv:2501.10618</a> <span> [<a href="https://arxiv.org/pdf/2501.10618">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Daily Groundwater Monitoring Using Vehicle-DAS Elastic Full-waveform Inversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Haipeng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jingxiao Liu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+S">Shujuan Mao</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Siyuan Yuan</a>, <a href="/search/physics?searchtype=author&query=Clapp%2C+R+G">Robert G. Clapp</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+B+L">Biondo L. Biondi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10618v1-abstract-short" style="display: inline;"> Understanding groundwater dynamics is critical for sustainable water management, particularly as climate extremes intensify. However, the resolutions of existing subsurface observational tools are still inadequate for detailed aquifer monitoring and imaging. We introduce an innovative technique for groundwater monitoring using time-lapse full-waveform inversion, leveraging fiber-optic cables as se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10618v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10618v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10618v1-abstract-full" style="display: none;"> Understanding groundwater dynamics is critical for sustainable water management, particularly as climate extremes intensify. However, the resolutions of existing subsurface observational tools are still inadequate for detailed aquifer monitoring and imaging. We introduce an innovative technique for groundwater monitoring using time-lapse full-waveform inversion, leveraging fiber-optic cables as seismic sensors and vehicular traffic as repetitive seismic sources. Over a two-year period along Sandhill Road, California, this approach captures detailed spatiotemporal S-wave velocity variations, revealing a 2.9% reduction corresponding to a 9.0-meter groundwater table rise after atmospheric-river storms in Water Year 2023. Notably, this approach enables the high-resolution daily analysis of rapid aquifer responses. We observe spatially inhomogeneous velocity changes, with less reduction beneath impervious paved zones than under grassy areas, underscoring the impact of urbanization on the natural recharge of aquifers. Our findings highlight the potential of Vehicle-DAS FWI for high-resolution daily monitoring and quantitative spatiotemporal characterizations of groundwater systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10618v1-abstract-full').style.display = 'none'; document.getElementById('2501.10618v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09759">arXiv:2501.09759</a> <span> [<a href="https://arxiv.org/pdf/2501.09759">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A wideband amplifying and filtering reconfigurable intelligent surface for wireless relay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+L">Lijie Wu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Q+Y">Qun Yan Zhou</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Siran Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+Z+J">Zhen Jie Qi</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Hanqing Yang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+R">Ruizhe Jiang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z+X">Zheng Xing Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huidong Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Jiang Luo</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09759v1-abstract-short" style="display: inline;"> Programmable metasurfaces have garnered significant attention due to their exceptional ability to manipulate electromagnetic (EM) waves in real time, leading to the emergence of a prominent area in wireless communication, namely reconfigurable intelligent surfaces (RISs), to control the signal propagation and coverage. However, the existing RISs usually suffer from limited operating distance and b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09759v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09759v1-abstract-full" style="display: none;"> Programmable metasurfaces have garnered significant attention due to their exceptional ability to manipulate electromagnetic (EM) waves in real time, leading to the emergence of a prominent area in wireless communication, namely reconfigurable intelligent surfaces (RISs), to control the signal propagation and coverage. However, the existing RISs usually suffer from limited operating distance and band interference, which hinder their practical applications in wireless relay and communication systems. To overcome the limitations, we propose an amplifying and filtering RIS (AF-RIS) to enhance the in-band signal energy and filter the out-of-band signal of the incident EM waves, ensuring the miniaturization of the RIS array and enabling its anti-interference ability. In addition, each AF-RIS element is equipped with a 2-bit phase control capability, further endowing the entire array with great beamforming performance. An elaborately designed 4*8 AF-RIS array is presented by integrating the power dividing and combining networks, which substantially reduces the number of amplifiers and filters, thereby reducing the hardware costs and power consumption. Experimental results showcase the powerful capabilities of AF-RIS in beam-steering, frequency selectivity, and signal amplification. Therefore, the proposed AF-RIS holds significant promise for critical applications in wireless relay systems by offering an efficient solution to improve frequency selectivity, enhance signal coverage, and reduce hardware size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09759v1-abstract-full').style.display = 'none'; document.getElementById('2501.09759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09332">arXiv:2501.09332</a> <span> [<a href="https://arxiv.org/pdf/2501.09332">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic exposure volumetric additive manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Orth%2C+A">Antony Orth</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yujie Zhang</a>, <a href="/search/physics?searchtype=author&query=Houlahan%2C+K">Katherine Houlahan</a>, <a href="/search/physics?searchtype=author&query=Webber%2C+D">Daniel Webber</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Milliken%2C+N">Nicolas Milliken</a>, <a href="/search/physics?searchtype=author&query=Latimer%2C+J">Joshua Latimer</a>, <a href="/search/physics?searchtype=author&query=van+Egmond%2C+D+A">Derek Aranguren van Egmond</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+B">Bosco Yu</a>, <a href="/search/physics?searchtype=author&query=Boisvert%2C+J">Jonathan Boisvert</a>, <a href="/search/physics?searchtype=author&query=Paquet%2C+C">Chantal Paquet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09332v1-abstract-short" style="display: inline;"> Tomographic volumetric additive manufacturing (VAM) achieves high print speed and design freedom by continuous volumetric light patterning. This differs from traditional vat photopolymerization techniques that use brief sequential (2D) plane- or (1D) point-localized exposures. The drawback to volumetric light patterning is the small exposure window. Overexposure quickly leads to cured out-of-part… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09332v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09332v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09332v1-abstract-full" style="display: none;"> Tomographic volumetric additive manufacturing (VAM) achieves high print speed and design freedom by continuous volumetric light patterning. This differs from traditional vat photopolymerization techniques that use brief sequential (2D) plane- or (1D) point-localized exposures. The drawback to volumetric light patterning is the small exposure window. Overexposure quickly leads to cured out-of-part voxels due to the nonzero background dose arising from light projection through the build volume. For tomographic VAM, correct exposure time is critical to achieving high repeatability, however, we find that correct exposure time varies by nearly 40% depending on resin history. Currently, tomographic VAM exposure is timed based on subjective human determination of print completion, which is tedious and yields poor repeatability. Here, we implement a robust auto exposure routine for tomographic VAM using real-time processing of light scattering data, yielding accurate and repeatable prints without human intervention. The resulting print fidelity and repeatability approaches, and in some cases, exceeds that of commercial resin 3D printers. We show that auto exposure VAM generalizes well to a wide variety of print geometries with small positive and negative features. The repeatability and accuracy of auto exposure VAM allows for building multi-part objects, fulfilling a major requirement of additive manufacturing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09332v1-abstract-full').style.display = 'none'; document.getElementById('2501.09332v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09224">arXiv:2501.09224</a> <span> [<a href="https://arxiv.org/pdf/2501.09224">pdf</a>, <a href="https://arxiv.org/format/2501.09224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Estimating Task-based Performance Bounds for Accelerated MRI Image Reconstruction Methods by Use of Learned-Ideal Observers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+K">Kaiyan Li</a>, <a href="/search/physics?searchtype=author&query=Kc%2C+P">Prabhat Kc</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hua Li</a>, <a href="/search/physics?searchtype=author&query=Myers%2C+K+J">Kyle J. Myers</a>, <a href="/search/physics?searchtype=author&query=Anastasio%2C+M+A">Mark A. Anastasio</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+R">Rongping Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09224v1-abstract-short" style="display: inline;"> Medical imaging systems are commonly assessed and optimized by the use of objective measures of image quality (IQ). The performance of the ideal observer (IO) acting on imaging measurements has long been advocated as a figure-of-merit to guide the optimization of imaging systems. For computed imaging systems, the performance of the IO acting on imaging measurements also sets an upper bound on task… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09224v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09224v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09224v1-abstract-full" style="display: none;"> Medical imaging systems are commonly assessed and optimized by the use of objective measures of image quality (IQ). The performance of the ideal observer (IO) acting on imaging measurements has long been advocated as a figure-of-merit to guide the optimization of imaging systems. For computed imaging systems, the performance of the IO acting on imaging measurements also sets an upper bound on task-performance that no image reconstruction method can transcend. As such, estimation of IO performance can provide valuable guidance when designing under-sampled data-acquisition techniques by enabling the identification of designs that will not permit the reconstruction of diagnostically inappropriate images for a specified task - no matter how advanced the reconstruction method is or how plausible the reconstructed images appear. The need for such analysis is urgent because of the substantial increase of medical device submissions on deep learning-based image reconstruction methods and the fact that they may produce