CINXE.COM

(PDF) A comparison of mixed-variables Bayesian optimization approaches | Jhouben Cuesta Ramirez - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="tWrnSLYwFDZkt497j6rZcPRRmwFJvAP2JWz8orCqOql5VIq4lcoNm9/YZcOeNzexHMrePgZIzGZCtvB9JE4L0g==" /> <meta name="citation_title" content="A comparison of mixed-variables Bayesian optimization approaches" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_author" content="Jhouben Cuesta Ramirez" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches" /> <meta name="twitter:title" content="A comparison of mixed-variables Bayesian optimization approaches" /> <meta name="twitter:description" content="Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation." /> <meta name="twitter:image" content="https://0.academia-photos.com/23422185/6917557/72780232/s200_jhouben.cuesta_ramirez.png" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches" /> <meta property="og:title" content="A comparison of mixed-variables Bayesian optimization approaches" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation." /> <meta property="article:author" content="https://utp-co.academia.edu/JhoubenCuestaRamirez" /> <meta name="description" content="Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation." /> <title>(PDF) A comparison of mixed-variables Bayesian optimization approaches | Jhouben Cuesta Ramirez - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '2f444c8e4ed6011e01999d24d77abd5ec19178fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732740429000); window.Aedu.timeDifference = new Date().getTime() - 1732740429000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, th...","author":[{"@context":"https://schema.org","@type":"Person","name":"Jhouben Cuesta Ramirez"}],"contributor":[],"dateCreated":"2022-06-21","dateModified":null,"datePublished":"2021-01-01","headline":"A comparison of mixed-variables Bayesian optimization approaches","inLanguage":"en","keywords":["Mathematics","Computer Science","Optimization Problem","Latent variable","Mathematical Optimization","Discrete Optimization","Bayesian Optimization","Continuous Optimization","Constrained Optimization","arXiv"],"locationCreated":null,"publication":null,"publisher":{"@context":"https://schema.org","@type":"Organization","name":"Research Square Platform LLC"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"utp-co"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "ae06e9f31a0722bfdf777083d57a81c39450e81ae418dd32ff8a4fbe843f6718", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/16kWAJYwAG6LP2GROXjd2oGWCcCsqL+u0Z8i1+lOv4zYMmoIaLZrAFDFz5VeA22gp0dGE1GbW7cnHBUy0ELhQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="jMU6xW346dbO8jxlWEqAi51wBcgHILQ/Hk/D2kB6pNNA+1c1TgLwe3Wd1t1J125KdetA90jUe695lc8F1J6VqA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-68aeb1ef1aef1565d873e157d2d062b6c25e45987d206ebd19f7e481aab03137.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 23422185; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F81962540%2FA_comparison_of_mixed_variables_Bayesian_optimization_approaches%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F81962540%2FA_comparison_of_mixed_variables_Bayesian_optimization_approaches%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":87823281,"identifier":"Attachment_87823281","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":81962540,"created_at":"2022-06-21T01:46:33.962-07:00","from_world_paper_id":208963827,"updated_at":"2022-06-21T02:09:44.091-07:00","_data":{"abstract":"Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, th...","publisher":"Research Square Platform LLC","publication_date":"2021,,"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"A comparison of mixed-variables Bayesian optimization approaches","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [23422185]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:87823281,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “A comparison of mixed-variables Bayesian optimization approaches”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/87823281/mini_magick20220621-22135-1i4upuq.png?1655801425" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">A comparison of mixed-variables Bayesian optimization approaches</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="23422185" href="https://utp-co.academia.edu/JhoubenCuestaRamirez"><img alt="Profile image of Jhouben Cuesta Ramirez" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/23422185/6917557/72780232/s65_jhouben.cuesta_ramirez.png" />Jhouben Cuesta Ramirez</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2021</p></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, th...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:87823281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:87823281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="87823281" data-landing_url="https://www.academia.edu/81962540/A_comparison_of_mixed_variables_Bayesian_optimization_approaches" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="120517861" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120517861/Bayesian_optimization_for_mixed_variable_multi_objective_problems">Bayesian optimization for mixed-variable, multi-objective problems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48815719" href="https://independent.academia.edu/HarisSheikh5">Haris Sheikh</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Structural and Multidisciplinary Optimization</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization for mixed-variable, multi-objective problems&quot;,&quot;attachmentId&quot;:115641298,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/120517861/Bayesian_optimization_for_mixed_variable_multi_objective_problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/120517861/Bayesian_optimization_for_mixed_variable_multi_objective_problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="83707493" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/83707493/Bayesian_Optimization_For_Multi_Objective_Mixed_Variable_Problems">Bayesian Optimization For Multi-Objective Mixed-Variable Problems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48815719" href="https://independent.academia.edu/HarisSheikh5">Haris Sheikh</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Optimizing multiple, non-preferential