CINXE.COM

Peter Willett - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Peter Willett - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="xCU6dUTeDjNkRjvO8cnIifB4A4LvTVeiCHuWpze9Id3xTPYFJX2ia/SHYk8ns8JLLtHxvD+XclXDjFezjsLM9w==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="peter willett" /> <meta name="description" content="Peter Willett: 35 Followers, 4 Following, 655 Research papers. Research interests: Cooperative Spectrum Sensing, Multi Sensor Data Fusion, and Spectrum…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277512811,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732777111000); window.Aedu.timeDifference = new Date().getTime() - 1732777111000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/WillettJohn" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":62001,"name":"Cooperative Spectrum Sensing","url":"https://www.academia.edu/Documents/in/Cooperative_Spectrum_Sensing"},{"id":170496,"name":"Multi Sensor Data Fusion","url":"https://www.academia.edu/Documents/in/Multi_Sensor_Data_Fusion"},{"id":41252,"name":"Spectrum Sensing","url":"https://www.academia.edu/Documents/in/Spectrum_Sensing"},{"id":38111,"name":"Target Tracking","url":"https://www.academia.edu/Documents/in/Target_Tracking"},{"id":14852,"name":"Data Fusion (Engineering)","url":"https://www.academia.edu/Documents/in/Data_Fusion_Engineering_"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/WillettJohn&quot;,&quot;location&quot;:&quot;/WillettJohn&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/WillettJohn&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f74f836e-c870-4804-8bf0-1a54ea7d2d0d"></div> <div id="ProfileCheckPaperUpdate-react-component-f74f836e-c870-4804-8bf0-1a54ea7d2d0d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Peter Willett</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Peter" data-follow-user-id="41973045" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="41973045"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">35</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="41973045" href="https://www.academia.edu/Documents/in/Cooperative_Spectrum_Sensing"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/WillettJohn&quot;,&quot;location&quot;:&quot;/WillettJohn&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/WillettJohn&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Cooperative Spectrum Sensing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-02b62654-e618-4f24-a74f-250bd0dd4a25"></div> <div id="Pill-react-component-02b62654-e618-4f24-a74f-250bd0dd4a25"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="41973045" href="https://www.academia.edu/Documents/in/Multi_Sensor_Data_Fusion"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Multi Sensor Data Fusion&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1ee89413-75af-43a1-b548-72458d563436"></div> <div id="Pill-react-component-1ee89413-75af-43a1-b548-72458d563436"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="41973045" href="https://www.academia.edu/Documents/in/Spectrum_Sensing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Spectrum Sensing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-83571991-a42b-4d40-b676-568c9272e892"></div> <div id="Pill-react-component-83571991-a42b-4d40-b676-568c9272e892"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="41973045" href="https://www.academia.edu/Documents/in/Target_Tracking"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Target Tracking&quot;]}" data-trace="false" data-dom-id="Pill-react-component-3f3e85b5-09bc-4fd9-b644-7a3881e7391f"></div> <div id="Pill-react-component-3f3e85b5-09bc-4fd9-b644-7a3881e7391f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="41973045" href="https://www.academia.edu/Documents/in/Data_Fusion_Engineering_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Data Fusion (Engineering)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-cbf849b8-0b76-42e4-b363-d2387aa9c7e0"></div> <div id="Pill-react-component-cbf849b8-0b76-42e4-b363-d2387aa9c7e0"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Journal-papers" data-toggle="tab" href="#journalpapers" role="tab" title="Journal papers"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">Journal papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>654</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Journal papers" id="Journal papers"><h3 class="profile--tab_heading_container">Journal papers by Peter Willett</h3></div><div class="js-work-strip profile--work_container" data-work-id="3809678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion"><img alt="Research paper thumbnail of One-bit Decentralized Detection with a Rao Test for Multisensor Fusion" class="work-thumbnail" src="https://attachments.academia-assets.com/31465115/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion">One-bit Decentralized Detection with a Rao Test for Multisensor Fusion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WillettJohn">Peter Willett</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unina.academia.edu/DomenicoCiuonzo">Domenico Ciuonzo</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this letter we propose the Rao test as a simpler alternative to the generalized likelihood rat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4eb3b0c10b92e526e2eb4dcb0e3941fa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:31465115,&quot;asset_id&quot;:3809678,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3809678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3809678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3809678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3809678]").text(description); $(".js-view-count[data-work-id=3809678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3809678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3809678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 3809678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4eb3b0c10b92e526e2eb4dcb0e3941fa" } } $('.js-work-strip[data-work-id=3809678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3809678,"title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion","translated_title":"","metadata":{"abstract":"In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations. ","publisher":"IEEE Signal Processing Letters","publication_date":{"day":26,"month":6,"year":2013,"errors":{}}},"translated_abstract":"In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations. ","internal_url":"https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion","translated_internal_url":"","created_at":"2013-06-28T02:44:42.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":977036,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":13334062,"work_id":3809678,"tagging_user_id":977036,"tagged_user_id":41973045,"co_author_invite_id":596951,"email":"w***t@engr.uconn.edu","display_order":0,"name":"Peter Willett","title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion"},{"id":13334162,"work_id":3809678,"tagging_user_id":977036,"tagged_user_id":null,"co_author_invite_id":3124119,"email":"g***a@studenti.unina2.it","display_order":4194304,"name":"Giuseppe Papa","title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion"}],"downloadable_attachments":[{"id":31465115,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31465115/thumbnails/1.jpg","file_name":"1306.6141v1.pdf","download_url":"https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"One_bit_Decentralized_Detection_with_a_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31465115/1306.6141v1-libre.pdf?1392301601=\u0026response-content-disposition=attachment%3B+filename%3DOne_bit_Decentralized_Detection_with_a_R.pdf\u0026Expires=1732780710\u0026Signature=S3czvJXYhZxXVseZYDJjPsqLm2KJuy09Fq7v2nZ95GLXWoINQrwEAk22AiRN5iCcl8A8nnBvH-e21W9RxYXCiUhXXAKI2RgYXiSZO3lWjx-Kwi~Z3utybFwYjYXsc1~qcJLEmPrine3wtSD0qEQsxGh9dZ95CfnRQWfuN788QLB2laim5B5xbNvcTI5I0KzJ2kMqsZbLRelH5H9nUNvhV1pSzwEUx6VoM1GaCMmaTkRrHOMAl8AEN3ohcCvBtPXuh5BvrmUv~Wt9~fIsZorvU0z9nuaiH5LbIogYx-8V~dZ1vbJind8TuBPtB8ej2bPb4w7ETbNUc3nymHgLukcBuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":977036,"first_name":"Domenico","middle_initials":null,"last_name":"Ciuonzo","page_name":"DomenicoCiuonzo","domain_name":"unina","created_at":"2011-11-23T19:29:36.482-08:00","display_name":"Domenico Ciuonzo","url":"https://unina.academia.edu/DomenicoCiuonzo"},"attachments":[{"id":31465115,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31465115/thumbnails/1.jpg","file_name":"1306.6141v1.pdf","download_url":"https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"One_bit_Decentralized_Detection_with_a_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31465115/1306.6141v1-libre.pdf?1392301601=\u0026response-content-disposition=attachment%3B+filename%3DOne_bit_Decentralized_Detection_with_a_R.pdf\u0026Expires=1732780710\u0026Signature=S3czvJXYhZxXVseZYDJjPsqLm2KJuy09Fq7v2nZ95GLXWoINQrwEAk22AiRN5iCcl8A8nnBvH-e21W9RxYXCiUhXXAKI2RgYXiSZO3lWjx-Kwi~Z3utybFwYjYXsc1~qcJLEmPrine3wtSD0qEQsxGh9dZ95CfnRQWfuN788QLB2laim5B5xbNvcTI5I0KzJ2kMqsZbLRelH5H9nUNvhV1pSzwEUx6VoM1GaCMmaTkRrHOMAl8AEN3ohcCvBtPXuh5BvrmUv~Wt9~fIsZorvU0z9nuaiH5LbIogYx-8V~dZ1vbJind8TuBPtB8ej2bPb4w7ETbNUc3nymHgLukcBuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5234,"name":"Detection \u0026 Estimation","url":"https://www.academia.edu/Documents/in/Detection_and_Estimation"},{"id":14852,"name":"Data Fusion (Engineering)","url":"https://www.academia.edu/Documents/in/Data_Fusion_Engineering_"},{"id":100379,"name":"Sensor Data Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Data_Fusion"},{"id":170496,"name":"Multi Sensor Data Fusion","url":"https://www.academia.edu/Documents/in/Multi_Sensor_Data_Fusion"},{"id":304533,"name":"Decision Fusion","url":"https://www.academia.edu/Documents/in/Decision_Fusion"},{"id":881836,"name":"GLRT","url":"https://www.academia.edu/Documents/in/GLRT"},{"id":881837,"name":"Rao test","url":"https://www.academia.edu/Documents/in/Rao_test"}],"urls":[{"id":1281731,"url":"http://arxiv.org/pdf/1306.6141v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Peter Willett</h3></div><div class="js-work-strip profile--work_container" data-work-id="124838196"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics"><img alt="Research paper thumbnail of An extended target tracking model with multiple random matrices and unified kinematics" class="work-thumbnail" src="https://attachments.academia-assets.com/118990277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics">An extended target tracking model with multiple random matrices and unified kinematics</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="98c89bb8f83f0e952cc4e75060a26ace" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990277,&quot;asset_id&quot;:124838196,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838196"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838196"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838196; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838196]").text(description); $(".js-view-count[data-work-id=124838196]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838196; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838196']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838196, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "98c89bb8f83f0e952cc4e75060a26ace" } } $('.js-work-strip[data-work-id=124838196]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838196,"title":"An extended target tracking model with multiple random matrices and unified kinematics","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper presents a model for tracking of extended targets, where each target is represented by a given number of elliptic subobjects. A gamma Gaussian inverse Wishart implementation is derived, and necessary approximations are suggested to alleviate the data association complexity. A simulation study shows the merits of the model compared to previous work on the topic.","publication_date":{"day":6,"month":7,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990277},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics","translated_internal_url":"","created_at":"2024-10-18T09:25:54.125-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990277/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990277/1406-libre.pdf?1729270591=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=VaAtkcVwGeWzFlxdp4BrzOE2FinVFVLryKjGsUgcqlGVW0RWCFFC-qJmYmMerLWXVjhaXt8YlfP9zOgvJOqOKmlkK4aQQfIJKFpRJ8SAmGK1klcYZcCgbfgN9YXq7g6bYXuLyeg8ddORSc8sqnQlu8MBHrNp-dRwn3JA9J13c6PIE0EX9Spii0tCdVAP77d-uCMv1Umpi~QrBCuX3LKpMvAqyoLvhoHpnbpbd6UhIw9zlTnhoSqOb925jFMSLGqRaR88A~xZZPF86Y2GYj3JH0Tx-lDscDVJ0A8necixxPou3SfHbJWFUt1coGjXXTsxHpBqU13yCPQOCxwjzYMYXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990277/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990277/1406-libre.pdf?1729270591=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=VaAtkcVwGeWzFlxdp4BrzOE2FinVFVLryKjGsUgcqlGVW0RWCFFC-qJmYmMerLWXVjhaXt8YlfP9zOgvJOqOKmlkK4aQQfIJKFpRJ8SAmGK1klcYZcCgbfgN9YXq7g6bYXuLyeg8ddORSc8sqnQlu8MBHrNp-dRwn3JA9J13c6PIE0EX9Spii0tCdVAP77d-uCMv1Umpi~QrBCuX3LKpMvAqyoLvhoHpnbpbd6UhIw9zlTnhoSqOb925jFMSLGqRaR88A~xZZPF86Y2GYj3JH0Tx-lDscDVJ0A8necixxPou3SfHbJWFUt1coGjXXTsxHpBqU13yCPQOCxwjzYMYXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990278,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990278/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990278/download_file","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990278/1406-libre.pdf?1729270592=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=fuzMo2q13CR1xk41e4GD9AIov2bkyh-c7Pxd2OO7cfEb-CO1qBlHjxwk5NJu7OxZKNzqld0Q3A2z7f2pzN3B7RXQ3Dl4XU~d6HYptaa~7WwTYfEq0s5IX5F9Ee3h2exF-F5i5SWMzYSmrnz0IcCf6W-JFZJz6DPh9-Cw0nwSxotas~203kgJJ-7TkIIDo7ICQk7e6kpdjspnXFI3pdwrhuohJNZeJI3ipoWYTSl~Mjfd-x6-vvwbK9-WAxE3F1S2GBXtOTj7k5YBIO1B5MEqI1kVhEYZGv1iiccIh~q~qGcnjIYXhewr2BhbpbfVdCjfIVOBO~m2nSMNl~jXfZelcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":90162,"name":"Kinematics","url":"https://www.academia.edu/Documents/in/Kinematics"},{"id":188142,"name":"Inverse Kinematics","url":"https://www.academia.edu/Documents/in/Inverse_Kinematics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix"},{"id":970928,"name":"Wishart Distribution","url":"https://www.academia.edu/Documents/in/Wishart_Distribution"},{"id":2564090,"name":"Ellipse","url":"https://www.academia.edu/Documents/in/Ellipse"},{"id":3834064,"name":"Rectangle","url":"https://www.academia.edu/Documents/in/Rectangle"}],"urls":[{"id":45214444,"url":"https://arxiv.org/pdf/1406.2135v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838195"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods"><img alt="Research paper thumbnail of To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods" class="work-thumbnail" src="https://attachments.academia-assets.com/118990276/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods">To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Aug 11, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f60303c55da7f48de7880892bdf692ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990276,&quot;asset_id&quot;:124838195,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838195"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838195"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838195; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838195]").text(description); $(".js-view-count[data-work-id=124838195]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838195; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838195']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838195, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f60303c55da7f48de7880892bdf692ff" } } $('.js-work-strip[data-work-id=124838195]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838195,"title":"To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, and MHT methods suffer from an opposite effect known as track repulsion. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm, and we argue that BP-based MTT exhibits significantly reduced track coalescence and no track repulsion. Our theoretical arguments are confirmed by numerical results.","publication_date":{"day":11,"month":8,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990276},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods","translated_internal_url":"","created_at":"2024-10-18T09:25:53.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990276/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990276/2308-libre.pdf?1729270582=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=Tpizq0Fnil9Y5D9vD~aqjyZVa~GUUE6kn-aKGv2im4VWr3LcQ-tS9JWdAaKW8kErJpagfkP3YVqfWrTeKea8jwwf6GKmC-0oPyV3ZgW-vBV1Y~eoGc2Ns8fE2PbeYIgoDIjdtXLsqozz4IDKNTYaSfWD0rx88x~Z3Gr6xmIq3n48JvVtL0z~WHF9GM~vihi-lxFAb-NEdhP066eWgyVsEix9ccqtjud5n3OhcCPd9zAMyJDV2kE1NqxXTSjkgxfLreZ8KNsu9sRK6qxhBoHRoe~vRXEnxiBD-8nlyDGja5eQQZwQb2LbA~cB0bfPuqRb~GBB-OxSzoaXyhR~4sRKnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990276/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990276/2308-libre.pdf?1729270582=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=Tpizq0Fnil9Y5D9vD~aqjyZVa~GUUE6kn-aKGv2im4VWr3LcQ-tS9JWdAaKW8kErJpagfkP3YVqfWrTeKea8jwwf6GKmC-0oPyV3ZgW-vBV1Y~eoGc2Ns8fE2PbeYIgoDIjdtXLsqozz4IDKNTYaSfWD0rx88x~Z3Gr6xmIq3n48JvVtL0z~WHF9GM~vihi-lxFAb-NEdhP066eWgyVsEix9ccqtjud5n3OhcCPd9zAMyJDV2kE1NqxXTSjkgxfLreZ8KNsu9sRK6qxhBoHRoe~vRXEnxiBD-8nlyDGja5eQQZwQb2LbA~cB0bfPuqRb~GBB-OxSzoaXyhR~4sRKnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990274/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990274/download_file","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990274/2308-libre.pdf?1729270588=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=N9q5wytYNugkUjxoawLuGHMs7EE4ag4Iy1eUthDvNfLKOS~udhsw4bdolB4aAYNInXFkbTCPzR7eppAQQcSR~Fbx7PYZS5nuX-aURjkL3JClHycS-fZPm~YN4NITpuKwH3gF4eC-lLpsknL4Wtz06fqkUFNpU8jwbTl-YAjnF6DtoFsviE6MwixUKdIfsCPRBpz6nCOFI89Ps0cdSQXu3IBuQL8KmmQqdMTkVRVcdxEcC2p9q79fr68pTM~QfRP4yrUr6tJH0blhapxxygsT5zBQrAOxlch1DLMUwNIgq~mtg1X~3m7doEEH2kXiGAtxddT7Kol8OXWENpwwtOTrDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":278182,"name":"Data Association","url":"https://www.academia.edu/Documents/in/Data_Association"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"}],"urls":[{"id":45214443,"url":"https://arxiv.org/pdf/2308.06326"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks"><img alt="Research paper thumbnail of 3D Localization and Tracking Methods for Multi-Platform Radar Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/118990275/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks">3D Localization and Tracking Methods for Multi-Platform Radar Networks</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Aug 14, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdfb869ff9f883c41d767858c45a8830" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990275,&quot;asset_id&quot;:124838194,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838194]").text(description); $(".js-view-count[data-work-id=124838194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838194, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdfb869ff9f883c41d767858c45a8830" } } $('.js-work-strip[data-work-id=124838194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838194,"title":"3D Localization and Tracking Methods for Multi-Platform Radar Networks","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"3D Localization and Tracking in Multi-Platform Radar Networks","grobid_abstract":"Multi-platform radar networks (MPRNs) are an emerging sensing technology due to their ability to provide improved surveillance capabilities over plain monostatic and bistatic systems. The design of advanced detection, localization, and tracking algorithms for efficient fusion of information obtained through multiple receivers has attracted much attention. However, considerable challenges remain. This article provides an overview on recent unconstrained and constrained localization techniques as well as multitarget tracking (MTT) algorithms tailored to MPRNs. In particular, two data-processing methods are illustrated and explored in detail, one aimed at accomplishing localization tasks the other tracking functions. As to the former, assuming a MPRN with one transmitter and multiple receivers, the angular and range constrained estimator (ARCE) algorithm capitalizes on the knowledge of the transmitter antenna beamwidth. As to the latter, the scalable sum-product algorithm (SPA) based MTT technique is presented. Additionally, a solution to combine ARCE and SPA-based MTT is investigated in order to boost the accuracy of the overall surveillance system. Simulated experiments show the benefit of the combined algorithm in comparison with the conventional baseline SPA-based MTT and the stand-alone ARCE localization, in a 3D sensing scenario.","publication_date":{"day":14,"month":8,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990275},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks","translated_internal_url":"","created_at":"2024-10-18T09:25:52.579-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990275,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990275/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990275/2308-libre.pdf?1729270607=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=Pd1w7yUr~dmkqQLM8ddYAByiBo9T7cbpbNMFJIxvQXkqiFV-~b4U0dQZHrVgeerePeatos4coTrhf1WVtWz0LhG7UCOTGAv35JwuKL-5z7126hvOOItkMIXblBzspamRnU78~dwUC4PI09Yu-lIeA2aGAQa14yA0UVc9N88bH57x~-O8OCCOV54uJaT4ebiYzd99ADx4HG0KD9vgxxCfZ4QhWxqV8RkpHzNbYVEGbUJYzlj~nJDwkUy8sDiKr9Hv0~YBc0DhQ~hehYCk0nelaN7d0lP2N5SCPqoSLtyblnnQQRYqcCExC3tsLUjDEi0e8oGuPQUc5RGdamng6iJAfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990275,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990275/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990275/2308-libre.pdf?1729270607=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=Pd1w7yUr~dmkqQLM8ddYAByiBo9T7cbpbNMFJIxvQXkqiFV-~b4U0dQZHrVgeerePeatos4coTrhf1WVtWz0LhG7UCOTGAv35JwuKL-5z7126hvOOItkMIXblBzspamRnU78~dwUC4PI09Yu-lIeA2aGAQa14yA0UVc9N88bH57x~-O8OCCOV54uJaT4ebiYzd99ADx4HG0KD9vgxxCfZ4QhWxqV8RkpHzNbYVEGbUJYzlj~nJDwkUy8sDiKr9Hv0~YBc0DhQ~hehYCk0nelaN7d0lP2N5SCPqoSLtyblnnQQRYqcCExC3tsLUjDEi0e8oGuPQUc5RGdamng6iJAfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990273/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990273/download_file","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990273/2308-libre.pdf?1729270622=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=MiV3-cmPNyD0jrJXl90oOW6yM9r9VIe5dYCOe1ccfIEdPituXFim01zQxzweRSdiopq0u-41OwZYt6cQmSkBoFwRmYGNIJhm7YTA7xua86hYTPcIP1kpQZdN73j4LWf9pyXsb~ZMLBZ60kK45Ok1KUDlZq8tRz-StMs~SIDhkrrpaGHvQEAW8cNtSOeon4uQb9qgquwneSgWQIQQ~OtZwgtU6o1aA04HkzXFUqVqFbB~obpHv1xPLGYAAYASczkvyQ5wipq0cJp1VnbHoiWGHvErlRVAwN8GzY6X1m4vIeqqRlA13ZLeDgdkEk8xbqzNDmigOyhA~Yy6g~DMywQveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5695,"name":"Radar","url":"https://www.academia.edu/Documents/in/Radar"},{"id":1116155,"name":"Transmitter","url":"https://www.academia.edu/Documents/in/Transmitter"},{"id":1564918,"name":"Beamwidth","url":"https://www.academia.edu/Documents/in/Beamwidth"}],"urls":[{"id":45214442,"url":"https://arxiv.org/pdf/2308.06972"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838192"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_"><img alt="Research paper thumbnail of Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]" class="work-thumbnail" src="https://attachments.academia-assets.com/118990272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_">Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]</a></div><div class="wp-workCard_item"><span>IEEE Signal Processing Magazine</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9391d04e7c6585201a1c22d87471305" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990272,&quot;asset_id&quot;:124838192,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838192"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838192"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838192; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838192]").text(description); $(".js-view-count[data-work-id=124838192]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838192; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838192']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838192, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9391d04e7c6585201a1c22d87471305" } } $('.js-work-strip[data-work-id=124838192]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838192,"title":"Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","publication_date":{"day":1,"month":9,"year":2018,"errors":{}},"publication_name":"IEEE Signal Processing Magazine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_","translated_internal_url":"","created_at":"2024-10-18T09:25:51.683-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990272/thumbnails/1.jpg","file_name":"08454408.pdf","download_url":"https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Highlights_from_the_Sensor_Array_and_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990272/08454408-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DHighlights_from_the_Sensor_Array_and_Mul.pdf\u0026Expires=1732780710\u0026Signature=cn5md5ZJltq3CekHMIaNEP~sI3XK8ZcbhIjcgtelYF1vZR3HqwxJ0fUxzz68ZYTLuWF7Kd027fmMlsqd0nuHoC42G~bRtFWl0JSn-irayheTy3057En3aNq3bc2pvReRW2j~4H5xWLPZdtFyt46O4EF95yMdknNqj2wTYh5gtwsCw4KLWNeSpr93TPNl0pFHXReuqK3aymH2DVJwvVERGOSTBCqr2gNRIQ4s0PR7gGH7O30I8piyCeRAm3VXicJCvE~~vIwCDZzoVOHe~IzAzTpoQblKA6h~Fr6WghZ2Rb-qGekwDu1-tPKOYHFziPftcW1ZoDLUzjWbBqwjij60qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990272/thumbnails/1.jpg","file_name":"08454408.pdf","download_url":"https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Highlights_from_the_Sensor_Array_and_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990272/08454408-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DHighlights_from_the_Sensor_Array_and_Mul.pdf\u0026Expires=1732780710\u0026Signature=cn5md5ZJltq3CekHMIaNEP~sI3XK8ZcbhIjcgtelYF1vZR3HqwxJ0fUxzz68ZYTLuWF7Kd027fmMlsqd0nuHoC42G~bRtFWl0JSn-irayheTy3057En3aNq3bc2pvReRW2j~4H5xWLPZdtFyt46O4EF95yMdknNqj2wTYh5gtwsCw4KLWNeSpr93TPNl0pFHXReuqK3aymH2DVJwvVERGOSTBCqr2gNRIQ4s0PR7gGH7O30I8piyCeRAm3VXicJCvE~~vIwCDZzoVOHe~IzAzTpoQblKA6h~Fr6WghZ2Rb-qGekwDu1-tPKOYHFziPftcW1ZoDLUzjWbBqwjij60qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214441,"url":"https://ieeexplore.ieee.org/ielx7/79/8454361/08454408.