clean images disguising the potential loss of diagnostic information when data is aggressively under-sampled. Recently, convolutional neural network (CNN) approximated IOs (CNN-IOs) was investigated for estimating the performance of data space IOs to establish task-based performance bounds for image reconstruction, under an X-ray computed tomographic (CT) context. In this work, the application of such data space CNN-IO analysis to multi-coil magnetic resonance imaging (MRI) systems has been explored. This study utilized stylized multi-coil sensitivity encoding (SENSE) MRI systems and deep-generated stochastic brain models to demonstrate the approach. Signal-known-statistically and background-known-statistically (SKS/BKS) binary signal detection tasks were selected to study the impact of different acceleration factors on the data space IO performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09224v1-abstract-full').style.display = 'none'; document.getElementById('2501.09224v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08275">arXiv:2501.08275</a> <span> [<a href="https://arxiv.org/pdf/2501.08275">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Direct Observation of Strongly Tilted Dirac Points at General Positions in the Reciprocal Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ye%2C+Y">Yangsong Ye</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+S">Shijie Kang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jiusi Yu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+A">Aoning Luo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiexuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Y">Yiyi Yao</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+K">Ken Qin</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+B">Bo Hou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haitao Li</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xiaoxiao Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08275v1-abstract-short" style="display: inline;"> Type-II Dirac points (DPs), which occur at the intersection of strongly tilted and touching energy bands, exhibit many intriguing physical phenomena fundamentally different from the non-tilted type-I counterparts. Over the past decade, their discovery has spurred extensive research into electronic systems and other Bloch-wave systems, such as photonic and phononic crystals. However, current studie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08275v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08275v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08275v1-abstract-full" style="display: none;"> Type-II Dirac points (DPs), which occur at the intersection of strongly tilted and touching energy bands, exhibit many intriguing physical phenomena fundamentally different from the non-tilted type-I counterparts. Over the past decade, their discovery has spurred extensive research into electronic systems and other Bloch-wave systems, such as photonic and phononic crystals. However, current studies typically focus on type-II DPs along high-symmetry directions in the first Brillouin zone (FBZ) under mirror symmetry conditions, which are highly restrictive and limit further investigations and applications. To overcome the stringent constraint, here we identify and demonstrate the emergence of type-II DPs at general positions inside the FBZ without requiring the mirror symmetry. The type-II DPs, being accidental degeneracies, are experimentally realized on a metacrystal slab with H-shaped metallic patterns. Our findings indicate that even in the absence of mirror symmetry, type-II DPs can emerge at designated locations inside the FBZ by simply rotating the H-shaped patterns and adjusting geometrical and physical parameters. Furthermore, based on the rotated type-II DPs, off-axis conical diffractions have been both realized and experimentally observed. Meanwhile, we discovered that during the rotation process, the type-II DPs transform into off-axis type-I DPs, but still strongly tilted, resulting in the emergence of negative refractions. Hence, the generic method we propose for inducing type-II or strongly tilted type-I DPs without the high-symmetry limitations opens potential avenues for related research. For example, the observed off-axis conical diffraction and negative refraction could inspire future development and applications in photonics and other Bloch-wave systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08275v1-abstract-full').style.display = 'none'; document.getElementById('2501.08275v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07917">arXiv:2501.07917</a> <span> [<a href="https://arxiv.org/pdf/2501.07917">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Roadmap on Neuromorphic Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brunner%2C+D">Daniel Brunner</a>, <a href="/search/physics?searchtype=author&query=Shastri%2C+B+J">Bhavin J. Shastri</a>, <a href="/search/physics?searchtype=author&query=Qadasi%2C+M+A+A">Mohammed A. Al Qadasi</a>, <a href="/search/physics?searchtype=author&query=Ballani%2C+H">H. Ballani</a>, <a href="/search/physics?searchtype=author&query=Barbay%2C+S">Sylvain Barbay</a>, <a href="/search/physics?searchtype=author&query=Biasi%2C+S">Stefano Biasi</a>, <a href="/search/physics?searchtype=author&query=Bienstman%2C+P">Peter Bienstman</a>, <a href="/search/physics?searchtype=author&query=Bilodeau%2C+S">Simon Bilodeau</a>, <a href="/search/physics?searchtype=author&query=Bogaerts%2C+W">Wim Bogaerts</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hm%2C+F">Fabian B枚hm</a>, <a href="/search/physics?searchtype=author&query=Brennan%2C+G">G. Brennan</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+S">Sonia Buckley</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/physics?searchtype=author&query=Strinati%2C+M+C">Marcello Calvanese Strinati</a>, <a href="/search/physics?searchtype=author&query=Canakci%2C+B">B. Canakci</a>, <a href="/search/physics?searchtype=author&query=Charbonnier%2C+B">Benoit Charbonnier</a>, <a href="/search/physics?searchtype=author&query=Chemnitz%2C+M">Mario Chemnitz</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+S">Stanley Cheung</a>, <a href="/search/physics?searchtype=author&query=Chiles%2C+J">Jeff Chiles</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">Suyeon Choi</a>, <a href="/search/physics?searchtype=author&query=Christodoulides%2C+D+N">Demetrios N. Christodoulides</a>, <a href="/search/physics?searchtype=author&query=Chrostowski%2C+L">Lukas Chrostowski</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+J">J. Chu</a>, <a href="/search/physics?searchtype=author&query=Clegg%2C+J+H">J. H. Clegg</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07917v2-abstract-short" style="display: inline;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07917v2-abstract-full" style="display: none;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07917v2-abstract-full').style.display = 'none'; document.getElementById('2501.07917v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07603">arXiv:2501.07603</a> <span> [<a href="https://arxiv.org/pdf/2501.07603">pdf</a>, <a href="https://arxiv.org/format/2501.07603">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Multiple Channels Room Temperature Readout Electronics for Large Transition-Edge Sensor Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+N">N. Li</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+X">X. Ren</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+H">H. Gao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Z. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">C. Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Z. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07603v2-abstract-short" style="display: inline;"> Transition-edge sensor (TES) is a highly sensitive device that is capable of detecting extremely low levels of energy. It is characterised by low noise performance and high energy resolution. A mature method for reading out TES signal is through time-division multiplexing (TDM) direct current superconducting quantum interference device (SQUID). In a TDM system, the signal readout chain represents… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07603v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07603v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07603v2-abstract-full" style="display: none;"> Transition-edge sensor (TES) is a highly sensitive device that is capable of detecting extremely low levels of energy. It is characterised by low noise performance and high energy resolution. A mature method for reading out TES signal is through time-division multiplexing (TDM) direct current superconducting quantum interference device (SQUID). In a TDM system, the signal readout chain represents a significant source of noise other than the TES intrinsic noise. The noise generated by TES is in the range of several tens to several hundreds of $pA/\sqrt{Hz}$. In order to ensure the high energy resolution of TES, it is necessary to ensure that the noise contribution from the room temperature readout electronics is less than $10$ $pA/\sqrt{Hz}$ above 100 $Hz$. In this work, we have designed a low-noise, high-resolution room temperature readout circuit for TDM. The equivalent current noise contribution of ADC is about $0.05$ $pA/\sqrt{Hz}$ above 100 $Hz$ and $0.46$ $pA\sqrt{Hz}$ under 30:1 multiplexing. The resolution of the analog to digital converter (ADC) is larger than 11.5 bits, which can reconstruct the TES signal without distortion. The readout board, which has eight channels, has JESD204B serial ports, which has greatly simplified the space of room temperature electronics. The readout chain is based on multi-threaded CPU processing and can transfer data at 2 $Gbps$ for each channel in real time. This readout board can be used in a TDM system with smaller size for large TES arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07603v2-abstract-full').style.display = 'none'; document.getElementById('2501.07603v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06091">arXiv:2501.06091</a> <span> [<a href="https://arxiv.org/pdf/2501.06091">pdf</a>, <a href="https://arxiv.org/format/2501.06091">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature, continuous-wave Terahertz generation in free-space with an intersubband mid-infrared photomixer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+Q">Q. Lin</a>, <a href="/search/physics?searchtype=author&query=Lampin%2C+J">J-F. Lampin</a>, <a href="/search/physics?searchtype=author&query=Ducournau%2C+G">G. Ducournau</a>, <a href="/search/physics?searchtype=author&query=Lepillet%2C+S">S. Lepillet</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&query=Peytavit%2C+E">E. Peytavit</a>, <a href="/search/physics?searchtype=author&query=Barbieri%2C+S">S. Barbieri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06091v1-abstract-short" style="display: inline;"> We demonstrate a Terahertz photomixer pumped by mid-infrared photons at 10$渭$m wavelength. The device is based on a dual-antenna architecture, in which a two-dimensional array of mid-infrared patch-antenna resonators is connected to the electrodes of a log-spiral Terahertz antenna. By exploiting intersubband absorption inside an AlGaAs-GaAs multi-quantum-well heterostructure, a photocurrent is coh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06091v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06091v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06091v1-abstract-full" style="display: none;"> We demonstrate a Terahertz photomixer pumped by mid-infrared photons at 10$渭$m wavelength. The