objectives for mixed-variable, expensive black-box problems is important in many areas of engineering and science. The expensive, noisy black-box nature of these problems makes them ideal candidates for Bayesian optimization (BO). Mixed-variable and multi-objective problems, however, are a challenge due to the BO&amp;#39;s underlying smooth Gaussian process surrogate model. Current multi-objective BO algorithms cannot deal with mixed-variable problems. We present MixMOBO, the first mixed variable multi-objective Bayesian optimization framework for such problems. Using a genetic algorithm to sample the surrogate surface, optimal Pareto-fronts for multi-objective, mixed-variable design spaces can be found efficiently while ensuring diverse solutions. The method is sufficiently flexible to incorporate many different kernels and acquisition functions, including those that were developed for mixed-variable or multi-objective problems by other authors. We...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization For Multi-Objective Mixed-Variable Problems&quot;,&quot;attachmentId&quot;:88964179,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/83707493/Bayesian_Optimization_For_Multi_Objective_Mixed_Variable_Problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/83707493/Bayesian_Optimization_For_Multi_Objective_Mixed_Variable_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="64281713" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications">Discrete Bayesian Optimization Algorithms and Applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5817647" href="https://independent.academia.edu/raffaeledamiano">raffaele damiano</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">Dealing with expensive-to-evaluate objective functions is a hard problem in optimization. Bayesian Optimization (BO) is a methodology allowing one to efficiently approximate the objective function and perform the optimization with as few evaluations as possible. This is achieved by introducing a surrogate model, i.e., a statistical model for the objective function, and an acquisition function that let us move through the feature space. The most common surrogate models are Gaussian Processes. While BO algorithms based on Gaussian Processes typically perform well over continuous domains, these techniques prove not so efficient when dealing with discrete or categorical variables and different approaches and settings are required. In this thesis, the Separable Bayesian Optimization algorithm (SBO) is proposed to overcome the limitations of classical BO. It moves from the idea of considering the discrete variables as nodes of a graph, over which a statistical model is built. This model i...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Discrete Bayesian Optimization Algorithms and Applications&quot;,&quot;attachmentId&quot;:76387901,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="117709161" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117709161/Constrained_Bayesian_Optimization_Over_Mixed_Categorical_Variables_with_Application_to_Aircraft_Design">Constrained Bayesian Optimization Over Mixed Categorical Variables, with Application to Aircraft Design</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36416992" href="https://independent.academia.edu/NathalieBartoli">Nathalie Bartoli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Zenodo (CERN European Organization for Nuclear Research), 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Constrained Bayesian Optimization Over Mixed Categorical Variables, with Application to Aircraft Design&quot;,&quot;attachmentId&quot;:113497872,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/117709161/Constrained_Bayesian_Optimization_Over_Mixed_Categorical_Variables_with_Application_to_Aircraft_Design&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/117709161/Constrained_Bayesian_Optimization_Over_Mixed_Categorical_Variables_with_Application_to_Aircraft_Design"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="64382777" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64382777/Bayesian_Optimization_Under_Uncertainty">Bayesian Optimization Under Uncertainty</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39253808" href="https://utoronto.academia.edu/JustinBeland">Justin Beland</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><p class="ds-related-work--abstract ds2-5-body-sm">We consider the problem of robust optimization, where it is sought to design a system such that it sustains a specified measure of performance under uncertainty. This problem is challenging since modeling a complex system under uncertainty can be expensive and for most real-world problems robust optimization will not be computationally viable. In this paper, we propose a Bayesian methodology to efficiently solve a class of robust optimization problems that arise in engineering design under uncertainty. The central idea is to use Gaussian process models of loss functions (or robustness metrics) together with appropriate acquisition functions to guide the search for a robust optimal solution. Numerical studies on a test problem are presented to demonstrate the efficacy of the proposed approach.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization Under Uncertainty&quot;,&quot;attachmentId&quot;:76444724,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/64382777/Bayesian_Optimization_Under_Uncertainty&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/64382777/Bayesian_Optimization_Under_Uncertainty"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="50220187" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/50220187/Improved_Gaussian_Process_Acquisition_for_Targeted_Bayesian_Optimization">Improved Gaussian Process Acquisition for Targeted Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24980269" href="https://independent.academia.edu/PeterMitic">Peter Mitic</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Modeling and Optimization</p><p class="ds-related-work--abstract ds2-5-body-sm">A black-box optimization problem is considered, in which the function to be optimized can only be expressed in terms of a complicated stochastic algorithm that takes a long time to evaluate. The value returned is required to be sufficiently near to a target value, and uses data that has a significant noise component. Bayesian Optimization with an underlying Gaussian Process is used as an optimization solution, and its effectiveness is measured in terms of the number of function evaluations required to attain the target. To improve results, a simple modification of the Gaussian Process ‘Lower Confidence Bound’ (LCB) acquisition function is proposed. The expression used for the confidence bound is squared in order to better comply with the target requirement. With this modification, much improved results compared to random selection methods and to other commonly used acquisition functions are obtained.