CINXE.COM

Xavier Bay - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Xavier Bay - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="DEnIdA1ZZCXRqJOygs+x+l+bIQWz4eifAvAI0j/06H7jXmoGmnFY5poV3TIpX2A61/e/gBcAR8aii50RPlGEng==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="xavier bay" /> <meta name="description" content="Xavier Bay: 9 Followers, 4 Following, 39 Research papers. Research interests: High Temperature, High Pressure, and Economic geography (Geography) (Geography)." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'ca4e910d46e38122317a3848288563fbc11da57e'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277489910,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732747945000); window.Aedu.timeDifference = new Date().getTime() - 1732747945000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/XavierBay" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":191117,"name":"High Temperature","url":"https://www.academia.edu/Documents/in/High_Temperature"},{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":22543,"name":"Economic geography (Geography) (Geography)","url":"https://www.academia.edu/Documents/in/Economic_geography_Geography_Geography_"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":380824,"name":"Ozone","url":"https://www.academia.edu/Documents/in/Ozone"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/XavierBay&quot;,&quot;location&quot;:&quot;/XavierBay&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/XavierBay&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d1620b08-c08e-4424-8616-511ed6708538"></div> <div id="ProfileCheckPaperUpdate-react-component-d1620b08-c08e-4424-8616-511ed6708538"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Xavier Bay</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Xavier" data-follow-user-id="56976577" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="56976577"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56976577" href="https://www.academia.edu/Documents/in/High_Temperature"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/XavierBay&quot;,&quot;location&quot;:&quot;/XavierBay&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/XavierBay&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;High Temperature&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4ff80ee5-21cb-44f8-b928-4f5cfc7df6e3"></div> <div id="Pill-react-component-4ff80ee5-21cb-44f8-b928-4f5cfc7df6e3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56976577" href="https://www.academia.edu/Documents/in/High_Pressure"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;High Pressure&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e97763e2-8f38-49eb-b05f-21482c364955"></div> <div id="Pill-react-component-e97763e2-8f38-49eb-b05f-21482c364955"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56976577" href="https://www.academia.edu/Documents/in/Economic_geography_Geography_Geography_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Economic geography (Geography) (Geography)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-7d79efea-4f34-4780-8fd8-f4ea40b768dc"></div> <div id="Pill-react-component-7d79efea-4f34-4780-8fd8-f4ea40b768dc"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56976577" href="https://www.academia.edu/Documents/in/High_Resolution"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;High Resolution&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a7594e73-84d6-4f73-a590-957637c6015c"></div> <div id="Pill-react-component-a7594e73-84d6-4f73-a590-957637c6015c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56976577" href="https://www.academia.edu/Documents/in/Ozone"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Ozone&quot;]}" data-trace="false" data-dom-id="Pill-react-component-77896059-a3db-458d-aed2-595341b1397a"></div> <div id="Pill-react-component-77896059-a3db-458d-aed2-595341b1397a"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Xavier Bay</h3></div><div class="js-work-strip profile--work_container" data-work-id="94214664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions"><img alt="Research paper thumbnail of Sampling large hyperplane-truncated multivariate normal distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/96734476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions">Sampling large hyperplane-truncated multivariate normal distributions</a></div><div class="wp-workCard_item"><span>Le Centre pour la Communication Scientifique Directe - HAL - ENSM-SE</span><span>, Aug 2, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05366825f8abdd4713ec634883cd7239" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734476,&quot;asset_id&quot;:94214664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214664]").text(description); $(".js-view-count[data-work-id=94214664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05366825f8abdd4713ec634883cd7239" } } $('.js-work-strip[data-work-id=94214664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214664,"title":"Sampling large hyperplane-truncated multivariate normal distributions","translated_title":"","metadata":{"publisher":"Le Centre pour la Communication Scientifique Directe","grobid_abstract":"Generating multivariate normal distributions is widely used in many fields (such as engineering). In this paper, simulating large multivariate normal distributions truncated on the intersection of a set of hyperplanes is investigated. The proposed methodology focuses on Gaussian vectors extracted from a Gaussian process (GP) in one dimension. It is based on combining both Karhunen-Loève expansions (KLE) and Matheron's update rules (MUR). The KLE requires the computation of the decomposition of the covariance matrix of the random variables. This step becomes expensive when the random vector is too large. To deal with this issue, the input domain is split in smallest subdomains where the eigendecomposition can be computed. By this strategy, the computational complexity is drastically reduced. The mean-square truncation and block errors have been calculated. Some numerical experiments are presented in order to study the efficiency of the proposed approach.","publication_date":{"day":2,"month":8,"year":2022,"errors":{}},"publication_name":"Le Centre pour la Communication Scientifique Directe - HAL - ENSM-SE","grobid_abstract_attachment_id":96734476},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions","translated_internal_url":"","created_at":"2023-01-02T23:53:02.042-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734476/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sampling_large_hyperplane_truncated_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734476/document-libre.pdf?1672743215=\u0026response-content-disposition=attachment%3B+filename%3DSampling_large_hyperplane_truncated_mult.pdf\u0026Expires=1732751545\u0026Signature=U3NM5oOBINIh3yMuRXyrTZh-in4gkWM6SMJZU8rKtEuIO2mYOilpE6beeqQrnsUINfYPSU-6J4K38PVW6WeD9K56uCNSwT~YHZxmVDE1t3ACyHnzBNVRBtVahvbg~6Ta3x2j~OXpTEXcOQhR7Ye5CmbKZg8a4Iygh8qiv9aA7j04skcxoi4xKUxiTZLkrIbqBmLuDlvrurIhFrMTox5WDMVm13Tax6jFOW5TnsRjNHISVEsF~CIRgGangnimJay31Y7i7ZuSBfGtHfXHPhhZjRQfwftxAtPTdBIVsOyS1NXLcxuBkbi4IvppCMEDMnDeehv~iPSyKc9F5KT1sWJL6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sampling_large_hyperplane_truncated_multivariate_normal_distributions","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734476/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sampling_large_hyperplane_truncated_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734476/document-libre.pdf?1672743215=\u0026response-content-disposition=attachment%3B+filename%3DSampling_large_hyperplane_truncated_mult.pdf\u0026Expires=1732751545\u0026Signature=U3NM5oOBINIh3yMuRXyrTZh-in4gkWM6SMJZU8rKtEuIO2mYOilpE6beeqQrnsUINfYPSU-6J4K38PVW6WeD9K56uCNSwT~YHZxmVDE1t3ACyHnzBNVRBtVahvbg~6Ta3x2j~OXpTEXcOQhR7Ye5CmbKZg8a4Iygh8qiv9aA7j04skcxoi4xKUxiTZLkrIbqBmLuDlvrurIhFrMTox5WDMVm13Tax6jFOW5TnsRjNHISVEsF~CIRgGangnimJay31Y7i7ZuSBfGtHfXHPhhZjRQfwftxAtPTdBIVsOyS1NXLcxuBkbi4IvppCMEDMnDeehv~iPSyKc9F5KT1sWJL6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics"},{"id":1128697,"name":"Multivariate Normal Distribution","url":"https://www.academia.edu/Documents/in/Multivariate_Normal_Distribution"},{"id":2383742,"name":"Hyperplane","url":"https://www.academia.edu/Documents/in/Hyperplane"}],"urls":[{"id":27685975,"url":"https://hal.archives-ouvertes.fr/hal-03741860/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics"><img alt="Research paper thumbnail of A discussion of the current and potential uses of Gaussian Processes in mechanics" class="work-thumbnail" src="https://attachments.academia-assets.com/96734540/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics">A discussion of the current and potential uses of Gaussian Processes in mechanics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec2bb4b99020f0c50e8fa4dbd404aced" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734540,&quot;asset_id&quot;:94214663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214663]").text(description); $(".js-view-count[data-work-id=94214663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec2bb4b99020f0c50e8fa4dbd404aced" } } $('.js-work-strip[data-work-id=94214663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214663,"title":"A discussion of the current and potential uses of Gaussian Processes in mechanics","translated_title":"","metadata":{"grobid_abstract":"Kriging for small data and partial explanability 2 Costly shape optimization 3 Design in the presence of mixed variables 4 Perspectives: uncertainties and permeabilities 5 Bibliography R. Le Riche et al. GPs in mechanics March 2022 3 / 45 R. Le Riche et al. GPs in mechanics March 2022 4 / 45 Context (cont.): small data and explanability Kriging is a machine learning technique that applies to small data, is expressive and somewhat explainable as we will argue here.","publication_date":{"day":10,"month":3,"year":2022,"errors":{}},"grobid_abstract_attachment_id":96734540},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics","translated_internal_url":"","created_at":"2023-01-02T23:53:01.923-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734540,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734540/thumbnails/1.jpg","file_name":"talk_SF2M_LeRiche_march2022.pdf","download_url":"https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_discussion_of_the_current_and_potentia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734540/talk_SF2M_LeRiche_march2022-libre.pdf?1672739696=\u0026response-content-disposition=attachment%3B+filename%3DA_discussion_of_the_current_and_potentia.pdf\u0026Expires=1732751545\u0026Signature=hKgM9i-GDlVXTqzw7bd-rI-0MIDw2qURSCPV4TuXLy2O5zdRVfpaXW4YHFoAWTSnixsT4hj5oVL2G6Cf6h2IROC127hiMFVuvrFCpYUlE7-HZDVDGVU5ZYcLkJ0sc4RTFQ61YDOeG6rDsJ4i45Q~eyzCT5dHO9westdA7klCdUDJtiQVaphsho~bCuIWHEgNr6PrrrSCa5vd36QhEEYQHe8AjK6ygzW3KJIGgP8-tQsx5kNTwuhKsu7W97Ej3eLlgJtnljyO8B0FYKduQqSp~KDHj27CfhnXLtpqfCBlOhtQIV52yYlXCFu9Xym8wc~U1vW~EEQkqmiG813zxv8d9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics","translated_slug":"","page_count":45,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734540,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734540/thumbnails/1.jpg","file_name":"talk_SF2M_LeRiche_march2022.pdf","download_url":"https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_discussion_of_the_current_and_potentia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734540/talk_SF2M_LeRiche_march2022-libre.pdf?1672739696=\u0026response-content-disposition=attachment%3B+filename%3DA_discussion_of_the_current_and_potentia.pdf\u0026Expires=1732751545\u0026Signature=hKgM9i-GDlVXTqzw7bd-rI-0MIDw2qURSCPV4TuXLy2O5zdRVfpaXW4YHFoAWTSnixsT4hj5oVL2G6Cf6h2IROC127hiMFVuvrFCpYUlE7-HZDVDGVU5ZYcLkJ0sc4RTFQ61YDOeG6rDsJ4i45Q~eyzCT5dHO9westdA7klCdUDJtiQVaphsho~bCuIWHEgNr6PrrrSCa5vd36QhEEYQHe8AjK6ygzW3KJIGgP8-tQsx5kNTwuhKsu7W97Ej3eLlgJtnljyO8B0FYKduQqSp~KDHj27CfhnXLtpqfCBlOhtQIV52yYlXCFu9Xym8wc~U1vW~EEQkqmiG813zxv8d9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[{"id":27685974,"url":"https://hal.archives-ouvertes.fr/hal-03605952"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces"><img alt="Research paper thumbnail of Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces" class="work-thumbnail" src="https://attachments.academia-assets.com/96734472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces">Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characteri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c84d4745fce227fbdae2557a47181fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734472,&quot;asset_id&quot;:94214662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214662]").text(description); $(".js-view-count[data-work-id=94214662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c84d4745fce227fbdae2557a47181fb" } } $('.js-work-strip[data-work-id=94214662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214662,"title":"Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces","translated_title":"","metadata":{"abstract":"The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.","internal_url":"https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces","translated_internal_url":"","created_at":"2023-01-02T23:53:01.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734472/thumbnails/1.jpg","file_name":"Opt_Interpolation_Hilb_Subs.pdf","download_url":"https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_Decomposition_of_Integral_Opera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734472/Opt_Interpolation_Hilb_Subs-libre.pdf?1672743212=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_Decomposition_of_Integral_Opera.pdf\u0026Expires=1732751545\u0026Signature=bZszsKOODzYB3KxrUeg3NHljvFM8XWUiIEb-aWnlwGIBhlDKWVFiMbHpA~UW2a8l7G1uIp5XZpTSqNUAh9v79Ws0Zq~ttRqJZXraEgxIq5OkT40J2CsdXVmwTMiAH7YaSRRoSMKKqUR~lorDhJPRTRRQvAgowqettY14Q7WBK~m49-F5X0sVP2jqCrIY84RKg1DQsPL41dwnKKVlb9J8IZRPLT27vroxoUkYsCbEBb9eOPU2Ts4F17wQ4vwFUTnKNawxsweNDyicOVTXvhM1PxU9EypjxCLVdVCqx1l65oFBJXCrKjXz1Tkt~mMFSmGkzeo7gLvzX60hnqCtdlDDqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734472/thumbnails/1.jpg","file_name":"Opt_Interpolation_Hilb_Subs.pdf","download_url":"https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_Decomposition_of_Integral_Opera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734472/Opt_Interpolation_Hilb_Subs-libre.pdf?1672743212=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_Decomposition_of_Integral_Opera.pdf\u0026Expires=1732751545\u0026Signature=bZszsKOODzYB3KxrUeg3NHljvFM8XWUiIEb-aWnlwGIBhlDKWVFiMbHpA~UW2a8l7G1uIp5XZpTSqNUAh9v79Ws0Zq~ttRqJZXraEgxIq5OkT40J2CsdXVmwTMiAH7YaSRRoSMKKqUR~lorDhJPRTRRQvAgowqettY14Q7WBK~m49-F5X0sVP2jqCrIY84RKg1DQsPL41dwnKKVlb9J8IZRPLT27vroxoUkYsCbEBb9eOPU2Ts4F17wQ4vwFUTnKNawxsweNDyicOVTXvhM1PxU9EypjxCLVdVCqx1l65oFBJXCrKjXz1Tkt~mMFSmGkzeo7gLvzX60hnqCtdlDDqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"}],"urls":[{"id":27685973,"url":"https://www.emse.fr/~bay/Opt_Interpolation_Hilb_Subs.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines"><img alt="Research paper thumbnail of Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines">Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Complex physical phenomena are observed in many fields (sciences and engineering) and are often s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214661]").text(description); $(".js-view-count[data-work-id=94214661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214661,"title":"Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines","translated_title":"","metadata":{"abstract":"Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...","internal_url":"https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines","translated_internal_url":"","created_at":"2023-01-02T23:53:01.713-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes"><img alt="Research paper thumbnail of An analytic comparison of regularization methods for Gaussian Processes" class="work-thumbnail" src="https://attachments.academia-assets.com/96734470/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes">An analytic comparison of regularization methods for Gaussian Processes</a></div><div class="wp-workCard_item"><span>arXiv: Optimization and Control</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experime...