CINXE.COM
Search results for: life cycle assessment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: life cycle assessment</title> <meta name="description" content="Search results for: life cycle assessment"> <meta name="keywords" content="life cycle assessment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="life cycle assessment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="life cycle assessment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13634</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: life cycle assessment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13634</span> Measuring Ecological Footprint: Life Cycle Assessment Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binita%20Shah">Binita Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Unnikrishnan"> Seema Unnikrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent time, an increasing interest in the analysis and efforts to reduce the environmental impacts generated by man-made activities has been seen widely being discussed and implemented by the society. The industrial processes are expressing their concern and showing keen interest in redesigning and amending the operation process leading to better environmental performance by upgrading technologies and adjusting the financial inputs. There are various tools available for the assessment of process and production of goods on the environment. Most methods look at a particular impact on the ecosystem. Life Cycle Assessment (LCA) is one of the most widely accepted and scientifically founded methodologies to assess the overall environmental impacts of products and processes. This paper looks at the tools used in India for environmental impact assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20sustainability" title=" measuring sustainability"> measuring sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/20093/measuring-ecological-footprint-life-cycle-assessment-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">647</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13633</span> Life Cycle Assessment of Residential Buildings: A Case Study in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatesh%20Kumar">Venkatesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Hewage"> Kasun Hewage</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Sadiq"> Rehan Sadiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title="building simulation">building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20energy%20analysis" title=" life cycle energy analysis"> life cycle energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a> </p> <a href="https://publications.waset.org/abstracts/35021/life-cycle-assessment-of-residential-buildings-a-case-study-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13632</span> Impact of Design Choices on the Life Cycle Energy of Modern Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Karimpour">Mahsa Karimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Belusko"> Martin Belusko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Xing"> Ke Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Bruno"> Frank Bruno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle%20energy" title="building life cycle energy">building life cycle energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title=" embodied energy"> embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20design%20measures" title=" energy design measures"> energy design measures</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20buildings" title=" low energy buildings"> low energy buildings</a> </p> <a href="https://publications.waset.org/abstracts/28025/impact-of-design-choices-on-the-life-cycle-energy-of-modern-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13631</span> An Assessment of Financial Viability and Sustainability of Hydroponics Using Reclaimed Water Using LCA and LCC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdullah">Muhammad Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atiq%20Ur%20Rehman%20Tariq"> Muhammad Atiq Ur Rehman Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Ul%20Haq"> Faraz Ul Haq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developed countries, sustainability measures are widely accepted and acknowledged as crucial for addressing environmental concerns. Hydroponics, a soilless cultivation technique, has emerged as a potentially sustainable solution as it can reduce water consumption, land use, and environmental impacts. However, hydroponics may not be economically viable, especially when using reclaimed water, which may entail additional costs and risks. This study aims to address the critical question of whether hydroponics using reclaimed water can achieve a balance between sustainability and financial viability. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) will be integrated to assess the potential of hydroponics whether it is environmentally sustainable and economically viable. Life cycle assessment, or LCA, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. While Life Cycle Cost (LCC) is an approach that assesses the total cost of an asset over its life cycle, including initial capital costs and maintenance costs. The expected benefits of this study include supporting evidence-based decision-making for policymakers, farmers, and stakeholders involved in agriculture. By quantifying environmental impacts and economic costs, this research will facilitate informed choices regarding the adoption of hydroponics with reclaimed water. It is believed that the outcomes of this research work will help to achieve a sustainable approach to agricultural production, aligning with sustainability goals while considering economic factors by adopting hydroponic technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title="hydroponic">hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/168520/an-assessment-of-financial-viability-and-sustainability-of-hydroponics-using-reclaimed-water-using-lca-and-lcc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13630</span> Reliability-Based Life-Cycle Cost Model for Engineering Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Lotfalian">Reza Lotfalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Martins"> Sudarshan Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Radziszewski"> Peter Radziszewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20cost" title="initial cost">initial cost</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20cost" title=" life-cycle