CINXE.COM
Search results for: cutting problem
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cutting problem</title> <meta name="description" content="Search results for: cutting problem"> <meta name="keywords" content="cutting problem"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cutting problem" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cutting problem"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7728</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cutting problem</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7728</span> An Approximation Algorithm for the Non Orthogonal Cutting Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ouafi">R. Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ouafi"> F. Ouafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title="combinatorial optimization">combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20problem" title=" cutting problem"> cutting problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/19497/an-approximation-algorithm-for-the-non-orthogonal-cutting-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7727</span> Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Hayajneh">Mohammed T. Hayajneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al<sub>2</sub>O<sub>3</sub> particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20life" title=" tool life"> tool life</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/42835/prediction-of-cutting-tool-life-in-drilling-of-reinforced-aluminum-alloy-composite-using-a-fuzzy-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7726</span> High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuya%20Fukazawa"> Katsuya Fukazawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20625" title="Inconel 625">Inconel 625</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20mill" title=" ball end mill"> ball end mill</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20tool" title=" carbide tool"> carbide tool</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20cutting" title=" high speed cutting"> high speed cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a> </p> <a href="https://publications.waset.org/abstracts/98349/high-speed-cutting-of-inconel-625-using-carbide-ball-end-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7725</span> Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alluru%20Gopala%20Krishna">Alluru Gopala Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Thella%20Babu%20Rao"> Thella Babu Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT%20based%20nano%20cutting%20fluid" title="CNT based nano cutting fluid">CNT based nano cutting fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/52841/performance-assessment-of-carbon-nano-tube-based-cutting-fluid-in-machining-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7724</span> Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kious%20Mecheri">Kious Mecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Abdechafik"> Hadjadj Abdechafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Aissa"> Ameur Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title="flank wear">flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20milling" title=" high speed milling"> high speed milling</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/6906/neural-network-monitoring-strategy-of-cutting-tool-wear-of-horizontal-high-speed-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7723</span> Intelligent Production Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C5%9Eahino%C4%9Flu">A. Şahinoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G%C3%BCrb%C3%BCz"> R. Gürbüz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCll%C3%BC"> A. Güllü</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karhan"> M. Karhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20process" title="cutting process">cutting process</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20late" title=" intelligent late"> intelligent late</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20analysis" title=" sound analysis"> sound analysis</a> </p> <a href="https://publications.waset.org/abstracts/28796/intelligent-production-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7722</span> Life Prediction of Cutting Tool by the Workpiece Cutting Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noemia%20Gomes%20de%20Mattos%20de%20Mesquita">Noemia Gomes de Mattos de Mesquita</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Eduardo%20Ferreira%20de%20Oliveira"> José Eduardo Ferreira de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arimatea%20Quaresma%20Ferraz"> Arimatea Quaresma Ferraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=productions" title=" productions"> productions</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title=" cutting condition"> cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/9191/life-prediction-of-cutting-tool-by-the-workpiece-cutting-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7721</span> A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Bera">T. C. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bansal"> A. Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nema"> D. Nema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20constants" title=" cutting constants"> cutting constants</a>, <a href="https://publications.waset.org/abstracts/search?q=uncut%20chip%20thickness" title=" uncut chip thickness"> uncut chip thickness</a> </p> <a href="https://publications.waset.org/abstracts/30832/a-method-to-determine-cutting-force-coefficients-in-turning-using-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7720</span> Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Ghorbani">Siamak Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Ivanovich%20Polushin"> Nikolay Ivanovich Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20capacity" title=" damping capacity"> damping capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/40328/effect-of-composite-material-on-damping-capacity-improvement-of-cutting-tool-in-machining-operation-using-taguchi-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7719</span> Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Eser%20Erdek">Gizem Eser Erdek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remaining%20life%20of%20industrial%20cutting%20tools" title=" remaining life of industrial cutting tools"> remaining life of industrial cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=VggNet" title=" VggNet"> VggNet</a> </p> <a