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Improved Gaussian Process Acquisition for Targeted Bayesian Optimization&quot;,&quot;attachmentId&quot;:68287761,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/50220187/Improved_Gaussian_Process_Acquisition_for_Targeted_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/50220187/Improved_Gaussian_Process_Acquisition_for_Targeted_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="113178829" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113178829/Bayesian_Optimization_Under_Uncertainty_for_Chance_Constrained_Problems">Bayesian Optimization Under Uncertainty for Chance Constrained Problems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="65884350" href="https://independent.academia.edu/mohamedelamri5">mohamed el amri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><p class="ds-related-work--abstract ds2-5-body-sm">Chance constraint is an important tool for modeling the reliability on decision making in the presence of uncertainties. Indeed, the chance constraint enforces that the constraint is satisfied with probability 1 − α ( 0 &amp;lt; α &amp;lt; 1 ) at least. In addition, we consider that the objective func- tion is affected by uncertainties. This problem is challenging since modeling a complex system under uncertainty can be expensive and for most real-world stochastic optimization will not be computationally viable. In this talk, we propose a Bayesian methodology to efficiently solve such class of problems. The central idea is to use Gaussian Process (GP) models [1] together with appropriate acquisi- tion functions to guide the search for an optimal solution. We first show that by specifying a GP prior to the objective function, the loss function becomes tractable [2]. Similarly, using GP models for the constraints, the probability satisfaction can be efficiently approximated. Sub- sequently, w...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization Under Uncertainty for Chance Constrained Problems&quot;,&quot;attachmentId&quot;:110205839,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113178829/Bayesian_Optimization_Under_Uncertainty_for_Chance_Constrained_Problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113178829/Bayesian_Optimization_Under_Uncertainty_for_Chance_Constrained_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="93547845" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data">Bayesian optimization of generalized data</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250891876" href="https://independent.academia.edu/VladimirSobes">Vladimir Sobes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">EPJ Nuclear Sciences &amp;amp; Technologies, 2018</p><p class="ds-related-work--abstract ds2-5-body-sm">Direct application of Bayes&amp;#39; theorem to generalized data yields a posterior probability distribution function (PDF) that is a product of a prior PDF of generalized data and a likelihood function, where generalized data consists of model parameters, measured data, and model defect data. The prior PDF of generalized data is defined by prior expectation values and a prior covariance matrix of generalized data that naturally includes covariance between any two components of generalized data. A set of constraints imposed on the posterior expectation values and covariances of generalized data via a given model is formally solved by the method of Lagrange multipliers. Posterior expectation values of the constraints and their covariance matrix are conventionally set to zero, leading to a likelihood function that is a Dirac delta function of the constraining equation. It is shown that setting constraints to values other than zero is analogous to introducing a model defect. Since posterio...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization of generalized data&quot;,&quot;attachmentId&quot;:96256224,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="89020172" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization">Hybrid Batch Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="225755520" href="https://independent.academia.edu/javadazimi6">javad azimi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Hybrid Batch Bayesian Optimization&quot;,&quot;attachmentId&quot;:92894781,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="117709087" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117709087/Bayesian_optimization_for_mixed_variables_using_an_adaptive_dimension_reduction_process_applications_to_aircraft_design">Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications to aircraft design</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36416992" href="https://independent.academia.edu/NathalieBartoli">Nathalie Bartoli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Zenodo (CERN European Organization for Nuclear Research), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications to aircraft design&quot;,&quot;attachmentId&quot;:113497813,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/117709087/Bayesian_optimization_for_mixed_variables_using_an_adaptive_dimension_reduction_process_applications_to_aircraft_design&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/117709087/Bayesian_optimization_for_mixed_variables_using_an_adaptive_dimension_reduction_process_applications_to_aircraft_design"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:87823281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:87823281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_87823281" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="97205336" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97205336/Bayesian_Optimization_with_Binary_Auxiliary_Information">Bayesian