CINXE.COM
Search results for: milling of hardened steel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: milling of hardened steel</title> <meta name="description" content="Search results for: milling of hardened steel"> <meta name="keywords" content="milling of hardened steel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="milling of hardened steel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="milling of hardened steel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2022</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: milling of hardened steel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2022</span> Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Twardowski">Pawel Twardowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Tabaszewski"> Maciej Tabaszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Czy%C5%BCycki"> Jakub Czyżycki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel" title="milling of hardened steel">milling of hardened steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/185240/using-machine-learning-to-monitor-the-condition-of-the-cutting-edge-during-milling-hardened-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2021</span> Surface Roughness Modeling in Dry Face Milling of Annealed and Hardened AISI 52100 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohieddine%20Benghersallah">Mohieddine Benghersallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zakaria%20Zahaf"> Mohamed Zakaria Zahaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Medjber"> Ali Medjber</a>, <a href="https://publications.waset.org/abstracts/search?q=Idriss%20Tibakh"> Idriss Tibakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to analyse the effects of cutting parameters on surface roughness in dry face milling using statistical techniques. We studied the effect of the microstructure of AISI 52100 steel on machinability before and after hardening. The machining tests were carried out on a high rigidity vertical milling machine with a 25 mm diameter face milling cutter equipped with micro-grain bicarbide inserts with PVD (Ti, AlN) coating in GC1030 grade. A Taguchi L9 experiment plan is adopted. Analysis of variance (ANOVA) was used to determine the effects of cutting parameters (Vc, fz, ap) on the roughness (Ra) of the machined surface. Regression analysis to assess the machinability of steel presented mathematical models of roughness and the combination of parameters to minimize it. The recorded results show that feed per tooth has the most significant effect on the surface condition for both steel treatment conditions. The best roughnesses were obtained for the hardened AISI 52100 steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machinability" title="machinability">machinability</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/107004/surface-roughness-modeling-in-dry-face-milling-of-annealed-and-hardened-aisi-52100-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2020</span> Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20S.%20Freitas%20Neto">Arnold S. Freitas Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20E.%20Coelho"> Rodrigo E. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20S.%20Mendon%C3%A7a"> Erick S. Mendonça</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Al%20alloys" title="Fe-Al alloys">Fe-Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20milling" title=" high energy milling"> high energy milling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography%20characterization" title=" metallography characterization"> metallography characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a> </p> <a href="https://publications.waset.org/abstracts/57596/development-of-ferrous-aluminum-alloys-from-recyclable-material-by-high-energy-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2019</span> Synthesis of Y2O3 Films by Spray Coating with Milled EDTA ・Y・H Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu%EF%BC%8CTetsuo%20Sekiya">Keiji Komatsu,Tetsuo Sekiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayumu%20Toyama"> Ayumu Toyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikumi%20Toda"> Ikumi Toda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Muramatsu"> Hiroyuki Muramatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediaminetetraacetic acid (EDTA・Y・H) complexes prepared by various milling techniques. The effects of the properties of the EDTA・Y・H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA・Y・H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA・Y・H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA・Y・H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20sizes%20and%20distributions" title="powder sizes and distributions">powder sizes and distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20spray%20coating%20techniques" title=" flame spray coating techniques"> flame spray coating techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=Yttrium%20oxide" title=" Yttrium oxide"> Yttrium oxide</a> </p> <a href="https://publications.waset.org/abstracts/10330/synthesis-of-y2o3-films-by-spray-coating-with-milled-edta-yh-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2018</span> Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajid%20Ali%20Khan">Wajid Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title="residual stresses">residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20milling" title=" end milling"> end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=1045%20steel" title=" 1045 steel"> 1045 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/157047/prediction-and-optimization-of-machining-induced-residual-stresses-in-end-milling-of-aisi-1045-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2017</span> Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kumar%20Ponnappan">Harish Kumar Ponnappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L<sub>9 </sub>orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=live%20tooling" title="live tooling">live tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi%20analysis" title=" taguchi analysis"> taguchi analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20milling%20operation" title=" CNC milling operation"> CNC milling operation</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20turning%20operation" title=" CNC turning operation"> CNC turning operation</a> </p> <a href="https://publications.waset.org/abstracts/113808/optimization-of-surface-finish-in-milling-operation-using-live-tooling-via-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2016</span> Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ghasemi">Behrooz Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Sharijian"> Bahram Sharijian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%2FMo" title="Al2O3/Mo">Al2O3/Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical" title=" mechanochemical"> mechanochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a> </p> <a href="https://publications.waset.org/abstracts/11618/mechanochemical-synthesis-of-al2o3mo-nanocomposite-powders-from-molybdenum-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2015</span> Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Selaimia">A. A. Selaimia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bensouilah"> H. Bensouilah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Yallese"> M. A. Yallese</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Meddour"> I. Meddour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Belhadi"> S. Belhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Mabrouki"> T. Mabrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=coated%20carbide" title=" coated carbide"> coated carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a> </p> <a href="https://publications.waset.org/abstracts/75643/modeling-of-austenitic-stainless-steel-during-face-milling-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2014</span> Mechanical Behavior of 16NC6 Steel Hardened by Burnishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Litim%20Tarek">Litim Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Taamallah%20Ouahiba"> Taamallah Ouahiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16NC6%20steel" title="16NC6 steel">16NC6 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=burnishing" title=" burnishing"> burnishing</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/128582/mechanical-behavior-of-16nc6-steel-hardened-by-burnishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2013</span> Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Chandna">Pankaj Chandna</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar"> Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D2%20steel" title="D2 steel">D2 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20array" title=" orthogonal array"> orthogonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20methodology" title=" Taguchi methodology"> Taguchi methodology</a> </p> <a href="https://publications.waset.org/abstracts/26729/optimization-of-end-milling-process-parameters-for-minimization-of-surface-roughness-of-aisi-d2-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2012</span> Analyzing Damage of the Cutting Tools out of Carbide Metallic during the Turning of a Soaked and Not Hardened Steel XC38 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Seghouani">Mohamed Seghouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tafraoui"> Ahmed Tafraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Soltane%20Lebaili"> Soltane Lebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define it the influence of the elements of the mode of cut on the behavior of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the life span of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as a constraint for the respect of the roughness of the workpiece during a work of series in conventional machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=lifespan" title=" lifespan"> lifespan</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20of%20Taylor" title=" model of Taylor"> model of Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tool" title=" cutting tool"> cutting tool</a>, <a href="https://publications.waset.org/abstracts/search?q=carburize%20metal" title=" carburize metal"> carburize metal</a> </p> <a href="https://publications.waset.org/abstracts/21927/analyzing-damage-of-the-cutting-tools-out-of-carbide-metallic-during-the-turning-of-a-soaked-and-not-hardened-steel-xc38" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2011</span> Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20S.%20Freitas%20Neto">Arnold S. Freitas Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20E.%20Coelho"> Rodrigo E. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20S.%20Mendon%C3%A7a"> Erick S. Mendonça</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Al%20alloys" title="Fe-Al alloys">Fe-Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20milling" title=" high energy milling"> high energy milling</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-aluminum%20alloys" title=" iron-aluminum alloys"> iron-aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography%20characterization" title=" metallography characterization"> metallography characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20ferrous%20alloy" title=" recycling ferrous alloy"> recycling ferrous alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=SAE%201020%20steel%20recycling" title=" SAE 1020 steel recycling"> SAE 1020 steel recycling</a> </p> <a href="https://publications.waset.org/abstracts/67384/steel-industry-waste-as-recyclable-raw-material-for-the-development-of-ferrous-aluminum-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2010</span> Effect of Local Steel Slag as a Coarse Aggregate in the Properties of Fly Ash Based-Geopolymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Omar">O. M. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Heniegal"> A. M. Heniegal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Abd%20Elhameed"> G. D. Abd Elhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohamadien"> H. A. Mohamadien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitute of crushed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of dolomite. This paper reports the experimental study to investigate the influence of a hundred replacement of dolomite as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=molarity" title=" molarity"> molarity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/39829/effect-of-local-steel-slag-as-a-coarse-aggregate-in-the-properties-of-fly-ash-based-geopolymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2009</span> Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Dubey">Goutam Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutta"> Varun Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge%20machining" title="electric discharge machining">electric discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20steel" title=" tool steel"> tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20rate" title=" tool wear rate"> tool wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a> </p> <a href="https://publications.waset.org/abstracts/88859/optimization-of-process-parameters-for-rotary-electro-discharge-machining-using-en31-tool-steel-present-and-future-scope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2008</span> The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Razavykia">A. Razavykia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Esmaeilzadeh"> A. Esmaeilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iranmanesh"> S. Iranmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%2FCAM%20software" title="CAD/CAM software">CAD/CAM software</a>, <a href="https://publications.waset.org/abstracts/search?q=milling" title=" milling"> milling</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopedic%20implants" title=" orthopedic implants"> orthopedic implants</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20path%20strategy" title=" tool path strategy"> tool path strategy</a> </p> <a href="https://publications.waset.org/abstracts/76801/the-effect-of-tool-path-strategy-on-surface-and-dimension-in-high-speed-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2007</span> Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20S.%20Soria">Bruno S. Soria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20R.%20Policena"> Mauricio R. Policena</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20J.%20Souza"> Andre J. Souza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20milling" title="face milling">face milling</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20condition%20monitoring" title=" tool condition monitoring"> tool condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20discrete%20transform" title=" wavelet discrete transform"> wavelet discrete transform</a> </p> <a href="https://publications.waset.org/abstracts/109363/effects-of-tool-state-on-the-output-parameters-of-front-milling-using-discrete-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2006</span> Sustainable Milling Process for Tensile Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kumari">Shilpa Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakumar%20Jayachandran"> Ramakumar Jayachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20milling" title="dry milling">dry milling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title="tensile testing">tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20milling" title=" wet milling"> wet milling</a>, <a href="https://publications.waset.org/abstracts/search?q=6xxx%20alloy" title=" 6xxx alloy"> 6xxx alloy</a> </p> <a href="https://publications.waset.org/abstracts/140845/sustainable-milling-process-for-tensile-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2005</span> Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Krishna%20Mohana%20Rao">G. Krishna Mohana Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravi%20Kumar"> P. Ravi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20inserts" title="damping inserts">damping inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20milling" title=" end milling"> end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20fingers" title=" number of fingers"> number of fingers</a> </p> <a href="https://publications.waset.org/abstracts/4973/theoretical-and-experimental-analysis-of-end-milling-process-with-multiple-finger-inserted-cutters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2004</span> Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Fathi%20Mohamed">Ahmed Fathi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Shafiq"> Nasir Shafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhd%20Fadhil%20Nuruddin"> Muhd Fadhil Nuruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elheber%20Ahmed"> Ali Elheber Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20taste" title=" fresh taste"> fresh taste</a> </p> <a href="https://publications.waset.org/abstracts/1321/performance-of-fiber-reinforced-self-compacting-concrete-containing-different-pozzolanic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2003</span> Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Jowkar"> Nazli Jowkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Karimzadeh%20Fard"> Afshin Karimzadeh Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20process" title=" milling process"> milling process</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/24429/prediction-of-temperature-distribution-during-drilling-process-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2002</span> Availability Analysis of Milling System in a Rice Milling Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Tewari">P. C. Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=Parveen%20Kumar"> Parveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability%20modeling" title="availability modeling">availability modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20process" title=" Markov process"> Markov process</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20system" title=" milling system"> milling system</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20milling%20plant" title=" rice milling plant"> rice milling plant</a> </p> <a href="https://publications.waset.org/abstracts/53099/availability-analysis-of-milling-system-in-a-rice-milling-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2001</span> CNC Milling-Drilling Machine Cutting Tool Holder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Al%20Dabbas">Hasan Al Dabbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=milling" title=" milling"> milling</a>, <a href="https://publications.waset.org/abstracts/search?q=chucks" title=" chucks"> chucks</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20edges" title=" cutting edges"> cutting edges</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=machines" title=" machines"> machines</a> </p> <a href="https://publications.waset.org/abstracts/34245/cnc-milling-drilling-machine-cutting-tool-holder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2000</span> Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Izs%C3%B3">E. Izsó</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bartaln%C3%A9-Berceli"> M. Bartalné-Berceli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Gergely"> Sz. Gergely</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salg%C3%B3"> A. Salgó </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near%20infrared%20spectroscopy" title="near infrared spectroscopy">near infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20categories" title=" wheat categories"> wheat categories</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20process" title=" milling process"> milling process</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring "> monitoring </a> </p> <a href="https://publications.waset.org/abstracts/27640/off-line-detection-of-pannon-wheat-milling-fractions-by-near-infrared-spectroscopic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1999</span> Surface Roughness in the Incremental Forming of Drawing Quality Cold Rolled CR2 Steel Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeradam%20Yeshiwas">Zeradam Yeshiwas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Krishnaia"> A. Krishnaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to verify the resulting surface roughness of parts formed by the Single-Point Incremental Forming (SPIF) process for an ISO 3574 Drawing Quality Cold Rolled CR2 Steel. The chemical composition of drawing quality Cold Rolled CR2 steel is comprised of 0.12 percent of carbon, 0.5 percent of manganese, 0.035 percent of sulfur, 0.04 percent phosphorous, and the remaining percentage is iron with negligible impurities. The experiments were performed on a 3-axis vertical CNC milling machining center equipped with a tool setup comprising a fixture and forming tools specifically designed and fabricated for the process. The CNC milling machine was used to transfer the tool path code generated in Mastercam 2017 environment into three-dimensional motions by the linear incremental progress of the spindle. The blanks of Drawing Quality Cold Rolled CR2 steel sheets of 1 mm of thickness have been fixed along their periphery by a fixture and hardened high-speed steel (HSS) tools with a hemispherical tip of 8, 10 and 12mm of diameter were employed to fabricate sample parts. To investigate the surface roughness, hyperbolic-cone shape specimens were fabricated based on the chosen experimental design. The effect of process parameters on the surface roughness was studied using three important process parameters, i.e., tool diameter, feed rate, and step depth. In this study, the Taylor-Hobson Surtronic 3+ surface roughness tester profilometer was used to determine the surface roughness of the parts fabricated using the arithmetic mean deviation (Rₐ). In this instrument, a small tip is dragged across a surface while its deflection is recorded. Finally, the optimum process parameters and the main factor affecting surface roughness were found using the Taguchi design of the experiment and ANOVA. A Taguchi experiment design with three factors and three levels for each factor, the standard orthogonal array L9 (3³) was selected for the study using the array selection table. The lowest value of surface roughness is significant for surface roughness improvement. For this objective, the ‘‘smaller-the-better’’ equation was used for the calculation of the S/N ratio. The finishing roughness parameter Ra has been measured for the different process combinations. The arithmetic means deviation (Rₐ) was measured via the experimental design for each combination of the control factors by using Taguchi experimental design. Four roughness measurements were taken for a single component and the average roughness was taken to optimize the surface roughness. The lowest value of Rₐ is very important for surface roughness improvement. For this reason, the ‘‘smaller-the-better’’ Equation was used for the calculation of the S/N ratio. Analysis of the effect of each control factor on the surface roughness was performed with a ‘‘S/N response table’’. Optimum surface roughness was obtained at a feed rate of 1500 mm/min, with a tool radius of 12 mm, and with a step depth of 0.5 mm. The ANOVA result shows that step depth is an essential factor affecting surface roughness (91.1 %). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIF" title=" SPIF"> SPIF</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20quality%20steel" title=" drawing quality steel"> drawing quality steel</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20behavior" title=" roughness behavior"> roughness behavior</a> </p> <a href="https://publications.waset.org/abstracts/166026/surface-roughness-in-the-incremental-forming-of-drawing-quality-cold-rolled-cr2-steel-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1998</span> Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Gholipoor"> Maryam Gholipoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metronidazole" title="metronidazole">metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=ball-milling" title=" ball-milling"> ball-milling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20diffraction" title=" XRD diffraction"> XRD diffraction</a> </p> <a href="https://publications.waset.org/abstracts/16630/preparation-and-characterization-of-nano-metronidazole-by-planetary-ball-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1997</span> Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinan%20B.%20Al-Dabbagh">Jinan B. Al-Dabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozman%20Mohd%20Tahar"> Rozman Mohd Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahadzir%20Ishak"> Mahadzir Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiAl%20alloys" title="TiAl alloys">TiAl alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20materials" title=" nanocrystalline materials"> nanocrystalline materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20science" title=" materials science"> materials science</a> </p> <a href="https://publications.waset.org/abstracts/4295/effect-of-milling-parameters-on-the-characteristics-of-nanocrystalline-tial-alloys-synthesized-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1996</span> Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Chebil%20Sonia">Belkacem Chebil Sonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Wacef"> Bensalem Wacef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20milling" title="ball end milling">ball end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20parameters" title=" cutting parameters"> cutting parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-workpiece%20inclination" title=" tool-workpiece inclination"> tool-workpiece inclination</a> </p> <a href="https://publications.waset.org/abstracts/46279/experimental-and-numerical-analysis-of-the-effects-of-ball-end-milling-process-upon-residual-stresses-and-cutting-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1995</span> X-Ray Diffraction and Mӧssbauer Studies of Nanostructured Ni45Al45Fe10 Powders Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi">N. Ammouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the effect of milling time on the structural and hyperfine properties of Ni45Al45Fe10 compound elaborated by mechanical alloying. The elaboration was performed by using the planetary ball mill at different milling times. The as milled powders were characterized by X-ray diffraction (XRD) and Mӧssbauer spectroscopy. From XRD diffraction spectra, we show that the β NiAl(Fe) was completely formed after 24 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases to a few nanometres and the mean level of microstrains increases. The analysis of Mӧssbauer spectra indicates that, in addition to a ferromagnetic phase, α-Fe, a paramagnetic disordered phase Ni Al (Fe) solid solution is observed after 2h and only this phase is present after 12h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiAlFe" title="NiAlFe">NiAlFe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title=" nanostructured powders"> nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%D3%A7ssbauer%20spectroscopy" title=" Mӧssbauer spectroscopy"> Mӧssbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/17005/x-ray-diffraction-and-mssbauer-studies-of-nanostructured-ni45al45fe10-powders-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1994</span> Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nixon%20Kuruvila">Nixon Kuruvila</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Ravindra"> H. V. Ravindra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensional%20accuracy%20%28DA%29" title="dimensional accuracy (DA)">dimensional accuracy (DA)</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis%20%28RA%29" title=" regression analysis (RA)"> regression analysis (RA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method%20%28TM%29" title=" Taguchi method (TM)"> Taguchi method (TM)</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20material%20removal%20rate%20%28VMRR%29" title=" volumetric material removal rate (VMRR)"> volumetric material removal rate (VMRR)</a> </p> <a href="https://publications.waset.org/abstracts/24005/parametric-influence-and-optimization-of-wire-edm-on-oil-hardened-non-shrinking-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1993</span> Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohieddine%20Benghersallah">Mohieddine Benghersallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Boulanouar"> Lakhdar Boulanouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Belhadi"> Salim Belhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Statistical%20analysis%20%28RSM%29" title="Statistical analysis (RSM)">Statistical analysis (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Bearing%20steel" title=" Bearing steel"> Bearing steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Coating%20inserts" title=" Coating inserts"> Coating inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=Tool%20life" title=" Tool life"> Tool life</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20Roughness" title=" Surface Roughness"> Surface Roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=End%20milling." title=" End milling."> End milling.</a> </p> <a href="https://publications.waset.org/abstracts/21079/statistical-analysis-of-surface-roughness-and-tool-life-using-rsm-in-face-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>