CINXE.COM

(PDF) Filtering Bayesian optimization approach in weakly specified search space | Vũ Hoàng Nguyễn - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="5+sPKB+J3/oR810kjjdt8ttd+JEXdN+KpiVNWT7byxSzbK0m0zEq6jNtwFpEOD773zBSS+wdD8E5S0b+RvfReA==" /> <meta name="citation_title" content="Filtering Bayesian optimization approach in weakly specified search space" /> <meta name="citation_publication_date" content="2018/01/01" /> <meta name="citation_journal_title" content="Knowledge and Information Systems" /> <meta name="citation_author" content="Vũ Hoàng Nguyễn" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space" /> <meta name="twitter:title" content="Filtering Bayesian optimization approach in weakly specified search space" /> <meta name="twitter:description" content="Academia.edu is a platform for academics to share research papers." /> <meta name="twitter:image" content="https://0.academia-photos.com/214605324/73278057/61756950/s200_v_ho_ng.nguy_n.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space" /> <meta property="og:title" content="Filtering Bayesian optimization approach in weakly specified search space" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Filtering Bayesian optimization approach in weakly specified search space" /> <meta property="article:author" content="https://independent.academia.edu/V%C5%A9Ho%C3%A0ngNguy%E1%BB%85n2" /> <meta name="description" content="Filtering Bayesian optimization approach in weakly specified search space" /> <title>(PDF) Filtering Bayesian optimization approach in weakly specified search space | Vũ Hoàng Nguyễn - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'ca4e910d46e38122317a3848288563fbc11da57e'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732747810000); window.Aedu.timeDifference = new Date().getTime() - 1732747810000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":null,"author":[{"@context":"https://schema.org","@type":"Person","name":"Vũ Hoàng Nguyễn"}],"contributor":[],"dateCreated":"2023-10-14","dateModified":null,"datePublished":"2018-01-01","headline":"Filtering Bayesian optimization approach in weakly specified search space","inLanguage":"en","keywords":["Computer Science","Experimental Design","Optimization Problem","Mathematical Optimization","Bayesian Optimization","Bayesian Probability"],"locationCreated":null,"publication":"Knowledge and Information Systems","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Springer Science and Business Media LLC"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "48e2c95a870ebef8a2b15fcccb8d3e35e70e8ac7b053c749ccaa9c44953d0512", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="1/F4IYCKt2Mtitn9S4k1URoSseaVRttB0cuF/FcLn7uDdtovTDJCcw8URIOBhmZYHn8bPG4vCwpOpY5bLyeF1w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="G5krflUcb/Ex6VMueJmt+cQEGi48MI2X/8SHyh/y4zBPHolwmaSa4RN3zlCylv7wwGmw9MdZXdxgqoxtZ975XA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-71e03f93a0fba43adc4297a781256a72e56b0d578ac299a0d81b09f4c7bc6f70.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 214605324; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F108143845%2FFiltering_Bayesian_optimization_approach_in_weakly_specified_search_space%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F108143845%2FFiltering_Bayesian_optimization_approach_in_weakly_specified_search_space%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":106605930,"identifier":"Attachment_106605930","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":108143845,"created_at":"2023-10-14T17:09:17.910-07:00","from_world_paper_id":241968897,"updated_at":"2024-11-23T13:45:45.279-08:00","_data":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Bayesian optimization (BO) has recently emerged as a powerful and flexible tool for hyperparameter tuning and more generally for the efficient global optimization of expensive black-box functions. Systems implementing BO have successfully solved difficult problems in automatic design choices and machine learning hyper-parameters tunings. Many recent advances in the methodologies and theories underlying Bayesian optimization have extended the framework to new applications and provided greater insights into the behavior of these algorithms. Still, these established techniques always require a user-defined space to perform optimization. This pre-defined space specifies the ranges of hyper-parameter values. In many situations, however, it can be difficult to prescribe such spaces, as a prior knowledge is often unavailable. Setting these regions arbitrarily can lead to inefficient optimization-if a space is too large, we can miss the optimum with a limited budget, and on the other hand, if a space is too small, it may not contain the optimum point that we want to get. The unknown search space problem is intractable to solve in practice. Therefore, in this paper, we narrow down to consider specifically the setting of \"weakly specified\" search space for Bayesian optimization. By weakly specified space, we mean that the pre-defined space is placed at a sufficiently good region so that the optimization can expand and reach to the optimum. However, this pre-defined space need not include the global optimum. We tackle this problem by proposing the filtering expansion strategy for Bayesian optimization. Our approach starts from the initial region and gradually expands the search space. We develop an efficient algorithm for this strategy and derive its regret bound. These theoretical results are complemented by an extensive set of experiments on benchmark functions and two real-world applications which demonstrate the benefits of our proposed approach. Keywords Bayesian optimization • Unknown search space • Hyper-parameter tuning • Experimental design 1 Introduction Global optimization is fundamental to diverse real-world problems where parameter settings and design choices are pivotal-as an example, in algorithm hyper-parameter tuning [39,42]","publication_date":"2018,,","publication_name":"Knowledge and Information Systems","grobid_abstract_attachment_id":"106605930"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Filtering