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_"><img alt="Research paper thumbnail of Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]" class="work-thumbnail" src="https://attachments.academia-assets.com/118990271/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_">Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]</a></div><div class="wp-workCard_item"><span>Proceedings of the IEEE</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1109ed82dc0f1c639d05a24ddfa270ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990271,&quot;asset_id&quot;:124838191,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838191]").text(description); $(".js-view-count[data-work-id=124838191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1109ed82dc0f1c639d05a24ddfa270ba" } } $('.js-work-strip[data-work-id=124838191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838191,"title":"Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"T oday, the maritime domain is at the cusp of a new era, driven by technological advances in automation, robotics, multisensor","publication_name":"Proceedings of the IEEE","grobid_abstract_attachment_id":118990271},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_","translated_internal_url":"","created_at":"2024-10-18T09:25:49.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990271,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990271/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990271/09921394-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=Gt2a0jcdJcip2RvE1vf2TdXT4c9oqJtKpCMy2NZQQKhv4Q09RLcbFfjuYLe6gO3swe3IyUV0tJlcVbaLiGepPDgH6snOwjTSU~MoPbC2hkdf7Xg~AAqsj4XurAII9D5kfr5aRDC3CNN7rjjyvJHF8PcLtsDJn50g0VtAhU5~DK26ppD2rl2ypO-nE23BbVtshDjOaSyKadmqySctUFkTFOOJdQ660ZWmrNUWzL03E3oWlA2Z5D6bpmETe6GGB52rK3LH1gySYjY-b3G~MAIP-U-y4EIkHSoHyloudO84jys4EI-7MyvNaUGoelL4kVv71u9f703BL-tCCwOWOoS6zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990271,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990271/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990271/09921394-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=Gt2a0jcdJcip2RvE1vf2TdXT4c9oqJtKpCMy2NZQQKhv4Q09RLcbFfjuYLe6gO3swe3IyUV0tJlcVbaLiGepPDgH6snOwjTSU~MoPbC2hkdf7Xg~AAqsj4XurAII9D5kfr5aRDC3CNN7rjjyvJHF8PcLtsDJn50g0VtAhU5~DK26ppD2rl2ypO-nE23BbVtshDjOaSyKadmqySctUFkTFOOJdQ660ZWmrNUWzL03E3oWlA2Z5D6bpmETe6GGB52rK3LH1gySYjY-b3G~MAIP-U-y4EIkHSoHyloudO84jys4EI-7MyvNaUGoelL4kVv71u9f703BL-tCCwOWOoS6zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990270/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990270/download_file","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990270/09921394-libre.pdf?1729270575=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=H1swbsH5qepjaXiwjk29y2xe26-4W9D-Tf08CqdQDE5PiNPQCdUqqn-4fvhAT7eiGdZRcVsHHokdz8v79DvDWe-det-c2q8yp4G1upu85xNXNiLJ28wTVrmqfcYGJoEqfbAU2dkrp7Y2wIj0odM-Kw9jICBohG95o~L4gYxxB7HsSEjPm3gMjVOJCz7FFZXCucUI-TB1~DbwaIdfkEdjfWb0eWYtEOdB0lYj8U6~ZiNJHh215zQbsSk0Xl6zriu37I08~xAOOc0cSx4gggD70YCgmX7OycsUd4mnbxF2PpjBCpw~WCYv1c7pwqnfsE~Rp9TrLdduc6Ay9ftFMM4PMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214440,"url":"http://xplorestaging.ieee.org/ielx7/5/9921389/09921394.pdf?arnumber=9921394"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach"><img alt="Research paper thumbnail of Scalable multitarget tracking using multiple sensors: A belief propagation approach" class="work-thumbnail" src="https://attachments.academia-assets.com/118990268/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach">Scalable multitarget tracking using multiple sensors: A belief propagation approach</a></div><div class="wp-workCard_item"><span>2015 18th International Conference on Information Fusion (Fusion)</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a method for multisensor-multitarget tracking with excellent scalability in the number...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="097e6499b7db36a5e42ea03be7a69adc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990268,&quot;asset_id&quot;:124838190,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838190]").text(description); $(".js-view-count[data-work-id=124838190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "097e6499b7db36a5e42ea03be7a69adc" } } $('.js-work-strip[data-work-id=124838190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838190,"title":"Scalable multitarget tracking using multiple sensors: A belief propagation approach","translated_title":"","metadata":{"abstract":"We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...","publisher":"2015 18th International Conference on Information Fusion (Fusion)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 18th International Conference on Information Fusion (Fusion)"},"translated_abstract":"We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...","internal_url":"https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach","translated_internal_url":"","created_at":"2024-10-18T09:25:49.536-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990268/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990268/Paper_1570112223-libre.pdf?1729270578=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=bFsNSh-LnY3K-Mn6e8HCEkJ~6a7WtIv40CiETK4TONxwc4QZboP3a3M22Rqt2TRsA5YJd5ymEK8ei4EeMwMv9TT4BMfoxGTeoTTJ-u6divg-tidouLSaGilbFOvLUoeK9grdfvg-TCc1rIGqz-tBnpga2xiQ6FAfENU0MiwXSOJ~2~VqNPy~fP61FiIQxIkaf2~YIQ5YOeYuk6LPH2P-4tNO-uUTf9ar7ZE0tbMMnSXWNC51LDPDenoLOlB7nlqzslQ0WybkXRbV7h2258hA2M8qVxCePp4tuAkDe~clp-nrToDYumlnCUY2L39YjLrtu~8E4TDcdLt2oGWa8l48lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990268/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990268/Paper_1570112223-libre.pdf?1729270578=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=bFsNSh-LnY3K-Mn6e8HCEkJ~6a7WtIv40CiETK4TONxwc4QZboP3a3M22Rqt2TRsA5YJd5ymEK8ei4EeMwMv9TT4BMfoxGTeoTTJ-u6divg-tidouLSaGilbFOvLUoeK9grdfvg-TCc1rIGqz-tBnpga2xiQ6FAfENU0MiwXSOJ~2~VqNPy~fP61FiIQxIkaf2~YIQ5YOeYuk6LPH2P-4tNO-uUTf9ar7ZE0tbMMnSXWNC51LDPDenoLOlB7nlqzslQ0WybkXRbV7h2258hA2M8qVxCePp4tuAkDe~clp-nrToDYumlnCUY2L39YjLrtu~8E4TDcdLt2oGWa8l48lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990269/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990269/download_file","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990269/Paper_1570112223-libre.pdf?1729270577=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=YJx4t4leUwh-dRqTbCY31ixeFZCJp-0~zHB7qawkhykvaDQO4iHQncjNYAH1bwUATkNKepM6Eq0Tm01C4ZfQDyYLwLcs9Rkfa7NMANzGggYTRhOBnaP5ZsFgHWWzS1DwoRbxaIYNI9B8UpuUXjtiMNLzegC6nkbz9llequyG-5fILSb0U5dqXZamWT0KmzKJ2NQMOa0p-9cvF~uiIFeo5OhLGLyfi~dGLWtV9mYHmZ3vl4~CKmMS~UPAiaaXqgRb-kp9kHgkit7mXXydeH402IEwifR1jsFi9eqPrkdCA4xcroh49V0LcFIkxH2gN-TC7N3uZoalNc91~784SeW8LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":25395,"name":"Matlab","url":"https://www.academia.edu/Documents/in/Matlab"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":1211847,"name":"Wireless Sensor Network","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Network"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214439,"url":"http://c4i.gmu.edu/~pcosta/F15/data/fileserver/file/472091/filename/Paper_1570112223.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838189"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method"><img alt="Research paper thumbnail of Tracking an unknown number of targets using multiple sensors: A belief propagation method" class="work-thumbnail" src="https://attachments.academia-assets.com/118990266/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method">Tracking an unknown number of targets using multiple sensors: A belief propagation method</a></div><div class="wp-workCard_item"><span>2016 19th International Conference on Information Fusion (FUSION)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a multisensor method for tracking an unknown number of targets. Low computational comp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="936214ab20e689de8d3cec4b14324095" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990266,&quot;asset_id&quot;:124838189,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838189"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838189"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838189; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838189]").text(description); $(".js-view-count[data-work-id=124838189]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838189; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838189']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838189, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "936214ab20e689de8d3cec4b14324095" } } $('.js-work-strip[data-work-id=124838189]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838189,"title":"Tracking an unknown number of targets using multiple sensors: A belief propagation method","translated_title":"","metadata":{"abstract":"We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.","publisher":"2016 19th International Conference on Information Fusion (FUSION)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 19th International Conference on Information Fusion (FUSION)"},"translated_abstract":"We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.","internal_url":"https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method","translated_internal_url":"","created_at":"2024-10-18T09:25:49.327-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990266/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990266/publik_255582-libre.pdf?1729270579=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=cRJsyx~GE~pgoAe3kC~IZZV7vluREYGi5vx5XKOT5WD9kB9EwotYTCNx7H8nOdSoebvGwWJl-Wxn5zsEuBvq~dtrsp1deXkcPSnPgXZE04Bq56I-nEns-SZYcwFTnhCBPm~FH7wrbk2EdnUswAuRqCIJIwmjxwkq0s0UVy4HAbaaigl~9m6CMLmYFXtBAGVe-bk2NKaUXzQhaLBN250ZPYDwfLJXvvdrvp7Z0rCMIcwRsa56p6OC~dAcXksJtE-RCs-K4-M8nZDM1Q55KFpIcMI0EJMA-wMiAi9wE8v5TL1~rWPVdO69mhBGNzDNXuIXVekknPqqFonb-WrtQn-0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990266/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990266/publik_255582-libre.pdf?1729270579=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=cRJsyx~GE~pgoAe3kC~IZZV7vluREYGi5vx5XKOT5WD9kB9EwotYTCNx7H8nOdSoebvGwWJl-Wxn5zsEuBvq~dtrsp1deXkcPSnPgXZE04Bq56I-nEns-SZYcwFTnhCBPm~FH7wrbk2EdnUswAuRqCIJIwmjxwkq0s0UVy4HAbaaigl~9m6CMLmYFXtBAGVe-bk2NKaUXzQhaLBN250ZPYDwfLJXvvdrvp7Z0rCMIcwRsa56p6OC~dAcXksJtE-RCs-K4-M8nZDM1Q55KFpIcMI0EJMA-wMiAi9wE8v5TL1~rWPVdO69mhBGNzDNXuIXVekknPqqFonb-WrtQn-0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990267/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990267/download_file","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990267/publik_255582-libre.pdf?1729270580=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=VauaEmb5vEJWzPQGd~QtWJTTgXRcqO8IjXPWa8-4F8sIj9olS8jE5mTqhd-o9p9BcTXDrB~01q4N7r2vr1H9FjaOAHZsWmDbTxC-A0JC3Aqf8r1SmjWki-2SvlLo8Fj0Mew~k1ocAT4Ph~ELKDxRl62qCCVVo7-OnGE9jVrf2sGkEa-jWP1NBrtWt1qP68d3bhMuiA85oph4E-pAys1jAUfS1bh6HsCOw6MCamViM-vZP2-1enSqZUn4qwB7awIUjxrkYGqVKuQIO408f9gJmZBovy-Z~NXgzJPDL9a6vUCBhqq0-1kZpHeSIdC7uZYgmr0NSr5mQSirjSl7Gn690A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":243826,"name":"Message Passing","url":"https://www.academia.edu/Documents/in/Message_Passing"},{"id":278182,"name":"Data Association","url":"https://www.academia.edu/Documents/in/Data_Association"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214438,"url":"https://publik.tuwien.ac.at/files/publik_255582.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples"><img alt="Research paper thumbnail of Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples" class="work-thumbnail" src="https://attachments.academia-assets.com/118990294/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples">Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="051c387bc2c26d01f096511410d02a59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990294,&quot;asset_id&quot;:124838188,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838188]").text(description); $(".js-view-count[data-work-id=124838188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "051c387bc2c26d01f096511410d02a59" } } $('.js-work-strip[data-work-id=124838188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838188,"title":"Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Signal amplitude estimation and detection from unlabeled quantized binary samples are studied, assuming that the order of the time indexes is completely unknown. First, maximum likelihood (ML) estimators are utilized to estimate both the permutation matrix and unknown signal amplitude under arbitrary, but known signal shape and quantizer thresholds. Sufficient conditions are provided under which an ML estimator can be found in polynomial time and an alternating maximization algorithm is proposed to solve the general problem via good initial estimates. In addition, the statistical identifiability of the model is studied. Furthermore, the generalized likelihood ratio test (GLRT) detector is adopted to detect the presence of signal. In addition, an accurate approximation to the probability of successful permutation matrix recovery is derived, and explicit expressions are provided to reveal the relationship between the number of signal samples and the number of quantizers. Finally, numerical simulations are performed to verify the theoretical results.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing","grobid_abstract_attachment_id":118990294},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples","translated_internal_url":"","created_at":"2024-10-18T09:25:48.049-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990294,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990294/thumbnails/1.jpg","file_name":"1706.pdf","download_url":"https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Signal_Amplitude_Estimation_and_Detectio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990294/1706-libre.pdf?1729270589=\u0026response-content-disposition=attachment%3B+filename%3DSignal_Amplitude_Estimation_and_Detectio.pdf\u0026Expires=1732780710\u0026Signature=aBVsrZAVYfOZKD61-B1vnBuQHSoEsNL6b-6EvhXhsN-d8vsiHKvH~0OzOb93JGNjLydWjipnBhF1fwoV5N1t0IP-MnXc7PWqudceIBcYJ7gYbxmvOAnLs~64R4jTeRL~YUNrm9CY~MtYyTiwvJPQTHdezKz55Zi9JP-cYzKNIi~GNX8W~B9ZLdhxtKUkUFUKL4YGk4fJezTHJy1IWCIJ9N8c6-9-nOuRwI1OCuyoTLGXtylVEiRKF6U9iT8w4J0RAKYW-YwDpggEOtwQ1508zNNPy3jCziU8m55Y5GXftbbxXS3UqOpR04BpZ7lj62aQohVu5Mp1DWqJXM-fFUS7TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990294,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990294/thumbnails/1.jpg","file_name":"1706.pdf","download_url":"https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Signal_Amplitude_Estimation_and_Detectio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990294/1706-libre.pdf?1729270589=\u0026response-content-disposition=attachment%3B+filename%3DSignal_Amplitude_Estimation_and_Detectio.pdf\u0026Expires=1732780710\u0026Signature=aBVsrZAVYfOZKD61-B1vnBuQHSoEsNL6b-6EvhXhsN-d8vsiHKvH~0OzOb93JGNjLydWjipnBhF1fwoV5N1t0IP-MnXc7PWqudceIBcYJ7gYbxmvOAnLs~64R4jTeRL~YUNrm9CY~MtYyTiwvJPQTHdezKz55Zi9JP-cYzKNIi~GNX8W~B9ZLdhxtKUkUFUKL4YGk4fJezTHJy1IWCIJ9N8c6-9-nOuRwI1OCuyoTLGXtylVEiRKF6U9iT8w4J0RAKYW-YwDpggEOtwQ1508zNNPy3jCziU8m55Y5GXftbbxXS3UqOpR04BpZ7lj62aQohVu5Mp1DWqJXM-fFUS7TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":29414,"name":"Estimation Theory","url":"https://www.academia.edu/Documents/in/Estimation_Theory"},{"id":75582,"name":"Quantization","url":"https://www.academia.edu/Documents/in/Quantization"},{"id":132898,"name":"Estimation","url":"https://www.academia.edu/Documents/in/Estimation"},{"id":151088,"name":"Detection","url":"https://www.academia.edu/Documents/in/Detection"},{"id":303912,"name":"Identifiability","url":"https://www.academia.edu/Documents/in/Identifiability"},{"id":806332,"name":"Estimator","url":"https://www.academia.edu/Documents/in/Estimator"},{"id":1005652,"name":"Detection Theory","url":"https://www.academia.edu/Documents/in/Detection_Theory"},{"id":1112727,"name":"Permutation","url":"https://www.academia.edu/Documents/in/Permutation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214437,"url":"http://xplorestaging.ieee.org/ielx7/78/8399517/08392734.pdf?arnumber=8392734"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838171"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors"><img alt="Research paper thumbnail of A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors" class="work-thumbnail" src="https://attachments.academia-assets.com/118990281/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors">A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58d444119adc2cd3bddf4c4c3688f5d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990281,&quot;asset_id&quot;:124838171,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838171"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838171"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838171; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838171]").text(description); $(".js-view-count[data-work-id=124838171]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838171; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838171']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838171, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58d444119adc2cd3bddf4c4c3688f5d5" } } $('.js-work-strip[data-work-id=124838171]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838171,"title":"A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"We propose a method for tracking an unknown number of targets based on measurements provided by multiple sensors. Our method achieves low computational complexity and excellent scalability by running belief propagation on a suitably devised factor graph. A redundant formulation of data association uncertainty and the use of \"augmented target states\" including binary target indicators make it possible to exploit statistical independencies for a drastic reduction of complexity. An increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. As a consequence, the complexity of our method scales only quadratically in the number of targets, linearly in the number of sensors, and linearly in the number of measurements per sensors. The performance of the method compares well with that of previously proposed methods, including methods with a less favorable scaling behavior. In particular, our method can outperform multisensor versions of the probability hypothesis density (PHD) filter, the cardinalized PHD filter, and the multi-Bernoulli filter.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing","grobid_abstract_attachment_id":118990281},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors","translated_internal_url":"","created_at":"2024-10-18T09:25:00.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990281/thumbnails/1.jpg","file_name":"1607.pdf","download_url":"https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Scalable_Algorithm_for_Tracking_an_Unk.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990281/1607-libre.pdf?1729270581=\u0026response-content-disposition=attachment%3B+filename%3DA_Scalable_Algorithm_for_Tracking_an_Unk.pdf\u0026Expires=1732780710\u0026Signature=ShxEJr05tOIrizbPryGWJDidL1Fs02w27RYt3pH-QNP4qUZC~IqryLmsNoBMXPpst-eJ2S8rBypMkod2uzTJVrwhQtxonDLSMxLB5t~trmI5bwQw~Y2jZzUxACGKPq4U7WejHJ9oj2t1gUYEWYg65NCmTCcSfvgHmNn~XNnWJq5PGV35jRoHbKJJtymJMwGJ3i3oj4ikA1rDAUyNBQIkPyoDjc1RDuvCfLwjNEAWM5Mjc6kQx3NE2zCInQ2AyKYk7VLwRAzjsIfbPp9xzJLf01AUaKpsH~SoeqCPpbJv6ofMh-kXvD6dor39d72jO5WE6a6zPTkvEj4qMGjZwdzMDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990281/thumbnails/1.jpg","file_name":"1607.pdf","download_url":"https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Scalable_Algorithm_for_Tracking_an_Unk.