cost"> life-cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/11947/reliability-based-life-cycle-cost-model-for-engineering-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13629</span> Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Jo"> Jin-Ho Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Sung%20Kim"> Mi-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Kun%20Lee"> Jae-Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20life%20cycle%20test" title="accelerated life cycle test">accelerated life cycle test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20test" title=" reliability test"> reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20for%20washing%20machine" title=" motor for washing machine"> motor for washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=brushless%20dc%20motor%20test" title=" brushless dc motor test"> brushless dc motor test</a> </p> <a href="https://publications.waset.org/abstracts/68978/analysis-of-the-result-for-the-accelerated-life-cycle-test-of-the-motor-for-washing-machine-by-using-acceleration-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13628</span> Life Cycle Assessment in Road Pavements: A Literature Review and the Potential Use in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Santos">B. V. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20M.%20Carvalho"> M. T. M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20S.%20R%C3%AAgo"> J. H. S. Rêgo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents a literature review on recent advances related to studies of the environmental impact of road pavements, with reference to the concepts of Life Cycle Assessment (LCA). An introduction with the main motivations for the development of the research is presented, with a current overview of the Brazilian transport infrastructure and the projections for the road mode for the coming years, and the possibility of using the referred methodology by the road sector in Brazil. The article explores the origin of LCA in road pavements and the details linked to its implementation from the perspective of the four main phases of the study (goal and scope definition, inventory analysis, impact assessment, and interpretation). Finally, the main advances and deficiencies observed in the selected studies are gathered, with the proposition of research fields that can be explored in future national or international studies of LCA of road pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brazil" title="Brazil">Brazil</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20pavements" title=" road pavements"> road pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/164000/life-cycle-assessment-in-road-pavements-a-literature-review-and-the-potential-use-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13627</span> A Social Life Cycle Assessment Framework to Achieve Sustainable Cultural Tourism Destinations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Javdan">Mojtaba Javdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Jafarpour%20Ghalehteimouri"> Kamran Jafarpour Ghalehteimouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Moslem%20Ghasemi"> Moslem Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezu%20Riazi"> Arezu Riazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tourism has a huge multiplier effect on other socioeconomic sectors, resulting in better infrastructure and public services. However, its environmental impact is still a source of concern. As a result, a greater emphasis has been placed on improving the sustainability of tourist destinations. Despite the global significance of sustainability assessment, only a few widely accepted methods for measuring sustainability exist. As a result, the life cycle concept is used to evaluate environmental, economic, and social consequences. The Social Life Cycle Assessment (S-LCA) is a crucial life cycle tool. Due to the tourism-specific service specifications, tourism-related activities are well-suited for the elaboration of data related to social sustainability. Therefore, the possibility of how the S-LCA is involved in ensuring cultural tourism destinations' long-term viability can be the main question. To answer this question, this article examines the theoretical evolution of both the S-LCA and cultural tourism. Potential application gaps are investigated, and an S-LCA framework for sustainable cultural tourism destinations is proposed and discussed. Thus, by bringing all stakeholders' interests together, the proposed S-LCA conceptual framework can play an effective role in achieving the principles and objectives of sustainable tourism destination management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20life%20cycle%20assessment" title="social life cycle assessment">social life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20cultural%20tourism%20destinations" title=" sustainable cultural tourism destinations"> sustainable cultural tourism destinations</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20tourism%20destination%20management" title=" sustainable tourism destination management"> sustainable tourism destination management</a>, <a href="https://publications.waset.org/abstracts/search?q=S-LCA%20framework" title=" S-LCA framework"> S-LCA framework</a> </p> <a href="https://publications.waset.org/abstracts/155007/a-social-life-cycle-assessment-framework-to-achieve-sustainable-cultural-tourism-destinations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13626</span> Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Elshafei">Ghada Elshafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20window" title="aluminum window">aluminum window</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20wood%20window" title=" beech wood window"> beech wood window</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SimaPro%20software" title=" SimaPro software"> SimaPro software</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20frame" title=" window frame"> window frame</a> </p> <a href="https://publications.waset.org/abstracts/34211/life-cycle-assessment-as-a-decision-making-for-window-performance-comparison-in-green-building-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13625</span> Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azizi">Majid Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Ghorbannezhad"> Payam Ghorbannezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Amiri"> Mostafa Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ghofrani"> Mohammad Ghofrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title=" analytic hierarchy process"> analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20issues" title=" environmental issues"> environmental