Bayesian optimization approach in weakly specified search space","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [214605324]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Filtering Bayesian optimization approach in weakly specified search space”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/106605930/mini_magick20231015-1-3h2q2n.png?1697328700" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Filtering Bayesian optimization approach in weakly specified search space</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="214605324" href="https://independent.academia.edu/V%C5%A9Ho%C3%A0ngNguy%E1%BB%85n2"><img alt="Profile image of Vũ Hoàng Nguyễn" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/214605324/73278057/61756950/s65_v_ho_ng.nguy_n.jpeg" />Vũ Hoàng Nguyễn</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2018, Knowledge and Information Systems</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">29 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 108143845; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=108143845"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="106605930" data-landing_url="https://www.academia.edu/108143845/Filtering_Bayesian_optimization_approach_in_weakly_specified_search_space" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="113649419" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113649419/An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation">An Empirical Study of Assumptions in Bayesian Optimisation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67755877" href="https://independent.academia.edu/alexandremaraval">alexandre maraval</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO’s empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multi-objective acquisition ensembles with Pareto...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;An Empirical Study of Assumptions in Bayesian Optimisation&quot;,&quot;attachmentId&quot;:110554725,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113649419/An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113649419/An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="96979950" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96979950/Automatic_tuning_of_hyperparameters_using_Bayesian_optimization">Automatic tuning of hyperparameters using Bayesian optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="215684484" href="https://independent.academia.edu/HelenVictoriaA">Helen Victoria A</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Evolving Systems, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Automatic tuning of hyperparameters using Bayesian optimization&quot;,&quot;attachmentId&quot;:98728286,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/96979950/Automatic_tuning_of_hyperparameters_using_Bayesian_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/96979950/Automatic_tuning_of_hyperparameters_using_Bayesian_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="113649420" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113649420/HEBO_An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation">HEBO: An Empirical Study of Assumptions in Bayesian Optimisation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67755877" href="https://independent.academia.edu/alexandremaraval">alexandre maraval</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Artificial Intelligence Research</p><p class="ds-related-work--abstract ds2-5-body-sm">In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO’s empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multiobjective acquisition ensembles with Pareto ...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;HEBO: An Empirical Study of Assumptions in Bayesian Optimisation&quot;,&quot;attachmentId&quot;:110554726,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113649420/HEBO_An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113649420/HEBO_An_Empirical_Study_of_Assumptions_in_Bayesian_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="116371936" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization">Recent Advances in Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="496137" href="https://independent.academia.edu/MarkusOlhofer">Markus Olhofer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Recent Advances in Bayesian Optimization&quot;,&quot;attachmentId&quot;:112520869,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/116371936/Recent_Advances_in_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="58858055" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget">Bayesian Optimization for Parameter Identification on a Small Simulation Budget</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37936668" href="https://independent.academia.edu/EricWalter2">Eric Walter</a></div><p class="ds-related-work--metadata ds2-5-body-xs">15th IFAC Symposium on System Identification, 2009, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization for Parameter Identification on a Small Simulation Budget&quot;,&quot;attachmentId&quot;:73066197,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/58858055/Bayesian_Optimization_for_Parameter_Identification_on_a_Small_Simulation_Budget"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="80628542" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80628542/Calibration_Improves_Bayesian_Optimization">Calibration Improves Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43309376" href="https://iitb.academia.edu/ShachiDeshpande">Shachi Deshpande</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">Bayesian optimization is a procedure that allows obtaining the global optimum of black-box functions and that is useful in applications such as hyper-parameter optimization. Uncertainty estimates over the shape of the objective function are instrumental in guiding the optimization process. However, these estimates can be inaccurate if the objective function violates assumptions made within the underlying model (e.g., Gaussianity). We propose a simple algorithm to calibrate the uncertainty of posterior distributions over the objective function as part of the Bayesian optimization process. We show that by improving the uncertainty estimates of the posterior distribution with calibration, Bayesian optimization makes better decisions and arrives at the global optimum in fewer steps. We show that this technique improves the performance of Bayesian optimization on standard benchmark functions and hyperparameter optimization tasks.