CINXE.COM

Barry Richmond - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Barry Richmond - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="yiumHtAxGH2vU5g8amjveKssfqJBbKRG1wpH+SfMpYJ3Ecci/QEK79NGMyu3h+jaFjsNZmqkaUbOj8rhvpYDYQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="barry richmond" /> <meta name="description" content="Barry Richmond: 7 Followers, 5 Following, 30 Research papers. Research interests: Philosophy of Biology, Neuroscience, and Philosophy of Science." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15270,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277251818,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732527339000); window.Aedu.timeDifference = new Date().getTime() - 1732527339000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/BarryRichmond3" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":823,"name":"Philosophy of Biology","url":"https://www.academia.edu/Documents/in/Philosophy_of_Biology"},{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":821,"name":"Philosophy of Science","url":"https://www.academia.edu/Documents/in/Philosophy_of_Science"},{"id":1390054,"name":"Epistemology of Time","url":"https://www.academia.edu/Documents/in/Epistemology_of_Time"},{"id":1390053,"name":"Information Processing In the Brain","url":"https://www.academia.edu/Documents/in/Information_Processing_In_the_Brain"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BarryRichmond3&quot;,&quot;location&quot;:&quot;/BarryRichmond3&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BarryRichmond3&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-468da3b9-002f-40af-8447-31b18bde117d"></div> <div id="ProfileCheckPaperUpdate-react-component-468da3b9-002f-40af-8447-31b18bde117d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Barry Richmond</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Barry" data-follow-user-id="42086941" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="42086941"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">7</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42086941" href="https://www.academia.edu/Documents/in/Philosophy_of_Biology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BarryRichmond3&quot;,&quot;location&quot;:&quot;/BarryRichmond3&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BarryRichmond3&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Philosophy of Biology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-723f4443-adea-4162-96f2-46f5aac64edc"></div> <div id="Pill-react-component-723f4443-adea-4162-96f2-46f5aac64edc"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42086941" href="https://www.academia.edu/Documents/in/Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neuroscience&quot;]}" data-trace="false" data-dom-id="Pill-react-component-0b557eca-9be4-4ad9-bd96-ac7dd2120df2"></div> <div id="Pill-react-component-0b557eca-9be4-4ad9-bd96-ac7dd2120df2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42086941" href="https://www.academia.edu/Documents/in/Philosophy_of_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Philosophy of Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b5101377-c5e0-4ed8-a830-efe024f511de"></div> <div id="Pill-react-component-b5101377-c5e0-4ed8-a830-efe024f511de"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42086941" href="https://www.academia.edu/Documents/in/Epistemology_of_Time"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Epistemology of Time&quot;]}" data-trace="false" data-dom-id="Pill-react-component-6fe0b938-7e21-4def-a3fa-044e64500701"></div> <div id="Pill-react-component-6fe0b938-7e21-4def-a3fa-044e64500701"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="42086941" href="https://www.academia.edu/Documents/in/Information_Processing_In_the_Brain"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Information Processing In the Brain&quot;]}" data-trace="false" data-dom-id="Pill-react-component-bc42fa1a-fe8c-4e04-abef-24d341aa6101"></div> <div id="Pill-react-component-bc42fa1a-fe8c-4e04-abef-24d341aa6101"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Barry Richmond</h3></div><div class="js-work-strip profile--work_container" data-work-id="18825654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition"><img alt="Research paper thumbnail of Decoding of neuronal signals in visual pattern recognition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition">Decoding of neuronal signals in visual pattern recognition</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EmadEskandar">Emad Eskandar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18825654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18825654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18825654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18825654]").text(description); $(".js-view-count[data-work-id=18825654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18825654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18825654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18825654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18825654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18825654,"title":"Decoding of neuronal signals in visual pattern recognition","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition","translated_internal_url":"","created_at":"2015-11-22T15:34:27.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38914104,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":10625901,"work_id":18825654,"tagging_user_id":38914104,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"Decoding of neuronal signals in visual pattern recognition"}],"downloadable_attachments":[],"slug":"Decoding_of_neuronal_signals_in_visual_pattern_recognition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38914104,"first_name":"Emad","middle_initials":null,"last_name":"Eskandar","page_name":"EmadEskandar","domain_name":"independent","created_at":"2015-11-22T15:34:15.378-08:00","display_name":"Emad Eskandar","url":"https://independent.academia.edu/EmadEskandar"},"attachments":[],"research_interests":[{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831274"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of"><img alt="Research paper thumbnail of Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of">Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Single neurons in the ventral striatum of primates carry signals that are related to reward and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831274"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831274"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831274; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831274]").text(description); $(".js-view-count[data-work-id=20831274]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831274; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831274']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831274, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831274]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831274,"title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of","translated_title":"","metadata":{"abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to","internal_url":"https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of","translated_internal_url":"","created_at":"2016-01-26T05:46:08.623-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142770,"work_id":20831274,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2725153,"email":"t***r@uni-tuebingen.de","display_order":0,"name":"Thomas Aigner","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of"},{"id":14142779,"work_id":20831274,"tagging_user_id":42086941,"tagged_user_id":38595933,"co_author_invite_id":null,"email":"m***a@md.tsukuba.ac.jp","display_order":4194304,"name":"Munetaka Shidara","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of"}],"downloadable_attachments":[],"slug":"Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":372699,"name":"Information Analysis","url":"https://www.academia.edu/Documents/in/Information_Analysis"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1747114,"name":"Ventral Striatum","url":"https://www.academia.edu/Documents/in/Ventral_Striatum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules"><img alt="Research paper thumbnail of Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules" class="work-thumbnail" src="https://attachments.academia-assets.com/41920795/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules">Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9b074880667f2bcfdc2961fa2e9cd971" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41920795,&quot;asset_id&quot;:20831273,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831273]").text(description); $(".js-view-count[data-work-id=20831273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9b074880667f2bcfdc2961fa2e9cd971" } } $('.js-work-strip[data-work-id=20831273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831273,"title":"Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules","translated_title":"","metadata":{"abstract":"key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual","internal_url":"https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules","translated_internal_url":"","created_at":"2016-01-26T05:46:08.413-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795215,"work_id":20831273,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules"}],"downloadable_attachments":[{"id":41920795,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920795/thumbnails/1.jpg","file_name":"TE_perirhinal_reward_schedules.pdf","download_url":"https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Response_Differences_in_Monkey_TE_and_Pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920795/TE_perirhinal_reward_schedules-libre.pdf?1454481650=\u0026response-content-disposition=attachment%3B+filename%3DResponse_Differences_in_Monkey_TE_and_Pe.pdf\u0026Expires=1732530939\u0026Signature=BQbJ9ADjlBGr0Vnlu63ArVWrXuVuOqo9r5~vyhoX4aI9In0NrXmVp3DEAOFyhAlGkD4oAXEdLj-wjTBYCogZgCMxnu-CZQ8YNHV9TjZ4izQ8HtnOLbcJbKImIBpBj3olERFYqvglpBVr9Fpz8~TPLPzGHLkes2oJGcDaKBvNP5d7ImwTj-r-iMa7K3Rq6hLwgFCQs2OJ~RW0L8qNvVPrxHJc8p193NcBAI-pJcXmD99tIX~H~EoTWZcw1WSsQP~mN--szsjgvy85a2ACu~Zqok9a2Toxb7n3Q9xBgUFC1Rmyd0rB9bdcEHu02tBAMgxmfaBRB8A3jJ-2oyRiX9OvKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41920795,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920795/thumbnails/1.jpg","file_name":"TE_perirhinal_reward_schedules.pdf","download_url":"https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Response_Differences_in_Monkey_TE_and_Pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920795/TE_perirhinal_reward_schedules-libre.pdf?1454481650=\u0026response-content-disposition=attachment%3B+filename%3DResponse_Differences_in_Monkey_TE_and_Pe.pdf\u0026Expires=1732530939\u0026Signature=BQbJ9ADjlBGr0Vnlu63ArVWrXuVuOqo9r5~vyhoX4aI9In0NrXmVp3DEAOFyhAlGkD4oAXEdLj-wjTBYCogZgCMxnu-CZQ8YNHV9TjZ4izQ8HtnOLbcJbKImIBpBj3olERFYqvglpBVr9Fpz8~TPLPzGHLkes2oJGcDaKBvNP5d7ImwTj-r-iMa7K3Rq6hLwgFCQs2OJ~RW0L8qNvVPrxHJc8p193NcBAI-pJcXmD99tIX~H~EoTWZcw1WSsQP~mN--szsjgvy85a2ACu~Zqok9a2Toxb7n3Q9xBgUFC1Rmyd0rB9bdcEHu02tBAMgxmfaBRB8A3jJ-2oyRiX9OvKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":281572,"name":"Response-Selection","url":"https://www.academia.edu/Documents/in/Response-Selection"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":473567,"name":"Neuronal Activity","url":"https://www.academia.edu/Documents/in/Neuronal_Activity"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1751983,"name":"Delayed Matching-to-Sample","url":"https://www.academia.edu/Documents/in/Delayed_Matching-to-Sample"}],"urls":[{"id":6239517,"url":"http://neuron.nimh.nih.gov/richmond/TE_perirhinal_reward_schedules.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials"><img alt="Research paper thumbnail of Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials">Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Single neurons in the ventral striatum of primates carry signals that are related to reward and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831272]").text(description); $(".js-view-count[data-work-id=20831272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831272, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831272,"title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials","translated_title":"","metadata":{"abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as","internal_url":"https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials","translated_internal_url":"","created_at":"2016-01-26T05:46:08.152-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142771,"work_id":20831272,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2725153,"email":"t***r@uni-tuebingen.de","display_order":0,"name":"Thomas Aigner","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials"},{"id":14142780,"work_id":20831272,"tagging_user_id":42086941,"tagged_user_id":38595933,"co_author_invite_id":null,"email":"m***a@md.tsukuba.ac.jp","display_order":4194304,"name":"Munetaka Shidara","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials"}],"downloadable_attachments":[],"slug":"Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":372699,"name":"Information Analysis","url":"https://www.academia.edu/Documents/in/Information_Analysis"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1747114,"name":"Ventral Striatum","url":"https://www.academia.edu/Documents/in/Ventral_Striatum"}],"urls":[{"id":6239516,"url":"http://staff.aist.go.jp/m.shidara/Shidara1998.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices"><img alt="Research paper thumbnail of Coding Strategies in Monkey V1 and Inferior Temporal Cortices" class="work-thumbnail" src="https://attachments.academia-assets.com/41586620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices">Coding Strategies in Monkey V1 and Inferior Temporal Cortices</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We would like to know whether the statistics of neuronal responses vary across cortical areas. We...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="653637a43f2ad230f72d35cdc07ab729" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586620,&quot;asset_id&quot;:20831271,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831271]").text(description); $(".js-view-count[data-work-id=20831271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "653637a43f2ad230f72d35cdc07ab729" } } $('.js-work-strip[data-work-id=20831271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831271,"title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices","translated_title":"","metadata":{"abstract":"We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the","internal_url":"https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices","translated_internal_url":"","created_at":"2016-01-26T05:46:07.976-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795222,"work_id":20831271,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":318321,"email":"p***l@gatsby.ucl.ac.uk","display_order":0,"name":"Peter Latham","title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices"},{"id":14142773,"work_id":20831271,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2981897,"email":"m***r@merck.com","display_order":4194304,"name":"Matthew Wiener","title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices"}],"downloadable_attachments":[{"id":41586620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586620/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586620/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=g4i2IC3H1dqh1DuH-sNu~esstIMuIQSg0PSYdxR7HfaJ8DOadSYYdrbmL5CPzyplEzp7WNejVFKlqjShQZLN2olia6njcQm12YW1ZgI6oZPTz8IwNhi8w52NmC98QcGdrudOJapqdBHxokHN5iynf0VXsdqJ5yByCElIMBhvLfnEWumDMVtwLyLb8jH9Aq~hPXAxNYaGAYQRJvlR5WbUCTTHJ~uVmkCwDKTTO4rT4Wdb7kTkBW2sUxiXw~0EwCORB9fJtVsd8YotD99jfeim5uTTY0rKAh7ogKH3~5FF76QrAnJcKF3vyXF4kiVlC8x4r7z7g60g3Z706odX0WvDew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586620/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586620/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=g4i2IC3H1dqh1DuH-sNu~esstIMuIQSg0PSYdxR7HfaJ8DOadSYYdrbmL5CPzyplEzp7WNejVFKlqjShQZLN2olia6njcQm12YW1ZgI6oZPTz8IwNhi8w52NmC98QcGdrudOJapqdBHxokHN5iynf0VXsdqJ5yByCElIMBhvLfnEWumDMVtwLyLb8jH9Aq~hPXAxNYaGAYQRJvlR5WbUCTTHJ~uVmkCwDKTTO4rT4Wdb7kTkBW2sUxiXw~0EwCORB9fJtVsd8YotD99jfeim5uTTY0rKAh7ogKH3~5FF76QrAnJcKF3vyXF4kiVlC8x4r7z7g60g3Z706odX0WvDew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41586621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586621/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586621/download_file","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586621/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=KTGnA9~TYzzgECMNg-nZc0POXlCnfLL-ztbGRd4eXNqF1vMWNIkTEpDOBqdP7Ciw0CY7~w2R2ANIDXhEu8JT0Br4WB3ns8kODlF-JbsR1FIbhcSjzPb2B0IbtuaD53ze-PbqyTZ57eMaQ~zN62LF3L8Gyrx~JjFPvrm7~Ltfls2rS3lZ8amDxjUCkdqAsw2Djywd080Hd~B4yHKpACKSHX0Kt7IVLgLqhMoFJv0BO6G29ZK06h3OHRNFGvEGqmujQMI5sEOIyeCjxWIw147yFtgUVifNRTWS3gzjbDTh4rLGLMowyPT4l2TjQGeHwO6~fSzCy360m2kmCd1Fwx5j3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":294768,"name":"Wakefulness","url":"https://www.academia.edu/Documents/in/Wakefulness"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1142720,"name":"Normal Distribution","url":"https://www.academia.edu/Documents/in/Normal_Distribution"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1400558,"name":"Channel Capacity","url":"https://www.academia.edu/Documents/in/Channel_Capacity"},{"id":1956581,"name":"Dynamic Range","url":"https://www.academia.edu/Documents/in/Dynamic_Range"}],"urls":[{"id":6239515,"url":"http://arxiv.org/abs/q-bio/0309026"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model"><img alt="Research paper thumbnail of Anomalous response variability in a balanced cortical network model" class="work-thumbnail" src="https://attachments.academia-assets.com/41586656/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model">Anomalous response variability in