issues</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture" title=" furniture"> furniture</a> </p> <a href="https://publications.waset.org/abstracts/177357/evaluation-of-life-cycle-assessment-in-furniture-manufacturing-by-analytical-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13624</span> Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aldona%20Kluczek">Aldona Kluczek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20life%20cycle%20assessment" title=" energy life cycle assessment"> energy life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20life%20cycle%20analysis" title=" social life cycle analysis"> social life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process" title=" manufacturing process"> manufacturing process</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20assessment" title=" sustainability assessment"> sustainability assessment</a> </p> <a href="https://publications.waset.org/abstracts/89736/energy-led-sustainability-assessment-approach-for-energy-efficient-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13623</span> Development of an Integrated Framework for Life-Cycle Economic, Environmental and Human Health Impact Assessment for Reclaimed Water Use in Water Systems of Various Scales</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Yao%20Wang">Yu-Yao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Meng%20Hu"> Xiao-Meng Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Yeung"> Joanne Yeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Yan%20Li"> Xiao-Yan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high private cost and unquantified external cost limit the development of reclaimed water. In this study, an integrated framework comprising life cycle assessment (LCA), quantitative microbial risk assessment (QMRA), and life cycle costing (LCC) was developed to evaluate both costs of reclaimed water supply in water systems of various scales. LCA assesses the environmental impacts, and QMRA estimates the associated pathogenic impacts. These impacts are monetized as external costs and analyzed with the private cost by LCC to count the total life cycle cost. The framework evaluated the Hong Kong urban water system in the baseline scenario (BS) and five wastewater reuse scenarios (RS). They are RSI: substituting freshwater for toilet flushing only, RSII: substituting both freshwater and seawater for toilet flushing, RSIII: using reclaimed water for all non-potable uses, RSIV: using reclaimed water for all non-potable uses and indirect potable uses, and RSV: non-potable use and indirect potable use by conveying 100% reclaimed water to recharge the reservoirs. The results show that substituting freshwater and seawater for toilet flushing has the least total life cycle cost, exhibiting that it is the most cost-effective option for Hong Kong. Meanwhile, the evaluation results show that the external cost of each scenario is comparable to the corresponding private cost, indicating the importance of the inclusion of comprehensive external cost evaluation in private cost assessment of water systems with reclaimed water supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20costing" title=" life cycle costing"> life cycle costing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20microbial%20risk%20assessment" title=" quantitative microbial risk assessment"> quantitative microbial risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reclamation" title=" water reclamation"> water reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20water" title=" reclaimed water"> reclaimed water</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20water%20resources" title=" alternative water resources"> alternative water resources</a> </p> <a href="https://publications.waset.org/abstracts/158569/development-of-an-integrated-framework-for-life-cycle-economic-environmental-and-human-health-impact-assessment-for-reclaimed-water-use-in-water-systems-of-various-scales" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13622</span> New Environmental Culture in Algeria: Eco Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Tireche">S. Tireche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tairi%20abdelaziz"> A. Tairi abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco%20design" title="eco design">eco design</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis%20%28LCA%29" title=" life cycle analysis (LCA)"> life cycle analysis (LCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/22490/new-environmental-culture-in-algeria-eco-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13621</span> Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarrou">A. Jarrou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iranzo"> A. Iranzo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Nana"> C. Nana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/152116/environmental-life-cycle-assessment-of-two-technologic-scenario-of-wind-turbine-blades-composition-for-an-optimized-wind-turbine-design-using-the-impact-2002-method-and-using-15-environmental-impact-indicators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13620</span> Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leveque%20Benjamin">Leveque Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabaud%20Suzanne"> Rabaud Suzanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Anest%20Hugo"> Anest Hugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalan%20Caroline"> Catalan Caroline</a>, <a href="https://publications.waset.org/abstracts/search?q=Neveux%20Guillaume"> Neveux Guillaume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=companies" title=" companies"> companies</a>, <a href="https://publications.waset.org/abstracts/search?q=footprint" title=" footprint"> footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=products" title=" products"> products</a> </p> <a href="https://publications.waset.org/abstracts/61583/quantifying-product-impacts-on-biodiversity-the-product-biodiversity-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13619</span> Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Navabakhsh">Sahar Navabakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rokia%20%20Raslan"> Rokia Raslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Schwartz"> Yair Schwartz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20LCA" title=" participatory LCA"> participatory LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20sustainability%20assessment" title=" life cycle sustainability assessment"> life cycle sustainability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20processes" title=" participatory