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Calibration Improves Bayesian Optimization&quot;,&quot;attachmentId&quot;:86947417,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/80628542/Calibration_Improves_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/80628542/Calibration_Improves_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="79040450" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79040450/Solving_Black_Box_Optimization_Challenge_via_Learning_Search_Space_Partition_for_Local_Bayesian_Optimization">Solving Black-Box Optimization Challenge via Learning Search Space Partition for Local Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="121180616" href="https://independent.academia.edu/YazidKadir">Yazid Kadir</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper describes our approach to solving the black-box optimization challenge through learning search space partition for local Bayesian optimization. We develop an algorithm for low budget optimization. We further optimize the hyperparameters of our algorithm using Bayesian optimization. Our approach has been ranked 3rd in the competition.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Solving Black-Box Optimization Challenge via Learning Search Space Partition for Local Bayesian Optimization&quot;,&quot;attachmentId&quot;:85894678,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79040450/Solving_Black_Box_Optimization_Challenge_via_Learning_Search_Space_Partition_for_Local_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/79040450/Solving_Black_Box_Optimization_Challenge_via_Learning_Search_Space_Partition_for_Local_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="79379868" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79379868/Bayesian_Search_for_Robust_Optima">Bayesian Search for Robust Optima</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31636764" href="https://independent.academia.edu/EversonR">Richard Everson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><p class="ds-related-work--abstract ds2-5-body-sm">Many expensive black-box optimisation problems are sensitive to their inputs. In these problems it makes more sense to locate a region of good designs, than a single—possibly fragile—optimal design. Expensive black-box functions can be optimised effectively with Bayesian optimisation, where a Gaussian process is a popular choice as a prior over the expensive function. We propose a method for robust optimisation using Bayesian optimisation to find a region of design space in which the expensive function’s performance is relatively insensitive to the inputs whilst retaining a good quality. This is achieved by sampling realisations from a Gaussian process that is modelling the expensive function, and evaluating the improvement for each realisation. The expectation of these improvements can be optimised cheaply with an evolutionary algorithm to determine the next location at which to evaluate the expensive function. We describe an efficient process to locate the optimum expected improve...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Search for Robust Optima&quot;,&quot;attachmentId&quot;:86115022,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79379868/Bayesian_Search_for_Robust_Optima&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/79379868/Bayesian_Search_for_Robust_Optima"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="89020172" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization">Hybrid Batch Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="225755520" href="https://independent.academia.edu/javadazimi6">javad azimi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Hybrid Batch Bayesian Optimization&quot;,&quot;attachmentId&quot;:92894781,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89020172/Hybrid_Batch_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="113445905" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113445905/Modified_Grid_Searches_for_Hyper_Parameter_Optimization">Modified Grid Searches for Hyper-Parameter Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="27252942" href="https://independent.academia.edu/JoseDorronsoro">Jose Dorronsoro</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Modified Grid Searches for Hyper-Parameter Optimization&quot;,&quot;attachmentId&quot;:110402413,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113445905/Modified_Grid_Searches_for_Hyper_Parameter_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113445905/Modified_Grid_Searches_for_Hyper_Parameter_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:106605930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_106605930" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="99172042" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization">Tutorial on Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12043864" href="https://independentscholar.academia.edu/LocNguyen">Loc Nguyen&#39;s Academic Network</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="88862579" href="https://independent.academia.edu/LocNguyen2000">Loc Nguyen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Preprints 2023, 2023030292, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Tutorial on Bayesian Optimization&quot;,&quot;attachmentId&quot;:100329972,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/99172042/Tutorial_on_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="87105342" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87105342/Asynchronous_%CE%B5_Greedy_Bayesian_Optimisation">Asynchronous ϵ-Greedy Bayesian Optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31636764" href="https://independent.academia.edu/EversonR">Richard