Optimization with Binary Auxiliary Information</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="241280345" href="https://independent.academia.edu/ZhangYehong">Yehong Zhang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization with Binary Auxiliary Information&quot;,&quot;attachmentId&quot;:98891485,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/97205336/Bayesian_Optimization_with_Binary_Auxiliary_Information&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97205336/Bayesian_Optimization_with_Binary_Auxiliary_Information"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="115939761" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/115939761/Bayesian_optimization_with_informative_parametric_models_via_sequential_Monte_Carlo">Bayesian optimization with informative parametric models via sequential Monte Carlo</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="296064810" href="https://independent.academia.edu/SallyCripps1">Sally Cripps</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Data-Centric Engineering, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization with informative parametric models via sequential Monte Carlo&quot;,&quot;attachmentId&quot;:112206720,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/115939761/Bayesian_optimization_with_informative_parametric_models_via_sequential_Monte_Carlo&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/115939761/Bayesian_optimization_with_informative_parametric_models_via_sequential_Monte_Carlo"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="73568676" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design">On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14236250" href="https://swansea.academia.edu/AlmaRahat">Alma Rahat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">AIAA Scitech 2020 Forum, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design&quot;,&quot;attachmentId&quot;:82040113,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="78929956" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/78929956/Bayesian_Optimisation_over_Multiple_Continuous_and_Categorical_Inputs">Bayesian Optimisation over Multiple Continuous and Categorical Inputs</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="141320780" href="https://valenciacollege.academia.edu/StephenRoberts">Stephen Roberts</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimisation over Multiple Continuous and Categorical Inputs&quot;,&quot;attachmentId&quot;:85815215,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/78929956/Bayesian_Optimisation_over_Multiple_Continuous_and_Categorical_Inputs&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/78929956/Bayesian_Optimisation_over_Multiple_Continuous_and_Categorical_Inputs"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="23438924" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies">Optimization by Gaussian Processes assisted Evolution Strategies</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="45408923" href="https://independent.academia.edu/HolgerUlmer">Holger Ulmer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Operations Research Proceedings, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Optimization by Gaussian Processes assisted Evolution Strategies&quot;,&quot;attachmentId&quot;:43881507,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="116371936" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization">Recent Advances in Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="496137" href="https://independent.academia.edu/MarkusOlhofer">Markus Olhofer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Recent Advances in Bayesian Optimization&quot;,&quot;attachmentId&quot;:112520869,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="117709162" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117709162/Enhanced_Kriging_models_within_a_Bayesian_optimization_framework_to_handle_both_continuous_and_categorical_inputs">Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36416992" href="https://independent.academia.edu/NathalieBartoli">Nathalie Bartoli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">HAL (Le Centre pour la Communication Scientifique Directe), 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs&quot;,&quot;attachmentId&quot;:113497876,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/117709162/Enhanced_Kriging_models_within_a_Bayesian_optimization_framework_to_handle_both_continuous_and_categorical_inputs&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117709162/Enhanced_Kriging_models_within_a_Bayesian_optimization_framework_to_handle_both_continuous_and_categorical_inputs"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="75863792" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier">srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="220298067" href="https://independent.academia.edu/AnhDuyTran14">Anh Duy Tran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mechanical Design, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier&quot;,&quot;attachmentId&quot;:83505322,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="108143845" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space">Filtering Bayesian optimization approach in weakly specified search space</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="214605324" href="https://independent.academia.edu/V%C5%A9Ho%C3%A0ngNguy%E1%BB%85n2">Vũ Hoàng Nguyễn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Knowledge and Information Systems, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Filtering Bayesian optimization approach in weakly specified search space&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="104281885" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/104281885/A_hierarchical_expected_improvement_method_for_Bayesian_optimization">A hierarchical expected improvement method for Bayesian optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="74054597" href="https://independent.academia.edu/%E5%93%B2%E6%99%96%E9%99%88">Zhehui Chen</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A hierarchical expected improvement method for Bayesian