processes"> participatory processes</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20estate%20regeneration" title=" housing estate regeneration"> housing estate regeneration</a> </p> <a href="https://publications.waset.org/abstracts/137055/analysing-the-applicability-of-a-participatory-approach-to-life-cycle-sustainability-assessment-case-study-of-a-housing-estate-regeneration-in-london" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13618</span> Comparative Life Cycle Assessment of Roofing System for Abu Dhabi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyasu%20Eibedingil">Iyasu Eibedingil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20roof%20tile" title="clay roof tile">clay roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20roof%20tile" title=" concrete roof tile"> concrete roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/47746/comparative-life-cycle-assessment-of-roofing-system-for-abu-dhabi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13617</span> Impact of Life Cycle Assessment for Municipal Plastic Waste Treatment in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Olagunju">O. A. Olagunju</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Kiambi"> S. L. Kiambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal Plastic Wastes (MPW) can have several negative effects on the environment, and this is causing a growing concern which requires urgent intervention. Addressing these environmental challenges by proffering alternative end-of-life (EOL) techniques for MPW treatment is thus critical for designing and implementing effective long-term remedies. In this study, the environmental implications of several MPW treatment technologies were assessed using life cycle assessment (LCA). Our focus was on four potential waste treatment scenarios for MPW: waste disposal via landfill, waste incineration, waste regeneration, and reusability of recycled waste. The findings show that recycling has a greater benefit over landfilling and incineration methods. The most important environmental benefit comes from the recycling of plastics, which may serve as reliable source materials for environmentally friendly products. Following a holistic evaluation, five major factors that influence the overall impact on the environment were outlined: the mass fraction in waste, the recycling rate, the conversion efficiency, the waste-to-energy conversion rate, and the type of energy which can be utilized from incineration generated energy <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end-of-life" title="end-of-life">end-of-life</a>, <a href="https://publications.waset.org/abstracts/search?q=incineration" title=" incineration"> incineration</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20plastic%20waste" title=" municipal plastic waste"> municipal plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a> </p> <a href="https://publications.waset.org/abstracts/165354/impact-of-life-cycle-assessment-for-municipal-plastic-waste-treatment-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13616</span> Life Cycle Assessment of Almond Processing: Off-ground Harvesting Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Bain">Jessica Bain</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Thoma"> Greg Thoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Marty%20Matlock"> Marty Matlock</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyam%20Subbiah"> Jeyam Subbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebenezer%20Kwofie"> Ebenezer Kwofie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact and particulate matter emissions (PM) associated with the production and packaging of 1 kg of almonds were evaluated using life cycle assessment (LCA). The assessment began at the point of ready to harvest with a system boundary was a cradle-to-gate assessment of almond packaging in California. The assessment included three scenarios of off-ground harvesting of almonds. The three general off-ground harvesting scenarios with variations include the harvested almonds solar dried on a paper tarp in the orchard, the harvested almonds solar dried on the floor in a separate lot, and the harvested almonds dried mechanically. The life cycle inventory (LCI) data for almond production were based on previously published literature and data provided by Almond Board of California (ABC). The ReCiPe 2016 method was used to calculate the midpoint impacts. Using consequential LCA model, the global warming potential (GWP) for the three harvesting scenarios are 2.90, 2.86, and 3.09 kg CO2 eq/ kg of packaged almond for scenarios 1, 2a, and 3a, respectively. The global warming potential for conventional harvesting method was 2.89 kg CO2 eq/ kg of packaged almond. The particulate matter emissions for each scenario per hectare for each off-ground harvesting scenario is 77.14, 9.56, 66.86, and 8.75 for conventional harvesting and scenarios 1, 2, and 3, respectively. The most significant contributions to the overall emissions were from almond production. The farm gate almond production had a global warming potential of 2.12 kg CO2 eq/ kg of packaged almond, approximately 73% of the overall emissions. Based on comparisons between the GWP and PM emissions, scenario 2a was the best tradeoff between GHG and PM production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20moisture%20foods" title=" low moisture foods"> low moisture foods</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a> </p> <a href="https://publications.waset.org/abstracts/162743/life-cycle-assessment-of-almond-processing-off-ground-harvesting-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13615</span> Analysis of Human Toxicity Potential of Major Building Material Production Stage Using Life Cycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakhyun%20Kim">Rakhyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Tae"> Sungho Tae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global environmental issues such as abnormal weathers due to global warming, resource depletion, and ecosystem distortions have been escalating due to rapid increase of population growth, and expansion of industrial and economic development. Accordingly, initiatives have been implemented by many countries to protect the environment through indirect regulation methods such as Environmental Product Declaration (EPD), in addition to direct regulations such as various emission standards. Following this trend, life cycle assessment (LCA) techniques that provide quantitative environmental information, such as Human Toxicity Potential (HTP), for