a balanced cortical network model</a></div><div class="wp-workCard_item"><span>Neurocomputing</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d9bb3af5a6c164b0cd83d0a9c52b3771" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586656,&quot;asset_id&quot;:20831270,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831270]").text(description); $(".js-view-count[data-work-id=20831270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831270, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d9bb3af5a6c164b0cd83d0a9c52b3771" } } $('.js-work-strip[data-work-id=20831270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831270,"title":"Anomalous response variability in a balanced cortical network model","translated_title":"","metadata":{"grobid_abstract":"We use mean field theory to study the response properties of a simple randomlyconnected model cortical network of leaky integrate-and-fire neurons with balanced excitation and inhibition. The formulation permits arbitrary temporal variation of the input to the network and takes exact account of temporal firing correlations. We find that neuronal firing statistics depend sensitively on the firing threshold. In particular, spike count variances can be either significantly greater than or significantly less than those for a Poisson process. These findings may help in understanding the variability observed experimentally in cortical neuronal responses.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Neurocomputing","grobid_abstract_attachment_id":41586656},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model","translated_internal_url":"","created_at":"2016-01-26T05:46:07.831-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795202,"work_id":20831270,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Anomalous response variability in a balanced cortical network model"},{"id":13795207,"work_id":20831270,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3224551,"email":"k***l@nordita.dk","display_order":4194304,"name":"Kristian Nilsen","title":"Anomalous response variability in a balanced cortical network model"}],"downloadable_attachments":[{"id":41586656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586656/thumbnails/1.jpg","file_name":"0202145.pdf","download_url":"https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_response_variability_in_a_bala.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586656/0202145-libre.pdf?1453828858=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_response_variability_in_a_bala.pdf\u0026Expires=1732530939\u0026Signature=YVOkDp-qiEV6J6oEjm2apw634wKOUbp7-zdXrqfGnRFQC5EP5GcWPGlTeUeCmHWToJwkVn-KvAkQMSQFUAnDo38MNzFzbg0XosYKa9RSfHtGvVUMFDPyAJLTGt-Ru1jbiyG4YgoYzjhFI4xClDIZg0tBVgbYSIGtdx3GSGcR1NLTpkFOhT9gsiCwSy~LK2xyi7nFDiROHES5wltOdj~YJ01gNCHvLvr-VBrN7qQjcKJDOzXyj-IOwBEIqX6cZDCL-NlK9mr4KLwSdpIn7fNN~U-6k2dAGuM5lXlLqJdmB41SLtPQ1ihp3jZCKUW66XXRiy4adNU7XP25A5vVGJU2Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anomalous_response_variability_in_a_balanced_cortical_network_model","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586656/thumbnails/1.jpg","file_name":"0202145.pdf","download_url":"https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_response_variability_in_a_bala.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586656/0202145-libre.pdf?1453828858=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_response_variability_in_a_bala.pdf\u0026Expires=1732530939\u0026Signature=YVOkDp-qiEV6J6oEjm2apw634wKOUbp7-zdXrqfGnRFQC5EP5GcWPGlTeUeCmHWToJwkVn-KvAkQMSQFUAnDo38MNzFzbg0XosYKa9RSfHtGvVUMFDPyAJLTGt-Ru1jbiyG4YgoYzjhFI4xClDIZg0tBVgbYSIGtdx3GSGcR1NLTpkFOhT9gsiCwSy~LK2xyi7nFDiROHES5wltOdj~YJ01gNCHvLvr-VBrN7qQjcKJDOzXyj-IOwBEIqX6cZDCL-NlK9mr4KLwSdpIn7fNN~U-6k2dAGuM5lXlLqJdmB41SLtPQ1ihp3jZCKUW66XXRiy4adNU7XP25A5vVGJU2Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":306573,"name":"Neurocomputing","url":"https://www.academia.edu/Documents/in/Neurocomputing"},{"id":411912,"name":"Poisson Process","url":"https://www.academia.edu/Documents/in/Poisson_Process"},{"id":871148,"name":"Network Model","url":"https://www.academia.edu/Documents/in/Network_Model"},{"id":1151194,"name":"Mean Field Theory","url":"https://www.academia.edu/Documents/in/Mean_Field_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model"><img alt="Research paper thumbnail of Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model" class="work-thumbnail" src="https://attachments.academia-assets.com/41586690/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model">Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model</a></div><div class="wp-workCard_item"><span>The Journal of neuroscience : the official journal of the Society for Neuroscience</span><span>, Jan 15, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the brain, spike trains are generated in time and presumably also interpreted as they unfold i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0be4b60bbb82970cdad33b3b7974453d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586690,&quot;asset_id&quot;:20831269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831269]").text(description); $(".js-view-count[data-work-id=20831269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0be4b60bbb82970cdad33b3b7974453d" } } $('.js-work-strip[data-work-id=20831269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831269,"title":"Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model","translated_title":"","metadata":{"abstract":"In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...","publication_date":{"day":15,"month":1,"year":2003,"errors":{}},"publication_name":"The Journal of neuroscience : the official journal of the Society for Neuroscience"},"translated_abstract":"In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...","internal_url":"https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model","translated_internal_url":"","created_at":"2016-01-26T05:46:07.709-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142775,"work_id":20831269,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2981897,"email":"m***r@merck.com","display_order":0,"name":"Matthew Wiener","title":"Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model"}],"downloadable_attachments":[{"id":41586690,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586690/thumbnails/1.jpg","file_name":"2394.pdf","download_url":"https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoding_spike_trains_instant_by_instant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586690/2394-libre.pdf?1453828855=\u0026response-content-disposition=attachment%3B+filename%3DDecoding_spike_trains_instant_by_instant.pdf\u0026Expires=1732530939\u0026Signature=XD8bh4VxSWuj6n6DBru6CRVkT3-Q1fE1DaOmOZqEI1zcdpsAhJPHE~xudAfaOFNa97bB5jTv89EqCFN0~qLCxTk0Fk0~3Cip3UEjHvpUg65M4nX8B05~1xjQZDv43MLvo~LNrkWpNGzR~BdXff9ARklUBHzhLAGZYt3f~9MuZNDCMFjhJurcCQsvT9~S2MNmEVYBPIx9IH5gkotFpCuo1Y9y7bnogISR-S7WsMTl-3EWGzINQj~G9ICvxghxxuF5EKSMANV6htzelzKZz8Cn~GKyKYcrTDpP7OkHgH7x~qMYJ5~oRD05AIdaFPMJOIJmC9jYpUdCCwP-rNxsOy-K5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586690,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586690/thumbnails/1.jpg","file_name":"2394.pdf","download_url":"https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoding_spike_trains_instant_by_instant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586690/2394-libre.pdf?1453828855=\u0026response-content-disposition=attachment%3B+filename%3DDecoding_spike_trains_instant_by_instant.pdf\u0026Expires=1732530939\u0026Signature=XD8bh4VxSWuj6n6DBru6CRVkT3-Q1fE1DaOmOZqEI1zcdpsAhJPHE~xudAfaOFNa97bB5jTv89EqCFN0~qLCxTk0Fk0~3Cip3UEjHvpUg65M4nX8B05~1xjQZDv43MLvo~LNrkWpNGzR~BdXff9ARklUBHzhLAGZYt3f~9MuZNDCMFjhJurcCQsvT9~S2MNmEVYBPIx9IH5gkotFpCuo1Y9y7bnogISR-S7WsMTl-3EWGzINQj~G9ICvxghxxuF5EKSMANV6htzelzKZz8Cn~GKyKYcrTDpP7OkHgH7x~qMYJ5~oRD05AIdaFPMJOIJmC9jYpUdCCwP-rNxsOy-K5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":49483,"name":"Spike train analysis","url":"https://www.academia.edu/Documents/in/Spike_train_analysis"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":196189,"name":"Sample Size","url":"https://www.academia.edu/Documents/in/Sample_Size"},{"id":411912,"name":"Poisson Process","url":"https://www.academia.edu/Documents/in/Poisson_Process"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1844830,"name":"Poisson Model","url":"https://www.academia.edu/Documents/in/Poisson_Model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831268/Knowing_without_doing"><img alt="Research paper thumbnail of Knowing without doing" class="work-thumbnail" src="https://attachments.academia-assets.com/42347324/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831268/Knowing_without_doing">Knowing without doing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="517c62fec1c03b2c9610a0bd1c0dcdb4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42347324,&quot;asset_id&quot;:20831268,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831268]").text(description); $(".js-view-count[data-work-id=20831268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831268, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "517c62fec1c03b2c9610a0bd1c0dcdb4" } } $('.js-work-strip[data-work-id=20831268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831268,"title":"Knowing