device is based on a dual-antenna architecture, in which a two-dimensional array of mid-infrared patch-antenna resonators is connected to the electrodes of a log-spiral Terahertz antenna. By exploiting intersubband absorption inside an AlGaAs-GaAs multi-quantum-well heterostructure, a photocurrent is coherently generated at the difference frequency between two quantum cascade lasers. The photocurrent drives the antenna electrodes allowing tunable, continuous-wave generation in free-space up to 1 Terahertz at room temperature. By experimentally studying the photomixer frequency response and dark impedance, we demonstrate that the observed power roll-off at high-frequency is limited by the combined effect of the photoexcited carrier's intrinsic lifetime and of the device $RC$ time constant. In the spectral range investigated we obtain, in continuous-wave, mid-infrared $\rightarrow$ Terahertz conversion efficiencies exceeding by orders of magnitude those of unipolar devices exploiting $蠂^{(2)}$ processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06091v1-abstract-full').style.display = 'none'; document.getElementById('2501.06091v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05756">arXiv:2501.05756</a> <span> [<a href="https://arxiv.org/pdf/2501.05756">pdf</a>, <a href="https://arxiv.org/format/2501.05756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-optical computing with beyond 100-GHz clock rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+G+H+Y">Gordon H. Y. Li</a>, <a href="/search/physics?searchtype=author&query=Parto%2C+M">Midya Parto</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+J">Jinhao Ge</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+Q">Qing-Xin Ji</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+M">Maodong Gao</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yan Yu</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+J">James Williams</a>, <a href="/search/physics?searchtype=author&query=Gray%2C+R+M">Robert M. Gray</a>, <a href="/search/physics?searchtype=author&query=Leefmans%2C+C+R">Christian R. Leefmans</a>, <a href="/search/physics?searchtype=author&query=Englebert%2C+N">Nicolas Englebert</a>, <a href="/search/physics?searchtype=author&query=Vahala%2C+K+J">Kerry J. Vahala</a>, <a href="/search/physics?searchtype=author&query=Marandi%2C+A">Alireza Marandi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05756v2-abstract-short" style="display: inline;"> A computer's clock rate ultimately determines the minimum time between sequential operations or instructions. Despite exponential advances in electronic computer performance owing to Moore's Law and increasingly parallel system architectures, computer clock rates have remained stagnant at $\sim5~\mathrm{GHz}$ for almost two decades. This poses an intractable problem for applications requiring real… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05756v2-abstract-full').style.display = 'inline'; document.getElementById('2501.05756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05756v2-abstract-full" style="display: none;"> A computer's clock rate ultimately determines the minimum time between sequential operations or instructions. Despite exponential advances in electronic computer performance owing to Moore's Law and increasingly parallel system architectures, computer clock rates have remained stagnant at $\sim5~\mathrm{GHz}$ for almost two decades. This poses an intractable problem for applications requiring real-time processing or control of ultrafast information systems. Here we break this barrier by proposing and experimentally demonstrating computing based on an end-to-end and all-optical recurrent neural network harnessing the ultrafast nature of linear and nonlinear optical operations while avoiding electronic operations. The all-optical computer realizes linear operations, nonlinear functions, and memory entirely in the optical domain with $>100~\mathrm{GHz}$ clock rates. We experimentally demonstrate a prototypical task of noisy waveform classification as well as perform ultrafast in-situ analysis of the soliton states from integrated optical microresonators. We further illustrate the application of the architecture for generative artificial intelligence based on quantum fluctuations to generate images even in the absence of input optical signals. Our results highlight the potential of all-optical computing beyond what can be achieved with digital electronics by utilizing ultrafast linear, nonlinear, and memory functions and quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05756v2-abstract-full').style.display = 'none'; document.getElementById('2501.05756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03300">arXiv:2501.03300</a> <span> [<a href="https://arxiv.org/pdf/2501.03300">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Method of data forward generation with partial differential equations for machine learning modeling in fluid mechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruilin Chen</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xiaowei Jin</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+N+A">Nikolaus A. Adams</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03300v1-abstract-short" style="display: inline;"> Artificial intelligence (AI) for fluid mechanics has become attractive topic. High-fidelity data is one of most critical issues for the successful applications of AI in fluid mechanics, however, it is expensively obtained or even inaccessible. This study proposes a high-efficient data forward generation method from the partial differential equations (PDEs). Specifically, the solutions of the PDEs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03300v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03300v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03300v1-abstract-full" style="display: none;"> Artificial intelligence (AI) for fluid mechanics has become attractive topic. High-fidelity data is one of most critical issues for the successful applications of AI in fluid mechanics, however, it is expensively obtained or even inaccessible. This study proposes a high-efficient data forward generation method from the partial differential equations (PDEs). Specifically, the solutions of the PDEs are first generated either following a random field (e.g. Gaussian random field, GRF, computational complexity O(NlogN), N is the number of spatial points) or physical laws (e.g. a kind of spectra, computational complexity O(NM), M is the number of modes), then the source terms, boundary conditions and initial conditions are computed to satisfy PDEs. Thus, the data pairs of source terms, boundary conditions and initial conditions with corresponding solutions of PDEs can be constructed. A Poisson neural network (Poisson-NN) embedded in projection method and a wavelet transform convolutional neuro network (WTCNN) embedded in multigrid numerical simulation for solving incompressible Navier-Stokes equations is respectively proposed. The feasibility of generated data for training Poisson-NN and WTCNN is validated. The results indicate that even without any DNS data, the generated data can train these two models with excellent generalization and accuracy. The data following physical laws can significantly improve the convergence rate, generalization and accuracy than that generated following GRF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03300v1-abstract-full').style.display = 'none'; document.getElementById('2501.03300v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02440">arXiv:2501.02440</a> <span> [<a href="https://arxiv.org/pdf/2501.02440">pdf</a>, <a href="https://arxiv.org/format/2501.02440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Disentangling Cation-Polyanion Coupling in Solid Electrolytes: Which Anion Motion Dominates Cation Transport? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+K">Ke Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jitai Yang</a>, <a href="/search/physics?searchtype=author&query=Zhai%2C+Y">Yu Zhai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02440v1-abstract-short" style="display: inline;"> Lithium and sodium solid electrolytes feature polyanion frameworks and highly mobile cations. Understanding and quantifying the impact of polyanion dynamics on cations will help us to unravel the complex role that anion play in superionic conductors. However, no experimental or computational method can directly extract this information, as polyanion dynamics are always coupled with other factors t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02440v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02440v1-abstract-full" style="display: none;"> Lithium and sodium solid electrolytes feature polyanion frameworks and highly mobile cations. Understanding and quantifying the impact of polyanion dynamics on cations will help us to unravel the complex role that anion play in superionic conductors. However, no experimental or computational method can directly extract this information, as polyanion dynamics are always coupled with other factors that affect ion mobility. Here, we present the pioneering study that combines constraint algorithm and machine-learning molecular dynamics to quantitatively reveal the effects of polyanion translation, rotation, and vibration on cation mobility across a diverse material class. Ultralong-time, large-scale machine-learning molecular dynamics simulations with selective constraints on each anion motion mode unequivocally yield results at near room and elevated temperatures. In sharp contrast to the previous understanding that facile anion rotation primarily facilitates cation transport, the strong coupling between anion translation and vibration with cation diffusion has been unraveled for the first time; we find that translation, rotation, and vibration can each directly drive superionicity, with one typically dominant in each class of materials. Anion rotation dominates cation transport when the rotation frequency matches the cation hopping frequency, whereas anion translation prevails at higher and vibration at lower rotation frequencies. The impact of anion dynamics on cation diffusion becomes more prominent at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02440v1-abstract-full').style.display = 'none'; document.getElementById('2501.02440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01399">arXiv:2501.01399</a> <span> [<a href="https://arxiv.org/pdf/2501.01399">pdf</a>, <a href="https://arxiv.org/format/2501.01399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional quantum anomalous Hall effect in Weyl semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhi-Qiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yu-Hang Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+M">Ming Lu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongfang Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hailong Li</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01399v1-abstract-short" style="display: inline;"> The quantum anomalous Hall effect (QAHE) is a quantum phenomenon in which a two-dimensional system exhibits a quantized Hall resistance $h/e^2$ in the absence of magnetic field, where $h$ is the Planck constant and $e$ is the electron charge. In this work, we extend this novel phase to three dimensions and thus propose a three-dimensional QAHE exhibiting richer and more versatile transport behavio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01399v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01399v1-abstract-full" style="display: none;"> The quantum anomalous Hall effect (QAHE) is a quantum phenomenon in which a two-dimensional system exhibits a quantized Hall resistance $h/e^2$ in the absence of magnetic field, where $h$ is the Planck constant and $e$ is the electron charge. In this work, we extend this novel phase to three dimensions and thus propose a three-dimensional QAHE exhibiting richer and more versatile transport behaviors. We first confirm this three-dimensional QAHE through the quantized Chern number, then establish its bulk-boundary correspondence, and finally reaffirm it via the distinctive transport properties. Remarkably, we find that the three-dimensional QAHE hosts two chiral surface states along one spatial direction while a pair of chiral hinge states along another direction, and the location of the hinge states depends sensitively on the Fermi energy. These two types of boundary states are further connected through a perpendicular chiral surface states, whose chirality is also Fermi energy dependent. Consequently, depending on the transport direction, its Hall resistance can quantize to $0$, $h/e^2$, or $\pm h/e^2$ when the Fermi energy is tuned across the charge neutral point. This three-dimensional QAHE not only fill the gap in the Hall effect family but also holds significant potentials in device applications such as in-memory computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01399v1-abstract-full').style.display = 'none'; document.getElementById('2501.01399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00304">arXiv:2501.00304</a> <span> [<a href="https://arxiv.org/pdf/2501.00304">pdf</a>, <a href="https://arxiv.org/format/2501.00304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Gravity potential determination based on China Space Station Dual-frequency microwave links frequency transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+P+F">Peng Fei Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C+X">Chen Xiang Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L+H">Li Hong Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z+Y">Zi Yu Shen</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+R">Rui Xu</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+A">An Ning</a>, <a href="/search/physics?searchtype=author&query=Ruby%2C+A">Abdelrahim Ruby</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+W">Wen-Bin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00304v1-abstract-short" style="display: inline;"> The China Space Station (CSS) is currently in orbit and carries the high-precision optical atomic clock with stability of approximately $2.0 \times 10^{-15} / \sqrt蟿$ in its experiment module. We have developed a model to determine the gravity potential (GP) based on the gravity frequency shift equation and have created both one-way and dual-frequency transfer models up to $c^{-4}$. These models c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00304v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00304v1-abstract-full" style="display: none;"> The China Space Station (CSS) is currently in orbit and carries the high-precision optical atomic clock with stability of approximately $2.0 \times 10^{-15} / \sqrt蟿$ in its experiment module. We have developed a model to determine the gravity potential (GP) based on the gravity frequency shift equation and have created both one-way and dual-frequency transfer models up to $c^{-4}$. These models consider effects from the troposphere, ionosphere, and solid Earth tides. The proposed model is suitable for measurements at the magnitude of $10^{-19}$. Based on the CSS mission, we conducted the simulation experiments. The results indicate that when processing the simulation frequency signal using the proposed model, we can obtain the GP with the accuracies of $ (1.13\pm0.71)\,\mathrm{m^2/s^2}$, $ (0.09\pm0.89)\,\mathrm{m^2/s^2}$, and $(0.66\pm1.18)\,\mathrm{m^2/s^2}$ for cutoff elevation angles of $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$, respectively. With the high-precision optical atomic clock onboard the CSS, the proposed model enables us to measure the GP differences in the magnitude of centimeter-level accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00304v1-abstract-full').style.display = 'none'; document.getElementById('2501.00304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19615">arXiv:2412.19615</a> <span> [<a href="https://arxiv.org/pdf/2412.19615">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The Key Steps and Distinct Performance Trends of Pyrrolic vs. Pyridinic M-N-C Catalysts in Electrocatalytic Nitrate Reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+Q">Qiuling Jiang</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+M">Mingyao Gu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyi Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fangzhou Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xin Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Z">Zhijian Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Ying Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Li Wei</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19615v1-abstract-short" style="display: inline;"> Electrochemical nitrate reduction reaction(NO3RR)offers a sustainable route for ambient ammonia synthesis. While metal-nitrogen-carbon (M-N-C) single-atom catalysts have emerged as promising candidates for NO3RR, the structure-activity relations underlying their catalytic behavior remain to be elucidated. Through systematic analysis of reported experimental data and pH-field coupled microkinetic m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19615v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19615v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19615v1-abstract-full" style="display: none;"> Electrochemical nitrate reduction reaction(NO3RR)offers a sustainable route for ambient ammonia synthesis. While metal-nitrogen-carbon (M-N-C) single-atom catalysts have emerged as promising candidates for NO3RR, the structure-activity relations underlying their catalytic behavior remain to be elucidated. Through systematic analysis of reported experimental data and pH-field coupled microkinetic modelling on a reversible hydrogen electrode (RHE) scale, we reveal that the coordination-dependent activity originates from distinct scaling relations governed by metal-intermediate interactions. M-N-Pyrrolic catalysts demonstrate higher turnover frequencies for ammonia production, whereas M-N-Pyridinic catalysts exhibit broader activity ranges across the activity volcano plot. Meanwhile, the adsorption and protonation of nitrate, which is a step often dismissed and/or assumed to be simultaneous in many previous reports, is identified to be the rate-determining step (RDS) in NO3RR. Remarkably, our subsequent experimental validation confirms the theoretical predictions under both neutral and alkaline conditions. This study offers a comprehensive mechanistic framework for interpreting the electrocatalytic activity of M-N-C catalysts in NO3RR, showing that a classical thermodynamic limiting-potential model is not sufficiently accurate to capture the RDS and the catalytic performance trends of different materials (even on M-N-Pyrrolic and M-N-Pyridinic catalysts). These findings provide brand new insights into the reaction mechanism of NO3RR and establish fundamental design principles for electrocatalytic ammonia synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19615v1-abstract-full').style.display = 'none'; document.getElementById('2412.19615v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18741">arXiv:2412.18741</a> <span> [<a href="https://arxiv.org/pdf/2412.18741">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Phononically shielded multi-wavelength photonic-crystal membrane for cavity quantum optomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Hanbing Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Doudou Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Quansen Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongmin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18741v1-abstract-short" style="display: inline;"> We propose and design a stoichiometric silicon-nitride membrane resonator featuring highly reflective at multi-wavelengths and high mechanical quality factor. The membrane resonator has a thickness of 100 nm and 2D-photonic and phononic crystal patterns. By designing concentric holes of suitable radius on both sides of the membrane, high reflectivity at multi-wavelengths can be achieved. In partic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18741v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18741v1-abstract-full" style="display: none;"> We propose and design a stoichiometric silicon-nitride membrane resonator featuring highly reflective at multi-wavelengths and high mechanical quality factor. The membrane resonator has a thickness of 100 nm and 2D-photonic and phononic crystal patterns. By designing concentric holes of suitable radius on both sides of the membrane, high reflectivity at multi-wavelengths can be achieved. In particularly, the simulation shows that high reflectivity can be realized at telecommunications wavelength and alkaline atoms absorption lines, with reflectivity of 99.76% at 852 nm, and 99.98% at 1054 nm, and 99.96% at 1566 nm, respectively. The designed device can find useful applications in cavity optomechanical system to realize quantum frequency conversion and precise quantum measurement, and other field of quantum information processing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18741v1-abstract-full').style.display = 'none'; document.getElementById('2412.18741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17322">arXiv:2412.17322</a> <span> [<a href="https://arxiv.org/pdf/2412.17322">pdf</a>, <a href="https://arxiv.org/format/2412.17322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.114936">10.1016/j.chaos.2024.114936 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable beam splitting via photorefractive nonlinearity and its applications in chiral waveguide induction and vortex generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hechong Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zihan Liu</a>, <a href="/search/physics?searchtype=author&query=Lian%2C+S">Shengdi Lian</a>, <a href="/search/physics?searchtype=author&query=Quan%2C+Q">Qingying Quan</a>, <a href="/search/physics?searchtype=author&query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shuobo Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huagang Li</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+D">Dongmei Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17322v1-abstract-short" style="display: inline;"> We report experimental observation and theoretical explanation of novel propagation regimes for optical beams in an artificial nonlinear material with outstanding photorefractive properties. Nondiffractive beams, which keep their shapes invariant in the free space, feature self-splitting from the middle in two separating secondary beams, due to the light-matter interaction. The splitting degree is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17322v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17322v1-abstract-full" style="display: none;"> We report experimental observation and theoretical explanation of novel propagation regimes for optical beams in an artificial nonlinear material with outstanding photorefractive properties. Nondiffractive beams, which keep their shapes invariant in the free space, feature self-splitting from the middle in two separating secondary beams, due to the light-matter interaction. The