href="https://publications.waset.org/abstracts/166428/prediction-of-remaining-life-of-industrial-cutting-tools-with-deep-learning-assisted-image-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7718</span> Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sahli">Mohamed Sahli</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Bassir"> David Bassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Barriere"> Thierry Barriere</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Roizard"> Xavier Roizard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20turning" title="titanium turning">titanium turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tools" title=" cutting tools"> cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20simulation" title=" FE simulation"> FE simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=chip" title=" chip"> chip</a> </p> <a href="https://publications.waset.org/abstracts/131356/experimental-investigation-and-numerical-simulations-of-the-cylindrical-machining-of-a-ti-6al-4v-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7717</span> Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Brychta">Josef Brychta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Kratochvil"> Jiri Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Pagac"> Marek Pagac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grained%20cutting%20materials%20difficult%20to%20machine%20materials" title="grained cutting materials difficult to machine materials">grained cutting materials difficult to machine materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20utilization" title=" optimum utilization"> optimum utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/6321/optimization-of-cutting-parameters-during-machining-of-fine-grained-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7716</span> A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Peng">Wu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Liljerehn"> Anders Liljerehn</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Magnevall"> Martin Magnevall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=kienzle%20model" title=" kienzle model"> kienzle model</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20model" title=" predictive model"> predictive model</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20flank%20wear" title=" tool flank wear"> tool flank wear</a> </p> <a href="https://publications.waset.org/abstracts/152477/a-prediction-of-cutting-forces-using-extended-kienzle-force-model-incorporating-tool-flank-wear-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7715</span> Parametric Study and Modelling of Orthogonal Cutting Process for AISI 4340 and Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purnank%20Bhatt">Purnank Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mit%20Shah"> Mit Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Nagda"> Pawan Nagda</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimal%20Jasoliya"> Vimal Jasoliya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of parameters like velocity and depth of cut on cutting forces is investigated for the empirical relation of the coefficient of friction derived for CRS 1018 for different materials like AISI 4340 and Ti6Al4V. For this purpose, turning tests were carried out on the above materials using coated cemented carbide tool inserts for steel grade and uncoated cemented carbide cutting tool inserts for Titanium with different chip breaker geometries. The cutting forces were measured using a Kistler dynamometer where the multiplication factor taken is 200.The effect of cutting force variation was analyzed experimentally and are compared with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title="cutting forces">cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20friction" title=" coefficient of friction"> coefficient of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20tool%20inserts" title=" carbide tool inserts"> carbide tool inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/66438/parametric-study-and-modelling-of-orthogonal-cutting-process-for-aisi-4340-and-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7714</span> Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zone-Ching%20Lin">Zone-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Jheng"> Hao-Yuan Jheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Ma"> Shih-Hung Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy%20%28AFM%29" title="atomic force microscopy (AFM)">atomic force microscopy (AFM)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanochannel" title=" nanochannel"> nanochannel</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20down%20force%20energy%20%28SDFE%29" title=" specific down force energy (SDFE)"> specific down force energy (SDFE)</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20shape" title=" Y shape"> Y shape</a>, <a href="https://publications.waset.org/abstracts/search?q=burr" title=" burr"> burr</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/50887/method-and-experiment-of-fabricating-and-cutting-the-burr-for-y-shape-nanochannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7713</span> Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/52496/using-single-decision-tree-to-assess-the-impact-of-cutting-conditions-on-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7712</span> Automatic Tofu Stick Cutter to Increase the Production Capacity of Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaca%20Nugraha%20Zaid">Chaca Nugraha Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmat%20Ronaldo"> Hikmat Ronaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emerald%20Falah%20Brayoga"> Emerald Falah Brayoga</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Eddy%20Setiawati"> Azizah Eddy Setiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Soviandini%20Dwiki%20Kartika%20Putri"> Soviandini Dwiki Kartika Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Novita%20Wijayanti"> Novita Wijayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the tofu stick production, the manual cutting process takes a half of working day or 4 hours for 21 kg of tofu. This issue has hampered the small and medium enterprises (SMEs) to increase the capacity of production to fulfill the market demand. In order to address the issue, the cutting process should be automized to create fast, efficient, and effective tools. This innovation to tackle this problem is an automatic cutter tool that is able to move continuously to cut the tofu into stick