without doing","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831268/Knowing_without_doing","translated_internal_url":"","created_at":"2016-01-26T05:46:07.480-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795223,"work_id":20831268,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3224554,"email":"l***r@gatsby.ucl.ac.uk","display_order":0,"name":"Alexander Lerchner","title":"Knowing without doing"},{"id":13795224,"work_id":20831268,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":840569,"email":"l***9@duke.edu","display_order":4194304,"name":"Giancarlo La Camera","title":"Knowing without doing"}],"downloadable_attachments":[{"id":42347324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347324/thumbnails/1.jpg","file_name":"Knowing_without_doing20160207-14055-w8vylw.pdf","download_url":"https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowing_without_doing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347324/Knowing_without_doing20160207-14055-w8vylw-libre.pdf?1454907377=\u0026response-content-disposition=attachment%3B+filename%3DKnowing_without_doing.pdf\u0026Expires=1732530939\u0026Signature=Ci2Uzvg62VmmNYZ5Xlh1f97qLQ3xNxoYsaChyYjgeOpTXpKuhyeGSOogbn1mDODVavYrtppMHWm1sW0e3n5byo907SQpkQdWXGqrB6nEt-dSZl4aEgjHa265aXqxyxhFio1PQILM4dKZddpnwmTQPXqiJZjpej0hB2S4OlWFIJL6Jy4rbNbaPnYkd8XxI3XEGhHLoWO70KXKu5wyNn5fwfuDovS5zq2cHmqrNQHTT4bPwh5TYKyA7Agh3tS9f52YRCJfaeUiu~6oRZfkn8PdhrsFImrfkj6MQU55ZJsWMuEcIbjHhw~1v-8bXCc6JkA8dllDdlusorMtuoS5yBpPdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Knowing_without_doing","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":42347324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347324/thumbnails/1.jpg","file_name":"Knowing_without_doing20160207-14055-w8vylw.pdf","download_url":"https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowing_without_doing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347324/Knowing_without_doing20160207-14055-w8vylw-libre.pdf?1454907377=\u0026response-content-disposition=attachment%3B+filename%3DKnowing_without_doing.pdf\u0026Expires=1732530939\u0026Signature=Ci2Uzvg62VmmNYZ5Xlh1f97qLQ3xNxoYsaChyYjgeOpTXpKuhyeGSOogbn1mDODVavYrtppMHWm1sW0e3n5byo907SQpkQdWXGqrB6nEt-dSZl4aEgjHa265aXqxyxhFio1PQILM4dKZddpnwmTQPXqiJZjpej0hB2S4OlWFIJL6Jy4rbNbaPnYkd8XxI3XEGhHLoWO70KXKu5wyNn5fwfuDovS5zq2cHmqrNQHTT4bPwh5TYKyA7Agh3tS9f52YRCJfaeUiu~6oRZfkn8PdhrsFImrfkj6MQU55ZJsWMuEcIbjHhw~1v-8bXCc6JkA8dllDdlusorMtuoS5yBpPdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":246,"name":"Psychophysics","url":"https://www.academia.edu/Documents/in/Psychophysics"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4307,"name":"Behavior","url":"https://www.academia.edu/Documents/in/Behavior"},{"id":15594,"name":"Systems Neuroscience","url":"https://www.academia.edu/Documents/in/Systems_Neuroscience"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":61684,"name":"Model","url":"https://www.academia.edu/Documents/in/Model"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":100946,"name":"Functional Imaging","url":"https://www.academia.edu/Documents/in/Functional_Imaging"},{"id":114550,"name":"Cortex","url":"https://www.academia.edu/Documents/in/Cortex"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1756573,"name":"Motor Skills","url":"https://www.academia.edu/Documents/in/Motor_Skills"}],"urls":[{"id":6543507,"url":"https://www.researchgate.net/profile/Giancarlo_La_Camera/publication/6610522_Knowing_without_doing/links/0c960524ee8a6ed282000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex"><img alt="Research paper thumbnail of Learning motivational significance of visual cues for reward schedules requires rhinal cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex">Learning motivational significance of visual cues for reward schedules requires rhinal cortex</a></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The limbic system is necessary to associate stimuli with their motivational and emotional signifi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey&amp;#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831267]").text(description); $(".js-view-count[data-work-id=20831267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831267,"title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex","translated_title":"","metadata":{"abstract":"The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey\u0026#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Nature Neuroscience"},"translated_abstract":"The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey\u0026#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We","internal_url":"https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex","translated_internal_url":"","created_at":"2016-01-26T05:46:07.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795214,"work_id":20831267,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex"},{"id":14142782,"work_id":20831267,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":4194304,"name":"Elisabeth Murray","title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex"}],"downloadable_attachments":[],"slug":"Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":42162,"name":"Emotions","url":"https://www.academia.edu/Documents/in/Emotions"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":72150,"name":"Discrimination Learning","url":"https://www.academia.edu/Documents/in/Discrimination_Learning"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":230879,"name":"Denervation","url":"https://www.academia.edu/Documents/in/Denervation"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":494840,"name":"Limbic System","url":"https://www.academia.edu/Documents/in/Limbic_System"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831266"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations"><img alt="Research paper thumbnail of Role of perirhinal cortex in object perception, memory, and associations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations">Role of perirhinal cortex in object perception, memory, and associations</a></div><div class="wp-workCard_item"><span>Current Opinion in Neurobiology - CURR OPIN NEUROBIOL</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831266"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831266"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831266; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831266]").text(description); $(".js-view-count[data-work-id=20831266]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831266; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831266']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831266, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831266]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831266,"title":"Role of perirhinal cortex in object perception, memory, and associations","translated_title":"","metadata":{"abstract":"The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Current Opinion in Neurobiology - CURR OPIN NEUROBIOL"},"translated_abstract":"The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.","internal_url":"https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations","translated_internal_url":"","created_at":"2016-01-26T05:46:07.037-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142783,"work_id":20831266,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":0,"name":"Elisabeth Murray","title":"Role of perirhinal cortex in object perception, memory, and associations"}],"downloadable_attachments":[],"slug":"Role_of_perirhinal_cortex_in_object_perception_memory_and_associations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":867,"name":"Perception","url":"https://www.academia.edu/Documents/in/Perception"},{"id":17113,"name":"Face recognition (Psychology)","url":"https://www.academia.edu/Documents/in/Face_recognition_Psychology_"},{"id":24782,"name":"Recognition memory","url":"https://www.academia.edu/Documents/in/Recognition_memory"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":72150,"name":"Discrimination Learning","url":"https://www.academia.edu/Documents/in/Discrimination_Learning"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":118256,"name":"Object Perception","url":"https://www.academia.edu/Documents/in/Object_Perception"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":6239514,"url":"http://www.sciencedirect.com/science/article/pii/S0959438800001951"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831265/Role_of_inferior_ROLLS"><img alt="Research paper thumbnail of Role of inferior ROLLS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831265/Role_of_inferior_ROLLS">Role of inferior ROLLS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831265]").text(description); $(".js-view-count[data-work-id=20831265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831265, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831265,"title":"Role