buildings are being developed in the construction industry. However, at present, the studies on the environmental database of building materials are not sufficient to provide this support adequately. The purpose of this study is to analysis human toxicity potential of major building material production stage using life cycle assessment. For this purpose, the theoretical consideration of the life cycle assessment and environmental impact category was performed and the direction of the study was set up. That is, the major material in the global warming potential view was drawn against the building and life cycle inventory database was selected. The classification was performed about 17 kinds of substance and impact index, such as human toxicity potential, that it specifies in CML2001. The environmental impact of analysis human toxicity potential for the building material production stage was calculated through the characterization. Meanwhile, the environmental impact of building material in the same category was analyze based on the characterization impact which was calculated in this study. In this study, establishment of environmental impact coefficients of major building material by complying with ISO 14040. Through this, it is believed to effectively support the decisions of stakeholders to improve the environmental performance of buildings and provide a basis for voluntary participation of architects in environment consideration activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20toxicity%20potential" title="human toxicity potential">human toxicity potential</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20building%20material" title=" major building material"> major building material</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20stage" title=" production stage"> production stage</a> </p> <a href="https://publications.waset.org/abstracts/96193/analysis-of-human-toxicity-potential-of-major-building-material-production-stage-using-life-cycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13614</span> Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20H.%20Fukurozaki">Sandra H. Fukurozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20L.%20N.%20Silva"> Andre L. N. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20B.%20F.%20Neto"> Joao B. F. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20G.%20Landgraf"> Fernando J. G. Landgraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=didymium%20electrolysis" title="didymium electrolysis">didymium electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a> </p> <a href="https://publications.waset.org/abstracts/101265/life-cycle-assessment-of-rare-earth-metals-production-hotspot-analysis-of-didymium-electrolysis-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13613</span> A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Sung%20Kim"> Mi-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Kun%20Lee"> Jae-Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20life%20cycle%20test" title="accelerated life cycle test">accelerated life cycle test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20reliability%20test" title=" motor reliability test"> motor reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20for%20washing%20machine" title=" motor for washing machine"> motor for washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC%20motor" title=" BLDC motor"> BLDC motor</a> </p> <a href="https://publications.waset.org/abstracts/46400/a-study-on-the-accelerated-life-cycle-test-method-of-the-motor-for-home-appliances-by-using-acceleration-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13612</span> Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeffal%20Asma">Djeffal Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zemmouri%20Noureddine"> Zemmouri Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20schools" title=" elementary schools"> elementary schools</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/23027/application-of-life-cycle-assessment-lca-approach-for-a-sustainable-building-design-under-specific-climate-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13611</span> Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anabel%20Fernandez">Anabel Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Rodriguez-Ortiz"> Leandro Rodriguez-Ortiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Rodr%C3%ADGuez"> Rosa RodríGuez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment%20%28LCA%29" title=" life cycle assessment (LCA)"> life cycle assessment (LCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=renewability" title=" renewability"> renewability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/139076/exergetic-and-life-cycle-assessment-analyses-of-integrated-biowaste-gasification-combustion-system-a-study-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13610</span> Level of Sustainability, Environmental Assessment and Life Cycle Assessment of Industrial Technology Research Projects in Carlos Hilado Memorial State College, Alijis Campus, Bacolod City, Negros Occidental, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rene%20A.%20Salmingo">Rene A. Salmingo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In pursuing higher educational institution’s transition to sustainable future, this research initiative was conducted. The study aimed to determine the level of sustainability, environmental impact and life cycle phase assessment of the industrial technology research projects at the Institute of Information Technology, Carlos Hilado Memorial State College (CHMSC), Alijis Campus, Bacolod City, Negros Occidental, Philippines. The research method was descriptive utilizing a researcher made questionnaire to assess the ten (10) industrial technology completed research projects. Mean was used to treat the data and instrument for Good and Scates’ validity through revisions and consultations from the environmental experts, technology specialists; and Cronbach Alpha was used to measure reliability. Results indicated that the level of sustainability and life cycle phase assessment was very high while the environmental impact of the industrial research projects was rated low. Moreover, the current research projects and environmental education courses in the college were relevant to support sustainable industrial technology research projects in the future. Hence, this research initiative will contribute to the transformation of CHMSC as a greening higher educational institution and as a center for sustainable development in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title="environmental