Everson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Asynchronous ϵ-Greedy Bayesian Optimisation&quot;,&quot;attachmentId&quot;:91410835,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87105342/Asynchronous_%CE%B5_Greedy_Bayesian_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/87105342/Asynchronous_%CE%B5_Greedy_Bayesian_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="113649422" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113649422/HEBO_Pushing_The_Limits_of_Sample_Efficient_Hyperparameter_Optimisation">HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67755877" href="https://independent.academia.edu/alexandremaraval">alexandre maraval</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation&quot;,&quot;attachmentId&quot;:110554729,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113649422/HEBO_Pushing_The_Limits_of_Sample_Efficient_Hyperparameter_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/113649422/HEBO_Pushing_The_Limits_of_Sample_Efficient_Hyperparameter_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="37347655" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/37347655/Model_accuracy_in_the_Bayesian_optimization_algorithm">Model accuracy in the Bayesian optimization algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2704977" href="https://salta.academia.edu/fernandolobo">fernando lobo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Soft Computing, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Model accuracy in the Bayesian optimization algorithm&quot;,&quot;attachmentId&quot;:57308452,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/37347655/Model_accuracy_in_the_Bayesian_optimization_algorithm&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/37347655/Model_accuracy_in_the_Bayesian_optimization_algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="71104432" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/71104432/Pareto_efficient_Acquisition_Functions_for_Cost_Aware_Bayesian_Optimization">Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="160417551" href="https://mit.academia.edu/gauthierguinet">gauthier guinet</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization&quot;,&quot;attachmentId&quot;:80597192,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/71104432/Pareto_efficient_Acquisition_Functions_for_Cost_Aware_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/71104432/Pareto_efficient_Acquisition_Functions_for_Cost_Aware_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="108991398" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/108991398/Bayesian_Optimization_for_Selecting_Efficient_Machine_Learning_Models">Bayesian Optimization for Selecting Efficient Machine Learning Models</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31060757" href="https://independent.academia.edu/TrungHBui">Trung H. Bui</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization for Selecting Efficient Machine Learning Models&quot;,&quot;attachmentId&quot;:107239828,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/108991398/Bayesian_Optimization_for_Selecting_Efficient_Machine_Learning_Models&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/108991398/Bayesian_Optimization_for_Selecting_Efficient_Machine_Learning_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="26986691" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/26986691/Practical_Bayesian_Optimization_of_Machine_Learning_Algorithms">Practical Bayesian Optimization of Machine Learning Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51009810" href="https://independent.academia.edu/lethanhPhong2">le thanh Phong</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Practical Bayesian Optimization of Machine Learning Algorithms&quot;,&quot;attachmentId&quot;:47247998,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/26986691/Practical_Bayesian_Optimization_of_Machine_Learning_Algorithms&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/26986691/Practical_Bayesian_Optimization_of_Machine_Learning_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="58209158" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58209158/Weighted_Random_Search_for_Hyperparameter_Optimization">Weighted Random Search for Hyperparameter Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="997893" href="https://cwu.academia.edu/RazvanAndonie">Razvan Andonie</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Computers Communications &amp; Control</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Weighted Random Search for Hyperparameter Optimization&quot;,&quot;attachmentId&quot;:72730944,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/58209158/Weighted_Random_Search_for_Hyperparameter_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/58209158/Weighted_Random_Search_for_Hyperparameter_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="64281713" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications">Discrete Bayesian Optimization Algorithms and Applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5817647" href="https://independent.academia.edu/raffaeledamiano">raffaele damiano</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Discrete Bayesian Optimization Algorithms and Applications&quot;,&quot;attachmentId&quot;:76387901,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/64281713/Discrete_Bayesian_Optimization_Algorithms_and_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="15124234" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data">Bayesian optimization with censored response data</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34161238" href="https://independent.academia.edu/FrankHutter">Frank Hutter</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34174907" href="https://ubc.academia.edu/KevinLeytonbrown">Kevin Leyton-brown</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34073093" href="https://ubc.academia.edu/HolgerHoos">Holger Hoos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization with censored response