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b999d93bc72df98c2a49a4da8ed8a594" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734470,&quot;asset_id&quot;:94214660,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214660]").text(description); $(".js-view-count[data-work-id=94214660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b999d93bc72df98c2a49a4da8ed8a594" } } $('.js-work-strip[data-work-id=94214660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214660,"title":"An analytic comparison of regularization methods for Gaussian Processes","translated_title":"","metadata":{"abstract":"Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"arXiv: Optimization and Control"},"translated_abstract":"Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...","internal_url":"https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes","translated_internal_url":"","created_at":"2023-01-02T23:53:01.587-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734470/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analytic_comparison_of_regularization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734470/document-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DAn_analytic_comparison_of_regularization.pdf\u0026Expires=1732751545\u0026Signature=TaXw1jQH6tMN9kUy2AgBPGygOqV5uiz9xhp~p8tgFo5cqBtGJGo6aLoA2wu6wIDFvmFEJSNfnjfOvWR5vHaswl7RR6oZjfNdF9--CZrC1tsiHHJmjZjjsB5ZJTORVJieGcorzOIUUllyK7gkKecBHXNOpgJ7iy8Io-gTLd3v1vNQbjoYbZEb59teXbpw8rVzwMOrY31hcRgNvCSA2AYGF31mPZ5evjw7f2yI36QVCJoJHs8J~xxn0QdyJAbBSpkYZgv6~mAxblGakyt0O7PpO5dXdSU2RLbZRutjn5BGsmf~khDJA-3WH65mAFQRlUlGlkvK1Hfe0WiHdhYPBPRY3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734470/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analytic_comparison_of_regularization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734470/document-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DAn_analytic_comparison_of_regularization.pdf\u0026Expires=1732751545\u0026Signature=TaXw1jQH6tMN9kUy2AgBPGygOqV5uiz9xhp~p8tgFo5cqBtGJGo6aLoA2wu6wIDFvmFEJSNfnjfOvWR5vHaswl7RR6oZjfNdF9--CZrC1tsiHHJmjZjjsB5ZJTORVJieGcorzOIUUllyK7gkKecBHXNOpgJ7iy8Io-gTLd3v1vNQbjoYbZEb59teXbpw8rVzwMOrY31hcRgNvCSA2AYGF31mPZ5evjw7f2yI36QVCJoJHs8J~xxn0QdyJAbBSpkYZgv6~mAxblGakyt0O7PpO5dXdSU2RLbZRutjn5BGsmf~khDJA-3WH65mAFQRlUlGlkvK1Hfe0WiHdhYPBPRY3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":85880,"name":"Singular value decomposition","url":"https://www.academia.edu/Documents/in/Singular_value_decomposition"},{"id":146286,"name":"Kriging","url":"https://www.academia.edu/Documents/in/Kriging"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":711810,"name":"Regularization","url":"https://www.academia.edu/Documents/in/Regularization"},{"id":958135,"name":"Gaussian Process Regression","url":"https://www.academia.edu/Documents/in/Gaussian_Process_Regression"},{"id":1473341,"name":"Covariance","url":"https://www.academia.edu/Documents/in/Covariance"},{"id":2961164,"name":"nugget","url":"https://www.academia.edu/Documents/in/nugget"}],"urls":[{"id":27685972,"url":"https://hal.archives-ouvertes.fr/hal-01264192v2/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application"><img alt="Research paper thumbnail of Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application" class="work-thumbnail" src="https://attachments.academia-assets.com/96734471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application">Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert spa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2858495f41c798b4d54fc6c2e3d387c9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734471,&quot;asset_id&quot;:94214659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214659]").text(description); $(".js-view-count[data-work-id=94214659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2858495f41c798b4d54fc6c2e3d387c9" } } $('.js-work-strip[data-work-id=94214659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214659,"title":"Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application","translated_title":"","metadata":{"abstract":"The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.","internal_url":"https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application","translated_internal_url":"","created_at":"2023-01-02T23:53:01.424-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734471/thumbnails/1.jpg","file_name":"Optimal_Interpolation_And_Operators.pdf","download_url":"https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_Interpolation_in_RKHS_Spectral_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734471/Optimal_Interpolation_And_Operators-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_Interpolation_in_RKHS_Spectral_D.pdf\u0026Expires=1732751545\u0026Signature=fLC70srl9zDqFDvrJYg9zepfwvlO32ID2Ob4KXSerTDltNYA6gpZkctQ-6NBhZkCnqvwX56zMvHOElDETTVrsz7VNhjeQHDBH2Cyu69B7CVaoz5qMAg0REIwukGZ6e9JHx0ySLOpqXJMsmAZqye~nTDFpxlQ9efa2BBc4tBcg41QG~mK3tenTYzpb5pcspnpCNt6vjGNTaVIG9g0xzzE85JMpbyVFwnkLbXKmx-5OszWMVmlQaYdt~C3oRwhIE-G0EnN6pksJV7BztcYiNtZfCp2-FCzXM7w6SWYSZSuzD2kkCWdQmVbYULOeEywBvynqahjlC3rs-D6MH6-4DJ3gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734471/thumbnails/1.jpg","file_name":"Optimal_Interpolation_And_Operators.pdf","download_url":"https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_Interpolation_in_RKHS_Spectral_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734471/Optimal_Interpolation_And_Operators-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_Interpolation_in_RKHS_Spectral_D.pdf\u0026Expires=1732751545\u0026Signature=fLC70srl9zDqFDvrJYg9zepfwvlO32ID2Ob4KXSerTDltNYA6gpZkctQ-6NBhZkCnqvwX56zMvHOElDETTVrsz7VNhjeQHDBH2Cyu69B7CVaoz5qMAg0REIwukGZ6e9JHx0ySLOpqXJMsmAZqye~nTDFpxlQ9efa2BBc4tBcg41QG~mK3tenTYzpb5pcspnpCNt6vjGNTaVIG9g0xzzE85JMpbyVFwnkLbXKmx-5OszWMVmlQaYdt~C3oRwhIE-G0EnN6pksJV7BztcYiNtZfCp2-FCzXM7w6SWYSZSuzD2kkCWdQmVbYULOeEywBvynqahjlC3rs-D6MH6-4DJ3gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":884835,"name":"Reproducing Kernel Hilbert Space","url":"https://www.academia.edu/Documents/in/Reproducing_Kernel_Hilbert_Space"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"}],"urls":[{"id":27685971,"url":"https://www.emse.fr/~bay/Optimal_Interpolation_And_Operators.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation"><img alt="Research paper thumbnail of Constrained Optimal Smoothing and Bayesian Estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation">Constrained Optimal Smoothing and Bayesian Estimation</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0261a88dff5e764387a4e15a856a633" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734469,&quot;asset_id&quot;:94214658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214658]").text(description); $(".js-view-count[data-work-id=94214658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0261a88dff5e764387a4e15a856a633" } } $('.js-work-strip[data-work-id=94214658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214658,"title":"Constrained Optimal Smoothing and Bayesian Estimation","translated_title":"","metadata":{"abstract":"In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.","internal_url":"https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation","translated_internal_url":"","created_at":"2023-01-02T23:53:01.260-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734469/thumbnails/1.jpg","file_name":"2107.05275v1.pdf","download_url":"https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Constrained_Optimal_Smoothing_and_Bayesi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734469/2107.05275v1-libre.pdf?1672743195=\u0026response-content-disposition=attachment%3B+filename%3DConstrained_Optimal_Smoothing_and_Bayesi.pdf\u0026Expires=1732751545\u0026Signature=MU8DTlDg~l28kNCKufj8UnZleHZmQR-aWSVSTiBchYbatuccRd1IpqjZTvnxN-gTrbP8j~7eBcQoIwud-vVt2lCjsHoUn3r0ETDewJEOid~enNBYg6sd4vzfHnlzhJ3rcA1xwueoM~mYNEBZbwbTZA0bbHTqav0OEJDhlP8NBZp6CPM3cgFJy7I3pzqnb1dVeMNMfwzaYRi82Ka2w852tWMziAG9BxpLGK10hsnfGnLFD4~1RT6OWtJHBJTuXnVvJYpLumfSTBSHmXMUJr8RLoLsx4afKUu6wSrUSKm2X1xZkbcT2zSAhMJqnKeqW90XnaFBjEdtxNVGMkKyCe3CsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Constrained_Optimal_Smoothing_and_Bayesian_Estimation","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734469/thumbnails/1.jpg","file_name":"2107.05275v1.pdf","download_url":"https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Constrained_Optimal_Smoothing_and_Bayesi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734469/2107.05275v1-libre.pdf?1672743195=\u0026response-content-disposition=attachment%3B+filename%3DConstrained_Optimal_Smoothing_and_Bayesi.pdf\u0026Expires=1732751545\u0026Signature=MU8DTlDg~l28kNCKufj8UnZleHZmQR-aWSVSTiBchYbatuccRd1IpqjZTvnxN-gTrbP8j~7eBcQoIwud-vVt2lCjsHoUn3r0ETDewJEOid~enNBYg6sd4vzfHnlzhJ3rcA1xwueoM~mYNEBZbwbTZA0bbHTqav0OEJDhlP8NBZp6CPM3cgFJy7I3pzqnb1dVeMNMfwzaYRi82Ka2w852tWMziAG9BxpLGK10hsnfGnLFD4~1RT6OWtJHBJTuXnVvJYpLumfSTBSHmXMUJr8RLoLsx4afKUu6wSrUSKm2X1xZkbcT2zSAhMJqnKeqW90XnaFBjEdtxNVGMkKyCe3CsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":34109,"name":"Bayesian estimation","url":"https://www.academia.edu/Documents/in/Bayesian_estimation"},{"id":132898,"name":"Estimation","url":"https://www.academia.edu/Documents/in/Estimation"},{"id":220768,"name":"Correspondence","url":"https://www.academia.edu/Documents/in/Correspondence"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":884835,"name":"Reproducing Kernel Hilbert Space","url":"https://www.academia.edu/Documents/in/Reproducing_Kernel_Hilbert_Space"},{"id":1032783,"name":"Bayesian Probability","url":"https://www.academia.edu/Documents/in/Bayesian_Probability"},{"id":1665120,"name":"Bayes estimator","url":"https://www.academia.edu/Documents/in/Bayes_estimator"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685970,"url":"https://arxiv.org/pdf/2107.05275v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214656"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces"><img alt="Research paper thumbnail of Karhunen–Loève decomposition of Gaussian measures on Banach spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/96734466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces">Karhunen–Loève decomposition of Gaussian measures on Banach spaces</a></div><div class="wp-workCard_item"><span>Probability and Mathematical Statistics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The study of Gaussian measures on Banach spaces is of active interest both in pure and applied ma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="06232e2cf85787db2680740074564ba4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734466,&quot;asset_id&quot;:94214656,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214656"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214656"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214656; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214656]").text(description); $(".js-view-count[data-work-id=94214656]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214656; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214656']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214656, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "06232e2cf85787db2680740074564ba4" } } $('.js-work-strip[data-work-id=94214656]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214656,"title":"Karhunen–Loève decomposition of Gaussian measures on Banach spaces","translated_title":"","metadata":{"abstract":"The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.","publisher":"Wydawnictwo Uniwersytetu Wroclawskiego","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Probability and Mathematical Statistics"},"translated_abstract":"The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.","internal_url":"https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces","translated_internal_url":"","created_at":"2023-01-02T23:53:01.088-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734466/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734466/6681-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=B5GejbvvLGWNVwkbxgIIWdlL1sm2UBacFox~zUhlrA-dNSTghxvpoDw6aBHPK6kryWtX6QQf7UMyrf8GepHW~56WOchkV2oUrxDqXBUgZZKypNgkFb7p4sO-K3ImIFWm7KfbU-weYlyg94WoD-ZwcNb42nTKHEctQULIElA2flRFeTS6~07KS0Md3nFkkKuCg5nTO0AnwgOMnH56b1JGEfesFIrSHzTtcJk4RTk6TIQR5dAlmhrCd4lyh3sd2d8Vmp6ESEfXjQl0ALpydmtToCnx~Fm1IWnjHteoIJH2TulCvXdzd2Mu5GdRSqndv-~4PON6vWzzocY6xhQ4JntfYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Karhunen_Loève_decomposition_of_Gaussian_measures_on_Banach_spaces","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734466/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734466/6681-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=B5GejbvvLGWNVwkbxgIIWdlL1sm2UBacFox~zUhlrA-dNSTghxvpoDw6aBHPK6kryWtX6QQf7UMyrf8GepHW~56WOchkV2oUrxDqXBUgZZKypNgkFb7p4sO-K3ImIFWm7KfbU-weYlyg94WoD-ZwcNb42nTKHEctQULIElA2flRFeTS6~07KS0Md3nFkkKuCg5nTO0AnwgOMnH56b1JGEfesFIrSHzTtcJk4RTk6TIQR5dAlmhrCd4lyh3sd2d8Vmp6ESEfXjQl0ALpydmtToCnx~Fm1IWnjHteoIJH2TulCvXdzd2Mu5GdRSqndv-~4PON6vWzzocY6xhQ4JntfYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96734467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734467/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734467/download_file","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734467/6681-libre.pdf?1672743204=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=hRRKF7iobiHoCs16uDMB-6a-vQzMPpIFmCQMi43GF6ItWFd0hmsXlEco0IpD1muL5cvv2SG9Tl9CUOnmr5uYvhNNFk6SkNy-sAXO4Z-gcRdFDSDXwPdQy7mk34Bn8vWH38Z3yClayO1mtFybk~3ZR1r~~7wmQtheTcrD185tPk2meWKVWNSh0PxJrQzxhRND0-B46kRE8oXI5ysSz69QH3v-fImOF8HOOpttv1J~GI8IDoq3tKv4FWfZUM1E7suvIp40VmmMoXGi-g7~B9Qkbs-Si4q7o2hulstBDJtYHkAtfo4c~Te2-~TA1yIS3mDAAlFo~Kwdr208~pOx2BmNHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":359655,"name":"Proper Orthogonal Decomposition","url":"https://www.academia.edu/Documents/in/Proper_Orthogonal_Decomposition"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"},{"id":1196982,"name":"Gaussian Measure","url":"https://www.academia.edu/Documents/in/Gaussian_Measure"}],"urls":[{"id":27685968,"url":"http://wuwr.pl/pms/article/download/7035/6681"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization"><img alt="Research paper thumbnail of An analysis of covariance parameters in Gaussian process-based optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96734546/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization">An analysis of covariance parameters in Gaussian process-based optimization</a></div><div class="wp-workCard_item"><span>Croatian Operational Research Review</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21e81b44bbc590b7284b95d9c7eae56c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734546,&quot;asset_id&quot;:94214655,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214655]").text(description); $(".js-view-count[data-work-id=94214655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21e81b44bbc590b7284b95d9c7eae56c" } } $('.js-work-strip[data-work-id=94214655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214655,"title":"An analysis of covariance parameters in Gaussian process-based optimization","translated_title":"","metadata":{"publisher":"Croatian Operational Research Society","grobid_abstract":"The need for globally optimizing expensive-to-evaluate functions frequently occurs in many real-world applications. Among the methods developed for solving such problems, the Efficient Global Optimization (EGO) is regarded as one of the state-of-the-art unconstrained continuous optimization algorithms. The surrogate model used in EGO is a Gaussian process (GP) conditional on data points. The most important control on the efficiency of the EGO algorithm is the GP covariance function (or kernel), which is taken as a parameterized function. In this paper, we theoretically and empirically analyze the effect of the covariance parameters, the so-called \"characteristic length scale\" and \"nugget\", on EGO performance. More precisely, we analyze the EGO algorithm with fixed covariance parameters and compare them to the standard setting where they are statistically estimated. The limit behavior of EGO with very small or very large characteristic length scales is identified. Experiments show that a \"small\" nugget should be preferred to its maximum likelihood estimate. Overall, this study contributes to a better theoretical and practical understanding of a key optimization algorithm.