impact">environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20technology%20research%20projects" title=" industrial technology research projects"> industrial technology research projects</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20phase%20assessment" title=" life cycle phase assessment"> life cycle phase assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/87687/level-of-sustainability-environmental-assessment-and-life-cycle-assessment-of-industrial-technology-research-projects-in-carlos-hilado-memorial-state-college-alijis-campus-bacolod-city-negros-occidental-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13609</span> Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ayad">Sami Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengshan%20Lee"> Mengshan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20alternative%20assessment" title="chemical alternative assessment">chemical alternative assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=LCAA" title=" LCAA"> LCAA</a>, <a href="https://publications.waset.org/abstracts/search?q=CLiCC" title=" CLiCC"> CLiCC</a>, <a href="https://publications.waset.org/abstracts/search?q=CLiCAA" title=" CLiCAA"> CLiCAA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20substitution%20framework" title=" chemical substitution framework"> chemical substitution framework</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20potency%20data" title=" cancer potency data"> cancer potency data</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20molecular%20structure%20analysis" title=" chemical molecular structure analysis"> chemical molecular structure analysis</a> </p> <a href="https://publications.waset.org/abstracts/152390/chemical-life-cycle-alternative-assessment-as-a-green-chemical-substitution-framework-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13608</span> Life Cycle Assessment: Drinking Glass Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devina%20Jain">Devina Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice between single-use drinking glasses and reusable glasses is of major concern to our lifestyles, and hence, the environment. This study is aimed at comparing three systems - a disposable paper cup, a disposable cup and a reusable stainless steel cup or glass - with respect to their effect on the environment to find out which one is more advantageous for reducing the impact on the environment. Life Cycle Assessment was conducted using modeling software, Umberto NXT Universal (Version 7.1). For the purpose of this study, the cradle to grave approach was considered. Results showed that cleaning is of a very strong influence on the environmental burden by these drinking systems, with a contribution of up to 90 to 100%. Thus, the burden is determined by the way in which the utensils are washed, and how much water is consumed. It maybe seems like a small, insignificant daily practice. In the short term, it would seem that paper and plastic cups are a better idea, since they are easy to acquire and do not need to be stored, but in the long run, we can say that steel cups will have less of an environmental impact. However, if the frequency of use and the number of glasses employed per use are of significance to decide the appropriateness of the usage, it is better to use disposable cups and glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disposable%20glass" title="disposable glass">disposable glass</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20glass" title=" reusable glass"> reusable glass</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/44612/life-cycle-assessment-drinking-glass-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13607</span> Environmental Assessment of Roll-to-Roll Printed Smart Label</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Torres">M. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moulay"> A. Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhuldybina"> M. Zhuldybina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rozel"> M. Rozel</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Trinh"> N. D. Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bois"> C. Bois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eco-design" title="Eco-design">Eco-design</a>, <a href="https://publications.waset.org/abstracts/search?q=label" title=" label"> label</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20electronics" title=" printed electronics"> printed electronics</a> </p> <a href="https://publications.waset.org/abstracts/142971/environmental-assessment-of-roll-to-roll-printed-smart-label" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13606</span> A Study of Carbon Emissions during Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonggeon%20Lee">Jonggeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Tae"> Sungho Tae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoon%20Suk"> Sungjoon Suk</a>, <a href="https://publications.waset.org/abstracts/search?q=Keunhyeok%20Yang"> Keunhyeok Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ford"> George Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20E.%20Smith"> Michael E. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Omidreza%20Shoghli"> Omidreza Shoghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20phase" title="building construction phase">building construction phase</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions%20assessment" title=" carbon emissions assessment"> carbon emissions assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle" title=" building life cycle "> building life cycle </a> </p> <a href="https://publications.waset.org/abstracts/29496/a-study-of-carbon-emissions-during-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">751</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13605</span> An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yohanes%20Kristianto">Yohanes Kristianto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economic%20optimization" title=" techno-economic optimization"> techno-economic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20supply%20chains" title=" sustainable supply chains"> sustainable supply chains</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20loop%20economy" title=" closed loop economy"> closed loop economy</a> </p> <a href="https://publications.waset.org/abstracts/89702/an-integration-of-life-cycle-assessment-and-techno-economic-optimization-in-the-supply-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=454">454</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=455">455</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>