data&quot;,&quot;attachmentId&quot;:43564236,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15124234/Bayesian_optimization_with_censored_response_data"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="63364895" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/63364895/Automatic_Setting_of_DNN_Hyper_Parameters_by_Mixing_Bayesian_Optimization_and_Tuning_Rules">Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="123812306" href="https://ferrara.academia.edu/michelefraccaroli">michele fraccaroli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules&quot;,&quot;attachmentId&quot;:75818315,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/63364895/Automatic_Setting_of_DNN_Hyper_Parameters_by_Mixing_Bayesian_Optimization_and_Tuning_Rules&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/63364895/Automatic_Setting_of_DNN_Hyper_Parameters_by_Mixing_Bayesian_Optimization_and_Tuning_Rules"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="68325564" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68325564/Greed_Is_Good_Exploration_and_Exploitation_Trade_offs_in_Bayesian_Optimisation">Greed Is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31636764" href="https://independent.academia.edu/EversonR">Richard Everson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ACM Transactions on Evolutionary Learning and Optimization</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Greed Is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation&quot;,&quot;attachmentId&quot;:78839617,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68325564/Greed_Is_Good_Exploration_and_Exploitation_Trade_offs_in_Bayesian_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68325564/Greed_Is_Good_Exploration_and_Exploitation_Trade_offs_in_Bayesian_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="90032062" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90032062/Lifelong_Bayesian_Optimization">Lifelong Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="243800885" href="https://independent.academia.edu/ahmedalaa472">ahmed alaa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Lifelong Bayesian Optimization&quot;,&quot;attachmentId&quot;:93707917,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/90032062/Lifelong_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90032062/Lifelong_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="73002531" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73002531/%CE%B5_shotgun_%CE%B5_greedy_Batch_Bayesian_Optimisation">ϵ-shotgun: ϵ-greedy Batch Bayesian Optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31636764" href="https://independent.academia.edu/EversonR">Richard Everson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;ϵ-shotgun: ϵ-greedy Batch Bayesian Optimisation&quot;,&quot;attachmentId&quot;:81698306,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73002531/%CE%B5_shotgun_%CE%B5_greedy_Batch_Bayesian_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/73002531/%CE%B5_shotgun_%CE%B5_greedy_Batch_Bayesian_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="120183384" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120183384/Hyperparameter_Optimization_Comparing_Genetic_Algorithm_against_Grid_Search_and_Bayesian_Optimization">Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1204620" href="https://ndsu.academia.edu/SimoneLudwig">Simone Ludwig</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization&quot;,&quot;attachmentId&quot;:115416901,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/120183384/Hyperparameter_Optimization_Comparing_Genetic_Algorithm_against_Grid_Search_and_Bayesian_Optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/120183384/Hyperparameter_Optimization_Comparing_Genetic_Algorithm_against_Grid_Search_and_Bayesian_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="59564285" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59564285/Multi_Task_Gaussian_Process_Upper_Confidence_Bound_for_Hyperparameter_Tuning">Multi-Task Gaussian Process Upper Confidence Bound for Hyperparameter Tuning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="128863450" href="https://vt.academia.edu/%E8%8D%A3%E8%BD%A9%E7%8E%8B">Rongxuan Wang</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multi-Task Gaussian Process Upper Confidence Bound for Hyperparameter Tuning&quot;,&quot;attachmentId&quot;:73422350,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/59564285/Multi_Task_Gaussian_Process_Upper_Confidence_Bound_for_Hyperparameter_Tuning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59564285/Multi_Task_Gaussian_Process_Upper_Confidence_Bound_for_Hyperparameter_Tuning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="65270385" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65270385/Adaptive_Bayesian_optimization_for_dynamic_problems">Adaptive Bayesian optimization for dynamic problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46698941" href="https://independent.academia.edu/FNyikosa">Favour Mandanji Nyikosa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Adaptive Bayesian optimization for dynamic problems&quot;,&quot;attachmentId&quot;:76945028,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/65270385/Adaptive_Bayesian_optimization_for_dynamic_problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65270385/Adaptive_Bayesian_optimization_for_dynamic_problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="93547845" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data">Bayesian optimization of generalized data</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250891876" href="https://independent.academia.edu/VladimirSobes">Vladimir Sobes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">EPJ Nuclear Sciences &amp;amp; Technologies, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian optimization of generalized data&quot;,&quot;attachmentId&quot;:96256224,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/93547845/Bayesian_optimization_of_generalized_data"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="120412434" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120412434/Towards_Automated_Design_of_Bayesian_Optimization_via_Exploratory_Landscape_Analysis">Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="307944932" href="https://independent.academia.edu/AnjaJankovic4">Anja