of inferior ROLLS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831265/Role_of_inferior_ROLLS","translated_internal_url":"","created_at":"2016-01-26T05:46:06.912-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795212,"work_id":20831265,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":215356,"email":"d***n@yahoo.fr","display_order":0,"name":"L. Optican","title":"Role of inferior ROLLS"},{"id":14142772,"work_id":20831265,"tagging_user_id":42086941,"tagged_user_id":38914104,"co_author_invite_id":null,"email":"e***r@partners.org","display_order":4194304,"name":"Emad Eskandar","title":"Role of inferior ROLLS"}],"downloadable_attachments":[],"slug":"Role_of_inferior_ROLLS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons"><img alt="Research paper thumbnail of First-spike timing precision of monkey V1 neurons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons">First-spike timing precision of monkey V1 neurons</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831264]").text(description); $(".js-view-count[data-work-id=20831264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831264, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831264,"title":"First-spike timing precision of monkey V1 neurons","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons","translated_internal_url":"","created_at":"2016-01-26T05:46:06.785-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795206,"work_id":20831264,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"First-spike timing precision of monkey V1 neurons"}],"downloadable_attachments":[],"slug":"First_spike_timing_precision_of_monkey_V1_neurons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward"><img alt="Research paper thumbnail of DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward" class="work-thumbnail" src="https://attachments.academia-assets.com/41920896/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward">DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When schedules of several operant trials must be successfully completed to obtain a reward, monke...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a705a2e14d745984f62007a8f623436" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41920896,&quot;asset_id&quot;:20831263,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831263]").text(description); $(".js-view-count[data-work-id=20831263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831263, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a705a2e14d745984f62007a8f623436" } } $('.js-work-strip[data-work-id=20831263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831263,"title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward","translated_title":"","metadata":{"abstract":"When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.","internal_url":"https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward","translated_internal_url":"","created_at":"2016-01-26T05:46:06.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795213,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":13795216,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":33439206,"co_author_invite_id":null,"email":"r***s@mail.nih.gov","display_order":4194304,"name":"Richard Saunders","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142765,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289041,"email":"d***m@stanford.edu","display_order":6291456,"name":"D. Montague","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142766,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":44515232,"co_author_invite_id":3289042,"email":"b***d@oregonstate.edu","display_order":7340032,"name":"B. Stubblefield","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142767,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":14252097,"co_author_invite_id":null,"email":"s***d@mac.com","display_order":7864320,"name":"Sarah Steenrod","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142784,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":8126464,"name":"Elisabeth Murray","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"}],"downloadable_attachments":[{"id":41920896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920896/thumbnails/1.jpg","file_name":"12336.full.pdf","download_url":"https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DNA_targeting_of_rhinal_cortex_D2_recept.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920896/12336.full-libre.pdf?1454481768=\u0026response-content-disposition=attachment%3B+filename%3DDNA_targeting_of_rhinal_cortex_D2_recept.pdf\u0026Expires=1732498551\u0026Signature=RkPWAaj8IFqub3TX6Lr5uPELF-VNvq-zBJQwpXkfvInmx6Yr7e94zC4D8CzKgnQreD7xLdSI3wwxk5RhzVmE4auGWyaip5lI-ZYyKs96fOzXIr9FtETTFXLbmklGSgWR1YHNabQY9EoVYwwqT0WUzuTeBLb3gVYFRTLCmj-0Piotx67rMmNedRy3kLLqi~Uxf3TGUkcBtFrE~6trex50f-~~fmt2cjLhisFEYDkP2wYucxS3b8FOGs4wj49Ygb4y8Gr5U19YrTmCot0CWUkRrvfPTyoXQ~ttF0xHEEwYkY33PkQwiDSYkvDZtDQlBNuZWSg26TEW5j~4lL4SxThdtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41920896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920896/thumbnails/1.jpg","file_name":"12336.full.pdf","download_url":"https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DNA_targeting_of_rhinal_cortex_D2_recept.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920896/12336.full-libre.pdf?1454481768=\u0026response-content-disposition=attachment%3B+filename%3DDNA_targeting_of_rhinal_cortex_D2_recept.pdf\u0026Expires=1732498551\u0026Signature=RkPWAaj8IFqub3TX6Lr5uPELF-VNvq-zBJQwpXkfvInmx6Yr7e94zC4D8CzKgnQreD7xLdSI3wwxk5RhzVmE4auGWyaip5lI-ZYyKs96fOzXIr9FtETTFXLbmklGSgWR1YHNabQY9EoVYwwqT0WUzuTeBLb3gVYFRTLCmj-0Piotx67rMmNedRy3kLLqi~Uxf3TGUkcBtFrE~6trex50f-~~fmt2cjLhisFEYDkP2wYucxS3b8FOGs4wj49Ygb4y8Gr5U19YrTmCot0CWUkRrvfPTyoXQ~ttF0xHEEwYkY33PkQwiDSYkvDZtDQlBNuZWSg26TEW5j~4lL4SxThdtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":35637,"name":"Molecular Mechanics","url":"https://www.academia.edu/Documents/in/Molecular_Mechanics"},{"id":41012,"name":"Recombinant DNA Technology","url":"https://www.academia.edu/Documents/in/Recombinant_DNA_Technology"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":72218,"name":"Vitamin D receptor","url":"https://www.academia.edu/Documents/in/Vitamin_D_receptor"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":120297,"name":"Ligand Binding","url":"https://www.academia.edu/Documents/in/Ligand_Binding"},{"id":238160,"name":"relational Learning","url":"https://www.academia.edu/Documents/in/relational_Learning"},{"id":245811,"name":"Vector control","url":"https://www.academia.edu/Documents/in/Vector_control"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":502720,"name":"Gene Targeting","url":"https://www.academia.edu/Documents/in/Gene_Targeting"},{"id":509439,"name":"Autoradiography","url":"https://www.academia.edu/Documents/in/Autoradiography"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations"><img alt="Research paper thumbnail of The relation between V1 neuronal responses and eye movement-like stimulus presentations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations">The relation between V1 neuronal responses and eye movement-like stimulus presentations</a></div><div class="wp-workCard_item"><span>Neurocomputing</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831262]").text(description); $(".js-view-count[data-work-id=20831262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831262, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831262,"title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations","translated_title":"","metadata":{"abstract":"... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurocomputing"},"translated_abstract":"... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...","internal_url":"https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations","translated_internal_url":"","created_at":"2016-01-26T05:46:06.479-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795205,"work_id":20831262,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations"},{"id":13795209,"work_id":20831262,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":744680,"email":"t***e@gmail.com","display_order":4194304,"name":"Timothy Gawne","title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations"}],"downloadable_attachments":[],"slug":"The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":159957,"name":"Complex Cell","url":"https://www.academia.edu/Documents/in/Complex_Cell"},{"id":306573,"name":"Neurocomputing","url":"https://www.academia.edu/Documents/in/Neurocomputing"},{"id":453610,"name":"Eye Movement","url":"https://www.academia.edu/Documents/in/Eye_Movement"},{"id":1015743,"name":"Image Sequence","url":"https://www.academia.edu/Documents/in/Image_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13053340"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples"><img alt="Research paper thumbnail of How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?" class="work-thumbnail" src="https://attachments.academia-assets.com/45735931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples">How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://sissa.academia.edu/ATreves">Alessandro Treves</a></span></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b32b32e53fd8eccfdd266356b989e97" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45735931,&quot;asset_id&quot;:13053340,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13053340"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13053340"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13053340; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13053340]").text(description); $(".js-view-count[data-work-id=13053340]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13053340; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13053340']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13053340, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b32b32e53fd8eccfdd266356b989e97" } } $('.js-work-strip[data-work-id=13053340]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13053340,"title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?","translated_title":"","metadata":{"grobid_abstract":"It is difficult to extract the information carried by neuronal responses about a set of stimuli because limited data samples result in biased estimates. Recently two improved procedures have been developed to calculate information from experimental results: a binning-and-correcting procedure and a neural network procedure. We have used data produced from a model of the spatiotemporal receptive fields of parvocellular and magnocellular lateral geniculate neurons to study the performance of these methods as a function of the number of trials used. Both procedures yield accurate results for one-dimensional neuronal codes. They can also be used to produce a reasonable estimate of the extra information in a three-dimensional code, in this instance, within 0.05-0.1 bit of the asymptotically calculated value-about 10% of the total transmitted information. We believe that this performance is much more accurate than previous procedures.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":45735931},"translated_abstract":null,"internal_url":"https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples","translated_internal_url":"","created_at":"2015-06-17T08:55:33.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32288545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1109346,"work_id":13053340,"tagging_user_id":32288545,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?"},{"id":1109214,"work_id":13053340,"tagging_user_id":32288545,"tagged_user_id":null,"co_author_invite_id":371861,"email":"s***i@ncl.ac.uk","display_order":null,"name":"Stefano Panzeri","title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?"}],"downloadable_attachments":[{"id":45735931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45735931/thumbnails/1.jpg","file_name":"How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e.pdf","download_url":"https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_Well_Can_We_Estimate_the_Information.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45735931/How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e-libre.pdf?1463558399=\u0026response-content-disposition=attachment%3B+filename%3DHow_Well_Can_We_Estimate_the_Information.pdf\u0026Expires=1732530939\u0026Signature=COVHt0wp07i7JjzVwtdMbLFAzvlBN2k-NmOTPlBi-rKke0hTqIIsGzXyhI4q1XW1COKdzPliGh1tkJ7uAvqOwnXlJz9RabhP-r1v4ryEMPZWFouT8JFSRGsKfdnhjXl5V7~5iZoCGjoSn-3wr6D9nOZwxwhtDwwXomxIl3Dtt8wpgsJpXax0Ecl1kh5Gg5-iz4PyTv2J1wKb8H~0Ut0foMuYif2mdXtsTZ-~-PXA4MlneW3W-E4Fsf~ArFydlNQt4GEhrZcdW5e9dy-PWSDimVufpdW182hQ4FFP-s4fxjPvOSzfNufff8P1m~M36OiH5GaMFb9uxDzxPNHlqC-ueA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32288545,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"ATreves","domain_name":"sissa","created_at":"2015-06-17T08:51:16.709-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/ATreves"},"attachments":[{"id":45735931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45735931/thumbnails/1.jpg","file_name":"How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e.pdf","download_url":"https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_Well_Can_We_Estimate_the_Information.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45735931/How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e-libre.pdf?1463558399=\u0026response-content-disposition=attachment%3B+filename%3DHow_Well_Can_We_Estimate_the_Information.pdf\u0026Expires=1732530939\u0026Signature=COVHt0wp07i7JjzVwtdMbLFAzvlBN2k-NmOTPlBi-rKke0hTqIIsGzXyhI4q1XW1COKdzPliGh1tkJ7uAvqOwnXlJz9RabhP-r1v4ryEMPZWFouT8JFSRGsKfdnhjXl5V7~5iZoCGjoSn-3wr6D9nOZwxwhtDwwXomxIl3Dtt8wpgsJpXax0Ecl1kh5Gg5-iz4PyTv2J1wKb8H~0Ut0foMuYif2mdXtsTZ-~-PXA4MlneW3W-E4Fsf~ArFydlNQt4GEhrZcdW5e9dy-PWSDimVufpdW182hQ4FFP-s4fxjPvOSzfNufff8P1m~M36OiH5GaMFb9uxDzxPNHlqC-ueA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831261"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure"><img alt="Research paper thumbnail of A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure" class="work-thumbnail" src="https://attachments.academia-assets.com/41586667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure">A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure</a></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0d63d166e2062d9c93b8b57fcb3fde5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586667,&quot;asset_id&quot;:20831261,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831261"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831261"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831261; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831261]").text(description); $(".js-view-count[data-work-id=20831261]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831261; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831261']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831261, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0d63d166e2062d9c93b8b57fcb3fde5" } } $('.js-work-strip[data-work-id=20831261]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831261,"title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure","translated_title":"","metadata":{"grobid_abstract":"In examining spike trains, different models are used to describe their structure. The different models often seem quite similar, but because they are cast in different formalisms, it is often difficult to compare their predictions. Here we use the information-geometric measure, an orthogonal coordinate representation of point processes, to express different models of stochastic point processes in a common coordinate system. Within such a framework, it becomes straightforward to visualize higher-order correlations of different models and thereby assess the differences between models. We apply the information-geometric measure to compare two similar but not identical models of neuronal spike trains: the inhomogeneous Markov and the mixture of Poisson models. It is shown that they differ in the second-and higher-order interaction terms. In the mixture of Poisson model, the second-and higher-order interactions are of comparable magnitude within each order, whereas in the inhomogeneous Markov model, they have alternating signs over different orders. This provides guidance about what measurements would effectively separate the two models. As newer models are proposed, they also can be compared to these models using information geometry.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":41586667},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure","translated_internal_url":"","created_at":"2016-01-26T05:46:06.170-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795217,"work_id":20831261,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2107164,"email":"h***n@brain.riken.jp","display_order":0,"name":"Hiroyuki Nakahara","title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure"},{"id":13795218,"work_id":20831261,"tagging_user_id":42086941,"tagged_user_id":35325170,"co_author_invite_id":null,"email":"a***i@brain.riken.jp","display_order":4194304,"name":"Arigon Am","title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure"}],"downloadable_attachments":[{"id":41586667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586667/thumbnails/1.jpg","file_name":"A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute.pdf","download_url":"https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Descriptive_Models_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586667/A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute-libre.pdf?