splitting degree is controlled by means of a phase-pre-modulation method. We propose applications of the self-splitting to the creation of an effectively chiral waveguide and the generation of even-order vortices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17322v1-abstract-full').style.display = 'none'; document.getElementById('2412.17322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos, Solitons & Fractals, 183(2024)114936 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15165">arXiv:2412.15165</a> <span> [<a href="https://arxiv.org/pdf/2412.15165">pdf</a>, <a href="https://arxiv.org/format/2412.15165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Demonstration of Logical Magic State Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rodriguez%2C+P+S">Pedro Sales Rodriguez</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+J+M">John M. Robinson</a>, <a href="/search/physics?searchtype=author&query=Jepsen%2C+P+N">Paul Niklas Jepsen</a>, <a href="/search/physics?searchtype=author&query=He%2C+Z">Zhiyang He</a>, <a href="/search/physics?searchtype=author&query=Duckering%2C+C">Casey Duckering</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chen Zhao</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+K">Kai-Hsin Wu</a>, <a href="/search/physics?searchtype=author&query=Campo%2C+J">Joseph Campo</a>, <a href="/search/physics?searchtype=author&query=Bagnall%2C+K">Kevin Bagnall</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+M">Minho Kwon</a>, <a href="/search/physics?searchtype=author&query=Karolyshyn%2C+T">Thomas Karolyshyn</a>, <a href="/search/physics?searchtype=author&query=Weinberg%2C+P">Phillip Weinberg</a>, <a href="/search/physics?searchtype=author&query=Cain%2C+M">Madelyn Cain</a>, <a href="/search/physics?searchtype=author&query=Evered%2C+S+J">Simon J. Evered</a>, <a href="/search/physics?searchtype=author&query=Geim%2C+A+A">Alexandra A. Geim</a>, <a href="/search/physics?searchtype=author&query=Kalinowski%2C+M">Marcin Kalinowski</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S+H">Sophie H. Li</a>, <a href="/search/physics?searchtype=author&query=Manovitz%2C+T">Tom Manovitz</a>, <a href="/search/physics?searchtype=author&query=Amato-Grill%2C+J">Jesse Amato-Grill</a>, <a href="/search/physics?searchtype=author&query=Basham%2C+J+I">James I. Basham</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+L">Liane Bernstein</a>, <a href="/search/physics?searchtype=author&query=Braverman%2C+B">Boris Braverman</a>, <a href="/search/physics?searchtype=author&query=Bylinskii%2C+A">Alexei Bylinskii</a>, <a href="/search/physics?searchtype=author&query=Choukri%2C+A">Adam Choukri</a>, <a href="/search/physics?searchtype=author&query=DeAngelo%2C+R">Robert DeAngelo</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15165v1-abstract-short" style="display: inline;"> Realizing universal fault-tolerant quantum computation is a key goal in quantum information science. By encoding quantum information into logical qubits utilizing quantum error correcting codes, physical errors can be detected and corrected, enabling substantial reduction in logical error rates. However, the set of logical operations that can be easily implemented on such encoded qubits is often c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15165v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15165v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15165v1-abstract-full" style="display: none;"> Realizing universal fault-tolerant quantum computation is a key goal in quantum information science. By encoding quantum information into logical qubits utilizing quantum error correcting codes, physical errors can be detected and corrected, enabling substantial reduction in logical error rates. However, the set of logical operations that can be easily implemented on such encoded qubits is often constrained, necessitating the use of special resource states known as 'magic states' to implement universal, classically hard circuits. A key method to prepare high-fidelity magic states is to perform 'distillation', creating them from multiple lower fidelity inputs. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d=3 and d=5 color codes, observing improvements of the logical fidelity of the output magic states compared to the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation, and represent an important step towards large-scale logical quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15165v1-abstract-full').style.display = 'none'; document.getElementById('2412.15165v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+11 pages, 4+4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14687">arXiv:2412.14687</a> <span> [<a href="https://arxiv.org/pdf/2412.14687">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Global track finding based on the Hough transform in the STCF detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kexin Sun</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhenna Lu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X">Xiaocong Ai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xingtao Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianbei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14687v1-abstract-short" style="display: inline;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14687v1-abstract-full" style="display: none;"> The proposed Super Tau-Charm Facility (STCF) is an electron-positron collider designed to operate in a center-of-mass energy range from 2 to 7 GeV. It provides a unique platform for physics research in the tau-charm energy region. To fulfill the physics goals of STCF, high tracking efficiency and good momentum resolution is required for charged particles with momenta from 50 MeV/c to 3.5 GeV/c. A global track finding algorithm based on Hough transform has been developed and implemented in the STCF software framework to meet this requirement. The design of the algorithm and its performance with simulation are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14687v1-abstract-full').style.display = 'none'; document.getElementById('2412.14687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14599">arXiv:2412.14599</a> <span> [<a href="https://arxiv.org/pdf/2412.14599">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Fast inverse lithography based on a model-driven block stacking convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruixiang Chen</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haoqin Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rui Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14599v1-abstract-short" style="display: inline;"> In the realm of lithography, Optical Proximity Correction (OPC) is a crucial resolution enhancement technique that optimizes the transmission function of photomasks on a pixel-based to effectively counter Optical Proximity Effects (OPE). However, conventional pixel-based OPC methods often generate patterns that pose manufacturing challenges, thereby leading to the increased cost in practical scena… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14599v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14599v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14599v1-abstract-full" style="display: none;"> In the realm of lithography, Optical Proximity Correction (OPC) is a crucial resolution enhancement technique that optimizes the transmission function of photomasks on a pixel-based to effectively counter Optical Proximity Effects (OPE). However, conventional pixel-based OPC methods often generate patterns that pose manufacturing challenges, thereby leading to the increased cost in practical scenarios. This paper presents a novel inverse lithographic approach to OPC, employing a model-driven, block stacking deep learning framework that expedites the generation of masks conducive to manufacturing. This method is founded on vector lithography modelling and streamlines the training process by eliminating the requirement for extensive labeled datasets. Furthermore, diversity of mask patterns is enhanced by employing a wave function collapse algorithm, which facilitates the random generation of a multitude of target patterns, therefore significantly expanding the range of mask paradigm. Numerical experiments have substantiated the efficacy of the proposed end-to-end approach, highlighting its superior capability to manage mask complexity within the context of advanced OPC lithography. This advancement is anticipated to enhance the feasibility and economic viability of OPC technology within actual manufacturing environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14599v1-abstract-full').style.display = 'none'; document.getElementById('2412.14599v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13477">arXiv:2412.13477</a> <span> [<a href="https://arxiv.org/pdf/2412.13477">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Generating Unseen Nonlinear Evolution in Sea Surface Temperature Using a Deep Learning-Based Latent Space Data Assimilation Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+Q">Qingyu Zheng</a>, <a href="/search/physics?searchtype=author&query=Han%2C+G">Guijun Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+L">Lige Cao</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+G">Gongfu Zhou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Haowen Wu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+Q">Qi Shao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ru Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xiaobo Wu</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+X">Xudong Cui</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13477v1-abstract-short" style="display: inline;"> Advances in data assimilation (DA) methods have greatly improved the accuracy of Earth system predictions. To fuse multi-source data and reconstruct the nonlinear evolution missing from observations, geoscientists are developing future-oriented DA methods. In this paper, we redesign a purely data-driven latent space DA framework (DeepDA) that employs a generative artificial intelligence model to c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13477v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13477v1-abstract-full" style="display: none;"> Advances in data assimilation (DA) methods have greatly improved the accuracy of Earth system predictions. To fuse multi-source data and reconstruct the nonlinear evolution missing from observations, geoscientists are developing future-oriented DA methods. In this paper, we redesign a purely data-driven latent space DA framework (DeepDA) that employs a generative artificial intelligence model to capture the nonlinear evolution in sea surface temperature. Under variational constraints, DeepDA embedded with nonlinear features can effectively fuse heterogeneous data. The results show that DeepDA remains highly stable in capturing and generating nonlinear evolutions even when a large amount of observational information is missing. It can be found that when only 10% of the observation information is available, the error increase of DeepDA does not exceed 40%. Furthermore, DeepDA has been shown to be robust in the fusion of real observations and ensemble simulations. In particular, this paper provides a mechanism analysis of the nonlinear evolution generated by DeepDA from the perspective of physical patterns, which reveals the inherent explainability of our DL model in capturing multi-scale ocean signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13477v1-abstract-full').style.display = 'none'; document.getElementById('2412.13477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13406">arXiv:2412.13406</a> <span> [<a