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990281/1607-libre.pdf?1729270581=\u0026response-content-disposition=attachment%3B+filename%3DA_Scalable_Algorithm_for_Tracking_an_Unk.pdf\u0026Expires=1732780710\u0026Signature=ShxEJr05tOIrizbPryGWJDidL1Fs02w27RYt3pH-QNP4qUZC~IqryLmsNoBMXPpst-eJ2S8rBypMkod2uzTJVrwhQtxonDLSMxLB5t~trmI5bwQw~Y2jZzUxACGKPq4U7WejHJ9oj2t1gUYEWYg65NCmTCcSfvgHmNn~XNnWJq5PGV35jRoHbKJJtymJMwGJ3i3oj4ikA1rDAUyNBQIkPyoDjc1RDuvCfLwjNEAWM5Mjc6kQx3NE2zCInQ2AyKYk7VLwRAzjsIfbPp9xzJLf01AUaKpsH~SoeqCPpbJv6ofMh-kXvD6dor39d72jO5WE6a6zPTkvEj4qMGjZwdzMDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214429,"url":"http://xplorestaging.ieee.org/ielx7/78/7912413/07889057.pdf?arnumber=7889057"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis"><img alt="Research paper thumbnail of Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/117172751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis">Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis</a></div><div class="wp-workCard_item"><span>IEEE Open Journal of Signal Processing</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d3f68a1c20ecc5aa748d74b306ce19b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172751,&quot;asset_id&quot;:122528336,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528336]").text(description); $(".js-view-count[data-work-id=122528336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528336, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d3f68a1c20ecc5aa748d74b306ce19b" } } $('.js-work-strip[data-work-id=122528336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528336,"title":"Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"We study the performance of Machine Learning (ML) classification techniques. Leveraging the theory of large deviations, we provide the mathematical conditions for a ML classifier to exhibit error probabilities that vanish exponentially, say exp(−n I), where n is the number of informative observations available for testing (or another relevant parameter, such as the size of the target in an image) and I is the error rate. Such conditions depend on the Fenchel-Legendre transform of the cumulant-generating function of the Data-Driven Decision Function (D3F, i.e., what is thresholded before the final binary decision is made) learned in the training phase. As such, the D3F and the related error rate I depend on the given training set. The conditions for the exponential convergence can be verified and tested numerically exploiting the available dataset or a synthetic dataset generated according to the underlying statistical model. Coherently with the large deviations theory, we can also establish the convergence of the normalized D3F statistic to a Gaussian distribution. Furthermore, approximate error probability curves ζ n exp(−n I) are provided, thanks to the refined asymptotic derivation, where ζ n represents the most representative sub-exponential terms of the error probabilities. Leveraging the refined asymptotic, we are able to compute an accurate analytical approximation of the classification performance for both the regimes of small and large values of n. Theoretical findings are corroborated by extensive numerical simulations and by the use of real-world data, acquired by an X-band maritime radar system for surveillance.","publication_name":"IEEE Open Journal of Signal Processing","grobid_abstract_attachment_id":117172751},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis","translated_internal_url":"","created_at":"2024-08-02T04:19:39.103-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172751/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172751/10008020-libre.pdf?1722600980=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=e-G5RbfdDElv8rnBAAjmHA5o5xmtKWuOx~PbRRvYOYsx6sBCNWkhmuBcUAShvDDfBubofPWmhdNARlbduJynXOLskBvuysR6BZcty83uyTYOzVm9Svrp5Bf~Pue~z4UT17nz9trevwynFk~mYek49827A0R6i7cMQyBDxMvI2hc-rsbuP~DxOJtFy1B2yRum3GybsyGYmqqLZ0JhvIKct2b3CsMhMUm41xGdCN0lkxSkcIa56khxaEG3ALJuoQahl3IM8X6Ky1ddeTaMCBkIhshbBbpd~aZ4dtXpt6H2pgv2rn2KDdxWAWJ9HZ2xNDrYcjBpnoVj1ARW3LMflVWxZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172751/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172751/10008020-libre.pdf?1722600980=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=e-G5RbfdDElv8rnBAAjmHA5o5xmtKWuOx~PbRRvYOYsx6sBCNWkhmuBcUAShvDDfBubofPWmhdNARlbduJynXOLskBvuysR6BZcty83uyTYOzVm9Svrp5Bf~Pue~z4UT17nz9trevwynFk~mYek49827A0R6i7cMQyBDxMvI2hc-rsbuP~DxOJtFy1B2yRum3GybsyGYmqqLZ0JhvIKct2b3CsMhMUm41xGdCN0lkxSkcIa56khxaEG3ALJuoQahl3IM8X6Ky1ddeTaMCBkIhshbBbpd~aZ4dtXpt6H2pgv2rn2KDdxWAWJ9HZ2xNDrYcjBpnoVj1ARW3LMflVWxZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117172754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172754/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172754/download_file","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172754/10008020-libre.pdf?1722601585=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=Xb9mta8WTF-EEah1B1Rk4swhcs6m7zG7JKxm5u1YO~dOXk0aI4KSS725oup6yGQl~MdIbAooiPUjv7eVi~OEAMgbFTI9ciP90UCak5oiGN83WdlhD-7~SxrF1ZbB-xiUhHR1OxE1mJE17kaybYkubxd7q1d60F-kOLM3HOxfXuYUjHq4wB8aV5KIbRNOsOyni2vBQZ~x2D-HRTFgNL5iBTWMLJhS1X1SDic~6M5Nirij3wBU4g5qC8BYWg5ffLeKNNRyKnN7PBq4zHTPBrcn5b8Ua6oYlPImt1hxcVrWVHRY-OWNJIt1vfTV7gopBXytgbEeqHFOtOJPY7dYax35-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":483393,"name":"Notation","url":"https://www.academia.edu/Documents/in/Notation"}],"urls":[{"id":43787500,"url":"http://xplorestaging.ieee.org/ielx7/8782710/9656695/10008020.pdf?arnumber=10008020"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528335"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation"><img alt="Research paper thumbnail of Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/117172768/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation">Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Aerospace and Electronic Systems</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6872cd31abfb0cd0209c2e33fee3e790" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172768,&quot;asset_id&quot;:122528335,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528335"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528335"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528335; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528335]").text(description); $(".js-view-count[data-work-id=122528335]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528335; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528335']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528335, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6872cd31abfb0cd0209c2e33fee3e790" } } $('.js-work-strip[data-work-id=122528335]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528335,"title":"Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Recent deep learning methods for vessel trajectory prediction are able to learn complex maritime patterns from historical Automatic Identification System (AIS) data and accurately predict sequences of future vessel positions with a prediction horizon of several hours. However, in maritime surveillance applications, reliably quantifying the prediction uncertainty can be as important as obtaining high accuracy. This paper extends deep learning frameworks for trajectory prediction tasks by exploring how recurrent encoder-decoder neural networks can be tasked not only to predict but also to yield a corresponding prediction uncertainty via Bayesian modeling of epistemic and aleatoric uncertainties. We compare the prediction performance of two different models based on labeled or unlabeled input data to highlight how uncertainty quantification and accuracy can be improved by using, if available, additional information on the intention of the ship (e.g., its planned destination).","publication_name":"IEEE Transactions on Aerospace and Electronic Systems","grobid_abstract_attachment_id":117172768},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation","translated_internal_url":"","created_at":"2024-08-02T04:19:38.907-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172768/thumbnails/1.jpg","file_name":"2205.pdf","download_url":"https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recurrent_Encoder_Decoder_Networks_for_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172768/2205-libre.pdf?1722601589=\u0026response-content-disposition=attachment%3B+filename%3DRecurrent_Encoder_Decoder_Networks_for_V.pdf\u0026Expires=1732780711\u0026Signature=Z7nRatNxJHtWB1Kf4Q2HWerZ3ZtYxECVu7eWq6aY4TA~v70J4k61aK861T9EM10XBtjeTOBEvgo0kTKkVnYgLYGZ5rFg3mxwj3RJRKl1vErjlAEM4KYflxGVbxeu4j~KFIywm31xzOL9anQ0F2z7UobNZ56Au~XkKpMok0847oJqF5CRocIpw2XaZXeU9wRCAbgeYKaW9W5q5P9IvkTyWZoq-x8~dUndZsXOxqBZPkFY16UFHLfG1ZNYtPl1vMdr1Spx5WcVHi7np18VOfPXLpyDtZaGh3UtUZZ9Crz6ntRqVk9gWjRhuEXugypIJJuafXYqyOAhgSKFA0vxL7Ugwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172768/thumbnails/1.jpg","file_name":"2205.pdf","download_url":"https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recurrent_Encoder_Decoder_Networks_for_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172768/2205-libre.pdf?1722601589=\u0026response-content-disposition=attachment%3B+filename%3DRecurrent_Encoder_Decoder_Networks_for_V.pdf\u0026Expires=1732780711\u0026Signature=Z7nRatNxJHtWB1Kf4Q2HWerZ3ZtYxECVu7eWq6aY4TA~v70J4k61aK861T9EM10XBtjeTOBEvgo0kTKkVnYgLYGZ5rFg3mxwj3RJRKl1vErjlAEM4KYflxGVbxeu4j~KFIywm31xzOL9anQ0F2z7UobNZ56Au~XkKpMok0847oJqF5CRocIpw2XaZXeU9wRCAbgeYKaW9W5q5P9IvkTyWZoq-x8~dUndZsXOxqBZPkFY16UFHLfG1ZNYtPl1vMdr1Spx5WcVHi7np18VOfPXLpyDtZaGh3UtUZZ9Crz6ntRqVk9gWjRhuEXugypIJJuafXYqyOAhgSKFA0vxL7Ugwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":31477,"name":"Uncertainty Quantification","url":"https://www.academia.edu/Documents/in/Uncertainty_Quantification"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning"},{"id":140897,"name":"Encoder","url":"https://www.academia.edu/Documents/in/Encoder"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1733865,"name":"Automatic Identification System","url":"https://www.academia.edu/Documents/in/Automatic_Identification_System"}],"urls":[{"id":43787499,"url":"http://xplorestaging.ieee.org/ielx7/7/10146528/09946391.pdf?arnumber=9946391"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528334"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel"><img alt="Research paper thumbnail of Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel" class="work-thumbnail" src="https://attachments.academia-assets.com/117172770/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel">Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel</a></div><div class="wp-workCard_item"><span>2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d262249a4c1282d6c2aebb050d26e5a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172770,&quot;asset_id&quot;:122528334,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528334"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528334"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528334; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528334]").text(description); $(".js-view-count[data-work-id=122528334]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528334; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528334']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528334, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d262249a4c1282d6c2aebb050d26e5a9" } } $('.js-work-strip[data-work-id=122528334]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528334,"title":"Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Recent studies have analyzed the chance of exploiting Global Navigation Satellite Systems (GNSS)-Reflectometry observables for maritime surveillance and sea target detection. In this paper, we provide a feasibility study of the ship detection problem using spaceborne GNSS-R data. The analysis is performed via the evaluation of the signal-to-noiseplus-clutter-ratio and signal-to-noise-ratio relevant to an isolated ship target in open sea. In particular, we investigated the impact of the GNSS-R acquisition geometry and radar signal polarization. The influence of sea state and ship orientation is assessed as well. The analysis is based on a sound theoretical electromagnetic model of the bistatic radar cross section of the ship target. The analysis clearly shows the benefits of 1) the backscattering configuration with respect to the conventional forward-scattering one and 2) the RHCP receiving channel w.r.t. the conventional LHCP one, used in sea surface analysis. However, the ship orientation and the sea state still play a key role in ship detectability.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","grobid_abstract_attachment_id":117172770},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel","translated_internal_url":"","created_at":"2024-08-02T04:19:38.702-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172770/thumbnails/1.jpg","file_name":"RTSI_2018_GNSSR.pdf","download_url":"https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maritime_Surveillance_Using_Spaceborne_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172770/RTSI_2018_GNSSR-libre.pdf?1722600615=\u0026response-content-disposition=attachment%3B+filename%3DMaritime_Surveillance_Using_Spaceborne_G.pdf\u0026Expires=1732780711\u0026Signature=Sa193fph8eEnl8MidjDdk2f2kIN8tcWmUofE5-Ob4hOgDMfI44MxA48o9pO983hTQfdGZfYqLSOW~giyB8CNPCJ8dw3UzJm6oogz4URAHm7rSW4DvGWKePATQ0PhXeTNN19UJeNOLOFjm0UgWnGZw-qWdr5UnZ81ujBYl3Pdb~b-mg21tRdWdWBK3VVjfvlj3OS9jwgVMoHFczpZB1tqjOqwP8rIN7yssDFADnIXMnrlGSUgsRCGaSzLIiDQ93lDEcMxVcZWO~RE0-zm24AFM0jG1q0TCMWHTHlNK4yIEqvm4BB~JqcQznufNASv-yzdUHFejLWkygQjWhrGJrPNhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172770/thumbnails/1.jpg","file_name":"RTSI_2018_GNSSR.pdf","download_url":"https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maritime_Surveillance_Using_Spaceborne_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172770/RTSI_2018_GNSSR-libre.pdf?1722600615=\u0026response-content-disposition=attachment%3B+filename%3DMaritime_Surveillance_Using_Spaceborne_G.pdf\u0026Expires=1732780711\u0026Signature=Sa193fph8eEnl8MidjDdk2f2kIN8tcWmUofE5-Ob4hOgDMfI44MxA48o9pO983hTQfdGZfYqLSOW~giyB8CNPCJ8dw3UzJm6oogz4URAHm7rSW4DvGWKePATQ0PhXeTNN19UJeNOLOFjm0UgWnGZw-qWdr5UnZ81ujBYl3Pdb~b-mg21tRdWdWBK3VVjfvlj3OS9jwgVMoHFczpZB1tqjOqwP8rIN7yssDFADnIXMnrlGSUgsRCGaSzLIiDQ93lDEcMxVcZWO~RE0-zm24AFM0jG1q0TCMWHTHlNK4yIEqvm4BB~JqcQznufNASv-yzdUHFejLWkygQjWhrGJrPNhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"},{"id":175926,"name":"GNSS applications","url":"https://www.academia.edu/Documents/in/GNSS_applications"},{"id":250384,"name":"Clutter","url":"https://www.academia.edu/Documents/in/Clutter"},{"id":499409,"name":"Reflectometry","url":"https://www.academia.edu/Documents/in/Reflectometry"},{"id":1458859,"name":"Bistatic Radar","url":"https://www.academia.edu/Documents/in/Bistatic_Radar"}],"urls":[{"id":43787498,"url":"http://xplorestaging.ieee.org/ielx7/8528317/8548348/08548373.pdf?arnumber=8548373"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018"><img alt="Research paper thumbnail of From the Editor-in-Chief April 2018" class="work-thumbnail" src="https://attachments.academia-assets.com/117172744/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018">From the Editor-in-Chief April 2018</a></div><div class="wp-workCard_item"><span>IEEE Aerospace and Electronic Systems Magazine</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b3dd926905034b426cf8953334fab803" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172744,&quot;asset_id&quot;:122528333,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528333]").text(description); $(".js-view-count[data-work-id=122528333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b3dd926905034b426cf8953334fab803" } } $('.js-work-strip[data-work-id=122528333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528333,"title":"From the Editor-in-Chief April 2018","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"elcome to our April issue. I write this in March from the northeast US, which means that we've had to put away our February T-shirts and golf clubs in favor of parkas and snow shovels. Good (weather) luck to us all for the Spring! I hope to see many of you at the Radar Conference in Oklahoma City in April-the AESS Board of Governors has its spring meeting there, which I'm sure is an added attraction for many of you. It's my pleasure to introduce a full and interesting issue of contributed papers this month-we are getting so many excellent papers, both contributed and Special Issue (invited), that sometimes there is a delay to publication. We apologize that some spend time \"in the queue\". First, Wahl \u0026 Turkoglu from San Jose State have given us Nonlinear Receding Horizon Control-Based Real-Time Guidance, Navigation, and Control Architecture for Launch Vehicles. As the title promises, the article suggests an RHC strategy for space vehicle guidance, and in fact gives a nice historical context for the solution. The article is rather more mathematical than the typical magazine offering; but, well, control is mathematical. Huang \u0026 Lin from Aphelion Orbitals in Florida offer Fully Optical Spacecraft Communications: Implementing an Omnidirectional PV-Cell Receiver and 8 Mb/s LED Visible Light Downlink With Deep Learning Error Correction that suggests use of the extant on-board photovoltaic systems for the visible-light communication (VLC) uplinks. There are significant challenges, perhaps the greatest being the high raw error rate caused by low SNR and non-coherent demodulation; the authors propose a deep-learning decoding strategy. Coupled with a LED downlink this may be an economical product for upcoming cubesats. Waseem \u0026 Sadiq from the Satellite Research and Development Centre in Pakistan have given us Application of Model-Based Systems Engineering in Small Satellite Conceptual Design-A SysML Approach which is a nice systems engineering case study. The article describes the experience of use of SysML, which is a modeling language used to design and verify systems … and systems of systems. Since many of our members are concerned with systems engineering as a large part of their daily work, and since the small-satellite focus is emerging, we hope the reader will find this article timely and useful. And as air traffic control is indeed a large scale \"system,\" the theme is continued in Simulation Modelling of Traffic Collision Avoidance System With Wind Disturbance by Tang, Zhu \u0026 Fan, all from the National University of Defense Technology but with joint appointments at Barcelona and the Imperial College London. The application is air-traffic TCAS, and the focus is on the very necessary system description. A large team of authors from Airbus and the Universities of Valencia (Spain), Erlangen-Nurnberg (Germany) and Udine (Italy) have given us Multifunctional and Compact 3D FMCW MIMO Radar System With Rectangular Array for Medium-Range Applications. This is a particularly nice article that is exactly at the right technical level. Its title describes the subject, but only hints at the data fusion aspect: a camera also forms part of the system and aids considerably in tracking and classification. Further, this fusion facilitates change detection, which with its small size and economical design makes the system nicely suited for area protection or for UAV mounting. Finally, some words about the life of radar legend Philip Mayne Woodward, who passed from us on January 30 at age 98. Dr. Woodward's niece Suzette Woodward and colleague Susan Bond have kindly sent us their thoughts. I think most of us know of his contributions to radar, but his contributions to computer science (especially a language I remember fondly: Algol) and (this is surprising!) clock-making will be new at least to many of you. Thanks, Suzette!-Peter K. Willett","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"IEEE Aerospace and Electronic Systems Magazine","grobid_abstract_attachment_id":117172744},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018","translated_internal_url":"","created_at":"2024-08-02T04:19:38.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172744/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172744/08354444-libre.pdf?1722600611=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=cxi~mH5FpBaKQr-x51LhxajRGkD7Rj7Q9MWKy6slUrc2pqyS059HRk6B4sf3kyMjGMf00VDy9Z4-EF3tq4jxqmOSATUC2On5X~bWgDlcXWY7yQcWqJiEKKxM~g~XlQTruD6nzJJ4j-Kep1o6lTlqYNc05et7AIqjzzIQQbICeD0zwyqsx0ogOqtGmGJd0tVsMcj9nBIXNtChjiJm0OOWAZKSM05jBNLkkXp94JlSKp9zTebCAo0whGHLmw5Rg~LZc4-xCQjVnzIJp10jCgmzEFUZTSQKrlu5GyVDeNeLu8OGQeHPVTdCOVo1j9pcNz0LujGYbbikU9qnF0TqQSNQoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_the_Editor_in_Chief_April_2018","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172744/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172744/08354444-libre.pdf?1722600611=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=cxi~mH5FpBaKQr-x51LhxajRGkD7Rj7Q9MWKy6slUrc2pqyS059HRk6B4sf3kyMjGMf00VDy9Z4-EF3tq4jxqmOSATUC2On5X~bWgDlcXWY7yQcWqJiEKKxM~g~XlQTruD6nzJJ4j-Kep1o6lTlqYNc05et7AIqjzzIQQbICeD0zwyqsx0ogOqtGmGJd0tVsMcj9nBIXNtChjiJm0OOWAZKSM05jBNLkkXp94JlSKp9zTebCAo0whGHLmw5Rg~LZc4-xCQjVnzIJp10jCgmzEFUZTSQKrlu5GyVDeNeLu8OGQeHPVTdCOVo1j9pcNz0LujGYbbikU9qnF0TqQSNQoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117172745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172745/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172745/download_file","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172745/08354444-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=NMwXlgqn0NISTV82vokGwkmJGey4bbLZDaek7kSWf6-rxj-4UBfUKYsZALkiTSXGEsmm0A~1LsGvk8zLKKNN~VG6eLruz5LzQ-QvD23M5SotTida-AuY0IFDaaKcDrONXAjEtF8ZhgtJhwKt5-587Gp67t-5jmr0f0hI6bep0jMHry5EDNfc1-0TklCN5GBfa42juyEv5Y7Ok5XdBjVKz71c8k9zRfluVowPgrTLS9af3MVL94H4fceUzvpwwE70rjtKMYq767ZRy~et1EQj7283WbqX5qrisNdKcvbKEHiGD5nbVyt8xzOzl5ewZuVG4yX099dYiWplwR7CzGyvow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":181995,"name":"Aeronautics","url":"https://www.academia.edu/Documents/in/Aeronautics"},{"id":197149,"name":"SNOW","url":"https://www.academia.edu/Documents/in/SNOW"},{"id":348480,"name":"Luck","url":"https://www.academia.edu/Documents/in/Luck"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1772191,"name":"Editor-in-Chief","url":"https://www.academia.edu/Documents/in/Editor-in-Chief"}],"urls":[{"id":43787497,"url":"http://xplorestaging.ieee.org/ielx7/62/8354437/08354444.pdf?arnumber=8354444"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility"><img alt="Research paper thumbnail of COVID-19 impact on global maritime mobility" class="work-thumbnail" src="https://attachments.academia-assets.com/117172750/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility">COVID-19 impact on global maritime mobility</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world we...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23514c0448d294ef0c4fda6f9dacb961" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172750,&quot;asset_id&quot;:122528332,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528332]").text(description); $(".js-view-count[data-work-id=122528332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23514c0448d294ef0c4fda6f9dacb961" } } $('.js-work-strip[data-work-id=122528332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528332,"title":"COVID-19 impact on global maritime mobility","translated_title":"","metadata":{"abstract":"To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...","internal_url":"https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility","translated_internal_url":"","created_at":"2024-08-02T04:19:38.307-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172750/thumbnails/1.jpg","file_name":"s41598-021-97461-7.pdf","download_url":"https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COVID_19_impact_on_global_maritime_mobil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172750/s41598-021-97461-7-libre.pdf?1722600634=\u0026response-content-disposition=attachment%3B+filename%3DCOVID_19_impact_on_global_maritime_mobil.pdf\u0026Expires=1732780711\u0026Signature=IhYIx4FqVUfd8oziSL2~aClfPp8PMzL5RmJx7vQLozRnjv~ksKwADyWUfUkYrSW4SoGeFa7XSNay5PHqonCwBSNC0hRFm6nWVamChoyS1jD5NHkPC9zHbeu7AMDIp8I1NckNrGmw2GpjiGfynS0UwlKkOUC-I~GvIVLZcfkqaEJZjbL~EBX3JfiviJYwePfMxO76ZAmlhu9f842dY9exqNOzLn0czuF9PEterwMtCOicg4uka1UYbpipBxjejzwt1rGyg0UAVar~1XDs8oq~O50nx~vjbDDZf3Iw86a9zjnNFIcY~zGxrdVxm4kWLrNpjzRxs8zPblo7ZXBxcnE~rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COVID_19_impact_on_global_maritime_mobility","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172750/thumbnails/1.jpg","file_name":"s41598-021-97461-7.pdf","download_url":"https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COVID_19_impact_on_global_maritime_mobil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172750/s41598-021-97461-7-libre.pdf?1722600634=\u0026response-content-disposition=attachment%3B+filename%3DCOVID_19_impact_on_global_maritime_mobil.pdf\u0026Expires=1732780711\u0026Signature=IhYIx4FqVUfd8oziSL2~aClfPp8PMzL5RmJx7vQLozRnjv~ksKwADyWUfUkYrSW4SoGeFa7XSNay5PHqonCwBSNC0hRFm6nWVamChoyS1jD5NHkPC9zHbeu7AMDIp8I1NckNrGmw2GpjiGfynS0UwlKkOUC-I~GvIVLZcfkqaEJZjbL~EBX3JfiviJYwePfMxO76ZAmlhu9f842dY9exqNOzLn0czuF9PEterwMtCOicg4uka1UYbpipBxjejzwt1rGyg0UAVar~1XDs8oq~O50nx~vjbDDZf3Iw86a9zjnNFIcY~zGxrdVxm4kWLrNpjzRxs8zPblo7ZXBxcnE~rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":135107,"name":"Social distance","url":"https://www.academia.edu/Documents/in/Social_distance"},{"id":181597,"name":"Root-Mean Square Error","url":"https://www.academia.edu/Documents/in/Root-Mean_Square_Error"},{"id":1012907,"name":"Outbreak","url":"https://www.academia.edu/Documents/in/Outbreak"},{"id":1028827,"name":"Pandemic","url":"https://www.academia.edu/Documents/in/Pandemic"},{"id":1354425,"name":"Idle","url":"https://www.academia.edu/Documents/in/Idle"},{"id":2699690,"name":"individual mobility","url":"https://www.academia.edu/Documents/in/individual_mobility"},{"id":3686510,"name":"Coronavirus Disease 2019 (COVID-19)","url":"https://www.academia.edu/Documents/in/Coronavirus_Disease_2019_COVID-19_"}],"urls":[{"id":43787496,"url":"https://www.nature.com/articles/s41598-021-97461-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets"><img alt="Research paper thumbnail of A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets" class="work-thumbnail" src="https://attachments.academia-assets.com/117172761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets">A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets</a></div><div class="wp-workCard_item"><span>Radio Science</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper furnishes a convenient theoretical framework for the analytical evaluation of the bist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbd0abe171fa48b987b78bb17875fd80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172761,&quot;asset_id&quot;:122528331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528331]").text(description); $(".js-view-count[data-work-id=122528331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbd0abe171fa48b987b78bb17875fd80" } } $('.js-work-strip[data-work-id=122528331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528331,"title":"A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets","translated_title":"","metadata":{"abstract":"This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...","publisher":"American Geophysical Union (AGU)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Radio Science"},"translated_abstract":"This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...","internal_url":"https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets","translated_internal_url":"","created_at":"2024-08-02T04:19:38.023-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172761/thumbnails/1.jpg","file_name":"Fuscaldo_preprint_Convenient_2019.pdf","download_url":"https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Convenient_Analytical_Framework_for_El.