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Descriptive_Models_of_a.pdf\u0026Expires=1732530939\u0026Signature=GvKuX6a8ZblMbc3g7xKwi63-7O-BiPPzFaHNdi-EUc0HB8kH4ZrHxawJzP90ZbEctOl-PIQhLHUuPJ-P5CciT1WHJe9JXJFbDTlzqgL8yrhfB35bV55l5HrFEne9ULh3k8lzf33-8QR6AA0lwuBpQi3wKbeRJjE~wfG-~U~7FVI2U7Hz1EZwighMg6YllrEKFaXZSHeixo4sIDUC~2VgNcpB1lNK73g3WzwVsS4i-goVswMikeKz0yLmOV8gpxJjyfaQ08MdMTRCFsAw4HAUk9-RHpZ1dBRhbOYM~Xlnx6MTfOedapBoEUdVgxpSrF2XiEaBfQfjVRVOao0RSybu9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586667/thumbnails/1.jpg","file_name":"A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute.pdf","download_url":"https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Descriptive_Models_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586667/A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute-libre.pdf?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Descriptive_Models_of_a.pdf\u0026Expires=1732530939\u0026Signature=GvKuX6a8ZblMbc3g7xKwi63-7O-BiPPzFaHNdi-EUc0HB8kH4ZrHxawJzP90ZbEctOl-PIQhLHUuPJ-P5CciT1WHJe9JXJFbDTlzqgL8yrhfB35bV55l5HrFEne9ULh3k8lzf33-8QR6AA0lwuBpQi3wKbeRJjE~wfG-~U~7FVI2U7Hz1EZwighMg6YllrEKFaXZSHeixo4sIDUC~2VgNcpB1lNK73g3WzwVsS4i-goVswMikeKz0yLmOV8gpxJjyfaQ08MdMTRCFsAw4HAUk9-RHpZ1dBRhbOYM~Xlnx6MTfOedapBoEUdVgxpSrF2XiEaBfQfjVRVOao0RSybu9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":30838,"name":"Information Geometry","url":"https://www.academia.edu/Documents/in/Information_Geometry"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":49247,"name":"Higher Order Thinking","url":"https://www.academia.edu/Documents/in/Higher_Order_Thinking"},{"id":49483,"name":"Spike train analysis","url":"https://www.academia.edu/Documents/in/Spike_train_analysis"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":67962,"name":"Markov chains","url":"https://www.academia.edu/Documents/in/Markov_chains"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":147195,"name":"Central Nervous System","url":"https://www.academia.edu/Documents/in/Central_Nervous_System"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1844830,"name":"Poisson Model","url":"https://www.academia.edu/Documents/in/Poisson_Model"},{"id":2050770,"name":"Markov model","url":"https://www.academia.edu/Documents/in/Markov_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831260/Where_did_the_time_go"><img alt="Research paper thumbnail of Where did the time go?" class="work-thumbnail" src="https://attachments.academia-assets.com/41586651/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831260/Where_did_the_time_go">Where did the time go?</a></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="91db4de3dfe4dad0c611ae81a7f0fc3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586651,&quot;asset_id&quot;:20831260,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831260]").text(description); $(".js-view-count[data-work-id=20831260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831260, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "91db4de3dfe4dad0c611ae81a7f0fc3f" } } $('.js-work-strip[data-work-id=20831260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831260,"title":"Where did the time go?","translated_title":"","metadata":{"grobid_abstract":"How do we form arbitrary associations, such as 'stop at red' or 'go at green'? A report in Nature suggests that these associations are first formed in the striatum but that activity changes in the prefrontal cortex are more closely related to improved performance.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Nature Neuroscience","grobid_abstract_attachment_id":41586651},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831260/Where_did_the_time_go","translated_internal_url":"","created_at":"2016-01-26T05:46:06.039-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142778,"work_id":20831260,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289045,"email":"s***l@univ-amu.fr","display_order":0,"name":"Sabrina Ravel","title":"Where did the time go?"}],"downloadable_attachments":[{"id":41586651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586651/thumbnails/1.jpg","file_name":"nn0605-705.pdf20160126-32085-b3yfik","download_url":"https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Where_did_the_time_go.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586651/nn0605-705-libre.pdf20160126-32085-b3yfik?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DWhere_did_the_time_go.pdf\u0026Expires=1732530939\u0026Signature=UGYH3ksQNDHkvnuDcildBfAvihu-32G6llJTDT06~FyGwoUjRKYnfRsRj1Ng9K4qwNLn6E2I-6eD8lZ2h8N32KvVBOubq28HTM4DWjjnizyksorTH0mJATw6oPzjglW0mD-H0tU~Lo9bT2moEBqUtY5qZMSlHGqM7iGG6mrHfdbDQw28LPFINALRvKWLrWFnX6w6qN8s8XC6IXAyDpnju0WhYxtlaWh-KCy9j30mpjuQnL7Mi-f8KUV4Mp3Pp3HjIEifGtMY-4qtHk7AANmXqqpyvfGsqV0rfywXZ7c9DkL3AZabQ2MPa6R31PsuxnzZeCWYuIIZt7GKNjpaoif1Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Where_did_the_time_go","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586651/thumbnails/1.jpg","file_name":"nn0605-705.pdf20160126-32085-b3yfik","download_url":"https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Where_did_the_time_go.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586651/nn0605-705-libre.pdf20160126-32085-b3yfik?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DWhere_did_the_time_go.pdf\u0026Expires=1732530939\u0026Signature=UGYH3ksQNDHkvnuDcildBfAvihu-32G6llJTDT06~FyGwoUjRKYnfRsRj1Ng9K4qwNLn6E2I-6eD8lZ2h8N32KvVBOubq28HTM4DWjjnizyksorTH0mJATw6oPzjglW0mD-H0tU~Lo9bT2moEBqUtY5qZMSlHGqM7iGG6mrHfdbDQw28LPFINALRvKWLrWFnX6w6qN8s8XC6IXAyDpnju0WhYxtlaWh-KCy9j30mpjuQnL7Mi-f8KUV4Mp3Pp3HjIEifGtMY-4qtHk7AANmXqqpyvfGsqV0rfywXZ7c9DkL3AZabQ2MPa6R31PsuxnzZeCWYuIIZt7GKNjpaoif1Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":65637,"name":"Caudate Nucleus","url":"https://www.academia.edu/Documents/in/Caudate_Nucleus"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":107148,"name":"Saccades","url":"https://www.academia.edu/Documents/in/Saccades"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":383087,"name":"Globus Pallidus","url":"https://www.academia.edu/Documents/in/Globus_Pallidus"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning"><img alt="Research paper thumbnail of Decoding cortical neuronal signals: Network models, information estimation and spatial tuning" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning">Decoding cortical neuronal signals: Network models, information estimation and spatial tuning</a></div><div class="wp-workCard_item"><span>Journal of Computational Neuroscience</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have studied the encoding of spatial pattern information by complex cells in the primary visua...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831259]").text(description); $(".js-view-count[data-work-id=20831259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831259, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831259,"title":"Decoding cortical neuronal signals: Network models, information estimation and spatial tuning","translated_title":"","metadata":{"abstract":"We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Journal of Computational Neuroscience"},"translated_abstract":"We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.","internal_url":"https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning","translated_internal_url":"","created_at":"2016-01-26T05:46:05.868-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795204,"work_id":20831259,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Decoding cortical neuronal signals: Network models, information estimation and spatial tuning"}],"downloadable_attachments":[],"slug":"Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":159957,"name":"Complex Cell","url":"https://www.academia.edu/Documents/in/Complex_Cell"},{"id":187402,"name":"Cross Validation","url":"https://www.academia.edu/Documents/in/Cross_Validation"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":207885,"name":"Conditional probability","url":"https://www.academia.edu/Documents/in/Conditional_probability"},{"id":242997,"name":"Computational","url":"https://www.academia.edu/Documents/in/Computational"},{"id":286413,"name":"Spatial Pattern","url":"https://www.academia.edu/Documents/in/Spatial_Pattern"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":956026,"name":"Somatic Cell Count","url":"https://www.academia.edu/Documents/in/Somatic_Cell_Count"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision"><img alt="Research paper thumbnail of Information flow and temporal coding in primate pattern vision" class="work-thumbnail" src="https://attachments.academia-assets.com/41586661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision">Information flow and temporal coding in primate pattern vision</a></div><div class="wp-workCard_item"><span>Journal of Computational Neuroscience</span><span>, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2454eec1bc0ce9642ee7eddbda2d9a6f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586661,&quot;asset_id&quot;:20831258,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831258]").text(description); $(".js-view-count[data-work-id=20831258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2454eec1bc0ce9642ee7eddbda2d9a6f" } } $('.js-work-strip[data-work-id=20831258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831258,"title":"Information flow and temporal coding in primate pattern vision","translated_title":"","metadata":{"grobid_abstract":"We perform time-resolved calculations of the information transmitted about visual patterns by neurons in primary visual and inferior temporal cortices. All measurable information is carried in an e ective timevarying ring rate, obtained by averaging the neuronal response with a resolution no ner than about 25 ms in primary visual cortex and around twice that in inferior temporal cortex. We found no better way for a neuron receiving these messages to decode them than simply to count spikes for this long. Most of the information tends to be concentrated in one or, more often, two brief packets, one at the very beginning of the response and the other typically 100 ms later. The rst packet is the most informative part of the message, but the second one generally contains new information. A small but signi cant part of the total information in the message accumulates gradually over the entire course of the response. These ndings impose strong constraints on the codes used by these neurons.