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Croatian Operational Research Review","grobid_abstract_attachment_id":96734546},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization","translated_internal_url":"","created_at":"2023-01-02T23:53:00.926-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734546,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734546/thumbnails/1.jpg","file_name":"703e2be797615b3f9ee6fe2c26578b4b155c.pdf","download_url":"https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analysis_of_covariance_parameters_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734546/703e2be797615b3f9ee6fe2c26578b4b155c-libre.pdf?1672739686=\u0026response-content-disposition=attachment%3B+filename%3DAn_analysis_of_covariance_parameters_in.pdf\u0026Expires=1732751545\u0026Signature=Qgd~bDIw728A~25QfJHVi~OgzhUpuwl0GfuTo~X5elVb8Q-gamHs3XBgdeMuXMDwMrQhMQ1XPsVnjS9tlxR~TxWltc~1rWxIeLheVcbtKDJjddVMDlgjRFZgjg6C3kiTiUlUQJmB6g0TWahnUZsEffa8TnRRYy5kYoqCjVH9BXsI3Kxxd-ayywq8NRHXnu8U5Vuk7vrgfmwWAz98UlmZbMBEQriEgphaEVjQKKegX-J6i12QTRHd-1y13DaUgvOhm1BtuvbKeNyS7lKmZw63cK5N2a~xF0zUe4~2ajfdINfFHS7Vz9Zy5utxUJay8yAohvVf1jkN7ELmk5bzUNqKzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734546,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734546/thumbnails/1.jpg","file_name":"703e2be797615b3f9ee6fe2c26578b4b155c.pdf","download_url":"https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analysis_of_covariance_parameters_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734546/703e2be797615b3f9ee6fe2c26578b4b155c-libre.pdf?1672739686=\u0026response-content-disposition=attachment%3B+filename%3DAn_analysis_of_covariance_parameters_in.pdf\u0026Expires=1732751545\u0026Signature=Qgd~bDIw728A~25QfJHVi~OgzhUpuwl0GfuTo~X5elVb8Q-gamHs3XBgdeMuXMDwMrQhMQ1XPsVnjS9tlxR~TxWltc~1rWxIeLheVcbtKDJjddVMDlgjRFZgjg6C3kiTiUlUQJmB6g0TWahnUZsEffa8TnRRYy5kYoqCjVH9BXsI3Kxxd-ayywq8NRHXnu8U5Vuk7vrgfmwWAz98UlmZbMBEQriEgphaEVjQKKegX-J6i12QTRHd-1y13DaUgvOhm1BtuvbKeNyS7lKmZw63cK5N2a~xF0zUe4~2ajfdINfFHS7Vz9Zy5utxUJay8yAohvVf1jkN7ELmk5bzUNqKzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":107131,"name":"Global Optimization","url":"https://www.academia.edu/Documents/in/Global_Optimization"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":282522,"name":"Ego","url":"https://www.academia.edu/Documents/in/Ego"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1473341,"name":"Covariance","url":"https://www.academia.edu/Documents/in/Covariance"},{"id":3017674,"name":"Covariance function","url":"https://www.academia.edu/Documents/in/Covariance_function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space"><img alt="Research paper thumbnail of A new method for interpolating in a convex subset of a Hilbert space" class="work-thumbnail" src="https://attachments.academia-assets.com/96734541/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space">A new method for interpolating in a convex subset of a Hilbert space</a></div><div class="wp-workCard_item"><span>Computational Optimization and Applications</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efdcd504f5c81671c666e788a99a0547" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734541,&quot;asset_id&quot;:94214654,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214654]").text(description); $(".js-view-count[data-work-id=94214654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efdcd504f5c81671c666e788a99a0547" } } $('.js-work-strip[data-work-id=94214654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214654,"title":"A new method for interpolating in a convex subset of a Hilbert space","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In this paper, interpolating curve or surface with linear inequality constraints is considered as a general convex optimization problem in a Reproducing Kernel Hilbert Space. We propose a new approximation method based on a discretized optimization problem in a finite-dimensional Hilbert space under the same set of constraints. We prove that the approximate solution converges uniformly to the optimal constrained interpolating function. An algorithm is derived and numerical examples with boundedness and monotonicity constraints in one and two dimensions are given. Keywords Optimization • RKHS • Interpolation • Inequality constraints 1 Introduction Let X be a nonempty set of R d (d ≥ 1) and E = C 0 (X) the linear (topological) space of real valued continuous functions on X. Given n distinct points x (1) ,. .. , x (n) ∈ X and y 1 ,. .. , y n ∈ R, we define the set I of interpolating functions by I := f ∈ E, f x (i) = y i , i = 1,. .. , n .","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Computational Optimization and Applications","grobid_abstract_attachment_id":96734541},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space","translated_internal_url":"","created_at":"2023-01-02T23:53:00.752-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734541,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734541/thumbnails/1.jpg","file_name":"Maatouk_H.pdf","download_url":"https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_method_for_interpolating_in_a_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734541/Maatouk_H-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DA_new_method_for_interpolating_in_a_conv.pdf\u0026Expires=1732751545\u0026Signature=VRLz~TD88oVueia-vnrC8pEl19ahVi7FeUV~16wSQ25SgVKfy7PI89-PU-nncLTxHyRLTzPhZ1kGmxwN75fIzbgnM6M~3JldEYNXSo~yYdJolAQsj1B-ZWRk5ken5kntf5O1GdNPGMjnGNb-HLbSptqEzSSrI9tkgP5wmDHvMtEIn-68nAUzyVegEv4~D1xN3hBnsUpNFn2rMwuITZjx9RnApKw0pdIV1lL-1EAbQvJeArSVJWR7G8epH4NJ1WSmXcpQ4UflHolixV-w7oTTTsAmBT0zYXrkQDNY~xAp4831O2gwFKG8GiY-pEHl60cGnCKTiA7kJnTrrrqWI5qrJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734541,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734541/thumbnails/1.jpg","file_name":"Maatouk_H.pdf","download_url":"https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_method_for_interpolating_in_a_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734541/Maatouk_H-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DA_new_method_for_interpolating_in_a_conv.pdf\u0026Expires=1732751545\u0026Signature=VRLz~TD88oVueia-vnrC8pEl19ahVi7FeUV~16wSQ25SgVKfy7PI89-PU-nncLTxHyRLTzPhZ1kGmxwN75fIzbgnM6M~3JldEYNXSo~yYdJolAQsj1B-ZWRk5ken5kntf5O1GdNPGMjnGNb-HLbSptqEzSSrI9tkgP5wmDHvMtEIn-68nAUzyVegEv4~D1xN3hBnsUpNFn2rMwuITZjx9RnApKw0pdIV1lL-1EAbQvJeArSVJWR7G8epH4NJ1WSmXcpQ4UflHolixV-w7oTTTsAmBT0zYXrkQDNY~xAp4831O2gwFKG8GiY-pEHl60cGnCKTiA7kJnTrrrqWI5qrJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":254570,"name":"Interpolation","url":"https://www.academia.edu/Documents/in/Interpolation"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"},{"id":1970623,"name":"RKHS","url":"https://www.academia.edu/Documents/in/RKHS"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685967,"url":"http://link.springer.com/article/10.1007/s10589-017-9906-9/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints"><img alt="Research paper thumbnail of Gaussian Process Emulators for Computer Experiments with Inequality Constraints" class="work-thumbnail" src="https://attachments.academia-assets.com/96734543/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints">Gaussian Process Emulators for Computer Experiments with Inequality Constraints</a></div><div class="wp-workCard_item"><span>Mathematical Geosciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="902f9a5843e1dd444b2e7234b4ef2a20" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734543,&quot;asset_id&quot;:94214653,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214653]").text(description); $(".js-view-count[data-work-id=94214653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "902f9a5843e1dd444b2e7234b4ef2a20" } } $('.js-work-strip[data-work-id=94214653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214653,"title":"Gaussian Process Emulators for Computer Experiments with Inequality Constraints","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Physical phenomena are observed in many fields (science and engineering) and are often studied by time-consuming computer codes. These codes are analyzed with statistical models, often called emulators. In many situations, the physical system (computer model output) may be known to satisfy inequality constraints with respect to some or all input variables. Our aim is to build a model capable of incorporating both data interpolation and inequality constraints into a Gaussian process emulator. By using a functional decomposition, we propose a finite-dimensional approximation of Gaussian processes such that all conditional simulations satisfy the inequality constraints in the entire domain. The inequality mean and mode (i.e. mean and maximum a posteriori) of the conditional Gaussian process are calculated and prediction intervals are quantified. To show the performance of the proposed model, some conditional simulations with inequality constraints such as boundedness, monotonicity or convexity conditions in one and two dimensions are given. A simulation study to investigate the efficiency of the method in terms of prediction and uncertainty quantification is included.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Mathematical Geosciences","grobid_abstract_attachment_id":96734543},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints","translated_internal_url":"","created_at":"2023-01-02T23:53:00.618-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734543/thumbnails/1.jpg","file_name":"Maatouk_Kriging_Inequality_Constraints.pdf","download_url":"https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gaussian_Process_Emulators_for_Computer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734543/Maatouk_Kriging_Inequality_Constraints-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DGaussian_Process_Emulators_for_Computer.pdf\u0026Expires=1732751545\u0026Signature=daxUPg4ixVab9qlHuU58Qfy50O8pGf1kq-dSn8jLUgOxHgsxAKl3BiEg2hoMKBbjvLBWRzMZDg4O~-I0cuKuZ40nQc2NXkj5lWKAbjhW~6m-igc3GWi-pZDygfH0G1AtiQcTewzQ446W8vk2UrNpLsCwh9eYzT~sEEL6Scqj80LS2aChnGYGoJ-nGKEcpIctObMiJjkw~paW92Y20TjSAMLX8CR5tkxd3D5eVANerBSyX1FE9Dk~mvXUCOFBeyujzk0pJoEUJsbi4grWMzSYUNI3VP2IT2667Sp16qWG7cFmzYC2-WkvEhD6qcTVq5XW8ZJOWNRYu7Ec7Pxms~F7Gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734543/thumbnails/1.jpg","file_name":"Maatouk_Kriging_Inequality_Constraints.pdf","download_url":"https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gaussian_Process_Emulators_for_Computer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734543/Maatouk_Kriging_Inequality_Constraints-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DGaussian_Process_Emulators_for_Computer.pdf\u0026Expires=1732751545\u0026Signature=daxUPg4ixVab9qlHuU58Qfy50O8pGf1kq-dSn8jLUgOxHgsxAKl3BiEg2hoMKBbjvLBWRzMZDg4O~-I0cuKuZ40nQc2NXkj5lWKAbjhW~6m-igc3GWi-pZDygfH0G1AtiQcTewzQ446W8vk2UrNpLsCwh9eYzT~sEEL6Scqj80LS2aChnGYGoJ-nGKEcpIctObMiJjkw~paW92Y20TjSAMLX8CR5tkxd3D5eVANerBSyX1FE9Dk~mvXUCOFBeyujzk0pJoEUJsbi4grWMzSYUNI3VP2IT2667Sp16qWG7cFmzYC2-WkvEhD6qcTVq5XW8ZJOWNRYu7Ec7Pxms~F7Gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":411,"name":"Hydrogeology","url":"https://www.academia.edu/Documents/in/Hydrogeology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31477,"name":"Uncertainty Quantification","url":"https://www.academia.edu/Documents/in/Uncertainty_Quantification"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":296505,"name":"Convexity","url":"https://www.academia.edu/Documents/in/Convexity"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1192696,"name":"G","url":"https://www.academia.edu/Documents/in/G"},{"id":1589117,"name":"Mathematical Geosciences","url":"https://www.academia.edu/Documents/in/Mathematical_Geosciences"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685966,"url":"http://link.springer.com/article/10.1007/s11004-017-9673-2/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case"><img alt="Research paper thumbnail of Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case">Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case</a></div><div class="wp-workCard_item"><span>Lecture Notes in Statistics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The estimation of baseline electricity consumptions for energy efficiency and load management mea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214652]").text(description); $(".js-view-count[data-work-id=94214652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214652,"title":"Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case","translated_title":"","metadata":{"abstract":"The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Statistics"},"translated_abstract":"The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.","internal_url":"https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case","translated_internal_url":"","created_at":"2023-01-02T23:53:00.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":11397,"name":"Energy Consumption","url":"https://www.academia.edu/Documents/in/Energy_Consumption"},{"id":43986,"name":"Electricity","url":"https://www.academia.edu/Documents/in/Electricity"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality"><img alt="Research paper thumbnail of Product family optimization: a multiplatform algorithm based on iterative increase of the commonality" class="work-thumbnail" src="https://attachments.academia-assets.com/96734529/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality">Product family optimization: a multiplatform algorithm based on iterative increase of the commonality</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf928896c3796e6b54ad06d179426bb6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734529,&quot;asset_id&quot;:94214651,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214651]").text(description); $(".js-view-count[data-work-id=94214651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf928896c3796e6b54ad06d179426bb6" } } $('.js-work-strip[data-work-id=94214651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214651,"title":"Product family optimization: a multiplatform algorithm based on iterative increase of the commonality","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality","translated_internal_url":"","created_at":"2023-01-02T23:53:00.435-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734529/thumbnails/1.jpg","file_name":"Product_family_optimization.pdf","download_url":"https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Product_family_optimization_a_multiplatf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734529/Product_family_optimization-libre.pdf?1672739678=\u0026response-content-disposition=attachment%3B+filename%3DProduct_family_optimization_a_multiplatf.pdf\u0026Expires=1732751545\u0026Signature=DKeI7fLH7Y4m7tx~wvRSmqRJ66IjSj26DldsTx6gGJ3SZjpZjevIadezNYd-0XuhDNj94UZMQNO3sv6j4O2c8c6~SEYfbEm9bZlMFXljDQiWPvHOHf1C7lPHEQqKGropNlyiuuYmXhNRKzBYveELksLaV~nrM32DLZVk5WDjfEd-NaMvXXmaeQR6MqZacSdre-dabF9GI4SgpNXd19eJGcibarVqPRqDoiCWgdjMA434vtt4arAWIAqC6292Vpdl~LkgFdhEi~ilJAuB9q-GAMJQRGOFgxtdnPsGqYXS7WncRF5CG8eeFi3dgERLqhgQ8HQWvPAv~VwrXP3Ts6pWYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734529/thumbnails/1.jpg","file_name":"Product_family_optimization.pdf","download_url":"https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Product_family_optimization_a_multiplatf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734529/Product_family_optimization-libre.pdf?1672739678=\u0026response-content-disposition=attachment%3B+filename%3DProduct_family_optimization_a_multiplatf.pdf\u0026Expires=1732751545\u0026Signature=DKeI7fLH7Y4m7tx~wvRSmqRJ66IjSj26DldsTx6gGJ3SZjpZjevIadezNYd-0XuhDNj94UZMQNO3sv6j4O2c8c6~SEYfbEm9bZlMFXljDQiWPvHOHf1C7lPHEQqKGropNlyiuuYmXhNRKzBYveELksLaV~nrM32DLZVk5WDjfEd-NaMvXXmaeQR6MqZacSdre-dabF9GI4SgpNXd19eJGcibarVqPRqDoiCWgdjMA434vtt4arAWIAqC6292Vpdl~LkgFdhEi~ilJAuB9q-GAMJQRGOFgxtdnPsGqYXS7WncRF5CG8eeFi3dgERLqhgQ8HQWvPAv~VwrXP3Ts6pWYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes"><img alt="Research paper thumbnail of On regularization techniques in statistical learning by Gaussian processes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes">On regularization techniques in statistical learning by Gaussian processes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">International audienc</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214650]").text(description); $(".js-view-count[data-work-id=94214650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214650,"title":"On regularization techniques in statistical learning by Gaussian processes","translated_title":"","metadata":{"abstract":"International audienc"},"translated_abstract":"International audienc","internal_url":"https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes","translated_internal_url":"","created_at":"2023-01-02T23:53:00.358-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_regularization_techniques_in_statistical_learning_by_Gaussian_processes","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":38246,"name":"Statistical Learning","url":"https://www.academia.edu/Documents/in/Statistical_Learning"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation"><img alt="Research paper thumbnail of L&#39;incertitude en conception: formalisation, estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734539/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation">L&#39;incertitude en conception: formalisation, estimation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f3dc282ab6044cfbf85838325ac6fb98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734539,&quot;asset_id&quot;:94214649,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214649]").text(description); $(".js-view-count[data-work-id=94214649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f3dc282ab6044cfbf85838325ac6fb98" } } $('.js-work-strip[data-work-id=94214649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214649,"title":"L'incertitude en conception: formalisation, estimation","translated_title":"","metadata":{"grobid_abstract":"1. Les lignes qui suivent montrent l'évaluation des commandes utilisées en R (voir la remarque sur R page 2). D'autres extraits de la session R sont donnés dans ce paragraphe.","grobid_abstract_attachment_id":96734539},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation","translated_internal_url":"","created_at":"2023-01-02T23:53:00.278-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734539/thumbnails/1.jpg","file_name":"incertitude_en_conception_OMD_Hermes_2009-1.pdf","download_url":"https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lincertitude_en_conception_formalisation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734539/incertitude_en_conception_OMD_Hermes_2009-1-libre.pdf?1672739685=\u0026response-content-disposition=attachment%3B+filename%3DLincertitude_en_conception_formalisation.pdf\u0026Expires=1732751545\u0026Signature=N7AR~7LwVMJFA7P1SpMrVGyczDooY6MWyuUPJCwHQmbz2ladqAAnH-rYYb1DYuTehwl1BSrl~NwnlARf4MFuZM~b3pjc-cD1~9k-cPanecw7EzRaz3Db4P0ryff9ZNOW5XIFeYMfN7Jn9gGJP-w8pAsFxD0AzIvRQOr9Eg7MNpnRUVPJvdPsEgI0L-EOEsjQaNZc3SwE-aSlL1mHVGIv-s1pBIHaRi93NMbw4dH-fZiS0p77trgs6Q8hFW50V6aK3RPUVRBc3dG6odG4MDHmcWJZSD984yhqSs0LaVmtm5Su7ihD7mkGcJmkqnHxehDqBeHkRZ1NfiCmQ7tTrwZYXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lincertitude_en_conception_formalisation_estimation","translated_slug":"","page_count":38,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734539/thumbnails/1.jpg","file_name":"incertitude_en_conception_OMD_Hermes_2009-1.pdf","download_url":"https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lincertitude_en_conception_formalisation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734539/incertitude_en_conception_OMD_Hermes_2009-1-libre.pdf?1672739685=\u0026response-content-disposition=attachment%3B+filename%3DLincertitude_en_conception_formalisation.pdf\u0026Expires=1732751545\u0026Signature=N7AR~7LwVMJFA7P1SpMrVGyczDooY6MWyuUPJCwHQmbz2ladqAAnH-rYYb1DYuTehwl1BSrl~NwnlARf4MFuZM~b3pjc-cD1~9k-cPanecw7EzRaz3Db4P0ryff9ZNOW5XIFeYMfN7Jn9gGJP-w8pAsFxD0AzIvRQOr9Eg7MNpnRUVPJvdPsEgI0L-EOEsjQaNZc3SwE-aSlL1mHVGIv-s1pBIHaRi93NMbw4dH-fZiS0p77trgs6Q8hFW50V6aK3RPUVRBc3dG6odG4MDHmcWJZSD984yhqSs0LaVmtm5Su7ihD7mkGcJmkqnHxehDqBeHkRZ1NfiCmQ7tTrwZYXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives"><img alt="Research paper thumbnail of A bootstrap approach to the pricing of weather derivatives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives">A bootstrap approach to the pricing of weather derivatives</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper investigates price uncertainties in weather derivatives contracts through a bootstrap ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214648]").text(description); $(".js-view-count[data-work-id=94214648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214648, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214648,"title":"A bootstrap approach to the pricing of weather derivatives","translated_title":"","metadata":{"abstract":"This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices."},"translated_abstract":"This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices.","internal_url":"https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives","translated_internal_url":"","created_at":"2023-01-02T23:53:00.205-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_bootstrap_approach_to_the_pricing_of_weather_derivatives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics"},{"id":21078,"name":"Weather Derivatives","url":"https://www.academia.edu/Documents/in/Weather_Derivatives"},{"id":133177,"name":"Temperature","url":"https://www.academia.edu/Documents/in/Temperature"},{"id":191342,"name":"Bootstrap","url":"https://www.academia.edu/Documents/in/Bootstrap"},{"id":815372,"name":"ARMA model","url":"https://www.academia.edu/Documents/in/ARMA_model"},{"id":904316,"name":"Futures Contract","url":"https://www.academia.edu/Documents/in/Futures_Contract"},{"id":1771086,"name":"Model Risk","url":"https://www.academia.edu/Documents/in/Model_Risk"},{"id":2243112,"name":"Parameter Uncertainty","url":"https://www.academia.edu/Documents/in/Parameter_Uncertainty"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources"><img alt="Research paper thumbnail of Integrating Industrial Energy Consumptions as Short-term Demand Response Resources" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources">Integrating Industrial Energy Consumptions as Short-term Demand Response Resources</a></div><div class="wp-workCard_item"><span>4th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2015)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214647]").text(description); $(".js-view-count[data-work-id=94214647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214647,"title":"Integrating Industrial Energy Consumptions as Short-term Demand Response Resources","translated_title":"","metadata":{"publisher":"Global Science \u0026 Technology Forum (GSTF)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"4th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2015)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources","translated_internal_url":"","created_at":"2023-01-02T23:53:00.119-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":42229,"name":"Demand Response","url":"https://www.academia.edu/Documents/in/Demand_Response"},{"id":3137012,"name":"consumption sociology","url":"https://www.academia.edu/Documents/in/consumption_sociology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation"><img alt="Research paper thumbnail of Extended Formula for Kriging Interpolation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734406/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation">Extended Formula for Kriging Interpolation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In many elds, Kriging interpolation techniques are used within a nite discrete set of known value...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1039ed00d8c56958919a8003dededf18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734406,&quot;asset_id&quot;:94214577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214577]").text(description); $(".js-view-count[data-work-id=94214577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1039ed00d8c56958919a8003dededf18" } } $('.js-work-strip[data-work-id=94214577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214577,"title":"Extended Formula for Kriging Interpolation","translated_title":"","metadata":{"abstract":"In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.","internal_url":"https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation","translated_internal_url":"","created_at":"2023-01-02T23:52:01.342-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734406/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734406/Extended_Formula_For_Kriging-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=IcI88rUuNTR1qVQPBaDGcORRzCix6pBwp1lCiVH7ezjONnXgECMThyond-a2ITfHiM2t7WuOplErERJRi1MyF7jVYZxmtMkXnTFO1~Zuh3NlAAylpGAoSxhNsBJVV~iZ-ALnhvoJ1Sf4XwcRdR2Wm9B8lmPx~OVJZ4eHdwMeSjyNY0eQOlnRSgSU73jQlcV9tVvpx51A6adgigqaY9O0BKRCiUNfQ8VVT1-3rGkm2BUwqr~pjti7yx2l2bLycXqGu0fxP9CBnvcUfc4H6rkHTyRgyCfH1JRdXUba44jF9GdnDJI~sOo6uSshUzFUrcrZg5e1aJFUgCxFvPcG48ryIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Extended_Formula_for_Kriging_Interpolation","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734406/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734406/Extended_Formula_For_Kriging-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=IcI88rUuNTR1qVQPBaDGcORRzCix6pBwp1lCiVH7ezjONnXgECMThyond-a2ITfHiM2t7WuOplErERJRi1MyF7jVYZxmtMkXnTFO1~Zuh3NlAAylpGAoSxhNsBJVV~iZ-ALnhvoJ1Sf4XwcRdR2Wm9B8lmPx~OVJZ4eHdwMeSjyNY0eQOlnRSgSU73jQlcV9tVvpx51A6adgigqaY9O0BKRCiUNfQ8VVT1-3rGkm2BUwqr~pjti7yx2l2bLycXqGu0fxP9CBnvcUfc4H6rkHTyRgyCfH1JRdXUba44jF9GdnDJI~sOo6uSshUzFUrcrZg5e1aJFUgCxFvPcG48ryIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96734407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734407/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734407/download_file","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734407/Extended_Formula_For_Kriging-libre.pdf?1672743209=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=PQdB6GbSlLTmfO8VDBEAii7E6hOFwr118Ana9uATZ0dwYyERVoAiuCo3IjjzW2vy7oSvSswA9AQIhrCDX35~~AHj9bzAfu3Rda067cuLAvGrTz4uNEuREDXyw4vx79BNTMg5rwFN8unx9eW9FsZNUo8sIOJYr3LeSptGmmj3j7zzP4IpILgbskIaDOtCy-jy6iilsIFG~jhgNER9-lyEUKmcLtG5teHvKQ96B5URAXsZlL5Ii1p6q2oLccEQheEMhtOl6JLXPOYF9gncNh3llR4E~zRObocwSA2TthFwCL6JrLmJUR2F5ClMG7JRViZyzAdYQLPDqloZ5i53PGJxxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":146286,"name":"Kriging","url":"https://www.academia.edu/Documents/in/Kriging"}],"urls":[{"id":27685921,"url":"https://www.emse.fr/~bay/Extended_Formula_For_Kriging.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67917525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir"><img alt="Research paper thumbnail of Régulation de la planéité d&#39;une bande métallique à la sortie d&#39;une cage de laminoir" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir">Régulation de la planéité d&#39;une bande métallique à la sortie d&#39;une cage de laminoir</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Procede pour reguler la planeite d&amp;#39;une bande metallique a la sortie d&amp;#39;une cage de laminoi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Procede pour reguler la planeite d&amp;#39;une bande metallique a la sortie d&amp;#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d&amp;#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d&amp;#39;action de la regulation de planeite sur la planeite et une methode d&amp;#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l&amp;#39;actionneur dynamique, de telle sorte qu&amp;#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d&amp;#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l&amp;#39;actionneur dy...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67917525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67917525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67917525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67917525]").text(description); $(".js-view-count[data-work-id=67917525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67917525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67917525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67917525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67917525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67917525,"title":"Régulation de la planéité d'une bande métallique à la sortie d'une cage de laminoir","translated_title":"","metadata":{"abstract":"Procede pour reguler la planeite d\u0026#39;une bande metallique a la sortie d\u0026#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d\u0026#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d\u0026#39;action de la regulation de planeite sur la planeite et une methode d\u0026#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l\u0026#39;actionneur dynamique, de telle sorte qu\u0026#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d\u0026#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l\u0026#39;actionneur dy...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"Procede pour reguler la planeite d\u0026#39;une bande metallique a la sortie d\u0026#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d\u0026#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d\u0026#39;action de la regulation de planeite sur la planeite et une methode d\u0026#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l\u0026#39;actionneur dynamique, de telle sorte qu\u0026#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d\u0026#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l\u0026#39;actionneur dy...","internal_url":"https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir","translated_internal_url":"","created_at":"2022-01-13T00:40:19.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Régulation_de_la_planéité_dune_bande_métallique_à_la_sortie_dune_cage_de_laminoir","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30048075"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples"><img alt="Research paper thumbnail of Estimation non paramétrique de projections en tomographie par émission de photons simples" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples">Estimation non paramétrique de projections en tomographie par émission de photons simples</a></div><div class="wp-workCard_item"><span>Http Www Theses Fr</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30048075"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30048075"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30048075; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30048075]").text(description); $(".js-view-count[data-work-id=30048075]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30048075; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30048075']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30048075, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30048075]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30048075,"title":"Estimation non paramétrique de projections en tomographie par émission de photons simples","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Http Www Theses Fr"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples","translated_internal_url":"","created_at":"2016-11-23T04:47:40.788-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Estimation_non_paramétrique_de_projections_en_tomographie_par_émission_de_photons_simples","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[],"urls":[{"id":7764086,"url":"http://www.theses.fr/1997GRE10096"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6180136" id="papers"><div class="js-work-strip profile--work_container" data-work-id="94214664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions"><img alt="Research paper thumbnail of Sampling large hyperplane-truncated multivariate normal distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/96734476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions">Sampling large hyperplane-truncated multivariate normal distributions</a></div><div class="wp-workCard_item"><span>Le Centre pour la Communication Scientifique Directe - HAL - ENSM-SE</span><span>, Aug 2, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05366825f8abdd4713ec634883cd7239" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734476,&quot;asset_id&quot;:94214664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214664]").text(description); $(".js-view-count[data-work-id=94214664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05366825f8abdd4713ec634883cd7239" } } $('.js-work-strip[data-work-id=94214664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214664,"title":"Sampling large hyperplane-truncated multivariate normal distributions","translated_title":"","metadata":{"publisher":"Le Centre pour la Communication Scientifique Directe","grobid_abstract":"Generating multivariate normal distributions is widely used in many fields (such as engineering). In this paper, simulating large multivariate normal distributions truncated on the intersection of a set of hyperplanes is investigated. The proposed methodology focuses on Gaussian vectors extracted from a Gaussian process (GP) in one dimension. It is based on combining both Karhunen-Loève expansions (KLE) and Matheron's update rules (MUR). The KLE requires the computation of the decomposition of the covariance matrix of the random variables. This step becomes expensive when the random vector is too large. To deal with this issue, the input domain is split in smallest subdomains where the eigendecomposition can be computed. By this strategy, the computational complexity is drastically reduced. The mean-square truncation and block errors have been calculated. Some numerical experiments are presented in order to study the efficiency of the proposed approach.","publication_date":{"day":2,"month":8,"year":2022,"errors":{}},"publication_name":"Le Centre pour la Communication Scientifique Directe - HAL - ENSM-SE","grobid_abstract_attachment_id":96734476},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214664/Sampling_large_hyperplane_truncated_multivariate_normal_distributions","translated_internal_url":"","created_at":"2023-01-02T23:53:02.042-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734476/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sampling_large_hyperplane_truncated_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734476/document-libre.pdf?1672743215=\u0026response-content-disposition=attachment%3B+filename%3DSampling_large_hyperplane_truncated_mult.pdf\u0026Expires=1732751545\u0026Signature=U3NM5oOBINIh3yMuRXyrTZh-in4gkWM6SMJZU8rKtEuIO2mYOilpE6beeqQrnsUINfYPSU-6J4K38PVW6WeD9K56uCNSwT~YHZxmVDE1t3ACyHnzBNVRBtVahvbg~6Ta3x2j~OXpTEXcOQhR7Ye5CmbKZg8a4Iygh8qiv9aA7j04skcxoi4xKUxiTZLkrIbqBmLuDlvrurIhFrMTox5WDMVm13Tax6jFOW5TnsRjNHISVEsF~CIRgGangnimJay31Y7i7ZuSBfGtHfXHPhhZjRQfwftxAtPTdBIVsOyS1NXLcxuBkbi4IvppCMEDMnDeehv~iPSyKc9F5KT1sWJL6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sampling_large_hyperplane_truncated_multivariate_normal_distributions","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734476/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734476/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sampling_large_hyperplane_truncated_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734476/document-libre.pdf?1672743215=\u0026response-content-disposition=attachment%3B+filename%3DSampling_large_hyperplane_truncated_mult.pdf\u0026Expires=1732751545\u0026Signature=U3NM5oOBINIh3yMuRXyrTZh-in4gkWM6SMJZU8rKtEuIO2mYOilpE6beeqQrnsUINfYPSU-6J4K38PVW6WeD9K56uCNSwT~YHZxmVDE1t3ACyHnzBNVRBtVahvbg~6Ta3x2j~OXpTEXcOQhR7Ye5CmbKZg8a4Iygh8qiv9aA7j04skcxoi4xKUxiTZLkrIbqBmLuDlvrurIhFrMTox5WDMVm13Tax6jFOW5TnsRjNHISVEsF~CIRgGangnimJay31Y7i7ZuSBfGtHfXHPhhZjRQfwftxAtPTdBIVsOyS1NXLcxuBkbi4IvppCMEDMnDeehv~iPSyKc9F5KT1sWJL6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics"},{"id":1128697,"name":"Multivariate Normal Distribution","url":"https://www.academia.edu/Documents/in/Multivariate_Normal_Distribution"},{"id":2383742,"name":"Hyperplane","url":"https://www.academia.edu/Documents/in/Hyperplane"}],"urls":[{"id":27685975,"url":"https://hal.archives-ouvertes.fr/hal-03741860/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics"><img alt="Research paper thumbnail of A discussion of the current and potential uses of Gaussian Processes in mechanics" class="work-thumbnail" src="https://attachments.academia-assets.com/96734540/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics">A discussion of the current and potential uses of Gaussian Processes in mechanics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec2bb4b99020f0c50e8fa4dbd404aced" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734540,&quot;asset_id&quot;:94214663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214663]").text(description); $(".js-view-count[data-work-id=94214663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec2bb4b99020f0c50e8fa4dbd404aced" } } $('.js-work-strip[data-work-id=94214663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214663,"title":"A discussion of the current and potential uses of Gaussian Processes in mechanics","translated_title":"","metadata":{"grobid_abstract":"Kriging for small data and partial explanability 2 Costly shape optimization 3 Design in the presence of mixed variables 4 Perspectives: uncertainties and permeabilities 5 Bibliography R. Le Riche et al. GPs in mechanics March 2022 3 / 45 R. Le Riche et al. GPs in mechanics March 2022 4 / 45 Context (cont.): small data and explanability Kriging is a machine learning technique that applies to small data, is expressive and somewhat explainable as we will argue here.","publication_date":{"day":10,"month":3,"year":2022,"errors":{}},"grobid_abstract_attachment_id":96734540},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214663/A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics","translated_internal_url":"","created_at":"2023-01-02T23:53:01.923-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734540,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734540/thumbnails/1.jpg","file_name":"talk_SF2M_LeRiche_march2022.pdf","download_url":"https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_discussion_of_the_current_and_potentia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734540/talk_SF2M_LeRiche_march2022-libre.pdf?1672739696=\u0026response-content-disposition=attachment%3B+filename%3DA_discussion_of_the_current_and_potentia.pdf\u0026Expires=1732751545\u0026Signature=hKgM9i-GDlVXTqzw7bd-rI-0MIDw2qURSCPV4TuXLy2O5zdRVfpaXW4YHFoAWTSnixsT4hj5oVL2G6Cf6h2IROC127hiMFVuvrFCpYUlE7-HZDVDGVU5ZYcLkJ0sc4RTFQ61YDOeG6rDsJ4i45Q~eyzCT5dHO9westdA7klCdUDJtiQVaphsho~bCuIWHEgNr6PrrrSCa5vd36QhEEYQHe8AjK6ygzW3KJIGgP8-tQsx5kNTwuhKsu7W97Ej3eLlgJtnljyO8B0FYKduQqSp~KDHj27CfhnXLtpqfCBlOhtQIV52yYlXCFu9Xym8wc~U1vW~EEQkqmiG813zxv8d9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_discussion_of_the_current_and_potential_uses_of_Gaussian_Processes_in_mechanics","translated_slug":"","page_count":45,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734540,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734540/thumbnails/1.jpg","file_name":"talk_SF2M_LeRiche_march2022.pdf","download_url":"https://www.academia.edu/attachments/96734540/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_discussion_of_the_current_and_potentia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734540/talk_SF2M_LeRiche_march2022-libre.pdf?1672739696=\u0026response-content-disposition=attachment%3B+filename%3DA_discussion_of_the_current_and_potentia.pdf\u0026Expires=1732751545\u0026Signature=hKgM9i-GDlVXTqzw7bd-rI-0MIDw2qURSCPV4TuXLy2O5zdRVfpaXW4YHFoAWTSnixsT4hj5oVL2G6Cf6h2IROC127hiMFVuvrFCpYUlE7-HZDVDGVU5ZYcLkJ0sc4RTFQ61YDOeG6rDsJ4i45Q~eyzCT5dHO9westdA7klCdUDJtiQVaphsho~bCuIWHEgNr6PrrrSCa5vd36QhEEYQHe8AjK6ygzW3KJIGgP8-tQsx5kNTwuhKsu7W97Ej3eLlgJtnljyO8B0FYKduQqSp~KDHj27CfhnXLtpqfCBlOhtQIV52yYlXCFu9Xym8wc~U1vW~EEQkqmiG813zxv8d9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[{"id":27685974,"url":"https://hal.archives-ouvertes.fr/hal-03605952"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces"><img alt="Research paper thumbnail of Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces" class="work-thumbnail" src="https://attachments.academia-assets.com/96734472/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces">Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characteri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c84d4745fce227fbdae2557a47181fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734472,&quot;asset_id&quot;:94214662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214662]").text(description); $(".js-view-count[data-work-id=94214662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c84d4745fce227fbdae2557a47181fb" } } $('.js-work-strip[data-work-id=94214662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214662,"title":"Spectral Decomposition of Integral Operators for Optimal Interpolation in Hilbert Subspaces","translated_title":"","metadata":{"abstract":"The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The orthogonal projection associated to optimal interpolation in a Hilbert subspace is characterized by the spectral decomposition of problem adapted integral operators. We then propose a methodology to construct interpolators that take into account an innite number of informations. As an application, we illustrate how boundary constraints can be enforced in Gaussian process models.","internal_url":"https://www.academia.edu/94214662/Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces","translated_internal_url":"","created_at":"2023-01-02T23:53:01.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734472/thumbnails/1.jpg","file_name":"Opt_Interpolation_Hilb_Subs.pdf","download_url":"https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_Decomposition_of_Integral_Opera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734472/Opt_Interpolation_Hilb_Subs-libre.pdf?1672743212=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_Decomposition_of_Integral_Opera.pdf\u0026Expires=1732751545\u0026Signature=bZszsKOODzYB3KxrUeg3NHljvFM8XWUiIEb-aWnlwGIBhlDKWVFiMbHpA~UW2a8l7G1uIp5XZpTSqNUAh9v79Ws0Zq~ttRqJZXraEgxIq5OkT40J2CsdXVmwTMiAH7YaSRRoSMKKqUR~lorDhJPRTRRQvAgowqettY14Q7WBK~m49-F5X0sVP2jqCrIY84RKg1DQsPL41dwnKKVlb9J8IZRPLT27vroxoUkYsCbEBb9eOPU2Ts4F17wQ4vwFUTnKNawxsweNDyicOVTXvhM1PxU9EypjxCLVdVCqx1l65oFBJXCrKjXz1Tkt~mMFSmGkzeo7gLvzX60hnqCtdlDDqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spectral_Decomposition_of_Integral_Operators_for_Optimal_Interpolation_in_Hilbert_Subspaces","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734472,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734472/thumbnails/1.jpg","file_name":"Opt_Interpolation_Hilb_Subs.pdf","download_url":"https://www.academia.edu/attachments/96734472/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_Decomposition_of_Integral_Opera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734472/Opt_Interpolation_Hilb_Subs-libre.pdf?1672743212=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_Decomposition_of_Integral_Opera.pdf\u0026Expires=1732751545\u0026Signature=bZszsKOODzYB3KxrUeg3NHljvFM8XWUiIEb-aWnlwGIBhlDKWVFiMbHpA~UW2a8l7G1uIp5XZpTSqNUAh9v79Ws0Zq~ttRqJZXraEgxIq5OkT40J2CsdXVmwTMiAH7YaSRRoSMKKqUR~lorDhJPRTRRQvAgowqettY14Q7WBK~m49-F5X0sVP2jqCrIY84RKg1DQsPL41dwnKKVlb9J8IZRPLT27vroxoUkYsCbEBb9eOPU2Ts4F17wQ4vwFUTnKNawxsweNDyicOVTXvhM1PxU9EypjxCLVdVCqx1l65oFBJXCrKjXz1Tkt~mMFSmGkzeo7gLvzX60hnqCtdlDDqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"}],"urls":[{"id":27685973,"url":"https://www.emse.fr/~bay/Opt_Interpolation_Hilb_Subs.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines"><img alt="Research paper thumbnail of Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines">Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Complex physical phenomena are observed in many fields (sciences and engineering) and are often s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214661]").text(description); $(".js-view-count[data-work-id=94214661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214661,"title":"Simulation of Gaussian processes with interpolation and inequality constraints - A correspondence with optimal smoothing splines","translated_title":"","metadata":{"abstract":"Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Complex physical phenomena are observed in many fields (sciences and engineering) and are often studied by time - consuming computer codes. These codes are analyzed with faster statistical models, often called emulators. The Gaussian process (GP) emulator is one of the most popular choice (Sacks et al., 1989) . In many situations, the physical system (computer model output) may be known to satisfy some inequality constraints with respect to some or all input variables. Incorporating inequality constraints into a GP emulator, the problem becomes more challenging since the resulting conditional process is not a GP. To this end, we suggest to approximate the original GP by a finite dimensional Gaussian process Y N such that all conditional simulations satisfy the inequality constraints in the whole domain. In the second part of the talk, we investigate the convergence of the proposed approach and the relationship with thin plate splines (Duchon, 1976) . We show that the mode of the con...","internal_url":"https://www.academia.edu/94214661/Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines","translated_internal_url":"","created_at":"2023-01-02T23:53:01.713-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_of_Gaussian_processes_with_interpolation_and_inequality_constraints_A_correspondence_with_optimal_smoothing_splines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes"><img alt="Research paper thumbnail of An analytic comparison of regularization methods for Gaussian Processes" class="work-thumbnail" src="https://attachments.academia-assets.com/96734470/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes">An analytic comparison of regularization methods for Gaussian Processes</a></div><div class="wp-workCard_item"><span>arXiv: Optimization and Control</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experime...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b999d93bc72df98c2a49a4da8ed8a594" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734470,&quot;asset_id&quot;:94214660,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214660]").text(description); $(".js-view-count[data-work-id=94214660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b999d93bc72df98c2a49a4da8ed8a594" } } $('.js-work-strip[data-work-id=94214660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214660,"title":"An analytic comparison of regularization methods for Gaussian Processes","translated_title":"","metadata":{"abstract":"Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"arXiv: Optimization and Control"},"translated_abstract":"Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the vari...","internal_url":"https://www.academia.edu/94214660/An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes","translated_internal_url":"","created_at":"2023-01-02T23:53:01.587-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734470/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analytic_comparison_of_regularization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734470/document-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DAn_analytic_comparison_of_regularization.pdf\u0026Expires=1732751545\u0026Signature=TaXw1jQH6tMN9kUy2AgBPGygOqV5uiz9xhp~p8tgFo5cqBtGJGo6aLoA2wu6wIDFvmFEJSNfnjfOvWR5vHaswl7RR6oZjfNdF9--CZrC1tsiHHJmjZjjsB5ZJTORVJieGcorzOIUUllyK7gkKecBHXNOpgJ7iy8Io-gTLd3v1vNQbjoYbZEb59teXbpw8rVzwMOrY31hcRgNvCSA2AYGF31mPZ5evjw7f2yI36QVCJoJHs8J~xxn0QdyJAbBSpkYZgv6~mAxblGakyt0O7PpO5dXdSU2RLbZRutjn5BGsmf~khDJA-3WH65mAFQRlUlGlkvK1Hfe0WiHdhYPBPRY3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_analytic_comparison_of_regularization_methods_for_Gaussian_Processes","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734470,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734470/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96734470/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analytic_comparison_of_regularization.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734470/document-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DAn_analytic_comparison_of_regularization.pdf\u0026Expires=1732751545\u0026Signature=TaXw1jQH6tMN9kUy2AgBPGygOqV5uiz9xhp~p8tgFo5cqBtGJGo6aLoA2wu6wIDFvmFEJSNfnjfOvWR5vHaswl7RR6oZjfNdF9--CZrC1tsiHHJmjZjjsB5ZJTORVJieGcorzOIUUllyK7gkKecBHXNOpgJ7iy8Io-gTLd3v1vNQbjoYbZEb59teXbpw8rVzwMOrY31hcRgNvCSA2AYGF31mPZ5evjw7f2yI36QVCJoJHs8J~xxn0QdyJAbBSpkYZgv6~mAxblGakyt0O7PpO5dXdSU2RLbZRutjn5BGsmf~khDJA-3WH65mAFQRlUlGlkvK1Hfe0WiHdhYPBPRY3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":85880,"name":"Singular value decomposition","url":"https://www.academia.edu/Documents/in/Singular_value_decomposition"},{"id":146286,"name":"Kriging","url":"https://www.academia.edu/Documents/in/Kriging"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":711810,"name":"Regularization","url":"https://www.academia.edu/Documents/in/Regularization"},{"id":958135,"name":"Gaussian Process Regression","url":"https://www.academia.edu/Documents/in/Gaussian_Process_Regression"},{"id":1473341,"name":"Covariance","url":"https://www.academia.edu/Documents/in/Covariance"},{"id":2961164,"name":"nugget","url":"https://www.academia.edu/Documents/in/nugget"}],"urls":[{"id":27685972,"url":"https://hal.archives-ouvertes.fr/hal-01264192v2/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application"><img alt="Research paper thumbnail of Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application" class="work-thumbnail" src="https://attachments.academia-assets.com/96734471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application">Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert spa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2858495f41c798b4d54fc6c2e3d387c9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734471,&quot;asset_id&quot;:94214659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214659]").text(description); $(".js-view-count[data-work-id=94214659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2858495f41c798b4d54fc6c2e3d387c9" } } $('.js-work-strip[data-work-id=94214659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214659,"title":"Optimal Interpolation in RKHS, Spectral Decomposition of Integral Operators and Application","translated_title":"","metadata":{"abstract":"The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The orthogonal projection associated to optimal interpolation in a reproducing kernel Hilbert space is characterized by the spectral decomposition of an integral operator. This operator is built from the reproducing kernel and a measure on the interpolation set. As an application, we illustrate how boundary value constraints can be enforced in Gaussian process models.","internal_url":"https://www.academia.edu/94214659/Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application","translated_internal_url":"","created_at":"2023-01-02T23:53:01.424-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734471/thumbnails/1.jpg","file_name":"Optimal_Interpolation_And_Operators.pdf","download_url":"https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_Interpolation_in_RKHS_Spectral_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734471/Optimal_Interpolation_And_Operators-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_Interpolation_in_RKHS_Spectral_D.pdf\u0026Expires=1732751545\u0026Signature=fLC70srl9zDqFDvrJYg9zepfwvlO32ID2Ob4KXSerTDltNYA6gpZkctQ-6NBhZkCnqvwX56zMvHOElDETTVrsz7VNhjeQHDBH2Cyu69B7CVaoz5qMAg0REIwukGZ6e9JHx0ySLOpqXJMsmAZqye~nTDFpxlQ9efa2BBc4tBcg41QG~mK3tenTYzpb5pcspnpCNt6vjGNTaVIG9g0xzzE85JMpbyVFwnkLbXKmx-5OszWMVmlQaYdt~C3oRwhIE-G0EnN6pksJV7BztcYiNtZfCp2-FCzXM7w6SWYSZSuzD2kkCWdQmVbYULOeEywBvynqahjlC3rs-D6MH6-4DJ3gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_Interpolation_in_RKHS_Spectral_Decomposition_of_Integral_Operators_and_Application","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734471/thumbnails/1.jpg","file_name":"Optimal_Interpolation_And_Operators.pdf","download_url":"https://www.academia.edu/attachments/96734471/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_Interpolation_in_RKHS_Spectral_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734471/Optimal_Interpolation_And_Operators-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_Interpolation_in_RKHS_Spectral_D.pdf\u0026Expires=1732751545\u0026Signature=fLC70srl9zDqFDvrJYg9zepfwvlO32ID2Ob4KXSerTDltNYA6gpZkctQ-6NBhZkCnqvwX56zMvHOElDETTVrsz7VNhjeQHDBH2Cyu69B7CVaoz5qMAg0REIwukGZ6e9JHx0ySLOpqXJMsmAZqye~nTDFpxlQ9efa2BBc4tBcg41QG~mK3tenTYzpb5pcspnpCNt6vjGNTaVIG9g0xzzE85JMpbyVFwnkLbXKmx-5OszWMVmlQaYdt~C3oRwhIE-G0EnN6pksJV7BztcYiNtZfCp2-FCzXM7w6SWYSZSuzD2kkCWdQmVbYULOeEywBvynqahjlC3rs-D6MH6-4DJ3gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":884835,"name":"Reproducing Kernel Hilbert Space","url":"https://www.academia.edu/Documents/in/Reproducing_Kernel_Hilbert_Space"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"}],"urls":[{"id":27685971,"url":"https://www.emse.fr/~bay/Optimal_Interpolation_And_Operators.