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172761/Fuscaldo_preprint_Convenient_2019-libre.pdf?1722600635=\u0026response-content-disposition=attachment%3B+filename%3DA_Convenient_Analytical_Framework_for_El.pdf\u0026Expires=1732780711\u0026Signature=GKKpszXUOjG9A5NXdm59GhB4Asz1bsVVyervWAfo7S5E4BRjbT1NzlXMiJFe0kJsHHSmAXK-X75LneuSPew8MG0jhgvmBvazXJdk7axoGr~FfMZKqF1xohlZs-VxW-EDwjQeD1R6tuKNKsREjKCY~HflnCZwcP8tUfnIdFPbLoKGpMwcbJwLh0Da-AjcbHqep4p6kn9fndjw~ApXbhhioUOp62eb9lmoHahXEAPOmXer3x2ldR4-Qxd5SHdvHkPEW4urCeBmaOzWi4uVYUUEPBSAFM5rFCnJZXv2x6RbGAENbA2jB~Sgjflz~fqRbiB4MfsVU-TOpEz0VStLZZwPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172761/thumbnails/1.jpg","file_name":"Fuscaldo_preprint_Convenient_2019.pdf","download_url":"https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Convenient_Analytical_Framework_for_El.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172761/Fuscaldo_preprint_Convenient_2019-libre.pdf?1722600635=\u0026response-content-disposition=attachment%3B+filename%3DA_Convenient_Analytical_Framework_for_El.pdf\u0026Expires=1732780711\u0026Signature=GKKpszXUOjG9A5NXdm59GhB4Asz1bsVVyervWAfo7S5E4BRjbT1NzlXMiJFe0kJsHHSmAXK-X75LneuSPew8MG0jhgvmBvazXJdk7axoGr~FfMZKqF1xohlZs-VxW-EDwjQeD1R6tuKNKsREjKCY~HflnCZwcP8tUfnIdFPbLoKGpMwcbJwLh0Da-AjcbHqep4p6kn9fndjw~ApXbhhioUOp62eb9lmoHahXEAPOmXer3x2ldR4-Qxd5SHdvHkPEW4urCeBmaOzWi4uVYUUEPBSAFM5rFCnJZXv2x6RbGAENbA2jB~Sgjflz~fqRbiB4MfsVU-TOpEz0VStLZZwPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7405,"name":"Computational Electromagnetics","url":"https://www.academia.edu/Documents/in/Computational_Electromagnetics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66884,"name":"Scattering Theory","url":"https://www.academia.edu/Documents/in/Scattering_Theory"},{"id":335375,"name":"Physical Optics","url":"https://www.academia.edu/Documents/in/Physical_Optics"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"},{"id":660583,"name":"Geometrical Optics","url":"https://www.academia.edu/Documents/in/Geometrical_Optics"}],"urls":[{"id":43787495,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018RS006675"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_"><img alt="Research paper thumbnail of An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]" class="work-thumbnail" src="https://attachments.academia-assets.com/117172767/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_">An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]</a></div><div class="wp-workCard_item"><span>IEEE Signal Processing Magazine</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ab898b60a82be82894db1fb0a29f7c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172767,&quot;asset_id&quot;:122528330,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528330]").text(description); $(".js-view-count[data-work-id=122528330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ab898b60a82be82894db1fb0a29f7c6" } } $('.js-work-strip[data-work-id=122528330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528330,"title":"An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Signal Processing Magazine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_","translated_internal_url":"","created_at":"2024-08-02T04:19:37.809-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172767/thumbnails/1.jpg","file_name":"08653528.pdf","download_url":"https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Industry_and_Government_Perspective_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172767/08653528-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DAn_Industry_and_Government_Perspective_o.pdf\u0026Expires=1732780711\u0026Signature=M-3CjSfTaTR8J56YlRNerHsyShWcluTP6w8c-QrDn3e~M-KcAHFdeMuqTdWvA6~PwHan7FL6ku-b~WEjkYuBOkugIFsmpxS0OAdv5bC-FcN60VNcYCV9NmAb7Sap4qazAHzga4cBpm0D-g-cnyQTyw5FxLD~ZL~l4Qxi~AXL92~b8Na8gWwR-NeKvcLLEckJs1kMv24pWAoG1flK0N-Q3L8miubmruyl0lVp1OchDSmlMIAltS7xerQRuYp7AgEyoa-0u94SjZzHiByuY2JhMI2H-AAxGQ1UdNJIPLq7sM4DcQ4CBiMX~bqSzjABBPpOaYlAnm-F42PTb84LF-~SjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172767/thumbnails/1.jpg","file_name":"08653528.pdf","download_url":"https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Industry_and_Government_Perspective_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172767/08653528-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DAn_Industry_and_Government_Perspective_o.pdf\u0026Expires=1732780711\u0026Signature=M-3CjSfTaTR8J56YlRNerHsyShWcluTP6w8c-QrDn3e~M-KcAHFdeMuqTdWvA6~PwHan7FL6ku-b~WEjkYuBOkugIFsmpxS0OAdv5bC-FcN60VNcYCV9NmAb7Sap4qazAHzga4cBpm0D-g-cnyQTyw5FxLD~ZL~l4Qxi~AXL92~b8Na8gWwR-NeKvcLLEckJs1kMv24pWAoG1flK0N-Q3L8miubmruyl0lVp1OchDSmlMIAltS7xerQRuYp7AgEyoa-0u94SjZzHiByuY2JhMI2H-AAxGQ1UdNJIPLq7sM4DcQ4CBiMX~bqSzjABBPpOaYlAnm-F42PTb84LF-~SjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":43787494,"url":"http://xplorestaging.ieee.org/ielx7/79/8653511/08653528.pdf?arnumber=8653528"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528329"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences"><img alt="Research paper thumbnail of Detectability prediction of hidden Markov models with cluttered observation sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/117172758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences">Detectability prediction of hidden Markov models with cluttered observation sequences</a></div><div class="wp-workCard_item"><span>2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d1c2486143aa95732578d888673ab85" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172758,&quot;asset_id&quot;:122528329,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528329"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528329"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528329; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528329]").text(description); $(".js-view-count[data-work-id=122528329]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528329; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528329']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528329, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d1c2486143aa95732578d888673ab85" } } $('.js-work-strip[data-work-id=122528329]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528329,"title":"Detectability prediction of hidden Markov models with cluttered observation sequences","translated_title":"","metadata":{"grobid_abstract":"Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription. Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","grobid_abstract_attachment_id":117172758},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences","translated_internal_url":"","created_at":"2024-08-02T04:19:37.656-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172758/thumbnails/1.jpg","file_name":"local_239245.pdf","download_url":"https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detectability_prediction_of_hidden_Marko.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172758/local_239245-libre.pdf?1722600627=\u0026response-content-disposition=attachment%3B+filename%3DDetectability_prediction_of_hidden_Marko.pdf\u0026Expires=1732780711\u0026Signature=b5KIlbC-tWQfX6xd8GEJVPWJ0whoK2KbVvJ9n-eoa7O7XvGkevcerk0L0OBLA3C7eUT6mRgzZ2yDfCU~QHYnFB7AZicmCgYs6qgKY01mjdvaslQXJVMwWm6DTpx7lPKk0e6txnP0RSpIE2DK8DPbYDv22HP0kTC0XImJPe0AeEUE8URPMPFUn0M8BT5QO1olB~8cRSOkmmfVtlq3M4YfHd6TtXsHifANtg5d4EmIHuc4yNDT1YEdxXa7G2A~TjSzDu6d0JT9GjOmVFPCxukEsjjPzgSVhuX2C~5YGBJej~ENicm9LmNjpvQ-muHxNBNhQPKasYjXw01JMUwgQJqTGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172758/thumbnails/1.jpg","file_name":"local_239245.pdf","download_url":"https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detectability_prediction_of_hidden_Marko.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172758/local_239245-libre.pdf?1722600627=\u0026response-content-disposition=attachment%3B+filename%3DDetectability_prediction_of_hidden_Marko.pdf\u0026Expires=1732780711\u0026Signature=b5KIlbC-tWQfX6xd8GEJVPWJ0whoK2KbVvJ9n-eoa7O7XvGkevcerk0L0OBLA3C7eUT6mRgzZ2yDfCU~QHYnFB7AZicmCgYs6qgKY01mjdvaslQXJVMwWm6DTpx7lPKk0e6txnP0RSpIE2DK8DPbYDv22HP0kTC0XImJPe0AeEUE8URPMPFUn0M8BT5QO1olB~8cRSOkmmfVtlq3M4YfHd6TtXsHifANtg5d4EmIHuc4yNDT1YEdxXa7G2A~TjSzDu6d0JT9GjOmVFPCxukEsjjPzgSVhuX2C~5YGBJej~ENicm9LmNjpvQ-muHxNBNhQPKasYjXw01JMUwgQJqTGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":68937,"name":"Hidden Markov Models","url":"https://www.academia.edu/Documents/in/Hidden_Markov_Models"},{"id":97616,"name":"Detectability","url":"https://www.academia.edu/Documents/in/Detectability"},{"id":143539,"name":"hidden Markov model","url":"https://www.academia.edu/Documents/in/hidden_Markov_model"},{"id":250384,"name":"Clutter","url":"https://www.academia.edu/Documents/in/Clutter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability"><img alt="Research paper thumbnail of The VTP test for transients of equal detectability" class="work-thumbnail" src="https://attachments.academia-assets.com/117172759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability">The VTP test for transients of equal detectability</a></div><div class="wp-workCard_item"><span>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP &#39;03).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c498228af222b75f557f2ccb216d1bf3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172759,&quot;asset_id&quot;:122528328,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528328]").text(description); $(".js-view-count[data-work-id=122528328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c498228af222b75f557f2ccb216d1bf3" } } $('.js-work-strip[data-work-id=122528328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528328,"title":"The VTP test for transients of equal detectability","translated_title":"","metadata":{"grobid_abstract":"For detection of a permanent and precisely-modeled change in distribution of iid observations, Page's test is optimal. When employed to detect a transient change between known distributions, Page's test is a GLRT. However, the situation of interest here is of transient of unknown scale parameter: a fixed Page procedure tuned to a \"short-and-loud' signal uses heavy biasing and low threshold, a combination ill-suited to a \"long-but-quiet\" signal. We offer an easy alternative to the standard Page: it uses a constant bias and a time-varying threshold. The idea is that the above shorr signals are detected quickly before post-termination data has a chance to refute them; and that evidence for a long signal is allowed to build, rather than being summarily discarded too early. Results show that the approach works quite well. This research was suppaned by the Office of Naval Research through NUWC, Division Newpon, under contract N666M-01-1-1125.","publication_name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","grobid_abstract_attachment_id":117172759},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability","translated_internal_url":"","created_at":"2024-08-02T04:19:37.528-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172759/thumbnails/1.jpg","file_name":"ZJW_ICASSP03_VTP_43.pdf","download_url":"https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_VTP_test_for_transients_of_equal_det.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172759/ZJW_ICASSP03_VTP_43-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DThe_VTP_test_for_transients_of_equal_det.pdf\u0026Expires=1732780711\u0026Signature=fLjXjgW-6JUY4f0yxFAanhzH4hUYtp8wNkWzCIg50ezFL9KeTn144yHz6pESP9PjvQmK~AQxzGOzR0OkxFZGmvp18yk3x9rVxnMUIyYN0lVR6AXDoSYReUAuVhRoyetseqbTmeHAvC6OOtz21XM9MviLPCjCuPg0KU~WGlXAwr95vuPf1RpkrenJ54AqG9UMs6nFYWQb0Sg3Myd5aJ4Mc3bixqx8MTCVMHeAZzz-ydZCgz9hWOFJXZYM8WwpLMocLlJEWCu1H4FYT6G01HbBMzKszJP0g5ArpmVUUmyqKkpMW2lruwipCs1AR9LszKR183GqBwtYeCCASdZGz-m0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_VTP_test_for_transients_of_equal_detectability","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172759/thumbnails/1.jpg","file_name":"ZJW_ICASSP03_VTP_43.pdf","download_url":"https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_VTP_test_for_transients_of_equal_det.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172759/ZJW_ICASSP03_VTP_43-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DThe_VTP_test_for_transients_of_equal_det.pdf\u0026Expires=1732780711\u0026Signature=fLjXjgW-6JUY4f0yxFAanhzH4hUYtp8wNkWzCIg50ezFL9KeTn144yHz6pESP9PjvQmK~AQxzGOzR0OkxFZGmvp18yk3x9rVxnMUIyYN0lVR6AXDoSYReUAuVhRoyetseqbTmeHAvC6OOtz21XM9MviLPCjCuPg0KU~WGlXAwr95vuPf1RpkrenJ54AqG9UMs6nFYWQb0Sg3Myd5aJ4Mc3bixqx8MTCVMHeAZzz-ydZCgz9hWOFJXZYM8WwpLMocLlJEWCu1H4FYT6G01HbBMzKszJP0g5ArpmVUUmyqKkpMW2lruwipCs1AR9LszKR183GqBwtYeCCASdZGz-m0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":1005652,"name":"Detection Theory","url":"https://www.academia.edu/Documents/in/Detection_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic"><img alt="Research paper thumbnail of A pilot inference study for a beta-Bernoulli spatial scan statistic" class="work-thumbnail" src="https://attachments.academia-assets.com/117186709/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic">A pilot inference study for a beta-Bernoulli spatial scan statistic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ecad6dc783d36a6cc749376cd0643bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117186709,&quot;asset_id&quot;:122528327,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528327]").text(description); $(".js-view-count[data-work-id=122528327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ecad6dc783d36a6cc749376cd0643bc" } } $('.js-work-strip[data-work-id=122528327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528327,"title":"A pilot inference study for a beta-Bernoulli spatial scan statistic","translated_title":"","metadata":{"grobid_abstract":"The Bernoulli spatial scan statistic is used to detect localised clusters in binary labelled point data, such as that used in spatial or spatio-temporal case/control studies. We test the inferential capability of a recently developed beta-Bernoulli spatial scan statistic, which adds a beta prior to the original statistic. This pilot study, which includes two test scenarios with 6,000 data sets each, suggests a marked increase in power for a given false alert rate. We suggest a more extensive study would be worthwhile to corroborate the findings. We also speculate on an explanation for the observed improvement.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"grobid_abstract_attachment_id":117186709},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic","translated_internal_url":"","created_at":"2024-08-02T04:19:36.391-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117186709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117186709/thumbnails/1.jpg","file_name":"presentation-20.pdf","download_url":"https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_pilot_inference_study_for_a_beta_Berno.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117186709/presentation-20-libre.pdf?1722666824=\u0026response-content-disposition=attachment%3B+filename%3DA_pilot_inference_study_for_a_beta_Berno.pdf\u0026Expires=1732780711\u0026Signature=WvhKuv-R8V5YH0EbsdY2lXTtgt~IFcJJGBwnNKhm2-rChpuYiWXFk9vTMS6K5zcgc3vr3g52sR61mkduCSuHNbBn93HJsliDGfl7bqkSitafEafDZN7Ny9Ru4pOgb~keJ0TGRMfDMY3RJ6COMNAWo~XW4NoQ2vjRHWuWRa8AObOXm1AtAbdh9oEzqGqcb55IlXnOZmlIgkXAOCxG~Ei3k2gFxokzHKyCPQidpBp84B3jA8DKoGINig7RawZZHOWm5mSOnybDlJ4zCB4qBfxl~OjR1AEH-XdOS76gM601j-AND4ChI92kW63Xf05F9GyjrYxE4JrSyTxFtorTZL6yqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117186709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117186709/thumbnails/1.jpg","file_name":"presentation-20.pdf","download_url":"https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_pilot_inference_study_for_a_beta_Berno.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117186709/presentation-20-libre.pdf?1722666824=\u0026response-content-disposition=attachment%3B+filename%3DA_pilot_inference_study_for_a_beta_Berno.pdf\u0026Expires=1732780711\u0026Signature=WvhKuv-R8V5YH0EbsdY2lXTtgt~IFcJJGBwnNKhm2-rChpuYiWXFk9vTMS6K5zcgc3vr3g52sR61mkduCSuHNbBn93HJsliDGfl7bqkSitafEafDZN7Ny9Ru4pOgb~keJ0TGRMfDMY3RJ6COMNAWo~XW4NoQ2vjRHWuWRa8AObOXm1AtAbdh9oEzqGqcb55IlXnOZmlIgkXAOCxG~Ei3k2gFxokzHKyCPQidpBp84B3jA8DKoGINig7RawZZHOWm5mSOnybDlJ4zCB4qBfxl~OjR1AEH-XdOS76gM601j-AND4ChI92kW63Xf05F9GyjrYxE4JrSyTxFtorTZL6yqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":98937,"name":"Statistic","url":"https://www.academia.edu/Documents/in/Statistic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4455743" id="journalpapers"><div class="js-work-strip profile--work_container" data-work-id="3809678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion"><img alt="Research paper thumbnail of One-bit Decentralized Detection with a Rao Test for Multisensor Fusion" class="work-thumbnail" src="https://attachments.academia-assets.com/31465115/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion">One-bit Decentralized Detection with a Rao Test for Multisensor Fusion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/WillettJohn">Peter Willett</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unina.academia.edu/DomenicoCiuonzo">Domenico Ciuonzo</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this letter we propose the Rao test as a simpler alternative to the generalized likelihood rat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4eb3b0c10b92e526e2eb4dcb0e3941fa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:31465115,&quot;asset_id&quot;:3809678,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3809678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3809678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3809678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3809678]").text(description); $(".js-view-count[data-work-id=3809678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3809678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3809678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 3809678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4eb3b0c10b92e526e2eb4dcb0e3941fa" } } $('.js-work-strip[data-work-id=3809678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3809678,"title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion","translated_title":"","metadata":{"abstract":"In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations. ","publisher":"IEEE Signal Processing Letters","publication_date":{"day":26,"month":6,"year":2013,"errors":{}}},"translated_abstract":"In this letter we propose the Rao test as a simpler alternative to the generalized likelihood ratio test (GLRT) for multisensor fusion. We consider sensors observing an unknown deterministic parameter with symmetric and unimodal noise. A decision fusion center (DFC) receives quantized sensor observations through error-prone binary symmetric channels and makes a global decision. We analyze the optimal quantizer thresholds and we study the performance of the Rao test in comparison to the GLRT. Also, a theoretical comparison is made and asymptotic performance is derived in a scenario with homogeneous sensors. All the results are confirmed through simulations. ","internal_url":"https://www.academia.edu/3809678/One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion","translated_internal_url":"","created_at":"2013-06-28T02:44:42.