size. The tool uses the 78,5-watt electric motor and automatic sensors to drive the cutting tool automatically, resulting faster process time with more uniform size compared to the manual cutter. The component of this tool, i.e., cutting knife and the driver, electric motor, limit switch sensors, riley, Arduino nano, and power supply. The cutting speed cutting speed of this tool is 101,25 mm/s producing 64 tofu sticks. Benefits that can be obtained from the use of automatic tofu stick cutter, i.e. (1) Faster process (2) More uniform cutting result; (3) The quality of the tofu stick is maintained due to minimal contact with humans so that contamination can be suppressed; (4) The cutting knife can be modified to the desired size of the owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic" title="automatic">automatic</a>, <a href="https://publications.waset.org/abstracts/search?q=cutter" title=" cutter"> cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20and%20medium%20enterprise" title=" small and medium enterprise"> small and medium enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=tofu%20stick" title=" tofu stick"> tofu stick</a> </p> <a href="https://publications.waset.org/abstracts/98000/automatic-tofu-stick-cutter-to-increase-the-production-capacity-of-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7711</span> [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Taniki%C4%87">Dejan Tanikić</a>, <a href="https://publications.waset.org/abstracts/search?q=Miodrag%20Mani%C4%87"> Miodrag Manić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20%C4%90okovi%C4%87"> Jelena Đoković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Kalinovi%C4%87"> Saša Kalinović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title="genetic algorithms">genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20parameters" title=" machining parameters"> machining parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20process" title=" turning process"> turning process</a> </p> <a href="https://publications.waset.org/abstracts/82130/keynote-talk-machining-parameters-optimization-with-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7710</span> Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Chebil%20Sonia">Belkacem Chebil Sonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Wacef"> Bensalem Wacef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20milling" title="ball end milling">ball end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20parameters" title=" cutting parameters"> cutting parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-workpiece%20inclination" title=" tool-workpiece inclination"> tool-workpiece inclination</a> </p> <a href="https://publications.waset.org/abstracts/46279/experimental-and-numerical-analysis-of-the-effects-of-ball-end-milling-process-upon-residual-stresses-and-cutting-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7709</span> Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Twardowski">Pawel Twardowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Tabaszewski"> Maciej Tabaszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Czy%C5%BCycki"> Jakub Czyżycki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel" title="milling of hardened steel">milling of hardened steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/185240/using-machine-learning-to-monitor-the-condition-of-the-cutting-edge-during-milling-hardened-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7708</span> Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melike%20Yaylac%C4%B1">Melike Yaylacı</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Fba%20Bilgin"> Tuğba Bilgin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting%20machine" title=" laser cutting machine"> laser cutting machine</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20parameters" title=" cutting parameters"> cutting parameters</a> </p> <a href="https://publications.waset.org/abstracts/165120/calculating-the-carbon-footprint-of-laser-cutting-machines-from-cradle-to-grave-and-examination-the-effect-of-the-use-of-the-machine-on-the-carbon-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7707</span> Modelling and Optimization of Laser Cutting Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20Mohamed%20Abdu">Hany Mohamed Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gadallah"> Mohamed Hassan Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Giushi%20Mokhtar"> El-Giushi Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Mahmoud%20Ismail"> Yehia Mahmoud Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=kerf%20width" title=" kerf width"> kerf width</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM%20and%20DOE" title=" RSM and DOE"> RSM and DOE</a> </p> <a href="https://publications.waset.org/abstracts/31831/modelling-and-optimization-of-laser-cutting-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7706</span> An Efficient Approach for Shear Behavior Definition of Plant Stalk </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Kamandar">M. R. Kamandar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Massah"> J. Massah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s<sup>-1</sup> and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s<sup>-1</sup> and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s<sup>-1</sup>. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s<sup>-1</sup> and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s<sup>-1</sup>. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buxus" title="Buxus">Buxus</a>, <a href="https://publications.waset.org/abstracts/search?q=Privet" title=" Privet"> Privet</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20cutting" title=" impact cutting"> impact cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20energy" title=" shear energy"> shear energy</a> </p> <a href="https://publications.waset.org/abstracts/109634/an-efficient-approach-for-shear-behavior-definition-of-plant-stalk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7705</span> Machining Responce of Austempered Ductile Iron with Varying Cutting Speed and Depth of Cut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Parhad">Prashant Parhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Dakre"> Vinayak Dakre</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Likhite"> Ajay Likhite</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatin%20Bhatt"> Jatin Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work mainly focuses on machinability studies of Austempered Ductile