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation"><img alt="Research paper thumbnail of Constrained Optimal Smoothing and Bayesian Estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation">Constrained Optimal Smoothing and Bayesian Estimation</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0261a88dff5e764387a4e15a856a633" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734469,&quot;asset_id&quot;:94214658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214658]").text(description); $(".js-view-count[data-work-id=94214658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0261a88dff5e764387a4e15a856a633" } } $('.js-work-strip[data-work-id=94214658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214658,"title":"Constrained Optimal Smoothing and Bayesian Estimation","translated_title":"","metadata":{"abstract":"In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.","internal_url":"https://www.academia.edu/94214658/Constrained_Optimal_Smoothing_and_Bayesian_Estimation","translated_internal_url":"","created_at":"2023-01-02T23:53:01.260-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734469/thumbnails/1.jpg","file_name":"2107.05275v1.pdf","download_url":"https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Constrained_Optimal_Smoothing_and_Bayesi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734469/2107.05275v1-libre.pdf?1672743195=\u0026response-content-disposition=attachment%3B+filename%3DConstrained_Optimal_Smoothing_and_Bayesi.pdf\u0026Expires=1732751545\u0026Signature=MU8DTlDg~l28kNCKufj8UnZleHZmQR-aWSVSTiBchYbatuccRd1IpqjZTvnxN-gTrbP8j~7eBcQoIwud-vVt2lCjsHoUn3r0ETDewJEOid~enNBYg6sd4vzfHnlzhJ3rcA1xwueoM~mYNEBZbwbTZA0bbHTqav0OEJDhlP8NBZp6CPM3cgFJy7I3pzqnb1dVeMNMfwzaYRi82Ka2w852tWMziAG9BxpLGK10hsnfGnLFD4~1RT6OWtJHBJTuXnVvJYpLumfSTBSHmXMUJr8RLoLsx4afKUu6wSrUSKm2X1xZkbcT2zSAhMJqnKeqW90XnaFBjEdtxNVGMkKyCe3CsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Constrained_Optimal_Smoothing_and_Bayesian_Estimation","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734469/thumbnails/1.jpg","file_name":"2107.05275v1.pdf","download_url":"https://www.academia.edu/attachments/96734469/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Constrained_Optimal_Smoothing_and_Bayesi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734469/2107.05275v1-libre.pdf?1672743195=\u0026response-content-disposition=attachment%3B+filename%3DConstrained_Optimal_Smoothing_and_Bayesi.pdf\u0026Expires=1732751545\u0026Signature=MU8DTlDg~l28kNCKufj8UnZleHZmQR-aWSVSTiBchYbatuccRd1IpqjZTvnxN-gTrbP8j~7eBcQoIwud-vVt2lCjsHoUn3r0ETDewJEOid~enNBYg6sd4vzfHnlzhJ3rcA1xwueoM~mYNEBZbwbTZA0bbHTqav0OEJDhlP8NBZp6CPM3cgFJy7I3pzqnb1dVeMNMfwzaYRi82Ka2w852tWMziAG9BxpLGK10hsnfGnLFD4~1RT6OWtJHBJTuXnVvJYpLumfSTBSHmXMUJr8RLoLsx4afKUu6wSrUSKm2X1xZkbcT2zSAhMJqnKeqW90XnaFBjEdtxNVGMkKyCe3CsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":34109,"name":"Bayesian estimation","url":"https://www.academia.edu/Documents/in/Bayesian_estimation"},{"id":132898,"name":"Estimation","url":"https://www.academia.edu/Documents/in/Estimation"},{"id":220768,"name":"Correspondence","url":"https://www.academia.edu/Documents/in/Correspondence"},{"id":225304,"name":"Smoothing","url":"https://www.academia.edu/Documents/in/Smoothing"},{"id":884835,"name":"Reproducing Kernel Hilbert Space","url":"https://www.academia.edu/Documents/in/Reproducing_Kernel_Hilbert_Space"},{"id":1032783,"name":"Bayesian Probability","url":"https://www.academia.edu/Documents/in/Bayesian_Probability"},{"id":1665120,"name":"Bayes estimator","url":"https://www.academia.edu/Documents/in/Bayes_estimator"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685970,"url":"https://arxiv.org/pdf/2107.05275v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214656"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces"><img alt="Research paper thumbnail of Karhunen–Loève decomposition of Gaussian measures on Banach spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/96734466/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces">Karhunen–Loève decomposition of Gaussian measures on Banach spaces</a></div><div class="wp-workCard_item"><span>Probability and Mathematical Statistics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The study of Gaussian measures on Banach spaces is of active interest both in pure and applied ma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="06232e2cf85787db2680740074564ba4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734466,&quot;asset_id&quot;:94214656,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214656"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214656"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214656; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214656]").text(description); $(".js-view-count[data-work-id=94214656]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214656; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214656']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214656, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "06232e2cf85787db2680740074564ba4" } } $('.js-work-strip[data-work-id=94214656]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214656,"title":"Karhunen–Loève decomposition of Gaussian measures on Banach spaces","translated_title":"","metadata":{"abstract":"The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.","publisher":"Wydawnictwo Uniwersytetu Wroclawskiego","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Probability and Mathematical Statistics"},"translated_abstract":"The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the socalled Karhunen–Ločve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated with Gaussian measures on Banach spaces. In the special case of the standardWiener measure, this decomposition matches with Lévy–Ciesielski construction of Brownian motion.","internal_url":"https://www.academia.edu/94214656/Karhunen_Lo%C3%A8ve_decomposition_of_Gaussian_measures_on_Banach_spaces","translated_internal_url":"","created_at":"2023-01-02T23:53:01.088-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734466/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734466/6681-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=B5GejbvvLGWNVwkbxgIIWdlL1sm2UBacFox~zUhlrA-dNSTghxvpoDw6aBHPK6kryWtX6QQf7UMyrf8GepHW~56WOchkV2oUrxDqXBUgZZKypNgkFb7p4sO-K3ImIFWm7KfbU-weYlyg94WoD-ZwcNb42nTKHEctQULIElA2flRFeTS6~07KS0Md3nFkkKuCg5nTO0AnwgOMnH56b1JGEfesFIrSHzTtcJk4RTk6TIQR5dAlmhrCd4lyh3sd2d8Vmp6ESEfXjQl0ALpydmtToCnx~Fm1IWnjHteoIJH2TulCvXdzd2Mu5GdRSqndv-~4PON6vWzzocY6xhQ4JntfYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Karhunen_Loève_decomposition_of_Gaussian_measures_on_Banach_spaces","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734466,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734466/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734466/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734466/6681-libre.pdf?1672743206=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=B5GejbvvLGWNVwkbxgIIWdlL1sm2UBacFox~zUhlrA-dNSTghxvpoDw6aBHPK6kryWtX6QQf7UMyrf8GepHW~56WOchkV2oUrxDqXBUgZZKypNgkFb7p4sO-K3ImIFWm7KfbU-weYlyg94WoD-ZwcNb42nTKHEctQULIElA2flRFeTS6~07KS0Md3nFkkKuCg5nTO0AnwgOMnH56b1JGEfesFIrSHzTtcJk4RTk6TIQR5dAlmhrCd4lyh3sd2d8Vmp6ESEfXjQl0ALpydmtToCnx~Fm1IWnjHteoIJH2TulCvXdzd2Mu5GdRSqndv-~4PON6vWzzocY6xhQ4JntfYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96734467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734467/thumbnails/1.jpg","file_name":"6681.pdf","download_url":"https://www.academia.edu/attachments/96734467/download_file","bulk_download_file_name":"Karhunen_Loeve_decomposition_of_Gaussian.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734467/6681-libre.pdf?1672743204=\u0026response-content-disposition=attachment%3B+filename%3DKarhunen_Loeve_decomposition_of_Gaussian.pdf\u0026Expires=1732751545\u0026Signature=hRRKF7iobiHoCs16uDMB-6a-vQzMPpIFmCQMi43GF6ItWFd0hmsXlEco0IpD1muL5cvv2SG9Tl9CUOnmr5uYvhNNFk6SkNy-sAXO4Z-gcRdFDSDXwPdQy7mk34Bn8vWH38Z3yClayO1mtFybk~3ZR1r~~7wmQtheTcrD185tPk2meWKVWNSh0PxJrQzxhRND0-B46kRE8oXI5ysSz69QH3v-fImOF8HOOpttv1J~GI8IDoq3tKv4FWfZUM1E7suvIp40VmmMoXGi-g7~B9Qkbs-Si4q7o2hulstBDJtYHkAtfo4c~Te2-~TA1yIS3mDAAlFo~Kwdr208~pOx2BmNHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":359655,"name":"Proper Orthogonal Decomposition","url":"https://www.academia.edu/Documents/in/Proper_Orthogonal_Decomposition"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"},{"id":1196982,"name":"Gaussian Measure","url":"https://www.academia.edu/Documents/in/Gaussian_Measure"}],"urls":[{"id":27685968,"url":"http://wuwr.pl/pms/article/download/7035/6681"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization"><img alt="Research paper thumbnail of An analysis of covariance parameters in Gaussian process-based optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96734546/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization">An analysis of covariance parameters in Gaussian process-based optimization</a></div><div class="wp-workCard_item"><span>Croatian Operational Research Review</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21e81b44bbc590b7284b95d9c7eae56c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734546,&quot;asset_id&quot;:94214655,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214655]").text(description); $(".js-view-count[data-work-id=94214655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21e81b44bbc590b7284b95d9c7eae56c" } } $('.js-work-strip[data-work-id=94214655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214655,"title":"An analysis of covariance parameters in Gaussian process-based optimization","translated_title":"","metadata":{"publisher":"Croatian Operational Research Society","grobid_abstract":"The need for globally optimizing expensive-to-evaluate functions frequently occurs in many real-world applications. Among the methods developed for solving such problems, the Efficient Global Optimization (EGO) is regarded as one of the state-of-the-art unconstrained continuous optimization algorithms. The surrogate model used in EGO is a Gaussian process (GP) conditional on data points. The most important control on the efficiency of the EGO algorithm is the GP covariance function (or kernel), which is taken as a parameterized function. In this paper, we theoretically and empirically analyze the effect of the covariance parameters, the so-called \"characteristic length scale\" and \"nugget\", on EGO performance. More precisely, we analyze the EGO algorithm with fixed covariance parameters and compare them to the standard setting where they are statistically estimated. The limit behavior of EGO with very small or very large characteristic length scales is identified. Experiments show that a \"small\" nugget should be preferred to its maximum likelihood estimate. Overall, this study contributes to a better theoretical and practical understanding of a key optimization algorithm.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Croatian Operational Research Review","grobid_abstract_attachment_id":96734546},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214655/An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization","translated_internal_url":"","created_at":"2023-01-02T23:53:00.926-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734546,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734546/thumbnails/1.jpg","file_name":"703e2be797615b3f9ee6fe2c26578b4b155c.pdf","download_url":"https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analysis_of_covariance_parameters_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734546/703e2be797615b3f9ee6fe2c26578b4b155c-libre.pdf?1672739686=\u0026response-content-disposition=attachment%3B+filename%3DAn_analysis_of_covariance_parameters_in.pdf\u0026Expires=1732751545\u0026Signature=Qgd~bDIw728A~25QfJHVi~OgzhUpuwl0GfuTo~X5elVb8Q-gamHs3XBgdeMuXMDwMrQhMQ1XPsVnjS9tlxR~TxWltc~1rWxIeLheVcbtKDJjddVMDlgjRFZgjg6C3kiTiUlUQJmB6g0TWahnUZsEffa8TnRRYy5kYoqCjVH9BXsI3Kxxd-ayywq8NRHXnu8U5Vuk7vrgfmwWAz98UlmZbMBEQriEgphaEVjQKKegX-J6i12QTRHd-1y13DaUgvOhm1BtuvbKeNyS7lKmZw63cK5N2a~xF0zUe4~2ajfdINfFHS7Vz9Zy5utxUJay8yAohvVf1jkN7ELmk5bzUNqKzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_analysis_of_covariance_parameters_in_Gaussian_process_based_optimization","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734546,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734546/thumbnails/1.jpg","file_name":"703e2be797615b3f9ee6fe2c26578b4b155c.pdf","download_url":"https://www.academia.edu/attachments/96734546/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_analysis_of_covariance_parameters_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734546/703e2be797615b3f9ee6fe2c26578b4b155c-libre.pdf?1672739686=\u0026response-content-disposition=attachment%3B+filename%3DAn_analysis_of_covariance_parameters_in.pdf\u0026Expires=1732751545\u0026Signature=Qgd~bDIw728A~25QfJHVi~OgzhUpuwl0GfuTo~X5elVb8Q-gamHs3XBgdeMuXMDwMrQhMQ1XPsVnjS9tlxR~TxWltc~1rWxIeLheVcbtKDJjddVMDlgjRFZgjg6C3kiTiUlUQJmB6g0TWahnUZsEffa8TnRRYy5kYoqCjVH9BXsI3Kxxd-ayywq8NRHXnu8U5Vuk7vrgfmwWAz98UlmZbMBEQriEgphaEVjQKKegX-J6i12QTRHd-1y13DaUgvOhm1BtuvbKeNyS7lKmZw63cK5N2a~xF0zUe4~2ajfdINfFHS7Vz9Zy5utxUJay8yAohvVf1jkN7ELmk5bzUNqKzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":107131,"name":"Global Optimization","url":"https://www.academia.edu/Documents/in/Global_Optimization"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":282522,"name":"Ego","url":"https://www.academia.edu/Documents/in/Ego"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1473341,"name":"Covariance","url":"https://www.academia.edu/Documents/in/Covariance"},{"id":3017674,"name":"Covariance function","url":"https://www.academia.edu/Documents/in/Covariance_function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space"><img alt="Research paper thumbnail of A new method for interpolating in a convex subset of a Hilbert space" class="work-thumbnail" src="https://attachments.academia-assets.com/96734541/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space">A new method for interpolating in a convex subset of a Hilbert space</a></div><div class="wp-workCard_item"><span>Computational Optimization and