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":977036,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":13334062,"work_id":3809678,"tagging_user_id":977036,"tagged_user_id":41973045,"co_author_invite_id":596951,"email":"w***t@engr.uconn.edu","display_order":0,"name":"Peter Willett","title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion"},{"id":13334162,"work_id":3809678,"tagging_user_id":977036,"tagged_user_id":null,"co_author_invite_id":3124119,"email":"g***a@studenti.unina2.it","display_order":4194304,"name":"Giuseppe Papa","title":"One-bit Decentralized Detection with a Rao Test for Multisensor Fusion"}],"downloadable_attachments":[{"id":31465115,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31465115/thumbnails/1.jpg","file_name":"1306.6141v1.pdf","download_url":"https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"One_bit_Decentralized_Detection_with_a_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31465115/1306.6141v1-libre.pdf?1392301601=\u0026response-content-disposition=attachment%3B+filename%3DOne_bit_Decentralized_Detection_with_a_R.pdf\u0026Expires=1732780710\u0026Signature=S3czvJXYhZxXVseZYDJjPsqLm2KJuy09Fq7v2nZ95GLXWoINQrwEAk22AiRN5iCcl8A8nnBvH-e21W9RxYXCiUhXXAKI2RgYXiSZO3lWjx-Kwi~Z3utybFwYjYXsc1~qcJLEmPrine3wtSD0qEQsxGh9dZ95CfnRQWfuN788QLB2laim5B5xbNvcTI5I0KzJ2kMqsZbLRelH5H9nUNvhV1pSzwEUx6VoM1GaCMmaTkRrHOMAl8AEN3ohcCvBtPXuh5BvrmUv~Wt9~fIsZorvU0z9nuaiH5LbIogYx-8V~dZ1vbJind8TuBPtB8ej2bPb4w7ETbNUc3nymHgLukcBuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"One_bit_Decentralized_Detection_with_a_Rao_Test_for_Multisensor_Fusion","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":977036,"first_name":"Domenico","middle_initials":null,"last_name":"Ciuonzo","page_name":"DomenicoCiuonzo","domain_name":"unina","created_at":"2011-11-23T19:29:36.482-08:00","display_name":"Domenico Ciuonzo","url":"https://unina.academia.edu/DomenicoCiuonzo"},"attachments":[{"id":31465115,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31465115/thumbnails/1.jpg","file_name":"1306.6141v1.pdf","download_url":"https://www.academia.edu/attachments/31465115/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"One_bit_Decentralized_Detection_with_a_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31465115/1306.6141v1-libre.pdf?1392301601=\u0026response-content-disposition=attachment%3B+filename%3DOne_bit_Decentralized_Detection_with_a_R.pdf\u0026Expires=1732780710\u0026Signature=S3czvJXYhZxXVseZYDJjPsqLm2KJuy09Fq7v2nZ95GLXWoINQrwEAk22AiRN5iCcl8A8nnBvH-e21W9RxYXCiUhXXAKI2RgYXiSZO3lWjx-Kwi~Z3utybFwYjYXsc1~qcJLEmPrine3wtSD0qEQsxGh9dZ95CfnRQWfuN788QLB2laim5B5xbNvcTI5I0KzJ2kMqsZbLRelH5H9nUNvhV1pSzwEUx6VoM1GaCMmaTkRrHOMAl8AEN3ohcCvBtPXuh5BvrmUv~Wt9~fIsZorvU0z9nuaiH5LbIogYx-8V~dZ1vbJind8TuBPtB8ej2bPb4w7ETbNUc3nymHgLukcBuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5234,"name":"Detection \u0026 Estimation","url":"https://www.academia.edu/Documents/in/Detection_and_Estimation"},{"id":14852,"name":"Data Fusion (Engineering)","url":"https://www.academia.edu/Documents/in/Data_Fusion_Engineering_"},{"id":100379,"name":"Sensor Data Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Data_Fusion"},{"id":170496,"name":"Multi Sensor Data Fusion","url":"https://www.academia.edu/Documents/in/Multi_Sensor_Data_Fusion"},{"id":304533,"name":"Decision Fusion","url":"https://www.academia.edu/Documents/in/Decision_Fusion"},{"id":881836,"name":"GLRT","url":"https://www.academia.edu/Documents/in/GLRT"},{"id":881837,"name":"Rao test","url":"https://www.academia.edu/Documents/in/Rao_test"}],"urls":[{"id":1281731,"url":"http://arxiv.org/pdf/1306.6141v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5218261" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124838196"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics"><img alt="Research paper thumbnail of An extended target tracking model with multiple random matrices and unified kinematics" class="work-thumbnail" src="https://attachments.academia-assets.com/118990277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics">An extended target tracking model with multiple random matrices and unified kinematics</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="98c89bb8f83f0e952cc4e75060a26ace" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990277,&quot;asset_id&quot;:124838196,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838196"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838196"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838196; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838196]").text(description); $(".js-view-count[data-work-id=124838196]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838196; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838196']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838196, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "98c89bb8f83f0e952cc4e75060a26ace" } } $('.js-work-strip[data-work-id=124838196]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838196,"title":"An extended target tracking model with multiple random matrices and unified kinematics","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper presents a model for tracking of extended targets, where each target is represented by a given number of elliptic subobjects. A gamma Gaussian inverse Wishart implementation is derived, and necessary approximations are suggested to alleviate the data association complexity. A simulation study shows the merits of the model compared to previous work on the topic.","publication_date":{"day":6,"month":7,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990277},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838196/An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics","translated_internal_url":"","created_at":"2024-10-18T09:25:54.125-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990277/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990277/1406-libre.pdf?1729270591=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=VaAtkcVwGeWzFlxdp4BrzOE2FinVFVLryKjGsUgcqlGVW0RWCFFC-qJmYmMerLWXVjhaXt8YlfP9zOgvJOqOKmlkK4aQQfIJKFpRJ8SAmGK1klcYZcCgbfgN9YXq7g6bYXuLyeg8ddORSc8sqnQlu8MBHrNp-dRwn3JA9J13c6PIE0EX9Spii0tCdVAP77d-uCMv1Umpi~QrBCuX3LKpMvAqyoLvhoHpnbpbd6UhIw9zlTnhoSqOb925jFMSLGqRaR88A~xZZPF86Y2GYj3JH0Tx-lDscDVJ0A8necixxPou3SfHbJWFUt1coGjXXTsxHpBqU13yCPQOCxwjzYMYXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_extended_target_tracking_model_with_multiple_random_matrices_and_unified_kinematics","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990277/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990277/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990277/1406-libre.pdf?1729270591=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=VaAtkcVwGeWzFlxdp4BrzOE2FinVFVLryKjGsUgcqlGVW0RWCFFC-qJmYmMerLWXVjhaXt8YlfP9zOgvJOqOKmlkK4aQQfIJKFpRJ8SAmGK1klcYZcCgbfgN9YXq7g6bYXuLyeg8ddORSc8sqnQlu8MBHrNp-dRwn3JA9J13c6PIE0EX9Spii0tCdVAP77d-uCMv1Umpi~QrBCuX3LKpMvAqyoLvhoHpnbpbd6UhIw9zlTnhoSqOb925jFMSLGqRaR88A~xZZPF86Y2GYj3JH0Tx-lDscDVJ0A8necixxPou3SfHbJWFUt1coGjXXTsxHpBqU13yCPQOCxwjzYMYXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990278,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990278/thumbnails/1.jpg","file_name":"1406.pdf","download_url":"https://www.academia.edu/attachments/118990278/download_file","bulk_download_file_name":"An_extended_target_tracking_model_with_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990278/1406-libre.pdf?1729270592=\u0026response-content-disposition=attachment%3B+filename%3DAn_extended_target_tracking_model_with_m.pdf\u0026Expires=1732780710\u0026Signature=fuzMo2q13CR1xk41e4GD9AIov2bkyh-c7Pxd2OO7cfEb-CO1qBlHjxwk5NJu7OxZKNzqld0Q3A2z7f2pzN3B7RXQ3Dl4XU~d6HYptaa~7WwTYfEq0s5IX5F9Ee3h2exF-F5i5SWMzYSmrnz0IcCf6W-JFZJz6DPh9-Cw0nwSxotas~203kgJJ-7TkIIDo7ICQk7e6kpdjspnXFI3pdwrhuohJNZeJI3ipoWYTSl~Mjfd-x6-vvwbK9-WAxE3F1S2GBXtOTj7k5YBIO1B5MEqI1kVhEYZGv1iiccIh~q~qGcnjIYXhewr2BhbpbfVdCjfIVOBO~m2nSMNl~jXfZelcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":90162,"name":"Kinematics","url":"https://www.academia.edu/Documents/in/Kinematics"},{"id":188142,"name":"Inverse Kinematics","url":"https://www.academia.edu/Documents/in/Inverse_Kinematics"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix"},{"id":970928,"name":"Wishart Distribution","url":"https://www.academia.edu/Documents/in/Wishart_Distribution"},{"id":2564090,"name":"Ellipse","url":"https://www.academia.edu/Documents/in/Ellipse"},{"id":3834064,"name":"Rectangle","url":"https://www.academia.edu/Documents/in/Rectangle"}],"urls":[{"id":45214444,"url":"https://arxiv.org/pdf/1406.2135v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838195"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods"><img alt="Research paper thumbnail of To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods" class="work-thumbnail" src="https://attachments.academia-assets.com/118990276/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods">To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Aug 11, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f60303c55da7f48de7880892bdf692ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990276,&quot;asset_id&quot;:124838195,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838195"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838195"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838195; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838195]").text(description); $(".js-view-count[data-work-id=124838195]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838195; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838195']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838195, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f60303c55da7f48de7880892bdf692ff" } } $('.js-work-strip[data-work-id=124838195]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838195,"title":"To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, and MHT methods suffer from an opposite effect known as track repulsion. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm, and we argue that BP-based MTT exhibits significantly reduced track coalescence and no track repulsion. Our theoretical arguments are confirmed by numerical results.","publication_date":{"day":11,"month":8,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990276},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838195/To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods","translated_internal_url":"","created_at":"2024-10-18T09:25:53.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990276/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990276/2308-libre.pdf?1729270582=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=Tpizq0Fnil9Y5D9vD~aqjyZVa~GUUE6kn-aKGv2im4VWr3LcQ-tS9JWdAaKW8kErJpagfkP3YVqfWrTeKea8jwwf6GKmC-0oPyV3ZgW-vBV1Y~eoGc2Ns8fE2PbeYIgoDIjdtXLsqozz4IDKNTYaSfWD0rx88x~Z3Gr6xmIq3n48JvVtL0z~WHF9GM~vihi-lxFAb-NEdhP066eWgyVsEix9ccqtjud5n3OhcCPd9zAMyJDV2kE1NqxXTSjkgxfLreZ8KNsu9sRK6qxhBoHRoe~vRXEnxiBD-8nlyDGja5eQQZwQb2LbA~cB0bfPuqRb~GBB-OxSzoaXyhR~4sRKnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"To_Coalesce_or_to_Repel_An_Analysis_of_MHT_JPDA_and_Belief_Propagation_Multitarget_Tracking_Methods","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990276,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990276/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990276/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990276/2308-libre.pdf?1729270582=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=Tpizq0Fnil9Y5D9vD~aqjyZVa~GUUE6kn-aKGv2im4VWr3LcQ-tS9JWdAaKW8kErJpagfkP3YVqfWrTeKea8jwwf6GKmC-0oPyV3ZgW-vBV1Y~eoGc2Ns8fE2PbeYIgoDIjdtXLsqozz4IDKNTYaSfWD0rx88x~Z3Gr6xmIq3n48JvVtL0z~WHF9GM~vihi-lxFAb-NEdhP066eWgyVsEix9ccqtjud5n3OhcCPd9zAMyJDV2kE1NqxXTSjkgxfLreZ8KNsu9sRK6qxhBoHRoe~vRXEnxiBD-8nlyDGja5eQQZwQb2LbA~cB0bfPuqRb~GBB-OxSzoaXyhR~4sRKnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990274,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990274/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990274/download_file","bulk_download_file_name":"To_Coalesce_or_to_Repel_An_Analysis_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990274/2308-libre.pdf?1729270588=\u0026response-content-disposition=attachment%3B+filename%3DTo_Coalesce_or_to_Repel_An_Analysis_of_M.pdf\u0026Expires=1732780710\u0026Signature=N9q5wytYNugkUjxoawLuGHMs7EE4ag4Iy1eUthDvNfLKOS~udhsw4bdolB4aAYNInXFkbTCPzR7eppAQQcSR~Fbx7PYZS5nuX-aURjkL3JClHycS-fZPm~YN4NITpuKwH3gF4eC-lLpsknL4Wtz06fqkUFNpU8jwbTl-YAjnF6DtoFsviE6MwixUKdIfsCPRBpz6nCOFI89Ps0cdSQXu3IBuQL8KmmQqdMTkVRVcdxEcC2p9q79fr68pTM~QfRP4yrUr6tJH0blhapxxygsT5zBQrAOxlch1DLMUwNIgq~mtg1X~3m7doEEH2kXiGAtxddT7Kol8OXWENpwwtOTrDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":278182,"name":"Data Association","url":"https://www.academia.edu/Documents/in/Data_Association"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"}],"urls":[{"id":45214443,"url":"https://arxiv.org/pdf/2308.06326"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks"><img alt="Research paper thumbnail of 3D Localization and Tracking Methods for Multi-Platform Radar Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/118990275/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks">3D Localization and Tracking Methods for Multi-Platform Radar Networks</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Aug 14, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdfb869ff9f883c41d767858c45a8830" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990275,&quot;asset_id&quot;:124838194,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838194]").text(description); $(".js-view-count[data-work-id=124838194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838194, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdfb869ff9f883c41d767858c45a8830" } } $('.js-work-strip[data-work-id=124838194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838194,"title":"3D Localization and Tracking Methods for Multi-Platform Radar Networks","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"3D Localization and Tracking in Multi-Platform Radar Networks","grobid_abstract":"Multi-platform radar networks (MPRNs) are an emerging sensing technology due to their ability to provide improved surveillance capabilities over plain monostatic and bistatic systems. The design of advanced detection, localization, and tracking algorithms for efficient fusion of information obtained through multiple receivers has attracted much attention. However, considerable challenges remain. This article provides an overview on recent unconstrained and constrained localization techniques as well as multitarget tracking (MTT) algorithms tailored to MPRNs. In particular, two data-processing methods are illustrated and explored in detail, one aimed at accomplishing localization tasks the other tracking functions. As to the former, assuming a MPRN with one transmitter and multiple receivers, the angular and range constrained estimator (ARCE) algorithm capitalizes on the knowledge of the transmitter antenna beamwidth. As to the latter, the scalable sum-product algorithm (SPA) based MTT technique is presented. Additionally, a solution to combine ARCE and SPA-based MTT is investigated in order to boost the accuracy of the overall surveillance system. Simulated experiments show the benefit of the combined algorithm in comparison with the conventional baseline SPA-based MTT and the stand-alone ARCE localization, in a 3D sensing scenario.","publication_date":{"day":14,"month":8,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":118990275},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838194/3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks","translated_internal_url":"","created_at":"2024-10-18T09:25:52.579-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990275,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990275/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990275/2308-libre.pdf?1729270607=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=Pd1w7yUr~dmkqQLM8ddYAByiBo9T7cbpbNMFJIxvQXkqiFV-~b4U0dQZHrVgeerePeatos4coTrhf1WVtWz0LhG7UCOTGAv35JwuKL-5z7126hvOOItkMIXblBzspamRnU78~dwUC4PI09Yu-lIeA2aGAQa14yA0UVc9N88bH57x~-O8OCCOV54uJaT4ebiYzd99ADx4HG0KD9vgxxCfZ4QhWxqV8RkpHzNbYVEGbUJYzlj~nJDwkUy8sDiKr9Hv0~YBc0DhQ~hehYCk0nelaN7d0lP2N5SCPqoSLtyblnnQQRYqcCExC3tsLUjDEi0e8oGuPQUc5RGdamng6iJAfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"3D_Localization_and_Tracking_Methods_for_Multi_Platform_Radar_Networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990275,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990275/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990275/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990275/2308-libre.pdf?1729270607=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=Pd1w7yUr~dmkqQLM8ddYAByiBo9T7cbpbNMFJIxvQXkqiFV-~b4U0dQZHrVgeerePeatos4coTrhf1WVtWz0LhG7UCOTGAv35JwuKL-5z7126hvOOItkMIXblBzspamRnU78~dwUC4PI09Yu-lIeA2aGAQa14yA0UVc9N88bH57x~-O8OCCOV54uJaT4ebiYzd99ADx4HG0KD9vgxxCfZ4QhWxqV8RkpHzNbYVEGbUJYzlj~nJDwkUy8sDiKr9Hv0~YBc0DhQ~hehYCk0nelaN7d0lP2N5SCPqoSLtyblnnQQRYqcCExC3tsLUjDEi0e8oGuPQUc5RGdamng6iJAfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990273/thumbnails/1.jpg","file_name":"2308.pdf","download_url":"https://www.academia.edu/attachments/118990273/download_file","bulk_download_file_name":"3D_Localization_and_Tracking_Methods_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990273/2308-libre.pdf?1729270622=\u0026response-content-disposition=attachment%3B+filename%3D3D_Localization_and_Tracking_Methods_for.pdf\u0026Expires=1732780710\u0026Signature=MiV3-cmPNyD0jrJXl90oOW6yM9r9VIe5dYCOe1ccfIEdPituXFim01zQxzweRSdiopq0u-41OwZYt6cQmSkBoFwRmYGNIJhm7YTA7xua86hYTPcIP1kpQZdN73j4LWf9pyXsb~ZMLBZ60kK45Ok1KUDlZq8tRz-StMs~SIDhkrrpaGHvQEAW8cNtSOeon4uQb9qgquwneSgWQIQQ~OtZwgtU6o1aA04HkzXFUqVqFbB~obpHv1xPLGYAAYASczkvyQ5wipq0cJp1VnbHoiWGHvErlRVAwN8GzY6X1m4vIeqqRlA13ZLeDgdkEk8xbqzNDmigOyhA~Yy6g~DMywQveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5695,"name":"Radar","url":"https://www.academia.edu/Documents/in/Radar"},{"id":1116155,"name":"Transmitter","url":"https://www.academia.edu/Documents/in/Transmitter"},{"id":1564918,"name":"Beamwidth","url":"https://www.academia.edu/Documents/in/Beamwidth"}],"urls":[{"id":45214442,"url":"https://arxiv.org/pdf/2308.06972"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838192"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_"><img alt="Research paper thumbnail of Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]" class="work-thumbnail" src="https://attachments.academia-assets.com/118990272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_">Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]</a></div><div class="wp-workCard_item"><span>IEEE Signal Processing Magazine</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9391d04e7c6585201a1c22d87471305" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990272,&quot;asset_id&quot;:124838192,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838192"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838192"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838192; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838192]").text(description); $(".js-view-count[data-work-id=124838192]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838192; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838192']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838192, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9391d04e7c6585201a1c22d87471305" } } $('.js-work-strip[data-work-id=124838192]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838192,"title":"Highlights from the Sensor Array and Multichannel Technical Committee: Spotlight on the IEEE Signal Processing Society Technical Committees [In the Spotlight]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","publication_date":{"day":1,"month":9,"year":2018,"errors":{}},"publication_name":"IEEE Signal Processing Magazine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838192/Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_","translated_internal_url":"","created_at":"2024-10-18T09:25:51.683-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990272/thumbnails/1.jpg","file_name":"08454408.pdf","download_url":"https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Highlights_from_the_Sensor_Array_and_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990272/08454408-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DHighlights_from_the_Sensor_Array_and_Mul.pdf\u0026Expires=1732780710\u0026Signature=cn5md5ZJltq3CekHMIaNEP~sI3XK8ZcbhIjcgtelYF1vZR3HqwxJ0fUxzz68ZYTLuWF7Kd027fmMlsqd0nuHoC42G~bRtFWl0JSn-irayheTy3057En3aNq3bc2pvReRW2j~4H5xWLPZdtFyt46O4EF95yMdknNqj2wTYh5gtwsCw4KLWNeSpr93TPNl0pFHXReuqK3aymH2DVJwvVERGOSTBCqr2gNRIQ4s0PR7gGH7O30I8piyCeRAm3VXicJCvE~~vIwCDZzoVOHe~IzAzTpoQblKA6h~Fr6WghZ2Rb-qGekwDu1-tPKOYHFziPftcW1ZoDLUzjWbBqwjij60qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Highlights_from_the_Sensor_Array_and_Multichannel_Technical_Committee_Spotlight_on_the_IEEE_Signal_Processing_Society_Technical_Committees_In_the_Spotlight_","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990272/thumbnails/1.jpg","file_name":"08454408.pdf","download_url":"https://www.academia.edu/attachments/118990272/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Highlights_from_the_Sensor_Array_and_Mul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990272/08454408-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DHighlights_from_the_Sensor_Array_and_Mul.pdf\u0026Expires=1732780710\u0026Signature=cn5md5ZJltq3CekHMIaNEP~sI3XK8ZcbhIjcgtelYF1vZR3HqwxJ0fUxzz68ZYTLuWF7Kd027fmMlsqd0nuHoC42G~bRtFWl0JSn-irayheTy3057En3aNq3bc2pvReRW2j~4H5xWLPZdtFyt46O4EF95yMdknNqj2wTYh5gtwsCw4KLWNeSpr93TPNl0pFHXReuqK3aymH2DVJwvVERGOSTBCqr2gNRIQ4s0PR7gGH7O30I8piyCeRAm3VXicJCvE~~vIwCDZzoVOHe~IzAzTpoQblKA6h~Fr6WghZ2Rb-qGekwDu1-tPKOYHFziPftcW1ZoDLUzjWbBqwjij60qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214441,"url":"https://ieeexplore.ieee.org/ielx7/79/8454361/08454408.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_"><img alt="Research paper thumbnail of Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]" class="work-thumbnail" src="https://attachments.academia-assets.com/118990271/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_">Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]</a></div><div class="wp-workCard_item"><span>Proceedings of the IEEE</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1109ed82dc0f1c639d05a24ddfa270ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990271,&quot;asset_id&quot;:124838191,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838191]").text(description); $(".js-view-count[data-work-id=124838191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1109ed82dc0f1c639d05a24ddfa270ba" } } $('.js-work-strip[data-work-id=124838191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838191,"title":"Next-Gen Intelligent Situational Awareness Systems for Maritime Surveillance and Autonomous Navigation [Point of View]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"T oday, the maritime domain is at the cusp of a new era, driven by technological advances in automation, robotics, multisensor","publication_name":"Proceedings of the IEEE","grobid_abstract_attachment_id":118990271},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838191/Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_","translated_internal_url":"","created_at":"2024-10-18T09:25:49.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990271,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990271/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990271/09921394-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=Gt2a0jcdJcip2RvE1vf2TdXT4c9oqJtKpCMy2NZQQKhv4Q09RLcbFfjuYLe6gO3swe3IyUV0tJlcVbaLiGepPDgH6snOwjTSU~MoPbC2hkdf7Xg~AAqsj4XurAII9D5kfr5aRDC3CNN7rjjyvJHF8PcLtsDJn50g0VtAhU5~DK26ppD2rl2ypO-nE23BbVtshDjOaSyKadmqySctUFkTFOOJdQ660ZWmrNUWzL03E3oWlA2Z5D6bpmETe6GGB52rK3LH1gySYjY-b3G~MAIP-U-y4EIkHSoHyloudO84jys4EI-7MyvNaUGoelL4kVv71u9f703BL-tCCwOWOoS6zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Next_Gen_Intelligent_Situational_Awareness_Systems_for_Maritime_Surveillance_and_Autonomous_Navigation_Point_of_View_","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990271,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990271/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990271/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990271/09921394-libre.pdf?1729270574=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=Gt2a0jcdJcip2RvE1vf2TdXT4c9oqJtKpCMy2NZQQKhv4Q09RLcbFfjuYLe6gO3swe3IyUV0tJlcVbaLiGepPDgH6snOwjTSU~MoPbC2hkdf7Xg~AAqsj4XurAII9D5kfr5aRDC3CNN7rjjyvJHF8PcLtsDJn50g0VtAhU5~DK26ppD2rl2ypO-nE23BbVtshDjOaSyKadmqySctUFkTFOOJdQ660ZWmrNUWzL03E3oWlA2Z5D6bpmETe6GGB52rK3LH1gySYjY-b3G~MAIP-U-y4EIkHSoHyloudO84jys4EI-7MyvNaUGoelL4kVv71u9f703BL-tCCwOWOoS6zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990270,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990270/thumbnails/1.jpg","file_name":"09921394.pdf","download_url":"https://www.academia.edu/attachments/118990270/download_file","bulk_download_file_name":"Next_Gen_Intelligent_Situational_Awarene.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990270/09921394-libre.pdf?1729270575=\u0026response-content-disposition=attachment%3B+filename%3DNext_Gen_Intelligent_Situational_Awarene.pdf\u0026Expires=1732780710\u0026Signature=H1swbsH5qepjaXiwjk29y2xe26-4W9D-Tf08CqdQDE5PiNPQCdUqqn-4fvhAT7eiGdZRcVsHHokdz8v79DvDWe-det-c2q8yp4G1upu85xNXNiLJ28wTVrmqfcYGJoEqfbAU2dkrp7Y2wIj0odM-Kw9jICBohG95o~L4gYxxB7HsSEjPm3gMjVOJCz7FFZXCucUI-TB1~DbwaIdfkEdjfWb0eWYtEOdB0lYj8U6~ZiNJHh215zQbsSk0Xl6zriu37I08~xAOOc0cSx4gggD70YCgmX7OycsUd4mnbxF2PpjBCpw~WCYv1c7pwqnfsE~Rp9TrLdduc6Ay9ftFMM4PMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214440,"url":"http://xplorestaging.ieee.org/ielx7/5/9921389/09921394.pdf?arnumber=9921394"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach"><img alt="Research paper thumbnail of Scalable multitarget tracking using multiple sensors: A belief propagation approach" class="work-thumbnail" src="https://attachments.academia-assets.com/118990268/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach">Scalable multitarget tracking using multiple sensors: A belief propagation approach</a></div><div class="wp-workCard_item"><span>2015 18th International Conference on Information Fusion (Fusion)</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a method for multisensor-multitarget tracking with excellent scalability in the number...