Jankovic</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis&quot;,&quot;attachmentId&quot;:115570235,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/120412434/Towards_Automated_Design_of_Bayesian_Optimization_via_Exploratory_Landscape_Analysis&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/120412434/Towards_Automated_Design_of_Bayesian_Optimization_via_Exploratory_Landscape_Analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="98897367" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/98897367/Scalable_Bayesian_optimization_with_high_dimensional_outputs_using_randomized_prior_networks">Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39863824" href="https://mit.academia.edu/MohamedAzizBhouri">Mohamed Aziz Bhouri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks&quot;,&quot;attachmentId&quot;:100144077,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/98897367/Scalable_Bayesian_optimization_with_high_dimensional_outputs_using_randomized_prior_networks&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/98897367/Scalable_Bayesian_optimization_with_high_dimensional_outputs_using_randomized_prior_networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="101200033" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/101200033/Introducing_assignment_functions_to_Bayesian_optimization_algorithms">Introducing assignment functions to Bayesian optimization algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="252682509" href="https://independent.academia.edu/KiyoshiAkama">Kiyoshi Akama</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Information Sciences, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Introducing assignment functions to Bayesian optimization algorithms&quot;,&quot;attachmentId&quot;:101806014,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/101200033/Introducing_assignment_functions_to_Bayesian_optimization_algorithms&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/101200033/Introducing_assignment_functions_to_Bayesian_optimization_algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="121434062" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs">Bayesian Optimization with Missing Inputs</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163583113" href="https://independent.academia.edu/PhucLuong14">Phuc Luong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lecture Notes in Computer Science, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Bayesian Optimization with Missing Inputs&quot;,&quot;attachmentId&quot;:116310273,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/121434062/Bayesian_Optimization_with_Missing_Inputs"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="90090862" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90090862/A_Globally_Convergent_Gradient_based_Bilevel_Hyperparameter_Optimization_Method">A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization Method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="182903094" href="https://iisermohali.academia.edu/SatenderGunwal">Satender Gunwal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization Method&quot;,&quot;attachmentId&quot;:93749855,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/90090862/A_Globally_Convergent_Gradient_based_Bilevel_Hyperparameter_Optimization_Method&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90090862/A_Globally_Convergent_Gradient_based_Bilevel_Hyperparameter_Optimization_Method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="105943621" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/105943621/Alleviating_Search_Bias_in_Bayesian_Evolutionary_Optimization_with_Many_Heterogeneous_Objectives">Alleviating Search Bias in Bayesian Evolutionary Optimization with Many Heterogeneous Objectives</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="496137" href="https://independent.academia.edu/MarkusOlhofer">Markus Olhofer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Alleviating Search Bias in Bayesian Evolutionary Optimization with Many Heterogeneous Objectives&quot;,&quot;attachmentId&quot;:105272514,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/105943621/Alleviating_Search_Bias_in_Bayesian_Evolutionary_Optimization_with_Many_Heterogeneous_Objectives&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/105943621/Alleviating_Search_Bias_in_Bayesian_Evolutionary_Optimization_with_Many_Heterogeneous_Objectives"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="101629298" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/101629298/Choosing_Search_Algorithms_In_Bayesian_Optimization_Algorithm">Choosing Search Algorithms In Bayesian Optimization Algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="228243239" href="https://independent.academia.edu/JonathanShapiro">Jonathan Shapiro</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Choosing Search Algorithms In Bayesian Optimization Algorithm&quot;,&quot;attachmentId&quot;:102117401,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/101629298/Choosing_Search_Algorithms_In_Bayesian_Optimization_Algorithm&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/101629298/Choosing_Search_Algorithms_In_Bayesian_Optimization_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="21747" href="https://www.academia.edu/Documents/in/Experimental_Design">Experimental Design</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="46254" href="https://www.academia.edu/Documents/in/Optimization_Problem">Optimization Problem</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="272592" href="https://www.academia.edu/Documents/in/Mathematical_Optimization">Mathematical Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="535039" href="https://www.academia.edu/Documents/in/Bayesian_Optimization">Bayesian Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1032783" href="https://www.academia.edu/Documents/in/Bayesian_Probability">Bayesian Probability</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10