href="https://arxiv.org/pdf/2412.13406">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A versatile method for nano-fabrication on diamond film: flexible diamond metasurfaces as a demonstration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yicheng Wang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+J">Jixiang Jing</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yumeng Luo</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Linjie Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhongqiang Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+K+H">Kwai Hei Li</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13406v1-abstract-short" style="display: inline;"> Diamond exhibits superb performance across a wide range of applications due to its enormous outstanding properties in electronic, photonic and quantum fields. Yet heterogeneous integration of diamond for on-chip functionalities, like 2D materials, remains challenging due to the hard acquisition of scalable, transferable and ultrathin diamond samples. Recently, the edge-exposed exfoliation has been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13406v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13406v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13406v1-abstract-full" style="display: none;"> Diamond exhibits superb performance across a wide range of applications due to its enormous outstanding properties in electronic, photonic and quantum fields. Yet heterogeneous integration of diamond for on-chip functionalities, like 2D materials, remains challenging due to the hard acquisition of scalable, transferable and ultrathin diamond samples. Recently, the edge-exposed exfoliation has been demonstrated as an effective way to produce wafer-scale, freestanding and ultrathin diamond films. However, the incompatibility of the newly developed diamond film with conventional nano-fabrication methods makes it difficult to fabricate diamond film into practical devices. Herein, we demonstrate the mask-transferring by sugar as a versatile method for pattern-definition on diamond films, which shows excellent geometrical resolution and accuracy comparing to conventional approaches. Additionally, based on this method, the flexible all-diamond metasurfaces functioning as structural colors have been achieved, which indicates its huge potential for fabricating more diamond-related devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13406v1-abstract-full').style.display = 'none'; document.getElementById('2412.13406v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13210">arXiv:2412.13210</a> <span> [<a href="https://arxiv.org/pdf/2412.13210">pdf</a>, <a href="https://arxiv.org/format/2412.13210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Domain Structure and Interface Control of Mechanical Stiffness in Sustainable Cellulose Bio-nanocomposites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jin%2C+H">Hanxun Jin</a>, <a href="/search/physics?searchtype=author&query=Goldberg%2C+W">William Goldberg</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenqin Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huiyong Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yuxuan Huang</a>, <a href="/search/physics?searchtype=author&query=Foston%2C+M">Marcus Foston</a>, <a href="/search/physics?searchtype=author&query=Genin%2C+G+M">Guy M. Genin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13210v1-abstract-short" style="display: inline;"> Renewable and biodegradable plastics derived from soy protein isolate (SPI) offer a promising alternative to conventional petroleum-based plastics, particularly for film-grade bioplastics applications such as plastic bags. However, even with reinforcement from cellulose nanocrystals (CNCs), their mechanical properties including stiffness lag behind those of petroleum-based plastics. To identify pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13210v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13210v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13210v1-abstract-full" style="display: none;"> Renewable and biodegradable plastics derived from soy protein isolate (SPI) offer a promising alternative to conventional petroleum-based plastics, particularly for film-grade bioplastics applications such as plastic bags. However, even with reinforcement from cellulose nanocrystals (CNCs), their mechanical properties including stiffness lag behind those of petroleum-based plastics. To identify pathways for improving CNC-reinforced SPI composites, we studied stiffening mechanisms by interpreting experimental data using homogenization models that accounted for CNC agglomeration and the formation of CNC/SPI interphases. To model effects of surface modification of CNCs with polydopamine (polyDOPA), we incorporated two key mechanisms: enhanced CNC dispersion and modified CNC-SPI interfacial interactions. Models accounted for interphases surrounding CNCs, arising from physicochemical interactions with the polyDOPA-modified CNC surfaces. Consistent wih experimental observations of polyDOPA modification enhancing mechanical properties through both increased spatial distribution of CNCs and matrix-filler interactions, results demonstrated that improved dispersion and interfacial bonding contribute to increased composite stiffness. Results highlight the potential of biodegradable CNC/SPI bio-nanocomposites as sustainable plastic alternatives, and suggest pathways for further enhancing their mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13210v1-abstract-full').style.display = 'none'; document.getElementById('2412.13210v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12556">arXiv:2412.12556</a> <span> [<a href="https://arxiv.org/pdf/2412.12556">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-performance thin-film lithium niobate Mach-Zehnder modulator on thick silica buffering layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xue%2C+X">Xiaotian Xue</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yingdong Xu</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+W">Wenjun Ding</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+R">Rui Ye</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Jing Qiu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+G">Guangzhen Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bo Wang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12556v1-abstract-short" style="display: inline;"> High-speed photonic integrated circuits leveraging the thin-film lithium niobate (TFLN) platform present a promising approach to address the burgeoning global data traffic demands. As a pivotal component, TFLN-based electro-optic (EO) Mach-Zehnder modulators (MZMs) should exhibit low driving voltage, broad operation bandwidth, high extinction ration, and low insertion loss. However, the pursuit of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12556v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12556v1-abstract-full" style="display: none;"> High-speed photonic integrated circuits leveraging the thin-film lithium niobate (TFLN) platform present a promising approach to address the burgeoning global data traffic demands. As a pivotal component, TFLN-based electro-optic (EO) Mach-Zehnder modulators (MZMs) should exhibit low driving voltage, broad operation bandwidth, high extinction ration, and low insertion loss. However, the pursuit of both maximal EO overlap integral and minimal microwave loss necessitates a fundamental compromise between driving voltage and operational bandwidth. Here, we demonstrate high-performance TFLN EO MZMs constructed on a 12-渭m-thick silica buried layer using periodic capacitively loaded traveling-wave electrodes. In contrast to their counterparts utilizing undercut etched silicon substrates or quartz substrates, our devices exhibit streamlined fabrication processes and enhanced modulation efficiency. Notably, the fabricated MZMs attains a high modulation efficiency of 1.25 Vcm in the telecom C-band, while maintaining a low EO roll-off of 1.3 dB at 67 GHz. Our demonstration offers a pathway to achieving perfect group velocity matching and break the voltage-bandwidth limit in a simplified configuration suitable for volume fabrication, thereby laying foundational groundwork for the advancement of high-performance TFLN MZMs and benefiting the next-generation PICs in optical telecommunication, signal processing and other applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12556v1-abstract-full').style.display = 'none'; document.getElementById('2412.12556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09857">arXiv:2412.09857</a> <span> [<a href="https://arxiv.org/pdf/2412.09857">pdf</a>, <a href="https://arxiv.org/format/2412.09857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orthogonal Geometry of Magneto-Optical Kerr Effect Enabled by Magnetization Multipole of Berry Curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+H">Haolin Pan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jixiang Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+M">Mingyue Fang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Y">Yanan Yuan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Daxiang Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xintong Hu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+W">Wenzhi Peng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhenguo Liang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+X">Xiao Chang</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianzhe Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peng Li</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+Q">Qian Niu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yang Gao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qinghui Yang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+D">Dazhi Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09857v2-abstract-short" style="display: inline;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09857v2-abstract-full" style="display: none;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we introduce an orthogonal MOKE geometry in which the Kerr signal detects both the magnitude and direction of the magnetization component perpendicular to the Poynting vector. We demonstrate the broad applicability of this orthogonal geometry through the MOKE measurements in cubic ferromagnets and van der Waals ferromagnet. We theoretically show that the orthogonal MOKE geometry is enabled by the multipolar structure of Berry curvature in the magnetization space, which generally induces a Voigt vector orthogonal to the magnetization, thereby accounting for the unique magnetization angle dependence distinct from conventional MOKE. The establishment of the orthogonal MOKE geometry not only introduces a new paradigm for magneto-optical measurements but also provides a framework for exploring the magnetization multipoles of Berry curvature across the electromagnetic spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'none'; document.getElementById('2412.09857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05333">arXiv:2412.05333</a> <span> [<a href="https://arxiv.org/pdf/2412.05333">pdf</a>, <a href="https://arxiv.org/format/2412.05333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Learning Symmetry-Independent Jet Representations via Jet-Based Joint Embedding Predictive Architecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Katel%2C+S">Subash Katel</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haoyang Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zihan