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="097e6499b7db36a5e42ea03be7a69adc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990268,&quot;asset_id&quot;:124838190,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838190]").text(description); $(".js-view-count[data-work-id=124838190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "097e6499b7db36a5e42ea03be7a69adc" } } $('.js-work-strip[data-work-id=124838190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838190,"title":"Scalable multitarget tracking using multiple sensors: A belief propagation approach","translated_title":"","metadata":{"abstract":"We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...","publisher":"2015 18th International Conference on Information Fusion (Fusion)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 18th International Conference on Information Fusion (Fusion)"},"translated_abstract":"We propose a method for multisensor-multitarget tracking with excellent scalability in the number of targets (which is assumed known), the number of sensors, and the number of measurements per sensor. Our method employs belief propagation based on a “detailed” factor graph that involves both target-related and measurement-related association variables. Using this approach, an increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. We observed very low runtimes of the proposed method; e.g., our MATLAB simulation of a scenario of 30 targets and 10 sensors without gating required less than one second per time step. The performance of the proposed method in terms of mean optimal subpattern assignment (OSPA) error compares well with that of state-of-the-art methods whose complexity scales exponentially with the number of targets. In particular, we observed that our method can outperfo...","internal_url":"https://www.academia.edu/124838190/Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach","translated_internal_url":"","created_at":"2024-10-18T09:25:49.536-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990268/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990268/Paper_1570112223-libre.pdf?1729270578=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=bFsNSh-LnY3K-Mn6e8HCEkJ~6a7WtIv40CiETK4TONxwc4QZboP3a3M22Rqt2TRsA5YJd5ymEK8ei4EeMwMv9TT4BMfoxGTeoTTJ-u6divg-tidouLSaGilbFOvLUoeK9grdfvg-TCc1rIGqz-tBnpga2xiQ6FAfENU0MiwXSOJ~2~VqNPy~fP61FiIQxIkaf2~YIQ5YOeYuk6LPH2P-4tNO-uUTf9ar7ZE0tbMMnSXWNC51LDPDenoLOlB7nlqzslQ0WybkXRbV7h2258hA2M8qVxCePp4tuAkDe~clp-nrToDYumlnCUY2L39YjLrtu~8E4TDcdLt2oGWa8l48lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scalable_multitarget_tracking_using_multiple_sensors_A_belief_propagation_approach","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990268,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990268/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990268/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990268/Paper_1570112223-libre.pdf?1729270578=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=bFsNSh-LnY3K-Mn6e8HCEkJ~6a7WtIv40CiETK4TONxwc4QZboP3a3M22Rqt2TRsA5YJd5ymEK8ei4EeMwMv9TT4BMfoxGTeoTTJ-u6divg-tidouLSaGilbFOvLUoeK9grdfvg-TCc1rIGqz-tBnpga2xiQ6FAfENU0MiwXSOJ~2~VqNPy~fP61FiIQxIkaf2~YIQ5YOeYuk6LPH2P-4tNO-uUTf9ar7ZE0tbMMnSXWNC51LDPDenoLOlB7nlqzslQ0WybkXRbV7h2258hA2M8qVxCePp4tuAkDe~clp-nrToDYumlnCUY2L39YjLrtu~8E4TDcdLt2oGWa8l48lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990269,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990269/thumbnails/1.jpg","file_name":"Paper_1570112223.pdf","download_url":"https://www.academia.edu/attachments/118990269/download_file","bulk_download_file_name":"Scalable_multitarget_tracking_using_mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990269/Paper_1570112223-libre.pdf?1729270577=\u0026response-content-disposition=attachment%3B+filename%3DScalable_multitarget_tracking_using_mult.pdf\u0026Expires=1732780710\u0026Signature=YJx4t4leUwh-dRqTbCY31ixeFZCJp-0~zHB7qawkhykvaDQO4iHQncjNYAH1bwUATkNKepM6Eq0Tm01C4ZfQDyYLwLcs9Rkfa7NMANzGggYTRhOBnaP5ZsFgHWWzS1DwoRbxaIYNI9B8UpuUXjtiMNLzegC6nkbz9llequyG-5fILSb0U5dqXZamWT0KmzKJ2NQMOa0p-9cvF~uiIFeo5OhLGLyfi~dGLWtV9mYHmZ3vl4~CKmMS~UPAiaaXqgRb-kp9kHgkit7mXXydeH402IEwifR1jsFi9eqPrkdCA4xcroh49V0LcFIkxH2gN-TC7N3uZoalNc91~784SeW8LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":25395,"name":"Matlab","url":"https://www.academia.edu/Documents/in/Matlab"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":1211847,"name":"Wireless Sensor Network","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Network"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214439,"url":"http://c4i.gmu.edu/~pcosta/F15/data/fileserver/file/472091/filename/Paper_1570112223.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838189"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method"><img alt="Research paper thumbnail of Tracking an unknown number of targets using multiple sensors: A belief propagation method" class="work-thumbnail" src="https://attachments.academia-assets.com/118990266/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method">Tracking an unknown number of targets using multiple sensors: A belief propagation method</a></div><div class="wp-workCard_item"><span>2016 19th International Conference on Information Fusion (FUSION)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a multisensor method for tracking an unknown number of targets. Low computational comp...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="936214ab20e689de8d3cec4b14324095" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990266,&quot;asset_id&quot;:124838189,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838189"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838189"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838189; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838189]").text(description); $(".js-view-count[data-work-id=124838189]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838189; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838189']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838189, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "936214ab20e689de8d3cec4b14324095" } } $('.js-work-strip[data-work-id=124838189]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838189,"title":"Tracking an unknown number of targets using multiple sensors: A belief propagation method","translated_title":"","metadata":{"abstract":"We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.","publisher":"2016 19th International Conference on Information Fusion (FUSION)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 19th International Conference on Information Fusion (FUSION)"},"translated_abstract":"We propose a multisensor method for tracking an unknown number of targets. Low computational complexity and very good scalability in the number of targets, number of sensors, and number of measurements per sensor are achieved by running a belief propagation (BP) message passing scheme on a suitably devised factor graph. Using a redundant formulation of data association uncertainty and “augmented target states” including target indicators allows the proposed BP method to leverage statistical independencies for a drastic reduction of complexity. The proposed method is shown to outperform previously proposed multisensor methods for multitarget tracking, including methods with a less favorable scaling behavior.","internal_url":"https://www.academia.edu/124838189/Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method","translated_internal_url":"","created_at":"2024-10-18T09:25:49.327-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990266/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990266/publik_255582-libre.pdf?1729270579=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=cRJsyx~GE~pgoAe3kC~IZZV7vluREYGi5vx5XKOT5WD9kB9EwotYTCNx7H8nOdSoebvGwWJl-Wxn5zsEuBvq~dtrsp1deXkcPSnPgXZE04Bq56I-nEns-SZYcwFTnhCBPm~FH7wrbk2EdnUswAuRqCIJIwmjxwkq0s0UVy4HAbaaigl~9m6CMLmYFXtBAGVe-bk2NKaUXzQhaLBN250ZPYDwfLJXvvdrvp7Z0rCMIcwRsa56p6OC~dAcXksJtE-RCs-K4-M8nZDM1Q55KFpIcMI0EJMA-wMiAi9wE8v5TL1~rWPVdO69mhBGNzDNXuIXVekknPqqFonb-WrtQn-0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tracking_an_unknown_number_of_targets_using_multiple_sensors_A_belief_propagation_method","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990266/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990266/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990266/publik_255582-libre.pdf?1729270579=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=cRJsyx~GE~pgoAe3kC~IZZV7vluREYGi5vx5XKOT5WD9kB9EwotYTCNx7H8nOdSoebvGwWJl-Wxn5zsEuBvq~dtrsp1deXkcPSnPgXZE04Bq56I-nEns-SZYcwFTnhCBPm~FH7wrbk2EdnUswAuRqCIJIwmjxwkq0s0UVy4HAbaaigl~9m6CMLmYFXtBAGVe-bk2NKaUXzQhaLBN250ZPYDwfLJXvvdrvp7Z0rCMIcwRsa56p6OC~dAcXksJtE-RCs-K4-M8nZDM1Q55KFpIcMI0EJMA-wMiAi9wE8v5TL1~rWPVdO69mhBGNzDNXuIXVekknPqqFonb-WrtQn-0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118990267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990267/thumbnails/1.jpg","file_name":"publik_255582.pdf","download_url":"https://www.academia.edu/attachments/118990267/download_file","bulk_download_file_name":"Tracking_an_unknown_number_of_targets_us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990267/publik_255582-libre.pdf?1729270580=\u0026response-content-disposition=attachment%3B+filename%3DTracking_an_unknown_number_of_targets_us.pdf\u0026Expires=1732780710\u0026Signature=VauaEmb5vEJWzPQGd~QtWJTTgXRcqO8IjXPWa8-4F8sIj9olS8jE5mTqhd-o9p9BcTXDrB~01q4N7r2vr1H9FjaOAHZsWmDbTxC-A0JC3Aqf8r1SmjWki-2SvlLo8Fj0Mew~k1ocAT4Ph~ELKDxRl62qCCVVo7-OnGE9jVrf2sGkEa-jWP1NBrtWt1qP68d3bhMuiA85oph4E-pAys1jAUfS1bh6HsCOw6MCamViM-vZP2-1enSqZUn4qwB7awIUjxrkYGqVKuQIO408f9gJmZBovy-Z~NXgzJPDL9a6vUCBhqq0-1kZpHeSIdC7uZYgmr0NSr5mQSirjSl7Gn690A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":243826,"name":"Message Passing","url":"https://www.academia.edu/Documents/in/Message_Passing"},{"id":278182,"name":"Data Association","url":"https://www.academia.edu/Documents/in/Data_Association"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214438,"url":"https://publik.tuwien.ac.at/files/publik_255582.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples"><img alt="Research paper thumbnail of Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples" class="work-thumbnail" src="https://attachments.academia-assets.com/118990294/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples">Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="051c387bc2c26d01f096511410d02a59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990294,&quot;asset_id&quot;:124838188,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838188]").text(description); $(".js-view-count[data-work-id=124838188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "051c387bc2c26d01f096511410d02a59" } } $('.js-work-strip[data-work-id=124838188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838188,"title":"Signal Amplitude Estimation and Detection From Unlabeled Binary Quantized Samples","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Signal amplitude estimation and detection from unlabeled quantized binary samples are studied, assuming that the order of the time indexes is completely unknown. First, maximum likelihood (ML) estimators are utilized to estimate both the permutation matrix and unknown signal amplitude under arbitrary, but known signal shape and quantizer thresholds. Sufficient conditions are provided under which an ML estimator can be found in polynomial time and an alternating maximization algorithm is proposed to solve the general problem via good initial estimates. In addition, the statistical identifiability of the model is studied. Furthermore, the generalized likelihood ratio test (GLRT) detector is adopted to detect the presence of signal. In addition, an accurate approximation to the probability of successful permutation matrix recovery is derived, and explicit expressions are provided to reveal the relationship between the number of signal samples and the number of quantizers. Finally, numerical simulations are performed to verify the theoretical results.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing","grobid_abstract_attachment_id":118990294},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838188/Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples","translated_internal_url":"","created_at":"2024-10-18T09:25:48.049-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990294,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990294/thumbnails/1.jpg","file_name":"1706.pdf","download_url":"https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Signal_Amplitude_Estimation_and_Detectio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990294/1706-libre.pdf?1729270589=\u0026response-content-disposition=attachment%3B+filename%3DSignal_Amplitude_Estimation_and_Detectio.pdf\u0026Expires=1732780710\u0026Signature=aBVsrZAVYfOZKD61-B1vnBuQHSoEsNL6b-6EvhXhsN-d8vsiHKvH~0OzOb93JGNjLydWjipnBhF1fwoV5N1t0IP-MnXc7PWqudceIBcYJ7gYbxmvOAnLs~64R4jTeRL~YUNrm9CY~MtYyTiwvJPQTHdezKz55Zi9JP-cYzKNIi~GNX8W~B9ZLdhxtKUkUFUKL4YGk4fJezTHJy1IWCIJ9N8c6-9-nOuRwI1OCuyoTLGXtylVEiRKF6U9iT8w4J0RAKYW-YwDpggEOtwQ1508zNNPy3jCziU8m55Y5GXftbbxXS3UqOpR04BpZ7lj62aQohVu5Mp1DWqJXM-fFUS7TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Signal_Amplitude_Estimation_and_Detection_From_Unlabeled_Binary_Quantized_Samples","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990294,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990294/thumbnails/1.jpg","file_name":"1706.pdf","download_url":"https://www.academia.edu/attachments/118990294/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Signal_Amplitude_Estimation_and_Detectio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990294/1706-libre.pdf?1729270589=\u0026response-content-disposition=attachment%3B+filename%3DSignal_Amplitude_Estimation_and_Detectio.pdf\u0026Expires=1732780710\u0026Signature=aBVsrZAVYfOZKD61-B1vnBuQHSoEsNL6b-6EvhXhsN-d8vsiHKvH~0OzOb93JGNjLydWjipnBhF1fwoV5N1t0IP-MnXc7PWqudceIBcYJ7gYbxmvOAnLs~64R4jTeRL~YUNrm9CY~MtYyTiwvJPQTHdezKz55Zi9JP-cYzKNIi~GNX8W~B9ZLdhxtKUkUFUKL4YGk4fJezTHJy1IWCIJ9N8c6-9-nOuRwI1OCuyoTLGXtylVEiRKF6U9iT8w4J0RAKYW-YwDpggEOtwQ1508zNNPy3jCziU8m55Y5GXftbbxXS3UqOpR04BpZ7lj62aQohVu5Mp1DWqJXM-fFUS7TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":29414,"name":"Estimation Theory","url":"https://www.academia.edu/Documents/in/Estimation_Theory"},{"id":75582,"name":"Quantization","url":"https://www.academia.edu/Documents/in/Quantization"},{"id":132898,"name":"Estimation","url":"https://www.academia.edu/Documents/in/Estimation"},{"id":151088,"name":"Detection","url":"https://www.academia.edu/Documents/in/Detection"},{"id":303912,"name":"Identifiability","url":"https://www.academia.edu/Documents/in/Identifiability"},{"id":806332,"name":"Estimator","url":"https://www.academia.edu/Documents/in/Estimator"},{"id":1005652,"name":"Detection Theory","url":"https://www.academia.edu/Documents/in/Detection_Theory"},{"id":1112727,"name":"Permutation","url":"https://www.academia.edu/Documents/in/Permutation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":45214437,"url":"http://xplorestaging.ieee.org/ielx7/78/8399517/08392734.pdf?arnumber=8392734"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124838171"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors"><img alt="Research paper thumbnail of A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors" class="work-thumbnail" src="https://attachments.academia-assets.com/118990281/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors">A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58d444119adc2cd3bddf4c4c3688f5d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118990281,&quot;asset_id&quot;:124838171,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124838171"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124838171"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124838171; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124838171]").text(description); $(".js-view-count[data-work-id=124838171]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124838171; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124838171']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124838171, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58d444119adc2cd3bddf4c4c3688f5d5" } } $('.js-work-strip[data-work-id=124838171]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124838171,"title":"A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"We propose a method for tracking an unknown number of targets based on measurements provided by multiple sensors. Our method achieves low computational complexity and excellent scalability by running belief propagation on a suitably devised factor graph. A redundant formulation of data association uncertainty and the use of \"augmented target states\" including binary target indicators make it possible to exploit statistical independencies for a drastic reduction of complexity. An increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. As a consequence, the complexity of our method scales only quadratically in the number of targets, linearly in the number of sensors, and linearly in the number of measurements per sensors. The performance of the method compares well with that of previously proposed methods, including methods with a less favorable scaling behavior. In particular, our method can outperform multisensor versions of the probability hypothesis density (PHD) filter, the cardinalized PHD filter, and the multi-Bernoulli filter.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing","grobid_abstract_attachment_id":118990281},"translated_abstract":null,"internal_url":"https://www.academia.edu/124838171/A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors","translated_internal_url":"","created_at":"2024-10-18T09:25:00.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118990281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990281/thumbnails/1.jpg","file_name":"1607.pdf","download_url":"https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Scalable_Algorithm_for_Tracking_an_Unk.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990281/1607-libre.pdf?1729270581=\u0026response-content-disposition=attachment%3B+filename%3DA_Scalable_Algorithm_for_Tracking_an_Unk.pdf\u0026Expires=1732780710\u0026Signature=ShxEJr05tOIrizbPryGWJDidL1Fs02w27RYt3pH-QNP4qUZC~IqryLmsNoBMXPpst-eJ2S8rBypMkod2uzTJVrwhQtxonDLSMxLB5t~trmI5bwQw~Y2jZzUxACGKPq4U7WejHJ9oj2t1gUYEWYg65NCmTCcSfvgHmNn~XNnWJq5PGV35jRoHbKJJtymJMwGJ3i3oj4ikA1rDAUyNBQIkPyoDjc1RDuvCfLwjNEAWM5Mjc6kQx3NE2zCInQ2AyKYk7VLwRAzjsIfbPp9xzJLf01AUaKpsH~SoeqCPpbJv6ofMh-kXvD6dor39d72jO5WE6a6zPTkvEj4qMGjZwdzMDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Scalable_Algorithm_for_Tracking_an_Unknown_Number_of_Targets_Using_Multiple_Sensors","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":118990281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118990281/thumbnails/1.jpg","file_name":"1607.pdf","download_url":"https://www.academia.edu/attachments/118990281/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Scalable_Algorithm_for_Tracking_an_Unk.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118990281/1607-libre.pdf?1729270581=\u0026response-content-disposition=attachment%3B+filename%3DA_Scalable_Algorithm_for_Tracking_an_Unk.pdf\u0026Expires=1732780710\u0026Signature=ShxEJr05tOIrizbPryGWJDidL1Fs02w27RYt3pH-QNP4qUZC~IqryLmsNoBMXPpst-eJ2S8rBypMkod2uzTJVrwhQtxonDLSMxLB5t~trmI5bwQw~Y2jZzUxACGKPq4U7WejHJ9oj2t1gUYEWYg65NCmTCcSfvgHmNn~XNnWJq5PGV35jRoHbKJJtymJMwGJ3i3oj4ikA1rDAUyNBQIkPyoDjc1RDuvCfLwjNEAWM5Mjc6kQx3NE2zCInQ2AyKYk7VLwRAzjsIfbPp9xzJLf01AUaKpsH~SoeqCPpbJv6ofMh-kXvD6dor39d72jO5WE6a6zPTkvEj4qMGjZwdzMDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":2537936,"name":"Factor Graph","url":"https://www.academia.edu/Documents/in/Factor_Graph"}],"urls":[{"id":45214429,"url":"http://xplorestaging.ieee.org/ielx7/78/7912413/07889057.pdf?arnumber=7889057"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis"><img alt="Research paper thumbnail of Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/117172751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis">Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis</a></div><div class="wp-workCard_item"><span>IEEE Open Journal of Signal Processing</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d3f68a1c20ecc5aa748d74b306ce19b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172751,&quot;asset_id&quot;:122528336,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528336]").text(description); $(".js-view-count[data-work-id=122528336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528336, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d3f68a1c20ecc5aa748d74b306ce19b" } } $('.js-work-strip[data-work-id=122528336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528336,"title":"Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"We study the performance of Machine Learning (ML) classification techniques. Leveraging the theory of large deviations, we provide the mathematical conditions for a ML classifier to exhibit error probabilities that vanish exponentially, say exp(−n I), where n is the number of informative observations available for testing (or another relevant parameter, such as the size of the target in an image) and I is the error rate. Such conditions depend on the Fenchel-Legendre transform of the cumulant-generating function of the Data-Driven Decision Function (D3F, i.e., what is thresholded before the final binary decision is made) learned in the training phase. As such, the D3F and the related error rate I depend on the given training set. The conditions for the exponential convergence can be verified and tested numerically exploiting the available dataset or a synthetic dataset generated according to the underlying statistical model. Coherently with the large deviations theory, we can also establish the convergence of the normalized D3F statistic to a Gaussian distribution. Furthermore, approximate error probability curves ζ n exp(−n I) are provided, thanks to the refined asymptotic derivation, where ζ n represents the most representative sub-exponential terms of the error probabilities. Leveraging the refined asymptotic, we are able to compute an accurate analytical approximation of the classification performance for both the regimes of small and large values of n. Theoretical findings are corroborated by extensive numerical simulations and by the use of real-world data, acquired by an X-band maritime radar system for surveillance.","publication_name":"IEEE Open Journal of Signal Processing","grobid_abstract_attachment_id":117172751},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528336/Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis","translated_internal_url":"","created_at":"2024-08-02T04:19:39.103-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172751/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172751/10008020-libre.pdf?1722600980=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=e-G5RbfdDElv8rnBAAjmHA5o5xmtKWuOx~PbRRvYOYsx6sBCNWkhmuBcUAShvDDfBubofPWmhdNARlbduJynXOLskBvuysR6BZcty83uyTYOzVm9Svrp5Bf~Pue~z4UT17nz9trevwynFk~mYek49827A0R6i7cMQyBDxMvI2hc-rsbuP~DxOJtFy1B2yRum3GybsyGYmqqLZ0JhvIKct2b3CsMhMUm41xGdCN0lkxSkcIa56khxaEG3ALJuoQahl3IM8X6Ky1ddeTaMCBkIhshbBbpd~aZ4dtXpt6H2pgv2rn2KDdxWAWJ9HZ2xNDrYcjBpnoVj1ARW3LMflVWxZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistical_Hypothesis_Testing_Based_on_Machine_Learning_Large_Deviations_Analysis","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172751/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172751/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172751/10008020-libre.pdf?1722600980=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=e-G5RbfdDElv8rnBAAjmHA5o5xmtKWuOx~PbRRvYOYsx6sBCNWkhmuBcUAShvDDfBubofPWmhdNARlbduJynXOLskBvuysR6BZcty83uyTYOzVm9Svrp5Bf~Pue~z4UT17nz9trevwynFk~mYek49827A0R6i7cMQyBDxMvI2hc-rsbuP~DxOJtFy1B2yRum3GybsyGYmqqLZ0JhvIKct2b3CsMhMUm41xGdCN0lkxSkcIa56khxaEG3ALJuoQahl3IM8X6Ky1ddeTaMCBkIhshbBbpd~aZ4dtXpt6H2pgv2rn2KDdxWAWJ9HZ2xNDrYcjBpnoVj1ARW3LMflVWxZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117172754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172754/thumbnails/1.jpg","file_name":"10008020.pdf","download_url":"https://www.academia.edu/attachments/117172754/download_file","bulk_download_file_name":"Statistical_Hypothesis_Testing_Based_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172754/10008020-libre.pdf?1722601585=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Hypothesis_Testing_Based_on.pdf\u0026Expires=1732780710\u0026Signature=Xb9mta8WTF-EEah1B1Rk4swhcs6m7zG7JKxm5u1YO~dOXk0aI4KSS725oup6yGQl~MdIbAooiPUjv7eVi~OEAMgbFTI9ciP90UCak5oiGN83WdlhD-7~SxrF1ZbB-xiUhHR1OxE1mJE17kaybYkubxd7q1d60F-kOLM3HOxfXuYUjHq4wB8aV5KIbRNOsOyni2vBQZ~x2D-HRTFgNL5iBTWMLJhS1X1SDic~6M5Nirij3wBU4g5qC8BYWg5ffLeKNNRyKnN7PBq4zHTPBrcn5b8Ua6oYlPImt1hxcVrWVHRY-OWNJIt1vfTV7gopBXytgbEeqHFOtOJPY7dYax35-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":483393,"name":"Notation","url":"https://www.academia.edu/Documents/in/Notation"}],"urls":[{"id":43787500,"url":"http://xplorestaging.ieee.org/ielx7/8782710/9656695/10008020.pdf?arnumber=10008020"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528335"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation"><img alt="Research paper thumbnail of Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation" class="work-thumbnail" src="https://attachments.academia-assets.com/117172768/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation">Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Aerospace