optimization&quot;,&quot;attachmentId&quot;:104053788,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/104281885/A_hierarchical_expected_improvement_method_for_Bayesian_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/104281885/A_hierarchical_expected_improvement_method_for_Bayesian_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="1341213" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1341213/The_Correlated_Knowledge_Gradient_for_Simulation_Optimization_of_Continuous_Parameters_using_Gaussian_Process_Regression">The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="480201" href="https://cornell.academia.edu/PeterFrazier">Peter Frazier</a></div><p class="ds-related-work--metadata ds2-5-body-xs">SIAM Journal on Optimization, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression&quot;,&quot;attachmentId&quot;:8325495,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/1341213/The_Correlated_Knowledge_Gradient_for_Simulation_Optimization_of_Continuous_Parameters_using_Gaussian_Process_Regression&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/1341213/The_Correlated_Knowledge_Gradient_for_Simulation_Optimization_of_Continuous_Parameters_using_Gaussian_Process_Regression"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="58858055" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget">Bayesian Optimization for Parameter Identification on a Small Simulation Budget</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37936668" href="https://independent.academia.edu/EricWalter2">Eric Walter</a></div><p class="ds-related-work--metadata ds2-5-body-xs">15th IFAC Symposium on System Identification, 2009, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization for Parameter Identification on a Small Simulation Budget&quot;,&quot;attachmentId&quot;:73066197,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="99172042" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization">Tutorial on Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12043864" href="https://independentscholar.academia.edu/LocNguyen">Loc Nguyen&#39;s Academic Network</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="88862579" href="https://independent.academia.edu/LocNguyen2000">Loc Nguyen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Preprints 2023, 2023030292, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Tutorial on Bayesian Optimization&quot;,&quot;attachmentId&quot;:100329972,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="121434062" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs">Bayesian Optimization with Missing Inputs</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163583113" href="https://independent.academia.edu/PhucLuong14">Phuc Luong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lecture Notes in Computer Science, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization with Missing Inputs&quot;,&quot;attachmentId&quot;:116310273,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="105595764" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/105595764/Deep_Gaussian_Process_for_Enhanced_Bayesian_Optimization_and_its_Application_in_Additive_Manufacturing">Deep Gaussian Process for Enhanced Bayesian Optimization and its Application in Additive Manufacturing</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184970042" href="https://vt.academia.edu/RaghavGnanasambandam">Raghav Gnanasambandam</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Deep Gaussian Process for Enhanced Bayesian Optimization and its Application in Additive Manufacturing&quot;,&quot;attachmentId&quot;:105006007,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/105595764/Deep_Gaussian_Process_for_Enhanced_Bayesian_Optimization_and_its_Application_in_Additive_Manufacturing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/105595764/Deep_Gaussian_Process_for_Enhanced_Bayesian_Optimization_and_its_Application_in_Additive_Manufacturing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="103936571" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103936571/Think_Global_and_Act_Local_Bayesian_Optimisation_over_High_Dimensional_Categorical_and_Mixed_Search_Spaces">Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="275097905" href="https://independent.academia.edu/HuongHa95">Huong Ha</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces&quot;,&quot;attachmentId&quot;:103802912,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/103936571/Think_Global_and_Act_Local_Bayesian_Optimisation_over_High_Dimensional_Categorical_and_Mixed_Search_Spaces&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/103936571/Think_Global_and_Act_Local_Bayesian_Optimisation_over_High_Dimensional_Categorical_and_Mixed_Search_Spaces"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="123866501" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/123866501/Bayesian_multi_objective_optimization_for_stochastic_simulators">Bayesian multi-objective optimization for stochastic simulators</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34177437" href="https://independent.academia.edu/FannyTenenhausaziza">Fanny Tenenhaus-aziza</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian multi-objective optimization for stochastic simulators&quot;,&quot;attachmentId&quot;:118201555,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/123866501/Bayesian_multi_objective_optimization_for_stochastic_simulators&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/123866501/Bayesian_multi_objective_optimization_for_stochastic_simulators"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="94214655" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization">An analysis of covariance parameters in Gaussian process-based optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="56976577" href="https://independent.academia.edu/XavierBay">Xavier Bay</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Croatian Operational Research Review, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;An analysis of covariance parameters in Gaussian process-based optimization&quot;,&quot;attachmentId&quot;:96734546,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="124519258" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/124519258/A_Bi_Objective_Optimization_Based_Acquisition_Strategy_for_Batch_Bayesian_Global_Optimization">A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="114464028" href="https://independent.academia.edu/SimoneMagistri">Simone