Zhao</a>, <a href="/search/physics?searchtype=author&query=Kansal%2C+R">Raghav Kansal</a>, <a href="/search/physics?searchtype=author&query=Mokhtar%2C+F">Farouk Mokhtar</a>, <a href="/search/physics?searchtype=author&query=Duarte%2C+J">Javier Duarte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05333v1-abstract-short" style="display: inline;"> In high energy physics, self-supervised learning (SSL) methods have the potential to aid in the creation of machine learning models without the need for labeled datasets for a variety of tasks, including those related to jets -- narrow sprays of particles produced by quarks and gluons in high energy particle collisions. This study introduces an approach to learning jet representations without hand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05333v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05333v1-abstract-full" style="display: none;"> In high energy physics, self-supervised learning (SSL) methods have the potential to aid in the creation of machine learning models without the need for labeled datasets for a variety of tasks, including those related to jets -- narrow sprays of particles produced by quarks and gluons in high energy particle collisions. This study introduces an approach to learning jet representations without hand-crafted augmentations using a jet-based joint embedding predictive architecture (J-JEPA), which aims to predict various physical targets from an informative context. As our method does not require hand-crafted augmentation like other common SSL techniques, J-JEPA avoids introducing biases that could harm downstream tasks. Since different tasks generally require invariance under different augmentations, this training without hand-crafted augmentation enables versatile applications, offering a pathway toward a cross-task foundation model. We finetune the representations learned by J-JEPA for jet tagging and benchmark them against task-specific representations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05333v1-abstract-full').style.display = 'none'; document.getElementById('2412.05333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Accepted to Machine Learning for Physical Sciences NeurIPS 2024 workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04400">arXiv:2412.04400</a> <span> [<a href="https://arxiv.org/pdf/2412.04400">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Sampling of Protein Conformational Changes via True Reaction Coordinates from Energy Relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Huiyu Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+A">Ao Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04400v1-abstract-short" style="display: inline;"> The bottleneck in enhanced sampling lies in finding collective variables (CVs) that can effectively accelerate protein conformational changes. True reaction coordinates (tRCs) that can predict the committor are considered the optimal CVs, but identifying them requires unbiased natural reactive trajectories, which, paradoxically, depend on effective enhanced sampling. Using the generalized work fun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04400v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04400v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04400v1-abstract-full" style="display: none;"> The bottleneck in enhanced sampling lies in finding collective variables (CVs) that can effectively accelerate protein conformational changes. True reaction coordinates (tRCs) that can predict the committor are considered the optimal CVs, but identifying them requires unbiased natural reactive trajectories, which, paradoxically, depend on effective enhanced sampling. Using the generalized work functional method, we found that tRCs control both conformational changes and energy relaxation, enabling us to compute tRCs from energy relaxation simulations. Applying bias to tRCs accelerated conformational changes and ligand dissociation in HIV-1 protease and the PDZ2 domain by 10^5 to 10^15-fold. The resulting trajectories follow natural transition pathways, enabling efficient generation of natural reactive trajectories. In contrast, biased trajectories from empirical CVs often display non-physical features. Furthermore, by computing tRCs from a single protein structure, our method enables predictive sampling of conformational changes. These findings significantly broaden the range of protein functional processes accessible to molecular dynamics simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04400v1-abstract-full').style.display = 'none'; document.getElementById('2412.04400v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03819">arXiv:2412.03819</a> <span> [<a href="https://arxiv.org/pdf/2412.03819">pdf</a>, <a href="https://arxiv.org/format/2412.03819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Reconstruction of boosted and resolved multi-Higgs-boson events with symmetry-preserving attention networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Haoyang Li</a>, <a href="/search/physics?searchtype=author&query=Stamenkovic%2C+M">Marko Stamenkovic</a>, <a href="/search/physics?searchtype=author&query=Shmakov%2C+A">Alexander Shmakov</a>, <a href="/search/physics?searchtype=author&query=Fenton%2C+M">Michael Fenton</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+D+S">Darius Shih-Chieh Chao</a>, <a href="/search/physics?searchtype=author&query=White%2C+K+M">Kaitlyn Maiya White</a>, <a href="/search/physics?searchtype=author&query=Mikkelsen%2C+C">Caden Mikkelsen</a>, <a href="/search/physics?searchtype=author&query=Mitic%2C+J">Jovan Mitic</a>, <a href="/search/physics?searchtype=author&query=Suarez%2C+C+M">Cristina Mantilla Suarez</a>, <a href="/search/physics?searchtype=author&query=Quinnan%2C+M">Melissa Quinnan</a>, <a href="/search/physics?searchtype=author&query=Landsberg%2C+G">Greg Landsberg</a>, <a href="/search/physics?searchtype=author&query=Newman%2C+H">Harvey Newman</a>, <a href="/search/physics?searchtype=author&query=Baldi%2C+P">Pierre Baldi</a>, <a href="/search/physics?searchtype=author&query=Whiteson%2C+D">Daniel Whiteson</a>, <a href="/search/physics?searchtype=author&query=Duarte%2C+J">Javier Duarte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03819v1-abstract-short" style="display: inline;"> The production of multiple Higgs bosons at the CERN LHC provides a direct way to measure the trilinear and quartic Higgs self-interaction strengths as well as potential access to beyond the standard model effects that can enhance production at large transverse momentum $p_{\mathrm{T}}$. The largest event fraction arises from the fully hadronic final state in which every Higgs boson decays to a bot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03819v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03819v1-abstract-full" style="display: none;"> The production of multiple Higgs bosons at the CERN LHC provides a direct way to measure the trilinear and quartic Higgs self-interaction strengths as well as potential access to beyond the standard model effects that can enhance production at large transverse momentum $p_{\mathrm{T}}$. The largest event fraction arises from the fully hadronic final state in which every Higgs boson decays to a bottom quark-antiquark pair ($b\bar{b}$). This introduces a combinatorial challenge known as the \emph{jet assignment problem}: assigning jets to sets representing Higgs boson candidates. Symmetry-preserving attention networks (SPA-Nets) have been been developed to address this challenge. However, the complexity of jet assignment increases when simultaneously considering both $H\rightarrow b\bar{b}$ reconstruction possibilities, i.e., two "resolved" small-radius jets each containing a shower initiated by a $b$-quark or one "boosted" large-radius jet containing a merged shower initiated by a $b\bar{b}$ pair. The latter improves the reconstruction efficiency at high $p_{\mathrm{T}}$. In this work, we introduce a generalization to the SPA-Net approach to simultaneously consider both boosted and resolved reconstruction possibilities and unambiguously interpret an event as "fully resolved'', "fully boosted", or in between. We report the performance of baseline methods, the original SPA-Net approach, and our generalized version on nonresonant $HH$ and $HHH$ production at the LHC. Considering both boosted and resolved topologies, our SPA-Net approach increases the Higgs boson reconstruction purity by 57--62\% and the efficiency by 23--38\% compared to the baseline method depending on the final state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03819v1-abstract-full').style.display = 'none'; document.getElementById('2412.03819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00486">arXiv:2412.00486</a> <span> [<a href="https://arxiv.org/pdf/2412.00486">pdf</a>, <a href="https://arxiv.org/format/2412.00486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic Differentiation-based Full Waveform Inversion with Flexible Workflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haipeng Li</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+G">Guangyuan Zou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Junlun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00486v1-abstract-short" style="display: inline;"> Full waveform inversion (FWI) is able to construct high-resolution subsurface models by iteratively minimizing discrepancies between observed and simulated seismic data. However, its implementation can be rather involved for complex wave equations, objective functions, or regularization. Recently, automatic differentiation (AD) has proven to be effective in simplifying solutions of various inverse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00486v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00486v1-abstract-full" style="display: none;"> Full waveform inversion (FWI) is able to construct high-resolution subsurface models by iteratively minimizing discrepancies between observed and simulated seismic data. However, its implementation can be rather involved for complex wave equations, objective functions, or regularization. Recently, automatic differentiation (AD) has proven to be effective in simplifying solutions of various inverse problems, including FWI. In this study, we present an open-source AD-based FWI framework (ADFWI), which is designed to simplify the design, development, and evaluation of novel approaches in FWI with flexibility. The AD-based framework not only includes forword modeling and associated gradient computations for wave equations in various types of media from isotropic acoustic to vertically or horizontally transverse isotropic elastic, but also incorporates a suite of objective functions, regularization techniques, and optimization algorithms. By leveraging state-of-the-art AD, objective functions such as soft dynamic time warping and Wasserstein distance, which are difficult to apply in traditional FWI are also easily integrated into ADFWI. In addition, ADFWI is integrated with deep learning for implicit model reparameterization via neural networks, which not only introduces learned regularization but also allows rapid estimation of uncertainty through dropout. To manage high memory demands in large-scale inversion associated with AD, the proposed framework adopts strategies such as mini-batch and checkpointing. Through comprehensive evaluations, we demonstrate the novelty, practicality and robustness of ADFWI, which can be used to address challenges in FWI and as a workbench for prompt experiments and the development of new inversion strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00486v1-abstract-full').style.display = 'none'; document.getElementById('2412.00486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript including 14 pages supplement. Code link: https://github.com/liufeng2317/ADFWI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00089">arXiv:2412.00089</a> <span> [<a href="https://arxiv.org/pdf/2412.00089">pdf</a>, <a href="https://arxiv.org/format/2412.00089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Bulk-Surface Event Discrimination in Point Contact Germanium Detectors at Near-Threshold Energies with Shape-Matching Pulse-Shape Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jia-Shian Wang</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+M+K">Manoj Kumar Singh</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hau-Bin Li</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+H+T">Henry Tsz-King Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00089v1-abstract-short" style="display: inline;"> The p-type point-contact germanium (pPCGe) detectors have been widely adopted in searches for low energy physics events such as neutrinos and dark matter. This is due to their enhanced capabilities of background rejection, sensitivity at energies as low as the sub-keV range and particularly fine energy resolution. Nonetheless, the pPCGe is subject to irregular behaviour caused by surface effects f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00089v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00089v1-abstract-full" style="display: none;"> The p-type point-contact germanium (pPCGe) detectors have been widely adopted in searches for low energy physics events such as neutrinos and dark matter. This is due to their enhanced capabilities of background rejection, sensitivity at energies as low as the sub-keV range and particularly fine energy resolution. Nonetheless, the pPCGe is subject to irregular behaviour caused by surface effects for events near the passivated surface. These surface events can, in general, be distinguished from events that occur in the germanium crystal bulk by its slower pulse rise time. Unfortunately, the rise-time spectra of bulk and surface events starts to convolve with each other at sub-keV energies. In this work, we propose a novel method based on cross-correlation shape-matching combined with a low-pass filter to constrain the initial parameter estimates of the signal pulse. This improvement at the lowest level leads to a 50% reduction in computation time and refinements in the rise-time resolution, which will, in the end, enhance the overall analysis. To evaluate the performance of the method, we simulate artificial pulses that resembles bulk and surface pulses by using a programmable pulse generator module (pulser). The pulser-generated pulses are then used to examine the pulse behaviours at near-threshold energies, suggesting a roughly 70% background-leakage reduction in the bulk spectrum. Finally, the method is tested on data collected from the TEXONO experiment, where the results are consistent with our observations in pulser and demonstrated the possibility of lowering the analysis threshold by at least 10eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00089v1-abstract-full').style.display = 'none'; document.getElementById('2412.00089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19927">arXiv:2411.19927</a> <span> [<a href="https://arxiv.org/pdf/2411.19927">pdf</a>, <a href="https://arxiv.org/format/2411.19927">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatio-Temporal Energy Cascade in Three-Dimensional Magnetohydrodynamic Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arr%C3%B2%2C+G">Giuseppe Arr貌</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Matthaeus%2C+W+H">William H. Matthaeus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19927v1-abstract-short" style="display: inline;"> We present a new scale decomposition method to investigate turbulence in wavenumber-frequency space. Using 3D magnetohydrodynamic turbulence simulations, we show that magnetic fluctuations with time scales longer than the nonlinear time exhibit an inverse cascade toward even smaller frequencies. Low frequency magnetic fluctuations support turbulence, acting as an energy reservoir that is converted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19927v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19927v1-abstract-full" style="display: none;"> We present a new scale decomposition method to investigate turbulence in wavenumber-frequency space. Using 3D magnetohydrodynamic turbulence simulations, we show that magnetic fluctuations with time scales longer than the nonlinear time exhibit an inverse cascade toward even smaller frequencies. Low frequency magnetic fluctuations support turbulence, acting as an energy reservoir that is converted into plasma kinetic energy, the latter cascading toward large wavenumbers and frequencies, where it is dissipated. Our results shed new light on the spatio-temporal properties of turbulence, potentially explaining the origin and role of low frequency turbulent fluctuations in the solar wind. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19927v1-abstract-full').style.display = 'none'; document.getElementById('2411.19927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17297">arXiv:2411.17297</a> <span> [<a href="https://arxiv.org/pdf/2411.17297">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202401459">10.1002/lpor.202401459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D-band MUTC Photodiode Module for Ultra-Wideband 160 Gbps Photonics-Assisted Fiber-THz Integrated Communication System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yuxin Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaxuan Li</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+B">Bing Xiong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Changzheng Sun</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Z">Zhibiao Hao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lai Wang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yanjun Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongtao Li</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&query=Chi%2C+N">Nan Chi</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yi Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17297v3-abstract-short" style="display: inline;"> Current wireless communication systems are increasingly constrained by insufficient bandwidth and limited power output, impeding the achievement of ultra-high-speed data transmission. The terahertz (THz) range offers greater bandwidth, but it also imposes higher requirements on broadband and high-power devices. In this work, we present a modified uni-traveling-carrier photodiode (MUTC-PD) module w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17297v3-abstract-full').style.display = 'inline'; document.getElementById('2411.17297v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17297v3-abstract-full" style="display: none;"> Current wireless communication systems are increasingly constrained by insufficient bandwidth and limited power output, impeding the achievement of ultra-high-speed data transmission. The terahertz (THz) range offers greater bandwidth, but it also imposes higher requirements on broadband and high-power devices. In this work, we present a modified uni-traveling-carrier photodiode (MUTC-PD) module with WR-6 waveguide output for photonics-assisted fiber-THz integrated wireless communications. Through the optimization of the epitaxial structure and high-impedance coplanar waveguide (CPW), the fabricated 6-um-diameter MUTC-PD achieves a high output power of -0.96 dBm at 150 GHz and ultra-flat frequency response at D-band. The MUTC-PD is subsequently packaged into a compact WR-6 module, incorporating planar-circuit-based RF-choke, DC-block and probe. The packaged PD module demonstrates high saturation power and flat frequency responses with minimal power roll-off of only 2 dB over 110-170 GHz. By incorporating the PD module into a fiber-THz integrated communication system, high data rates of up to 160 Gbps with 16 quadrature amplitude modulation (QAM) and a maximum symbol transmission rate of 60 Gbaud with QPSK modulation are successfully secured. The demonstration verifies the potential of the PD module for ultra-broadband and ultra-high-speed THz communications, setting a foundation for future research in high-speed data transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17297v3-abstract-full').style.display = 'none'; document.getElementById('2411.17297v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the accepted version of the manuscript, as published in Laser & Photonics Reviews</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser & Photonics Reviews 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15928">arXiv:2411.15928</a> <span> [<a href="https://arxiv.org/pdf/2411.15928">pdf</a>, <a href="https://arxiv.org/format/2411.15928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal optical metasurface based on spinning cylinders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zheng Yang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+W">Wanyue Xiao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hengzhi Li</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+H">Hao Pan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shubo Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15928v1-abstract-short" style="display: inline;"> Optical systems breaking Lorentz reciprocity have attracted broad attention due to their intriguing physics and applications. Nonreciprocal metasurfaces can enable one-way light transmission and reflection with essential applications in optical communication. Conventional nonreciprocal metasurfaces rely on using magneto-optic or nonlinear materials to induce nonreciprocal optical properties. Here,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15928v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15928v1-abstract-full" style="display: none;"> Optical systems breaking Lorentz reciprocity have attracted broad attention due to their intriguing physics and applications. Nonreciprocal metasurfaces can enable one-way light transmission and reflection with essential applications in optical communication. Conventional nonreciprocal metasurfaces rely on using magneto-optic or nonlinear materials to induce nonreciprocal optical properties. Here, we propose and demonstrate a new mechanism for realizing nonreciprocal metasurfaces based on the relativistic effect of a moving medium. The metasurface is composed of periodic spinning dielectric cylinders located above a dielectric substrate. The spinning motion breaks the time-reversal symmetry and induces bi-anisotropic Tellegen-type response of the meta-atoms. We show that the metasurface can realize both asymmetric and nonreciprocal manipulations of the incident plane wave. The underlying mechanism is attributed to the Sagnac effect associated with the chiral multipole modes of the coupled spinning cylinders. By introducing dielectric pillars to modulate the phase profile, the metasurface can enable nonreciprocal wavefront manipulations. Our work offers a new mechanism for realizing nonreciprocal light manipulation in free space. The proposed metasurface can serve as a platform to explore the interesting physics of nonreciprocal optics, non-Hermitian optics, and topological photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15928v1-abstract-full').style.display = 'none'; document.getElementById('2411.15928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>