Iron (ADI). The Ductile Iron (DI) was austempered at 250 oC for different durations and the process window for austempering was established by studying the microstructure. The microstructural characterization of the material was done using optical microscopy, SEM and XRD. The samples austempered as per the process window were then subjected to turning using a TiAlN-coated tungsten carbide insert to study the effect of cutting parameters, namely the cutting speed and the depth of cut. The effect was investigated in terms of cutting forces required as well as the surface roughness obtained. The turning was conducted on a CNC turning machine and primary (Fx), radial (Fy) and feed (Fz) cutting forces were quantified with a three-component dynamometer. It was observed that the magnitude of radial force was more than that of primary cutting force for all cutting speed and for various depths of cut studied. It has also been seen that increasing the cutting speed improves the surface quality. The observed machinability behaviour was investigated in light of the microstructure of the material obtained under the given austempering conditions and a structure-property- co-relation was established between the two. For all cutting speed and depth of cut, the best machining response in terms of cutting forces and surface quality was obtained towards the centre of process window. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20window" title="process window">process window</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20speed" title=" cutting speed"> cutting speed</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20of%20cut" title=" depth of cut"> depth of cut</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/31800/machining-responce-of-austempered-ductile-iron-with-varying-cutting-speed-and-depth-of-cut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7704</span> Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Kosaraju">Satyanarayana Kosaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Anne"> Venu Gopal Anne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Nagari"> Sateesh Nagari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20tip%20temperature" title=" tool tip temperature"> tool tip temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rake%20angle" title=" rake angle"> rake angle</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a> </p> <a href="https://publications.waset.org/abstracts/37425/experimental-studies-on-the-effect-of-rake-angle-on-turning-ti-6al-4v-with-tialn-coated-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7703</span> Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Karimzad%20Ghavidel">A. Karimzad Ghavidel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zadshakouyan"> M. Zadshakouyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensional%20accuracy" title="dimensional accuracy">dimensional accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=CNTs" title=" CNTs"> CNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a> </p> <a href="https://publications.waset.org/abstracts/79616/dimensional-accuracy-of-cntspmma-parts-and-holes-produced-by-laser-cutting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7702</span> Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Mohana%20Rao%20Gurram">Krishna Mohana Rao Gurram</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Padmini"> R. Padmini</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vamsi%20Krishna"> P. Vamsi Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a>, <a href="https://publications.waset.org/abstracts/search?q=MQL" title=" MQL"> MQL</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/40471/effect-of-vegetable-oil-based-nanofluids-on-machining-performance-an-experimental-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7701</span> Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20M.%20Abdelkawy">Abdallah M. Abdelkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20El%20Hossainya"> Tarek M. El Hossainya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20El%20Mahallawib"> I. El Mahallawib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machinability" title="machinability">machinability</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title=" cutting force"> cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra" title=" Ra"> Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=MMNCs" title=" MMNCs"> MMNCs</a> </p> <a href="https://publications.waset.org/abstracts/20821/application-of-taguchi-techniques-on-machining-of-a356al2o3-metal-matrix-nano-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7700</span> Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatim%20Laalej">Hatim Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Stammers"> Jon Stammers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/77528/intelligent-tooling-embedded-sensors-for-monitoring-the-wear-of-cutting-tools-in-turning-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7699</span> Analyzing Damage of the Cutting Tools out of Carbide Metallic during the Turning of a Soaked and Not Hardened Steel XC38 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Seghouani">Mohamed Seghouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tafraoui"> Ahmed Tafraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Soltane%20Lebaili"> Soltane Lebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define it the influence of the elements of the mode of cut on the behavior of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the life span of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as a constraint for the respect of the roughness of the workpiece during a work of series in conventional machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=lifespan" title=" lifespan"> lifespan</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20of%20Taylor" title=" model of Taylor"> model of Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tool" title=" cutting tool"> cutting tool</a>, <a href="https://publications.waset.org/abstracts/search?q=carburize%20metal" title=" carburize metal"> carburize metal</a> </p> <a href="https://publications.waset.org/abstracts/21927/analyzing-damage-of-the-cutting-tools-out-of-carbide-metallic-during-the-turning-of-a-soaked-and-not-hardened-steel-xc38" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=257">257</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=258">258</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20problem&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>