and Electronic Systems</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6872cd31abfb0cd0209c2e33fee3e790" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172768,&quot;asset_id&quot;:122528335,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528335"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528335"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528335; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528335]").text(description); $(".js-view-count[data-work-id=122528335]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528335; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528335']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528335, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6872cd31abfb0cd0209c2e33fee3e790" } } $('.js-work-strip[data-work-id=122528335]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528335,"title":"Recurrent Encoder–Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Recent deep learning methods for vessel trajectory prediction are able to learn complex maritime patterns from historical Automatic Identification System (AIS) data and accurately predict sequences of future vessel positions with a prediction horizon of several hours. However, in maritime surveillance applications, reliably quantifying the prediction uncertainty can be as important as obtaining high accuracy. This paper extends deep learning frameworks for trajectory prediction tasks by exploring how recurrent encoder-decoder neural networks can be tasked not only to predict but also to yield a corresponding prediction uncertainty via Bayesian modeling of epistemic and aleatoric uncertainties. We compare the prediction performance of two different models based on labeled or unlabeled input data to highlight how uncertainty quantification and accuracy can be improved by using, if available, additional information on the intention of the ship (e.g., its planned destination).","publication_name":"IEEE Transactions on Aerospace and Electronic Systems","grobid_abstract_attachment_id":117172768},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528335/Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation","translated_internal_url":"","created_at":"2024-08-02T04:19:38.907-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172768/thumbnails/1.jpg","file_name":"2205.pdf","download_url":"https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recurrent_Encoder_Decoder_Networks_for_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172768/2205-libre.pdf?1722601589=\u0026response-content-disposition=attachment%3B+filename%3DRecurrent_Encoder_Decoder_Networks_for_V.pdf\u0026Expires=1732780711\u0026Signature=Z7nRatNxJHtWB1Kf4Q2HWerZ3ZtYxECVu7eWq6aY4TA~v70J4k61aK861T9EM10XBtjeTOBEvgo0kTKkVnYgLYGZ5rFg3mxwj3RJRKl1vErjlAEM4KYflxGVbxeu4j~KFIywm31xzOL9anQ0F2z7UobNZ56Au~XkKpMok0847oJqF5CRocIpw2XaZXeU9wRCAbgeYKaW9W5q5P9IvkTyWZoq-x8~dUndZsXOxqBZPkFY16UFHLfG1ZNYtPl1vMdr1Spx5WcVHi7np18VOfPXLpyDtZaGh3UtUZZ9Crz6ntRqVk9gWjRhuEXugypIJJuafXYqyOAhgSKFA0vxL7Ugwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Recurrent_Encoder_Decoder_Networks_for_Vessel_Trajectory_Prediction_With_Uncertainty_Estimation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172768/thumbnails/1.jpg","file_name":"2205.pdf","download_url":"https://www.academia.edu/attachments/117172768/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recurrent_Encoder_Decoder_Networks_for_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172768/2205-libre.pdf?1722601589=\u0026response-content-disposition=attachment%3B+filename%3DRecurrent_Encoder_Decoder_Networks_for_V.pdf\u0026Expires=1732780711\u0026Signature=Z7nRatNxJHtWB1Kf4Q2HWerZ3ZtYxECVu7eWq6aY4TA~v70J4k61aK861T9EM10XBtjeTOBEvgo0kTKkVnYgLYGZ5rFg3mxwj3RJRKl1vErjlAEM4KYflxGVbxeu4j~KFIywm31xzOL9anQ0F2z7UobNZ56Au~XkKpMok0847oJqF5CRocIpw2XaZXeU9wRCAbgeYKaW9W5q5P9IvkTyWZoq-x8~dUndZsXOxqBZPkFY16UFHLfG1ZNYtPl1vMdr1Spx5WcVHi7np18VOfPXLpyDtZaGh3UtUZZ9Crz6ntRqVk9gWjRhuEXugypIJJuafXYqyOAhgSKFA0vxL7Ugwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":31477,"name":"Uncertainty Quantification","url":"https://www.academia.edu/Documents/in/Uncertainty_Quantification"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning"},{"id":140897,"name":"Encoder","url":"https://www.academia.edu/Documents/in/Encoder"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1733865,"name":"Automatic Identification System","url":"https://www.academia.edu/Documents/in/Automatic_Identification_System"}],"urls":[{"id":43787499,"url":"http://xplorestaging.ieee.org/ielx7/7/10146528/09946391.pdf?arnumber=9946391"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528334"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel"><img alt="Research paper thumbnail of Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel" class="work-thumbnail" src="https://attachments.academia-assets.com/117172770/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel">Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel</a></div><div class="wp-workCard_item"><span>2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d262249a4c1282d6c2aebb050d26e5a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172770,&quot;asset_id&quot;:122528334,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528334"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528334"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528334; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528334]").text(description); $(".js-view-count[data-work-id=122528334]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528334; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528334']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528334, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d262249a4c1282d6c2aebb050d26e5a9" } } $('.js-work-strip[data-work-id=122528334]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528334,"title":"Maritime Surveillance Using Spaceborne GNSS-Reflectometry: The Role of the Scattering Configuration and Receiving Polarization Channel","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Recent studies have analyzed the chance of exploiting Global Navigation Satellite Systems (GNSS)-Reflectometry observables for maritime surveillance and sea target detection. In this paper, we provide a feasibility study of the ship detection problem using spaceborne GNSS-R data. The analysis is performed via the evaluation of the signal-to-noiseplus-clutter-ratio and signal-to-noise-ratio relevant to an isolated ship target in open sea. In particular, we investigated the impact of the GNSS-R acquisition geometry and radar signal polarization. The influence of sea state and ship orientation is assessed as well. The analysis is based on a sound theoretical electromagnetic model of the bistatic radar cross section of the ship target. The analysis clearly shows the benefits of 1) the backscattering configuration with respect to the conventional forward-scattering one and 2) the RHCP receiving channel w.r.t. the conventional LHCP one, used in sea surface analysis. However, the ship orientation and the sea state still play a key role in ship detectability.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","grobid_abstract_attachment_id":117172770},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528334/Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel","translated_internal_url":"","created_at":"2024-08-02T04:19:38.702-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172770/thumbnails/1.jpg","file_name":"RTSI_2018_GNSSR.pdf","download_url":"https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maritime_Surveillance_Using_Spaceborne_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172770/RTSI_2018_GNSSR-libre.pdf?1722600615=\u0026response-content-disposition=attachment%3B+filename%3DMaritime_Surveillance_Using_Spaceborne_G.pdf\u0026Expires=1732780711\u0026Signature=Sa193fph8eEnl8MidjDdk2f2kIN8tcWmUofE5-Ob4hOgDMfI44MxA48o9pO983hTQfdGZfYqLSOW~giyB8CNPCJ8dw3UzJm6oogz4URAHm7rSW4DvGWKePATQ0PhXeTNN19UJeNOLOFjm0UgWnGZw-qWdr5UnZ81ujBYl3Pdb~b-mg21tRdWdWBK3VVjfvlj3OS9jwgVMoHFczpZB1tqjOqwP8rIN7yssDFADnIXMnrlGSUgsRCGaSzLIiDQ93lDEcMxVcZWO~RE0-zm24AFM0jG1q0TCMWHTHlNK4yIEqvm4BB~JqcQznufNASv-yzdUHFejLWkygQjWhrGJrPNhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Maritime_Surveillance_Using_Spaceborne_GNSS_Reflectometry_The_Role_of_the_Scattering_Configuration_and_Receiving_Polarization_Channel","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172770/thumbnails/1.jpg","file_name":"RTSI_2018_GNSSR.pdf","download_url":"https://www.academia.edu/attachments/117172770/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maritime_Surveillance_Using_Spaceborne_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172770/RTSI_2018_GNSSR-libre.pdf?1722600615=\u0026response-content-disposition=attachment%3B+filename%3DMaritime_Surveillance_Using_Spaceborne_G.pdf\u0026Expires=1732780711\u0026Signature=Sa193fph8eEnl8MidjDdk2f2kIN8tcWmUofE5-Ob4hOgDMfI44MxA48o9pO983hTQfdGZfYqLSOW~giyB8CNPCJ8dw3UzJm6oogz4URAHm7rSW4DvGWKePATQ0PhXeTNN19UJeNOLOFjm0UgWnGZw-qWdr5UnZ81ujBYl3Pdb~b-mg21tRdWdWBK3VVjfvlj3OS9jwgVMoHFczpZB1tqjOqwP8rIN7yssDFADnIXMnrlGSUgsRCGaSzLIiDQ93lDEcMxVcZWO~RE0-zm24AFM0jG1q0TCMWHTHlNK4yIEqvm4BB~JqcQznufNASv-yzdUHFejLWkygQjWhrGJrPNhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"},{"id":175926,"name":"GNSS applications","url":"https://www.academia.edu/Documents/in/GNSS_applications"},{"id":250384,"name":"Clutter","url":"https://www.academia.edu/Documents/in/Clutter"},{"id":499409,"name":"Reflectometry","url":"https://www.academia.edu/Documents/in/Reflectometry"},{"id":1458859,"name":"Bistatic Radar","url":"https://www.academia.edu/Documents/in/Bistatic_Radar"}],"urls":[{"id":43787498,"url":"http://xplorestaging.ieee.org/ielx7/8528317/8548348/08548373.pdf?arnumber=8548373"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018"><img alt="Research paper thumbnail of From the Editor-in-Chief April 2018" class="work-thumbnail" src="https://attachments.academia-assets.com/117172744/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018">From the Editor-in-Chief April 2018</a></div><div class="wp-workCard_item"><span>IEEE Aerospace and Electronic Systems Magazine</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b3dd926905034b426cf8953334fab803" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172744,&quot;asset_id&quot;:122528333,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528333]").text(description); $(".js-view-count[data-work-id=122528333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b3dd926905034b426cf8953334fab803" } } $('.js-work-strip[data-work-id=122528333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528333,"title":"From the Editor-in-Chief April 2018","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"elcome to our April issue. I write this in March from the northeast US, which means that we've had to put away our February T-shirts and golf clubs in favor of parkas and snow shovels. Good (weather) luck to us all for the Spring! I hope to see many of you at the Radar Conference in Oklahoma City in April-the AESS Board of Governors has its spring meeting there, which I'm sure is an added attraction for many of you. It's my pleasure to introduce a full and interesting issue of contributed papers this month-we are getting so many excellent papers, both contributed and Special Issue (invited), that sometimes there is a delay to publication. We apologize that some spend time \"in the queue\". First, Wahl \u0026 Turkoglu from San Jose State have given us Nonlinear Receding Horizon Control-Based Real-Time Guidance, Navigation, and Control Architecture for Launch Vehicles. As the title promises, the article suggests an RHC strategy for space vehicle guidance, and in fact gives a nice historical context for the solution. The article is rather more mathematical than the typical magazine offering; but, well, control is mathematical. Huang \u0026 Lin from Aphelion Orbitals in Florida offer Fully Optical Spacecraft Communications: Implementing an Omnidirectional PV-Cell Receiver and 8 Mb/s LED Visible Light Downlink With Deep Learning Error Correction that suggests use of the extant on-board photovoltaic systems for the visible-light communication (VLC) uplinks. There are significant challenges, perhaps the greatest being the high raw error rate caused by low SNR and non-coherent demodulation; the authors propose a deep-learning decoding strategy. Coupled with a LED downlink this may be an economical product for upcoming cubesats. Waseem \u0026 Sadiq from the Satellite Research and Development Centre in Pakistan have given us Application of Model-Based Systems Engineering in Small Satellite Conceptual Design-A SysML Approach which is a nice systems engineering case study. The article describes the experience of use of SysML, which is a modeling language used to design and verify systems … and systems of systems. Since many of our members are concerned with systems engineering as a large part of their daily work, and since the small-satellite focus is emerging, we hope the reader will find this article timely and useful. And as air traffic control is indeed a large scale \"system,\" the theme is continued in Simulation Modelling of Traffic Collision Avoidance System With Wind Disturbance by Tang, Zhu \u0026 Fan, all from the National University of Defense Technology but with joint appointments at Barcelona and the Imperial College London. The application is air-traffic TCAS, and the focus is on the very necessary system description. A large team of authors from Airbus and the Universities of Valencia (Spain), Erlangen-Nurnberg (Germany) and Udine (Italy) have given us Multifunctional and Compact 3D FMCW MIMO Radar System With Rectangular Array for Medium-Range Applications. This is a particularly nice article that is exactly at the right technical level. Its title describes the subject, but only hints at the data fusion aspect: a camera also forms part of the system and aids considerably in tracking and classification. Further, this fusion facilitates change detection, which with its small size and economical design makes the system nicely suited for area protection or for UAV mounting. Finally, some words about the life of radar legend Philip Mayne Woodward, who passed from us on January 30 at age 98. Dr. Woodward's niece Suzette Woodward and colleague Susan Bond have kindly sent us their thoughts. I think most of us know of his contributions to radar, but his contributions to computer science (especially a language I remember fondly: Algol) and (this is surprising!) clock-making will be new at least to many of you. Thanks, Suzette!-Peter K. Willett","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"IEEE Aerospace and Electronic Systems Magazine","grobid_abstract_attachment_id":117172744},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528333/From_the_Editor_in_Chief_April_2018","translated_internal_url":"","created_at":"2024-08-02T04:19:38.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172744/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172744/08354444-libre.pdf?1722600611=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=cxi~mH5FpBaKQr-x51LhxajRGkD7Rj7Q9MWKy6slUrc2pqyS059HRk6B4sf3kyMjGMf00VDy9Z4-EF3tq4jxqmOSATUC2On5X~bWgDlcXWY7yQcWqJiEKKxM~g~XlQTruD6nzJJ4j-Kep1o6lTlqYNc05et7AIqjzzIQQbICeD0zwyqsx0ogOqtGmGJd0tVsMcj9nBIXNtChjiJm0OOWAZKSM05jBNLkkXp94JlSKp9zTebCAo0whGHLmw5Rg~LZc4-xCQjVnzIJp10jCgmzEFUZTSQKrlu5GyVDeNeLu8OGQeHPVTdCOVo1j9pcNz0LujGYbbikU9qnF0TqQSNQoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_the_Editor_in_Chief_April_2018","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172744/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172744/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172744/08354444-libre.pdf?1722600611=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=cxi~mH5FpBaKQr-x51LhxajRGkD7Rj7Q9MWKy6slUrc2pqyS059HRk6B4sf3kyMjGMf00VDy9Z4-EF3tq4jxqmOSATUC2On5X~bWgDlcXWY7yQcWqJiEKKxM~g~XlQTruD6nzJJ4j-Kep1o6lTlqYNc05et7AIqjzzIQQbICeD0zwyqsx0ogOqtGmGJd0tVsMcj9nBIXNtChjiJm0OOWAZKSM05jBNLkkXp94JlSKp9zTebCAo0whGHLmw5Rg~LZc4-xCQjVnzIJp10jCgmzEFUZTSQKrlu5GyVDeNeLu8OGQeHPVTdCOVo1j9pcNz0LujGYbbikU9qnF0TqQSNQoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117172745,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172745/thumbnails/1.jpg","file_name":"08354444.pdf","download_url":"https://www.academia.edu/attachments/117172745/download_file","bulk_download_file_name":"From_the_Editor_in_Chief_April_2018.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172745/08354444-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DFrom_the_Editor_in_Chief_April_2018.pdf\u0026Expires=1732492667\u0026Signature=NMwXlgqn0NISTV82vokGwkmJGey4bbLZDaek7kSWf6-rxj-4UBfUKYsZALkiTSXGEsmm0A~1LsGvk8zLKKNN~VG6eLruz5LzQ-QvD23M5SotTida-AuY0IFDaaKcDrONXAjEtF8ZhgtJhwKt5-587Gp67t-5jmr0f0hI6bep0jMHry5EDNfc1-0TklCN5GBfa42juyEv5Y7Ok5XdBjVKz71c8k9zRfluVowPgrTLS9af3MVL94H4fceUzvpwwE70rjtKMYq767ZRy~et1EQj7283WbqX5qrisNdKcvbKEHiGD5nbVyt8xzOzl5ewZuVG4yX099dYiWplwR7CzGyvow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":181995,"name":"Aeronautics","url":"https://www.academia.edu/Documents/in/Aeronautics"},{"id":197149,"name":"SNOW","url":"https://www.academia.edu/Documents/in/SNOW"},{"id":348480,"name":"Luck","url":"https://www.academia.edu/Documents/in/Luck"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1772191,"name":"Editor-in-Chief","url":"https://www.academia.edu/Documents/in/Editor-in-Chief"}],"urls":[{"id":43787497,"url":"http://xplorestaging.ieee.org/ielx7/62/8354437/08354444.pdf?arnumber=8354444"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility"><img alt="Research paper thumbnail of COVID-19 impact on global maritime mobility" class="work-thumbnail" src="https://attachments.academia-assets.com/117172750/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility">COVID-19 impact on global maritime mobility</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world we...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23514c0448d294ef0c4fda6f9dacb961" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172750,&quot;asset_id&quot;:122528332,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528332]").text(description); $(".js-view-count[data-work-id=122528332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23514c0448d294ef0c4fda6f9dacb961" } } $('.js-work-strip[data-work-id=122528332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528332,"title":"COVID-19 impact on global maritime mobility","translated_title":"","metadata":{"abstract":"To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of Automatic Identification System (AIS) receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: Cumulative Navigated Miles (CNM) of all ships reporting their position and navigational status via AIS, number ofactiveandidleships, and fleet average speed. To highlight significant c...","internal_url":"https://www.academia.edu/122528332/COVID_19_impact_on_global_maritime_mobility","translated_internal_url":"","created_at":"2024-08-02T04:19:38.307-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172750/thumbnails/1.jpg","file_name":"s41598-021-97461-7.pdf","download_url":"https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COVID_19_impact_on_global_maritime_mobil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172750/s41598-021-97461-7-libre.pdf?1722600634=\u0026response-content-disposition=attachment%3B+filename%3DCOVID_19_impact_on_global_maritime_mobil.pdf\u0026Expires=1732780711\u0026Signature=IhYIx4FqVUfd8oziSL2~aClfPp8PMzL5RmJx7vQLozRnjv~ksKwADyWUfUkYrSW4SoGeFa7XSNay5PHqonCwBSNC0hRFm6nWVamChoyS1jD5NHkPC9zHbeu7AMDIp8I1NckNrGmw2GpjiGfynS0UwlKkOUC-I~GvIVLZcfkqaEJZjbL~EBX3JfiviJYwePfMxO76ZAmlhu9f842dY9exqNOzLn0czuF9PEterwMtCOicg4uka1UYbpipBxjejzwt1rGyg0UAVar~1XDs8oq~O50nx~vjbDDZf3Iw86a9zjnNFIcY~zGxrdVxm4kWLrNpjzRxs8zPblo7ZXBxcnE~rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COVID_19_impact_on_global_maritime_mobility","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172750/thumbnails/1.jpg","file_name":"s41598-021-97461-7.pdf","download_url":"https://www.academia.edu/attachments/117172750/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COVID_19_impact_on_global_maritime_mobil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172750/s41598-021-97461-7-libre.pdf?1722600634=\u0026response-content-disposition=attachment%3B+filename%3DCOVID_19_impact_on_global_maritime_mobil.pdf\u0026Expires=1732780711\u0026Signature=IhYIx4FqVUfd8oziSL2~aClfPp8PMzL5RmJx7vQLozRnjv~ksKwADyWUfUkYrSW4SoGeFa7XSNay5PHqonCwBSNC0hRFm6nWVamChoyS1jD5NHkPC9zHbeu7AMDIp8I1NckNrGmw2GpjiGfynS0UwlKkOUC-I~GvIVLZcfkqaEJZjbL~EBX3JfiviJYwePfMxO76ZAmlhu9f842dY9exqNOzLn0czuF9PEterwMtCOicg4uka1UYbpipBxjejzwt1rGyg0UAVar~1XDs8oq~O50nx~vjbDDZf3Iw86a9zjnNFIcY~zGxrdVxm4kWLrNpjzRxs8zPblo7ZXBxcnE~rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":135107,"name":"Social distance","url":"https://www.academia.edu/Documents/in/Social_distance"},{"id":181597,"name":"Root-Mean Square Error","url":"https://www.academia.edu/Documents/in/Root-Mean_Square_Error"},{"id":1012907,"name":"Outbreak","url":"https://www.academia.edu/Documents/in/Outbreak"},{"id":1028827,"name":"Pandemic","url":"https://www.academia.edu/Documents/in/Pandemic"},{"id":1354425,"name":"Idle","url":"https://www.academia.edu/Documents/in/Idle"},{"id":2699690,"name":"individual mobility","url":"https://www.academia.edu/Documents/in/individual_mobility"},{"id":3686510,"name":"Coronavirus Disease 2019 (COVID-19)","url":"https://www.academia.edu/Documents/in/Coronavirus_Disease_2019_COVID-19_"}],"urls":[{"id":43787496,"url":"https://www.nature.com/articles/s41598-021-97461-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets"><img alt="Research paper thumbnail of A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets" class="work-thumbnail" src="https://attachments.academia-assets.com/117172761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets">A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets</a></div><div class="wp-workCard_item"><span>Radio Science</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper furnishes a convenient theoretical framework for the analytical evaluation of the bist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbd0abe171fa48b987b78bb17875fd80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172761,&quot;asset_id&quot;:122528331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528331]").text(description); $(".js-view-count[data-work-id=122528331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbd0abe171fa48b987b78bb17875fd80" } } $('.js-work-strip[data-work-id=122528331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528331,"title":"A Convenient Analytical Framework for Electromagnetic Scattering From Composite Targets","translated_title":"","metadata":{"abstract":"This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...","publisher":"American Geophysical Union (AGU)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Radio Science"},"translated_abstract":"This paper furnishes a convenient theoretical framework for the analytical evaluation of the bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics. Starting from the KA, specific results under the geometrical optics and physical optics approximations are furnished, along with the backscattering geometry. The main aim is to provide closed‐form expressions of the scattering matrix that are suited to scenarios where multiple‐bounce scattering comes into play and/or surfaces with arbitrary unit normal are present. This is accomplished by addressing the following objectives: (1) to provide an explicit formulation of the scattering matrix under KA in terms of the incident and scattered unit wave vectors, (2) to provide a more generic derivation of the scattering matrix under the physical optics approximation by relaxing typical hypotheses regarding the geometry of the scattering problem, and (3) to highlight some important symmetries of the scatterin...","internal_url":"https://www.academia.edu/122528331/A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets","translated_internal_url":"","created_at":"2024-08-02T04:19:38.023-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172761/thumbnails/1.jpg","file_name":"Fuscaldo_preprint_Convenient_2019.pdf","download_url":"https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Convenient_Analytical_Framework_for_El.