Applications</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efdcd504f5c81671c666e788a99a0547" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734541,&quot;asset_id&quot;:94214654,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214654]").text(description); $(".js-view-count[data-work-id=94214654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efdcd504f5c81671c666e788a99a0547" } } $('.js-work-strip[data-work-id=94214654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214654,"title":"A new method for interpolating in a convex subset of a Hilbert space","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In this paper, interpolating curve or surface with linear inequality constraints is considered as a general convex optimization problem in a Reproducing Kernel Hilbert Space. We propose a new approximation method based on a discretized optimization problem in a finite-dimensional Hilbert space under the same set of constraints. We prove that the approximate solution converges uniformly to the optimal constrained interpolating function. An algorithm is derived and numerical examples with boundedness and monotonicity constraints in one and two dimensions are given. Keywords Optimization • RKHS • Interpolation • Inequality constraints 1 Introduction Let X be a nonempty set of R d (d ≥ 1) and E = C 0 (X) the linear (topological) space of real valued continuous functions on X. Given n distinct points x (1) ,. .. , x (n) ∈ X and y 1 ,. .. , y n ∈ R, we define the set I of interpolating functions by I := f ∈ E, f x (i) = y i , i = 1,. .. , n .","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Computational Optimization and Applications","grobid_abstract_attachment_id":96734541},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214654/A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space","translated_internal_url":"","created_at":"2023-01-02T23:53:00.752-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734541,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734541/thumbnails/1.jpg","file_name":"Maatouk_H.pdf","download_url":"https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_method_for_interpolating_in_a_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734541/Maatouk_H-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DA_new_method_for_interpolating_in_a_conv.pdf\u0026Expires=1732751545\u0026Signature=VRLz~TD88oVueia-vnrC8pEl19ahVi7FeUV~16wSQ25SgVKfy7PI89-PU-nncLTxHyRLTzPhZ1kGmxwN75fIzbgnM6M~3JldEYNXSo~yYdJolAQsj1B-ZWRk5ken5kntf5O1GdNPGMjnGNb-HLbSptqEzSSrI9tkgP5wmDHvMtEIn-68nAUzyVegEv4~D1xN3hBnsUpNFn2rMwuITZjx9RnApKw0pdIV1lL-1EAbQvJeArSVJWR7G8epH4NJ1WSmXcpQ4UflHolixV-w7oTTTsAmBT0zYXrkQDNY~xAp4831O2gwFKG8GiY-pEHl60cGnCKTiA7kJnTrrrqWI5qrJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_method_for_interpolating_in_a_convex_subset_of_a_Hilbert_space","translated_slug":"","page_count":34,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734541,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734541/thumbnails/1.jpg","file_name":"Maatouk_H.pdf","download_url":"https://www.academia.edu/attachments/96734541/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_method_for_interpolating_in_a_conv.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734541/Maatouk_H-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DA_new_method_for_interpolating_in_a_conv.pdf\u0026Expires=1732751545\u0026Signature=VRLz~TD88oVueia-vnrC8pEl19ahVi7FeUV~16wSQ25SgVKfy7PI89-PU-nncLTxHyRLTzPhZ1kGmxwN75fIzbgnM6M~3JldEYNXSo~yYdJolAQsj1B-ZWRk5ken5kntf5O1GdNPGMjnGNb-HLbSptqEzSSrI9tkgP5wmDHvMtEIn-68nAUzyVegEv4~D1xN3hBnsUpNFn2rMwuITZjx9RnApKw0pdIV1lL-1EAbQvJeArSVJWR7G8epH4NJ1WSmXcpQ4UflHolixV-w7oTTTsAmBT0zYXrkQDNY~xAp4831O2gwFKG8GiY-pEHl60cGnCKTiA7kJnTrrrqWI5qrJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":254570,"name":"Interpolation","url":"https://www.academia.edu/Documents/in/Interpolation"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space"},{"id":1970623,"name":"RKHS","url":"https://www.academia.edu/Documents/in/RKHS"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685967,"url":"http://link.springer.com/article/10.1007/s10589-017-9906-9/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints"><img alt="Research paper thumbnail of Gaussian Process Emulators for Computer Experiments with Inequality Constraints" class="work-thumbnail" src="https://attachments.academia-assets.com/96734543/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints">Gaussian Process Emulators for Computer Experiments with Inequality Constraints</a></div><div class="wp-workCard_item"><span>Mathematical Geosciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="902f9a5843e1dd444b2e7234b4ef2a20" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734543,&quot;asset_id&quot;:94214653,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214653]").text(description); $(".js-view-count[data-work-id=94214653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "902f9a5843e1dd444b2e7234b4ef2a20" } } $('.js-work-strip[data-work-id=94214653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214653,"title":"Gaussian Process Emulators for Computer Experiments with Inequality Constraints","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Physical phenomena are observed in many fields (science and engineering) and are often studied by time-consuming computer codes. These codes are analyzed with statistical models, often called emulators. In many situations, the physical system (computer model output) may be known to satisfy inequality constraints with respect to some or all input variables. Our aim is to build a model capable of incorporating both data interpolation and inequality constraints into a Gaussian process emulator. By using a functional decomposition, we propose a finite-dimensional approximation of Gaussian processes such that all conditional simulations satisfy the inequality constraints in the entire domain. The inequality mean and mode (i.e. mean and maximum a posteriori) of the conditional Gaussian process are calculated and prediction intervals are quantified. To show the performance of the proposed model, some conditional simulations with inequality constraints such as boundedness, monotonicity or convexity conditions in one and two dimensions are given. A simulation study to investigate the efficiency of the method in terms of prediction and uncertainty quantification is included.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Mathematical Geosciences","grobid_abstract_attachment_id":96734543},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214653/Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints","translated_internal_url":"","created_at":"2023-01-02T23:53:00.618-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734543/thumbnails/1.jpg","file_name":"Maatouk_Kriging_Inequality_Constraints.pdf","download_url":"https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gaussian_Process_Emulators_for_Computer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734543/Maatouk_Kriging_Inequality_Constraints-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DGaussian_Process_Emulators_for_Computer.pdf\u0026Expires=1732751545\u0026Signature=daxUPg4ixVab9qlHuU58Qfy50O8pGf1kq-dSn8jLUgOxHgsxAKl3BiEg2hoMKBbjvLBWRzMZDg4O~-I0cuKuZ40nQc2NXkj5lWKAbjhW~6m-igc3GWi-pZDygfH0G1AtiQcTewzQ446W8vk2UrNpLsCwh9eYzT~sEEL6Scqj80LS2aChnGYGoJ-nGKEcpIctObMiJjkw~paW92Y20TjSAMLX8CR5tkxd3D5eVANerBSyX1FE9Dk~mvXUCOFBeyujzk0pJoEUJsbi4grWMzSYUNI3VP2IT2667Sp16qWG7cFmzYC2-WkvEhD6qcTVq5XW8ZJOWNRYu7Ec7Pxms~F7Gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gaussian_Process_Emulators_for_Computer_Experiments_with_Inequality_Constraints","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734543,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734543/thumbnails/1.jpg","file_name":"Maatouk_Kriging_Inequality_Constraints.pdf","download_url":"https://www.academia.edu/attachments/96734543/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gaussian_Process_Emulators_for_Computer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734543/Maatouk_Kriging_Inequality_Constraints-libre.pdf?1672739693=\u0026response-content-disposition=attachment%3B+filename%3DGaussian_Process_Emulators_for_Computer.pdf\u0026Expires=1732751545\u0026Signature=daxUPg4ixVab9qlHuU58Qfy50O8pGf1kq-dSn8jLUgOxHgsxAKl3BiEg2hoMKBbjvLBWRzMZDg4O~-I0cuKuZ40nQc2NXkj5lWKAbjhW~6m-igc3GWi-pZDygfH0G1AtiQcTewzQ446W8vk2UrNpLsCwh9eYzT~sEEL6Scqj80LS2aChnGYGoJ-nGKEcpIctObMiJjkw~paW92Y20TjSAMLX8CR5tkxd3D5eVANerBSyX1FE9Dk~mvXUCOFBeyujzk0pJoEUJsbi4grWMzSYUNI3VP2IT2667Sp16qWG7cFmzYC2-WkvEhD6qcTVq5XW8ZJOWNRYu7Ec7Pxms~F7Gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":411,"name":"Hydrogeology","url":"https://www.academia.edu/Documents/in/Hydrogeology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31477,"name":"Uncertainty Quantification","url":"https://www.academia.edu/Documents/in/Uncertainty_Quantification"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":296505,"name":"Convexity","url":"https://www.academia.edu/Documents/in/Convexity"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1192696,"name":"G","url":"https://www.academia.edu/Documents/in/G"},{"id":1589117,"name":"Mathematical Geosciences","url":"https://www.academia.edu/Documents/in/Mathematical_Geosciences"},{"id":3933497,"name":"Inequality Constraints","url":"https://www.academia.edu/Documents/in/Inequality_Constraints"}],"urls":[{"id":27685966,"url":"http://link.springer.com/article/10.1007/s11004-017-9673-2/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case"><img alt="Research paper thumbnail of Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case">Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case</a></div><div class="wp-workCard_item"><span>Lecture Notes in Statistics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The estimation of baseline electricity consumptions for energy efficiency and load management mea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214652]").text(description); $(".js-view-count[data-work-id=94214652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214652,"title":"Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case","translated_title":"","metadata":{"abstract":"The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Statistics"},"translated_abstract":"The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.","internal_url":"https://www.academia.edu/94214652/Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case","translated_internal_url":"","created_at":"2023-01-02T23:53:00.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Short_Term_Load_Forecasting_in_the_Industry_for_Establishing_Consumption_Baselines_A_French_Case","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":11397,"name":"Energy Consumption","url":"https://www.academia.edu/Documents/in/Energy_Consumption"},{"id":43986,"name":"Electricity","url":"https://www.academia.edu/Documents/in/Electricity"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality"><img alt="Research paper thumbnail of Product family optimization: a multiplatform algorithm based on iterative increase of the commonality" class="work-thumbnail" src="https://attachments.academia-assets.com/96734529/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality">Product family optimization: a multiplatform algorithm based on iterative increase of the commonality</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf928896c3796e6b54ad06d179426bb6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734529,&quot;asset_id&quot;:94214651,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214651]").text(description); $(".js-view-count[data-work-id=94214651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf928896c3796e6b54ad06d179426bb6" } } $('.js-work-strip[data-work-id=94214651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214651,"title":"Product family optimization: a multiplatform algorithm based on iterative increase of the commonality","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214651/Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality","translated_internal_url":"","created_at":"2023-01-02T23:53:00.435-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734529/thumbnails/1.jpg","file_name":"Product_family_optimization.pdf","download_url":"https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Product_family_optimization_a_multiplatf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734529/Product_family_optimization-libre.pdf?1672739678=\u0026response-content-disposition=attachment%3B+filename%3DProduct_family_optimization_a_multiplatf.pdf\u0026Expires=1732751545\u0026Signature=DKeI7fLH7Y4m7tx~wvRSmqRJ66IjSj26DldsTx6gGJ3SZjpZjevIadezNYd-0XuhDNj94UZMQNO3sv6j4O2c8c6~SEYfbEm9bZlMFXljDQiWPvHOHf1C7lPHEQqKGropNlyiuuYmXhNRKzBYveELksLaV~nrM32DLZVk5WDjfEd-NaMvXXmaeQR6MqZacSdre-dabF9GI4SgpNXd19eJGcibarVqPRqDoiCWgdjMA434vtt4arAWIAqC6292Vpdl~LkgFdhEi~ilJAuB9q-GAMJQRGOFgxtdnPsGqYXS7WncRF5CG8eeFi3dgERLqhgQ8HQWvPAv~VwrXP3Ts6pWYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Product_family_optimization_a_multiplatform_algorithm_based_on_iterative_increase_of_the_commonality","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734529,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734529/thumbnails/1.jpg","file_name":"Product_family_optimization.pdf","download_url":"https://www.academia.edu/attachments/96734529/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Product_family_optimization_a_multiplatf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734529/Product_family_optimization-libre.pdf?1672739678=\u0026response-content-disposition=attachment%3B+filename%3DProduct_family_optimization_a_multiplatf.pdf\u0026Expires=1732751545\u0026Signature=DKeI7fLH7Y4m7tx~wvRSmqRJ66IjSj26DldsTx6gGJ3SZjpZjevIadezNYd-0XuhDNj94UZMQNO3sv6j4O2c8c6~SEYfbEm9bZlMFXljDQiWPvHOHf1C7lPHEQqKGropNlyiuuYmXhNRKzBYveELksLaV~nrM32DLZVk5WDjfEd-NaMvXXmaeQR6MqZacSdre-dabF9GI4SgpNXd19eJGcibarVqPRqDoiCWgdjMA434vtt4arAWIAqC6292Vpdl~LkgFdhEi~ilJAuB9q-GAMJQRGOFgxtdnPsGqYXS7WncRF5CG8eeFi3dgERLqhgQ8HQWvPAv~VwrXP3Ts6pWYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes"><img alt="Research paper thumbnail of On regularization techniques in statistical learning by Gaussian processes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes">On regularization techniques in statistical learning by Gaussian processes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">International audienc</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214650]").text(description); $(".js-view-count[data-work-id=94214650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214650,"title":"On regularization techniques in statistical learning by Gaussian processes","translated_title":"","metadata":{"abstract":"International audienc"},"translated_abstract":"International audienc","internal_url":"https://www.academia.edu/94214650/On_regularization_techniques_in_statistical_learning_by_Gaussian_processes","translated_internal_url":"","created_at":"2023-01-02T23:53:00.358-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_regularization_techniques_in_statistical_learning_by_Gaussian_processes","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":38246,"name":"Statistical Learning","url":"https://www.academia.edu/Documents/in/Statistical_Learning"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation"><img alt="Research paper thumbnail of L&#39;incertitude en conception: formalisation, estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734539/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation">L&#39;incertitude en conception: formalisation, estimation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f3dc282ab6044cfbf85838325ac6fb98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734539,&quot;asset_id&quot;:94214649,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214649]").text(description); $(".js-view-count[data-work-id=94214649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f3dc282ab6044cfbf85838325ac6fb98" } } $('.js-work-strip[data-work-id=94214649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214649,"title":"L'incertitude en conception: formalisation, estimation","translated_title":"","metadata":{"grobid_abstract":"1. Les lignes qui suivent montrent l'évaluation des commandes utilisées en R (voir la remarque sur R page 2). D'autres extraits de la session R sont donnés dans ce paragraphe.","grobid_abstract_attachment_id":96734539},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214649/Lincertitude_en_conception_formalisation_estimation","translated_internal_url":"","created_at":"2023-01-02T23:53:00.278-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734539/thumbnails/1.jpg","file_name":"incertitude_en_conception_OMD_Hermes_2009-1.pdf","download_url":"https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lincertitude_en_conception_formalisation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734539/incertitude_en_conception_OMD_Hermes_2009-1-libre.pdf?1672739685=\u0026response-content-disposition=attachment%3B+filename%3DLincertitude_en_conception_formalisation.pdf\u0026Expires=1732751545\u0026Signature=N7AR~7LwVMJFA7P1SpMrVGyczDooY6MWyuUPJCwHQmbz2ladqAAnH-rYYb1DYuTehwl1BSrl~NwnlARf4MFuZM~b3pjc-cD1~9k-cPanecw7EzRaz3Db4P0ryff9ZNOW5XIFeYMfN7Jn9gGJP-w8pAsFxD0AzIvRQOr9Eg7MNpnRUVPJvdPsEgI0L-EOEsjQaNZc3SwE-aSlL1mHVGIv-s1pBIHaRi93NMbw4dH-fZiS0p77trgs6Q8hFW50V6aK3RPUVRBc3dG6odG4MDHmcWJZSD984yhqSs0LaVmtm5Su7ihD7mkGcJmkqnHxehDqBeHkRZ1NfiCmQ7tTrwZYXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lincertitude_en_conception_formalisation_estimation","translated_slug":"","page_count":38,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734539,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734539/thumbnails/1.jpg","file_name":"incertitude_en_conception_OMD_Hermes_2009-1.pdf","download_url":"https://www.academia.edu/attachments/96734539/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lincertitude_en_conception_formalisation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734539/incertitude_en_conception_OMD_Hermes_2009-1-libre.pdf?1672739685=\u0026response-content-disposition=attachment%3B+filename%3DLincertitude_en_conception_formalisation.pdf\u0026Expires=1732751545\u0026Signature=N7AR~7LwVMJFA7P1SpMrVGyczDooY6MWyuUPJCwHQmbz2ladqAAnH-rYYb1DYuTehwl1BSrl~NwnlARf4MFuZM~b3pjc-cD1~9k-cPanecw7EzRaz3Db4P0ryff9ZNOW5XIFeYMfN7Jn9gGJP-w8pAsFxD0AzIvRQOr9Eg7MNpnRUVPJvdPsEgI0L-EOEsjQaNZc3SwE-aSlL1mHVGIv-s1pBIHaRi93NMbw4dH-fZiS0p77trgs6Q8hFW50V6aK3RPUVRBc3dG6odG4MDHmcWJZSD984yhqSs0LaVmtm5Su7ihD7mkGcJmkqnHxehDqBeHkRZ1NfiCmQ7tTrwZYXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives"><img alt="Research paper thumbnail of A bootstrap approach to the pricing of weather derivatives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives">A bootstrap approach to the pricing of weather derivatives</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper investigates price uncertainties in weather derivatives contracts through a bootstrap ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214648]").text(description); $(".js-view-count[data-work-id=94214648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214648, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214648,"title":"A bootstrap approach to the pricing of weather derivatives","translated_title":"","metadata":{"abstract":"This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices."},"translated_abstract":"This paper investigates price uncertainties in weather derivatives contracts through a bootstrap approach. Futures prices are computed under a periodic ARMA model in an actuarial framework for two different locations, Paris and Chicago. We show that statistical errors may lead to substantial uncertainties on futures prices with confidence intervals up to 10% of the assessed prices.","internal_url":"https://www.academia.edu/94214648/A_bootstrap_approach_to_the_pricing_of_weather_derivatives","translated_internal_url":"","created_at":"2023-01-02T23:53:00.205-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_bootstrap_approach_to_the_pricing_of_weather_derivatives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics"},{"id":21078,"name":"Weather Derivatives","url":"https://www.academia.edu/Documents/in/Weather_Derivatives"},{"id":133177,"name":"Temperature","url":"https://www.academia.edu/Documents/in/Temperature"},{"id":191342,"name":"Bootstrap","url":"https://www.academia.edu/Documents/in/Bootstrap"},{"id":815372,"name":"ARMA model","url":"https://www.academia.edu/Documents/in/ARMA_model"},{"id":904316,"name":"Futures Contract","url":"https://www.academia.edu/Documents/in/Futures_Contract"},{"id":1771086,"name":"Model Risk","url":"https://www.academia.edu/Documents/in/Model_Risk"},{"id":2243112,"name":"Parameter Uncertainty","url":"https://www.academia.edu/Documents/in/Parameter_Uncertainty"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources"><img alt="Research paper thumbnail of Integrating Industrial Energy Consumptions as Short-term Demand Response Resources" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources">Integrating Industrial Energy Consumptions as Short-term Demand Response Resources</a></div><div class="wp-workCard_item"><span>4th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2015)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214647]").text(description); $(".js-view-count[data-work-id=94214647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94214647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214647,"title":"Integrating Industrial Energy Consumptions as Short-term Demand Response Resources","translated_title":"","metadata":{"publisher":"Global Science \u0026 Technology Forum (GSTF)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"4th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2015)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94214647/Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources","translated_internal_url":"","created_at":"2023-01-02T23:53:00.119-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Integrating_Industrial_Energy_Consumptions_as_Short_term_Demand_Response_Resources","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":42229,"name":"Demand Response","url":"https://www.academia.edu/Documents/in/Demand_Response"},{"id":3137012,"name":"consumption sociology","url":"https://www.academia.edu/Documents/in/consumption_sociology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94214577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation"><img alt="Research paper thumbnail of Extended Formula for Kriging Interpolation" class="work-thumbnail" src="https://attachments.academia-assets.com/96734406/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation">Extended Formula for Kriging Interpolation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In many elds, Kriging interpolation techniques are used within a nite discrete set of known value...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1039ed00d8c56958919a8003dededf18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:96734406,&quot;asset_id&quot;:94214577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94214577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94214577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94214577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94214577]").text(description); $(".js-view-count[data-work-id=94214577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94214577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94214577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94214577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1039ed00d8c56958919a8003dededf18" } } $('.js-work-strip[data-work-id=94214577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94214577,"title":"Extended Formula for Kriging Interpolation","translated_title":"","metadata":{"abstract":"In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"In many elds, Kriging interpolation techniques are used within a nite discrete set of known values of a real function (no evaluation or measurement error). In this paper, we extend the simple Kriging formula to the case the function is known on a general (innite) subset of points. This extension is based on the spectral decomposition of a certain nuclear Hilbert-Schmidt operator. As a step by step application, we revisit the problem of prediction for the Brownian sheet knowing its values on a separation line.","internal_url":"https://www.academia.edu/94214577/Extended_Formula_for_Kriging_Interpolation","translated_internal_url":"","created_at":"2023-01-02T23:52:01.342-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96734406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734406/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734406/Extended_Formula_For_Kriging-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=IcI88rUuNTR1qVQPBaDGcORRzCix6pBwp1lCiVH7ezjONnXgECMThyond-a2ITfHiM2t7WuOplErERJRi1MyF7jVYZxmtMkXnTFO1~Zuh3NlAAylpGAoSxhNsBJVV~iZ-ALnhvoJ1Sf4XwcRdR2Wm9B8lmPx~OVJZ4eHdwMeSjyNY0eQOlnRSgSU73jQlcV9tVvpx51A6adgigqaY9O0BKRCiUNfQ8VVT1-3rGkm2BUwqr~pjti7yx2l2bLycXqGu0fxP9CBnvcUfc4H6rkHTyRgyCfH1JRdXUba44jF9GdnDJI~sOo6uSshUzFUrcrZg5e1aJFUgCxFvPcG48ryIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Extended_Formula_for_Kriging_Interpolation","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[{"id":96734406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734406/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734406/download_file?st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&st=MTczMjc0Nzk0NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734406/Extended_Formula_For_Kriging-libre.pdf?1672743210=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=IcI88rUuNTR1qVQPBaDGcORRzCix6pBwp1lCiVH7ezjONnXgECMThyond-a2ITfHiM2t7WuOplErERJRi1MyF7jVYZxmtMkXnTFO1~Zuh3NlAAylpGAoSxhNsBJVV~iZ-ALnhvoJ1Sf4XwcRdR2Wm9B8lmPx~OVJZ4eHdwMeSjyNY0eQOlnRSgSU73jQlcV9tVvpx51A6adgigqaY9O0BKRCiUNfQ8VVT1-3rGkm2BUwqr~pjti7yx2l2bLycXqGu0fxP9CBnvcUfc4H6rkHTyRgyCfH1JRdXUba44jF9GdnDJI~sOo6uSshUzFUrcrZg5e1aJFUgCxFvPcG48ryIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96734407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96734407/thumbnails/1.jpg","file_name":"Extended_Formula_For_Kriging.pdf","download_url":"https://www.academia.edu/attachments/96734407/download_file","bulk_download_file_name":"Extended_Formula_for_Kriging_Interpolati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96734407/Extended_Formula_For_Kriging-libre.pdf?1672743209=\u0026response-content-disposition=attachment%3B+filename%3DExtended_Formula_for_Kriging_Interpolati.pdf\u0026Expires=1732751545\u0026Signature=PQdB6GbSlLTmfO8VDBEAii7E6hOFwr118Ana9uATZ0dwYyERVoAiuCo3IjjzW2vy7oSvSswA9AQIhrCDX35~~AHj9bzAfu3Rda067cuLAvGrTz4uNEuREDXyw4vx79BNTMg5rwFN8unx9eW9FsZNUo8sIOJYr3LeSptGmmj3j7zzP4IpILgbskIaDOtCy-jy6iilsIFG~jhgNER9-lyEUKmcLtG5teHvKQ96B5URAXsZlL5Ii1p6q2oLccEQheEMhtOl6JLXPOYF9gncNh3llR4E~zRObocwSA2TthFwCL6JrLmJUR2F5ClMG7JRViZyzAdYQLPDqloZ5i53PGJxxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":146286,"name":"Kriging","url":"https://www.academia.edu/Documents/in/Kriging"}],"urls":[{"id":27685921,"url":"https://www.emse.fr/~bay/Extended_Formula_For_Kriging.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67917525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir"><img alt="Research paper thumbnail of Régulation de la planéité d&#39;une bande métallique à la sortie d&#39;une cage de laminoir" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir">Régulation de la planéité d&#39;une bande métallique à la sortie d&#39;une cage de laminoir</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Procede pour reguler la planeite d&amp;#39;une bande metallique a la sortie d&amp;#39;une cage de laminoi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Procede pour reguler la planeite d&amp;#39;une bande metallique a la sortie d&amp;#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d&amp;#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d&amp;#39;action de la regulation de planeite sur la planeite et une methode d&amp;#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l&amp;#39;actionneur dynamique, de telle sorte qu&amp;#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d&amp;#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l&amp;#39;actionneur dy...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67917525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67917525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67917525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67917525]").text(description); $(".js-view-count[data-work-id=67917525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67917525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67917525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67917525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67917525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67917525,"title":"Régulation de la planéité d'une bande métallique à la sortie d'une cage de laminoir","translated_title":"","metadata":{"abstract":"Procede pour reguler la planeite d\u0026#39;une bande metallique a la sortie d\u0026#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d\u0026#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d\u0026#39;action de la regulation de planeite sur la planeite et une methode d\u0026#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l\u0026#39;actionneur dynamique, de telle sorte qu\u0026#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d\u0026#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l\u0026#39;actionneur dy...","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"Procede pour reguler la planeite d\u0026#39;une bande metallique a la sortie d\u0026#39;une cage de laminoir comportant un moyen de regulation de la planeite comprenant au moins un actionneur dynamique de planeite, selon lequel, au cours du laminage, on caracterise la planeite de la bande par la mesure d\u0026#39;une grandeur D en n points repartis sur la largeur de la bande, a partir des n mesures de la grandeur D, puis en utilisant un modele d\u0026#39;action de la regulation de planeite sur la planeite et une methode d\u0026#39;optimisation, on determine une consigne globale pour le moyen de regulation, ladite consigne globale comprenant au moins une consigne elementaire pour l\u0026#39;actionneur dynamique, de telle sorte qu\u0026#39;un critere de defaut residuel de planeite calcule soit minimal, et on fait executer la consigne global par le moyen de regulation de la planeite, caracterise en ce que le modele d\u0026#39;action sur la planeite utilise pour determiner la consigne globale comporte pour l\u0026#39;actionneur dy...","internal_url":"https://www.academia.edu/67917525/R%C3%A9gulation_de_la_plan%C3%A9it%C3%A9_dune_bande_m%C3%A9tallique_%C3%A0_la_sortie_dune_cage_de_laminoir","translated_internal_url":"","created_at":"2022-01-13T00:40:19.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Régulation_de_la_planéité_dune_bande_métallique_à_la_sortie_dune_cage_de_laminoir","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30048075"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples"><img alt="Research paper thumbnail of Estimation non paramétrique de projections en tomographie par émission de photons simples" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples">Estimation non paramétrique de projections en tomographie par émission de photons simples</a></div><div class="wp-workCard_item"><span>Http Www Theses Fr</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30048075"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30048075"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30048075; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30048075]").text(description); $(".js-view-count[data-work-id=30048075]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30048075; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30048075']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30048075, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30048075]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30048075,"title":"Estimation non paramétrique de projections en tomographie par émission de photons simples","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Http Www Theses Fr"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30048075/Estimation_non_param%C3%A9trique_de_projections_en_tomographie_par_%C3%A9mission_de_photons_simples","translated_internal_url":"","created_at":"2016-11-23T04:47:40.788-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56976577,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Estimation_non_paramétrique_de_projections_en_tomographie_par_émission_de_photons_simples","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":56976577,"first_name":"Xavier","middle_initials":null,"last_name":"Bay","page_name":"XavierBay","domain_name":"independent","created_at":"2016-11-20T22:44:54.254-08:00","display_name":"Xavier Bay","url":"https://independent.academia.edu/XavierBay"},"attachments":[],"research_interests":[],"urls":[{"id":7764086,"url":"http://www.theses.fr/1997GRE10096"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f2343b4473593274e80bad624454039e149bdaf4743827606bead30ff289f505", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="yXryX2sSikyI3yC1nGdj32lq3Tyyu9S7AF+LXokk4m4mbVAt/Dq2j8NibjU397If4QZDuRZae+KgJB6diIGOjg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/XavierBay" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="yUJQVb1wCEya82lQ/IKVEZefwNaCBS0wjGY+7U+6stEmVfInKlg0j9FOJ9BXEkTRH/NeUybkgmksHasuTh/eMQ==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10