Magistri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2024</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization&quot;,&quot;attachmentId&quot;:118728533,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/124519258/A_Bi_Objective_Optimization_Based_Acquisition_Strategy_for_Batch_Bayesian_Global_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/124519258/A_Bi_Objective_Optimization_Based_Acquisition_Strategy_for_Batch_Bayesian_Global_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="102197802" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102197802/A_Computationally_Efficient_Approach_to_Black_box_Optimization_using_Gaussian_Process_Models">A Computationally Efficient Approach to Black-box Optimization using Gaussian Process Models</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="9048404" href="https://independent.academia.edu/SattarVakili">Sattar Vakili</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Computationally Efficient Approach to Black-box Optimization using Gaussian Process Models&quot;,&quot;attachmentId&quot;:102525788,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/102197802/A_Computationally_Efficient_Approach_to_Black_box_Optimization_using_Gaussian_Process_Models&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/102197802/A_Computationally_Efficient_Approach_to_Black_box_Optimization_using_Gaussian_Process_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="14536026" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14536026/Bayesian_Monte_Carlo_for_the_Global_Optimization_of_Expensive_Functions">Bayesian Monte Carlo for the Global Optimization of Expensive Functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33495650" href="https://radboud.academia.edu/PerryGroot">Perry Groot</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33667371" href="https://radboud.academia.edu/TomHeskes">Tom Heskes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">cs.ru.nl</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Monte Carlo for the Global Optimization of Expensive Functions&quot;,&quot;attachmentId&quot;:44085769,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/14536026/Bayesian_Monte_Carlo_for_the_Global_Optimization_of_Expensive_Functions&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14536026/Bayesian_Monte_Carlo_for_the_Global_Optimization_of_Expensive_Functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="100297058" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/100297058/Information_Based_Multi_Fidelity_Bayesian_Optimization">Information-Based Multi-Fidelity Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="241280345" href="https://independent.academia.edu/ZhangYehong">Yehong Zhang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Information-Based Multi-Fidelity Bayesian Optimization&quot;,&quot;attachmentId&quot;:101159571,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/100297058/Information_Based_Multi_Fidelity_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/100297058/Information_Based_Multi_Fidelity_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="62309661" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes">Evolutionary optimization for computationally expensive problems using gaussian processes</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55978011" href="https://cairo.academia.edu/MohammedElBeltagy">Mohammed El-Beltagy</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Evolutionary optimization for computationally expensive problems using gaussian processes&quot;,&quot;attachmentId&quot;:75119395,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="15124234" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data">Bayesian optimization with censored response data</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34161238" href="https://independent.academia.edu/FrankHutter">Frank Hutter</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34174907" href="https://ubc.academia.edu/KevinLeytonbrown">Kevin Leyton-brown</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34073093" href="https://ubc.academia.edu/HolgerHoos">Holger Hoos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization with censored response data&quot;,&quot;attachmentId&quot;:43564236,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="28226947" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/28226947/A_comparison_of_Bayesian_sampling_global_optimization_techniques">A comparison of Bayesian/sampling global optimization techniques</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52901608" href="https://independent.academia.edu/BruceStuckman">Bruce Stuckman</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Systems, Man, and Cybernetics, 1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A comparison of Bayesian/sampling global optimization techniques&quot;,&quot;attachmentId&quot;:48542468,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/28226947/A_comparison_of_Bayesian_sampling_global_optimization_techniques&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/28226947/A_comparison_of_Bayesian_sampling_global_optimization_techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="46254" href="https://www.academia.edu/Documents/in/Optimization_Problem">Optimization Problem</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="69730" href="https://www.academia.edu/Documents/in/Latent_variable">Latent variable</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="272592" href="https://www.academia.edu/Documents/in/Mathematical_Optimization">Mathematical Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="421210" href="https://www.academia.edu/Documents/in/Discrete_Optimization">Discrete Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="535039" href="https://www.academia.edu/Documents/in/Bayesian_Optimization">Bayesian Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1234963" href="https://www.academia.edu/Documents/in/Continuous_Optimization">Continuous Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1689234" href="https://www.academia.edu/Documents/in/Constrained_Optimization">Constrained Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3193313" href="https://www.academia.edu/Documents/in/arXiv">arXiv</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10