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172761/Fuscaldo_preprint_Convenient_2019-libre.pdf?1722600635=\u0026response-content-disposition=attachment%3B+filename%3DA_Convenient_Analytical_Framework_for_El.pdf\u0026Expires=1732780711\u0026Signature=GKKpszXUOjG9A5NXdm59GhB4Asz1bsVVyervWAfo7S5E4BRjbT1NzlXMiJFe0kJsHHSmAXK-X75LneuSPew8MG0jhgvmBvazXJdk7axoGr~FfMZKqF1xohlZs-VxW-EDwjQeD1R6tuKNKsREjKCY~HflnCZwcP8tUfnIdFPbLoKGpMwcbJwLh0Da-AjcbHqep4p6kn9fndjw~ApXbhhioUOp62eb9lmoHahXEAPOmXer3x2ldR4-Qxd5SHdvHkPEW4urCeBmaOzWi4uVYUUEPBSAFM5rFCnJZXv2x6RbGAENbA2jB~Sgjflz~fqRbiB4MfsVU-TOpEz0VStLZZwPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Convenient_Analytical_Framework_for_Electromagnetic_Scattering_From_Composite_Targets","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172761/thumbnails/1.jpg","file_name":"Fuscaldo_preprint_Convenient_2019.pdf","download_url":"https://www.academia.edu/attachments/117172761/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Convenient_Analytical_Framework_for_El.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172761/Fuscaldo_preprint_Convenient_2019-libre.pdf?1722600635=\u0026response-content-disposition=attachment%3B+filename%3DA_Convenient_Analytical_Framework_for_El.pdf\u0026Expires=1732780711\u0026Signature=GKKpszXUOjG9A5NXdm59GhB4Asz1bsVVyervWAfo7S5E4BRjbT1NzlXMiJFe0kJsHHSmAXK-X75LneuSPew8MG0jhgvmBvazXJdk7axoGr~FfMZKqF1xohlZs-VxW-EDwjQeD1R6tuKNKsREjKCY~HflnCZwcP8tUfnIdFPbLoKGpMwcbJwLh0Da-AjcbHqep4p6kn9fndjw~ApXbhhioUOp62eb9lmoHahXEAPOmXer3x2ldR4-Qxd5SHdvHkPEW4urCeBmaOzWi4uVYUUEPBSAFM5rFCnJZXv2x6RbGAENbA2jB~Sgjflz~fqRbiB4MfsVU-TOpEz0VStLZZwPUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7405,"name":"Computational Electromagnetics","url":"https://www.academia.edu/Documents/in/Computational_Electromagnetics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66884,"name":"Scattering Theory","url":"https://www.academia.edu/Documents/in/Scattering_Theory"},{"id":335375,"name":"Physical Optics","url":"https://www.academia.edu/Documents/in/Physical_Optics"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"},{"id":660583,"name":"Geometrical Optics","url":"https://www.academia.edu/Documents/in/Geometrical_Optics"}],"urls":[{"id":43787495,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018RS006675"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_"><img alt="Research paper thumbnail of An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]" class="work-thumbnail" src="https://attachments.academia-assets.com/117172767/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_">An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]</a></div><div class="wp-workCard_item"><span>IEEE Signal Processing Magazine</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ab898b60a82be82894db1fb0a29f7c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172767,&quot;asset_id&quot;:122528330,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528330]").text(description); $(".js-view-count[data-work-id=122528330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ab898b60a82be82894db1fb0a29f7c6" } } $('.js-work-strip[data-work-id=122528330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528330,"title":"An Industry and Government Perspective on Challenges and Open Problems in Signal Processing [SP Forum]","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Signal Processing Magazine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528330/An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_","translated_internal_url":"","created_at":"2024-08-02T04:19:37.809-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172767/thumbnails/1.jpg","file_name":"08653528.pdf","download_url":"https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Industry_and_Government_Perspective_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172767/08653528-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DAn_Industry_and_Government_Perspective_o.pdf\u0026Expires=1732780711\u0026Signature=M-3CjSfTaTR8J56YlRNerHsyShWcluTP6w8c-QrDn3e~M-KcAHFdeMuqTdWvA6~PwHan7FL6ku-b~WEjkYuBOkugIFsmpxS0OAdv5bC-FcN60VNcYCV9NmAb7Sap4qazAHzga4cBpm0D-g-cnyQTyw5FxLD~ZL~l4Qxi~AXL92~b8Na8gWwR-NeKvcLLEckJs1kMv24pWAoG1flK0N-Q3L8miubmruyl0lVp1OchDSmlMIAltS7xerQRuYp7AgEyoa-0u94SjZzHiByuY2JhMI2H-AAxGQ1UdNJIPLq7sM4DcQ4CBiMX~bqSzjABBPpOaYlAnm-F42PTb84LF-~SjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Industry_and_Government_Perspective_on_Challenges_and_Open_Problems_in_Signal_Processing_SP_Forum_","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172767/thumbnails/1.jpg","file_name":"08653528.pdf","download_url":"https://www.academia.edu/attachments/117172767/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Industry_and_Government_Perspective_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172767/08653528-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DAn_Industry_and_Government_Perspective_o.pdf\u0026Expires=1732780711\u0026Signature=M-3CjSfTaTR8J56YlRNerHsyShWcluTP6w8c-QrDn3e~M-KcAHFdeMuqTdWvA6~PwHan7FL6ku-b~WEjkYuBOkugIFsmpxS0OAdv5bC-FcN60VNcYCV9NmAb7Sap4qazAHzga4cBpm0D-g-cnyQTyw5FxLD~ZL~l4Qxi~AXL92~b8Na8gWwR-NeKvcLLEckJs1kMv24pWAoG1flK0N-Q3L8miubmruyl0lVp1OchDSmlMIAltS7xerQRuYp7AgEyoa-0u94SjZzHiByuY2JhMI2H-AAxGQ1UdNJIPLq7sM4DcQ4CBiMX~bqSzjABBPpOaYlAnm-F42PTb84LF-~SjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":43787494,"url":"http://xplorestaging.ieee.org/ielx7/79/8653511/08653528.pdf?arnumber=8653528"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528329"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences"><img alt="Research paper thumbnail of Detectability prediction of hidden Markov models with cluttered observation sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/117172758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences">Detectability prediction of hidden Markov models with cluttered observation sequences</a></div><div class="wp-workCard_item"><span>2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d1c2486143aa95732578d888673ab85" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172758,&quot;asset_id&quot;:122528329,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528329"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528329"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528329; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528329]").text(description); $(".js-view-count[data-work-id=122528329]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528329; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528329']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528329, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d1c2486143aa95732578d888673ab85" } } $('.js-work-strip[data-work-id=122528329]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528329,"title":"Detectability prediction of hidden Markov models with cluttered observation sequences","translated_title":"","metadata":{"grobid_abstract":"Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription. Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","grobid_abstract_attachment_id":117172758},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528329/Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences","translated_internal_url":"","created_at":"2024-08-02T04:19:37.656-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172758/thumbnails/1.jpg","file_name":"local_239245.pdf","download_url":"https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detectability_prediction_of_hidden_Marko.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172758/local_239245-libre.pdf?1722600627=\u0026response-content-disposition=attachment%3B+filename%3DDetectability_prediction_of_hidden_Marko.pdf\u0026Expires=1732780711\u0026Signature=b5KIlbC-tWQfX6xd8GEJVPWJ0whoK2KbVvJ9n-eoa7O7XvGkevcerk0L0OBLA3C7eUT6mRgzZ2yDfCU~QHYnFB7AZicmCgYs6qgKY01mjdvaslQXJVMwWm6DTpx7lPKk0e6txnP0RSpIE2DK8DPbYDv22HP0kTC0XImJPe0AeEUE8URPMPFUn0M8BT5QO1olB~8cRSOkmmfVtlq3M4YfHd6TtXsHifANtg5d4EmIHuc4yNDT1YEdxXa7G2A~TjSzDu6d0JT9GjOmVFPCxukEsjjPzgSVhuX2C~5YGBJej~ENicm9LmNjpvQ-muHxNBNhQPKasYjXw01JMUwgQJqTGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detectability_prediction_of_hidden_Markov_models_with_cluttered_observation_sequences","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172758/thumbnails/1.jpg","file_name":"local_239245.pdf","download_url":"https://www.academia.edu/attachments/117172758/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detectability_prediction_of_hidden_Marko.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172758/local_239245-libre.pdf?1722600627=\u0026response-content-disposition=attachment%3B+filename%3DDetectability_prediction_of_hidden_Marko.pdf\u0026Expires=1732780711\u0026Signature=b5KIlbC-tWQfX6xd8GEJVPWJ0whoK2KbVvJ9n-eoa7O7XvGkevcerk0L0OBLA3C7eUT6mRgzZ2yDfCU~QHYnFB7AZicmCgYs6qgKY01mjdvaslQXJVMwWm6DTpx7lPKk0e6txnP0RSpIE2DK8DPbYDv22HP0kTC0XImJPe0AeEUE8URPMPFUn0M8BT5QO1olB~8cRSOkmmfVtlq3M4YfHd6TtXsHifANtg5d4EmIHuc4yNDT1YEdxXa7G2A~TjSzDu6d0JT9GjOmVFPCxukEsjjPzgSVhuX2C~5YGBJej~ENicm9LmNjpvQ-muHxNBNhQPKasYjXw01JMUwgQJqTGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":68937,"name":"Hidden Markov Models","url":"https://www.academia.edu/Documents/in/Hidden_Markov_Models"},{"id":97616,"name":"Detectability","url":"https://www.academia.edu/Documents/in/Detectability"},{"id":143539,"name":"hidden Markov model","url":"https://www.academia.edu/Documents/in/hidden_Markov_model"},{"id":250384,"name":"Clutter","url":"https://www.academia.edu/Documents/in/Clutter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability"><img alt="Research paper thumbnail of The VTP test for transients of equal detectability" class="work-thumbnail" src="https://attachments.academia-assets.com/117172759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability">The VTP test for transients of equal detectability</a></div><div class="wp-workCard_item"><span>2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP &#39;03).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c498228af222b75f557f2ccb216d1bf3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172759,&quot;asset_id&quot;:122528328,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528328]").text(description); $(".js-view-count[data-work-id=122528328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c498228af222b75f557f2ccb216d1bf3" } } $('.js-work-strip[data-work-id=122528328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528328,"title":"The VTP test for transients of equal detectability","translated_title":"","metadata":{"grobid_abstract":"For detection of a permanent and precisely-modeled change in distribution of iid observations, Page's test is optimal. When employed to detect a transient change between known distributions, Page's test is a GLRT. However, the situation of interest here is of transient of unknown scale parameter: a fixed Page procedure tuned to a \"short-and-loud' signal uses heavy biasing and low threshold, a combination ill-suited to a \"long-but-quiet\" signal. We offer an easy alternative to the standard Page: it uses a constant bias and a time-varying threshold. The idea is that the above shorr signals are detected quickly before post-termination data has a chance to refute them; and that evidence for a long signal is allowed to build, rather than being summarily discarded too early. Results show that the approach works quite well. This research was suppaned by the Office of Naval Research through NUWC, Division Newpon, under contract N666M-01-1-1125.","publication_name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","grobid_abstract_attachment_id":117172759},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528328/The_VTP_test_for_transients_of_equal_detectability","translated_internal_url":"","created_at":"2024-08-02T04:19:37.528-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172759/thumbnails/1.jpg","file_name":"ZJW_ICASSP03_VTP_43.pdf","download_url":"https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_VTP_test_for_transients_of_equal_det.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172759/ZJW_ICASSP03_VTP_43-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DThe_VTP_test_for_transients_of_equal_det.pdf\u0026Expires=1732780711\u0026Signature=fLjXjgW-6JUY4f0yxFAanhzH4hUYtp8wNkWzCIg50ezFL9KeTn144yHz6pESP9PjvQmK~AQxzGOzR0OkxFZGmvp18yk3x9rVxnMUIyYN0lVR6AXDoSYReUAuVhRoyetseqbTmeHAvC6OOtz21XM9MviLPCjCuPg0KU~WGlXAwr95vuPf1RpkrenJ54AqG9UMs6nFYWQb0Sg3Myd5aJ4Mc3bixqx8MTCVMHeAZzz-ydZCgz9hWOFJXZYM8WwpLMocLlJEWCu1H4FYT6G01HbBMzKszJP0g5ArpmVUUmyqKkpMW2lruwipCs1AR9LszKR183GqBwtYeCCASdZGz-m0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_VTP_test_for_transients_of_equal_detectability","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172759/thumbnails/1.jpg","file_name":"ZJW_ICASSP03_VTP_43.pdf","download_url":"https://www.academia.edu/attachments/117172759/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_VTP_test_for_transients_of_equal_det.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172759/ZJW_ICASSP03_VTP_43-libre.pdf?1722600612=\u0026response-content-disposition=attachment%3B+filename%3DThe_VTP_test_for_transients_of_equal_det.pdf\u0026Expires=1732780711\u0026Signature=fLjXjgW-6JUY4f0yxFAanhzH4hUYtp8wNkWzCIg50ezFL9KeTn144yHz6pESP9PjvQmK~AQxzGOzR0OkxFZGmvp18yk3x9rVxnMUIyYN0lVR6AXDoSYReUAuVhRoyetseqbTmeHAvC6OOtz21XM9MviLPCjCuPg0KU~WGlXAwr95vuPf1RpkrenJ54AqG9UMs6nFYWQb0Sg3Myd5aJ4Mc3bixqx8MTCVMHeAZzz-ydZCgz9hWOFJXZYM8WwpLMocLlJEWCu1H4FYT6G01HbBMzKszJP0g5ArpmVUUmyqKkpMW2lruwipCs1AR9LszKR183GqBwtYeCCASdZGz-m0WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":1005652,"name":"Detection Theory","url":"https://www.academia.edu/Documents/in/Detection_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528327"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic"><img alt="Research paper thumbnail of A pilot inference study for a beta-Bernoulli spatial scan statistic" class="work-thumbnail" src="https://attachments.academia-assets.com/117186709/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic">A pilot inference study for a beta-Bernoulli spatial scan statistic</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ecad6dc783d36a6cc749376cd0643bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117186709,&quot;asset_id&quot;:122528327,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528327"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528327"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528327; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528327]").text(description); $(".js-view-count[data-work-id=122528327]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528327; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528327']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528327, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ecad6dc783d36a6cc749376cd0643bc" } } $('.js-work-strip[data-work-id=122528327]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528327,"title":"A pilot inference study for a beta-Bernoulli spatial scan statistic","translated_title":"","metadata":{"grobid_abstract":"The Bernoulli spatial scan statistic is used to detect localised clusters in binary labelled point data, such as that used in spatial or spatio-temporal case/control studies. We test the inferential capability of a recently developed beta-Bernoulli spatial scan statistic, which adds a beta prior to the original statistic. This pilot study, which includes two test scenarios with 6,000 data sets each, suggests a marked increase in power for a given false alert rate. We suggest a more extensive study would be worthwhile to corroborate the findings. We also speculate on an explanation for the observed improvement.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"grobid_abstract_attachment_id":117186709},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528327/A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic","translated_internal_url":"","created_at":"2024-08-02T04:19:36.391-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117186709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117186709/thumbnails/1.jpg","file_name":"presentation-20.pdf","download_url":"https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_pilot_inference_study_for_a_beta_Berno.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117186709/presentation-20-libre.pdf?1722666824=\u0026response-content-disposition=attachment%3B+filename%3DA_pilot_inference_study_for_a_beta_Berno.pdf\u0026Expires=1732780711\u0026Signature=WvhKuv-R8V5YH0EbsdY2lXTtgt~IFcJJGBwnNKhm2-rChpuYiWXFk9vTMS6K5zcgc3vr3g52sR61mkduCSuHNbBn93HJsliDGfl7bqkSitafEafDZN7Ny9Ru4pOgb~keJ0TGRMfDMY3RJ6COMNAWo~XW4NoQ2vjRHWuWRa8AObOXm1AtAbdh9oEzqGqcb55IlXnOZmlIgkXAOCxG~Ei3k2gFxokzHKyCPQidpBp84B3jA8DKoGINig7RawZZHOWm5mSOnybDlJ4zCB4qBfxl~OjR1AEH-XdOS76gM601j-AND4ChI92kW63Xf05F9GyjrYxE4JrSyTxFtorTZL6yqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_pilot_inference_study_for_a_beta_Bernoulli_spatial_scan_statistic","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117186709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117186709/thumbnails/1.jpg","file_name":"presentation-20.pdf","download_url":"https://www.academia.edu/attachments/117186709/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_pilot_inference_study_for_a_beta_Berno.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117186709/presentation-20-libre.pdf?1722666824=\u0026response-content-disposition=attachment%3B+filename%3DA_pilot_inference_study_for_a_beta_Berno.pdf\u0026Expires=1732780711\u0026Signature=WvhKuv-R8V5YH0EbsdY2lXTtgt~IFcJJGBwnNKhm2-rChpuYiWXFk9vTMS6K5zcgc3vr3g52sR61mkduCSuHNbBn93HJsliDGfl7bqkSitafEafDZN7Ny9Ru4pOgb~keJ0TGRMfDMY3RJ6COMNAWo~XW4NoQ2vjRHWuWRa8AObOXm1AtAbdh9oEzqGqcb55IlXnOZmlIgkXAOCxG~Ei3k2gFxokzHKyCPQidpBp84B3jA8DKoGINig7RawZZHOWm5mSOnybDlJ4zCB4qBfxl~OjR1AEH-XdOS76gM601j-AND4ChI92kW63Xf05F9GyjrYxE4JrSyTxFtorTZL6yqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":18574,"name":"Inference","url":"https://www.academia.edu/Documents/in/Inference"},{"id":98937,"name":"Statistic","url":"https://www.academia.edu/Documents/in/Statistic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122528314"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122528314/Introduction_to_the_Issue_on_Acoustic_Source_Localization_and_Tracking_in_Dynamic_Real_Life_Scenes"><img alt="Research paper thumbnail of Introduction to the Issue on Acoustic Source Localization and Tracking in Dynamic Real-Life Scenes" class="work-thumbnail" src="https://attachments.academia-assets.com/117172737/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122528314/Introduction_to_the_Issue_on_Acoustic_Source_Localization_and_Tracking_in_Dynamic_Real_Life_Scenes">Introduction to the Issue on Acoustic Source Localization and Tracking in Dynamic Real-Life Scenes</a></div><div class="wp-workCard_item"><span>IEEE Journal of Selected Topics in Signal Processing</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3726771217a208505fea0b9f997be96f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117172737,&quot;asset_id&quot;:122528314,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117172737/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122528314"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122528314"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122528314; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122528314]").text(description); $(".js-view-count[data-work-id=122528314]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122528314; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122528314']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122528314, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3726771217a208505fea0b9f997be96f" } } $('.js-work-strip[data-work-id=122528314]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122528314,"title":"Introduction to the Issue on Acoustic Source Localization and Tracking in Dynamic Real-Life Scenes","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Journal of Selected Topics in Signal Processing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122528314/Introduction_to_the_Issue_on_Acoustic_Source_Localization_and_Tracking_in_Dynamic_Real_Life_Scenes","translated_internal_url":"","created_at":"2024-08-02T04:18:18.187-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41973045,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117172737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172737/thumbnails/1.jpg","file_name":"08688693.pdf","download_url":"https://www.academia.edu/attachments/117172737/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Introduction_to_the_Issue_on_Acoustic_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172737/08688693-libre.pdf?1722600609=\u0026response-content-disposition=attachment%3B+filename%3DIntroduction_to_the_Issue_on_Acoustic_So.pdf\u0026Expires=1732780711\u0026Signature=D2rvf68CsXauT1g~MYSD~U3LyUOntiEPzk6fX6YNINDAhuN8x0r38uwX0HYUuCDnr1rfWiv3dK3WdVDh3wvQL3naqladxb~Wgfb7JFRIe0jbx4YIEIALbcalJdJ0blhiVzyWll2YNqLAzE7ZbMVXh2nHP5DtGyz1nqDl8gkCKMRK~4uvoBxRN1QtGXiOTK0bj8Is8Az5QYq0T14BRMU95tDO8vj2cqpXhV01jf2FOsgDr1ePZxX8h-QIIkt9lLBKbSqBlm~YFEN7lnwVVDG30Q4Y7-bCmBe5nPdYwPisSEx9-95szLIl0uf~iI1euG-2deshszyH7f~v2YgONJExHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Introduction_to_the_Issue_on_Acoustic_Source_Localization_and_Tracking_in_Dynamic_Real_Life_Scenes","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":41973045,"first_name":"Peter","middle_initials":"","last_name":"Willett","page_name":"WillettJohn","domain_name":"independent","created_at":"2016-01-23T14:42:17.112-08:00","display_name":"Peter Willett","url":"https://independent.academia.edu/WillettJohn"},"attachments":[{"id":117172737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172737/thumbnails/1.jpg","file_name":"08688693.pdf","download_url":"https://www.academia.edu/attachments/117172737/download_file?st=MTczMjc3NzExMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Introduction_to_the_Issue_on_Acoustic_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172737/08688693-libre.pdf?1722600609=\u0026response-content-disposition=attachment%3B+filename%3DIntroduction_to_the_Issue_on_Acoustic_So.pdf\u0026Expires=1732780711\u0026Signature=D2rvf68CsXauT1g~MYSD~U3LyUOntiEPzk6fX6YNINDAhuN8x0r38uwX0HYUuCDnr1rfWiv3dK3WdVDh3wvQL3naqladxb~Wgfb7JFRIe0jbx4YIEIALbcalJdJ0blhiVzyWll2YNqLAzE7ZbMVXh2nHP5DtGyz1nqDl8gkCKMRK~4uvoBxRN1QtGXiOTK0bj8Is8Az5QYq0T14BRMU95tDO8vj2cqpXhV01jf2FOsgDr1ePZxX8h-QIIkt9lLBKbSqBlm~YFEN7lnwVVDG30Q4Y7-bCmBe5nPdYwPisSEx9-95szLIl0uf~iI1euG-2deshszyH7f~v2YgONJExHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117172736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117172736/thumbnails/1.jpg","file_name":"08688693.pdf","download_url":"https://www.academia.edu/attachments/117172736/download_file","bulk_download_file_name":"Introduction_to_the_Issue_on_Acoustic_So.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117172736/08688693-libre.pdf?1722600610=\u0026response-content-disposition=attachment%3B+filename%3DIntroduction_to_the_Issue_on_Acoustic_So.pdf\u0026Expires=1732780711\u0026Signature=LCAf6yD3NSAXgdg6V1f9AkBmSUhbKS3pifAaWsYCF-qpHXvg2pRYfqZf-srlRaXFrQlW5TL~BuFps9TrKBrCtdU2P4BgSqaIV8xx4oWZQodkBfaG40W~~j1UEqt2D8uihZjTCoiCEHAbDdJLtfARDN4tuyW~LdYzUhlwbrRSHlezhEjvIXjfbX7yx7IxpwAYOAJSecB2U~hW6cRwE9jdByhs-3nj3XhmygbdELRonZAqUp1J~fT7045kbzH5GI3N7yzCJNixIBMt1Ky0ZABLZfEdgFSEzZF-aXuWMHC7RHQtxXUnYPRiipK~cw8rd5ddP4VYFrdjl5iuUJScPREVOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":43787488,"url":"http://xplorestaging.ieee.org/ielx7/4200690/8688688/08688693.pdf?arnumber=8688693"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "1e89024764eb9d7a3e47e7b7a3a2b50f8370c179f1cf015c6b121be88189ef90", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="dlqTHsmml8owCkfrXcSM/B/NOtVWL5U7fRX3nF8icqJDM19uqAU7kqDLHmqLvoY+wWTI64b1sMy24jaI5l2fiA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/WillettJohn" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="uW9BV+iL4dOYmnwAsYagU6G+2R12ak7Puo84d6UBqlyMBo0niShNiwhbJYFn/KqRfxcrI6awazhxePljHH5Hdg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10