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Journal of Computational Neuroscience","grobid_abstract_attachment_id":41586661},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision","translated_internal_url":"","created_at":"2016-01-26T05:46:05.710-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795203,"work_id":20831258,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Information flow and temporal coding in primate pattern vision"},{"id":14142769,"work_id":20831258,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289044,"email":"j***r@mountsinai.org","display_order":4194304,"name":"Joshua Heller","title":"Information flow and temporal coding in primate pattern vision"}],"downloadable_attachments":[{"id":41586661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586661/thumbnails/1.jpg","file_name":"Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5.pdf","download_url":"https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_flow_and_temporal_coding_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586661/Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5-libre.pdf?1453828860=\u0026response-content-disposition=attachment%3B+filename%3DInformation_flow_and_temporal_coding_in.pdf\u0026Expires=1732530939\u0026Signature=FfPbfaLLcnXEt-73H3ih-WbJbrGhlaOYLawsD4ApD1a3PfO5prQLY2eQKqWKzmMiQHIfliVIewkRieAI2x2c4K07kOcTc-6pRMCqjAhu03pekQn78yv4yqRXqdwAqUsXv~ptuoYXg-UA34ML0BwD9ajeUrYjGDVa7BFOobAyZqG~7n8N1sJ6NnYtrRFkEmo7hvE3t7zsKiaCdIExXCiRFDNjW1gcmhQixC1tQVLfXGuhyaaBWs6RDCt-Lu5mY80pBxJ~rJe6d0r8HY3V-5dqWm-nM0y2fGEU2X5g6~~El4F86PeFj8JCRQ6P6xfl3hwJ8~yd0pNy~w453MZvHHe3LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_flow_and_temporal_coding_in_primate_pattern_vision","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586661/thumbnails/1.jpg","file_name":"Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5.pdf","download_url":"https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_flow_and_temporal_coding_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586661/Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5-libre.pdf?1453828860=\u0026response-content-disposition=attachment%3B+filename%3DInformation_flow_and_temporal_coding_in.pdf\u0026Expires=1732530939\u0026Signature=FfPbfaLLcnXEt-73H3ih-WbJbrGhlaOYLawsD4ApD1a3PfO5prQLY2eQKqWKzmMiQHIfliVIewkRieAI2x2c4K07kOcTc-6pRMCqjAhu03pekQn78yv4yqRXqdwAqUsXv~ptuoYXg-UA34ML0BwD9ajeUrYjGDVa7BFOobAyZqG~7n8N1sJ6NnYtrRFkEmo7hvE3t7zsKiaCdIExXCiRFDNjW1gcmhQixC1tQVLfXGuhyaaBWs6RDCt-Lu5mY80pBxJ~rJe6d0r8HY3V-5dqWm-nM0y2fGEU2X5g6~~El4F86PeFj8JCRQ6P6xfl3hwJ8~yd0pNy~w453MZvHHe3LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":47964,"name":"Information Flow","url":"https://www.academia.edu/Documents/in/Information_Flow"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":965407,"name":"Temporal Coding","url":"https://www.academia.edu/Documents/in/Temporal_Coding"},{"id":1480215,"name":"Time varying","url":"https://www.academia.edu/Documents/in/Time_varying"},{"id":1554042,"name":"Inferior temporal cortex","url":"https://www.academia.edu/Documents/in/Inferior_temporal_cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18825667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks"><img alt="Research paper thumbnail of Measuring Natural Neural Processing with Artificial Neural Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks">Measuring Natural Neural Processing with Artificial Neural Networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EmadEskandar">Emad Eskandar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a></span></div><div class="wp-workCard_item"><span>International Journal of Neural Systems</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real ne...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18825667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18825667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18825667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18825667]").text(description); $(".js-view-count[data-work-id=18825667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18825667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18825667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18825667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18825667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18825667,"title":"Measuring Natural Neural Processing with Artificial Neural Networks","translated_title":"","metadata":{"abstract":"ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"International Journal of Neural Systems"},"translated_abstract":"ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.","internal_url":"https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks","translated_internal_url":"","created_at":"2015-11-22T15:34:28.635-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38914104,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":10625900,"work_id":18825667,"tagging_user_id":38914104,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"Measuring Natural Neural Processing with Artificial Neural Networks"}],"downloadable_attachments":[],"slug":"Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38914104,"first_name":"Emad","middle_initials":null,"last_name":"Eskandar","page_name":"EmadEskandar","domain_name":"independent","created_at":"2015-11-22T15:34:15.378-08:00","display_name":"Emad Eskandar","url":"https://independent.academia.edu/EmadEskandar"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":6071102,"url":"http://dx.doi.org/10.1142/S0129065792000425"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4471517" id="papers"><div class="js-work-strip profile--work_container" data-work-id="18825654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition"><img alt="Research paper thumbnail of Decoding of neuronal signals in visual pattern recognition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition">Decoding of neuronal signals in visual pattern recognition</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EmadEskandar">Emad Eskandar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18825654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18825654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18825654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18825654]").text(description); $(".js-view-count[data-work-id=18825654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18825654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18825654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18825654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18825654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18825654,"title":"Decoding of neuronal signals in visual pattern recognition","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/18825654/Decoding_of_neuronal_signals_in_visual_pattern_recognition","translated_internal_url":"","created_at":"2015-11-22T15:34:27.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38914104,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":10625901,"work_id":18825654,"tagging_user_id":38914104,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"Decoding of neuronal signals in visual pattern recognition"}],"downloadable_attachments":[],"slug":"Decoding_of_neuronal_signals_in_visual_pattern_recognition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38914104,"first_name":"Emad","middle_initials":null,"last_name":"Eskandar","page_name":"EmadEskandar","domain_name":"independent","created_at":"2015-11-22T15:34:15.378-08:00","display_name":"Emad Eskandar","url":"https://independent.academia.edu/EmadEskandar"},"attachments":[],"research_interests":[{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831274"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of"><img alt="Research paper thumbnail of Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of">Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Single neurons in the ventral striatum of primates carry signals that are related to reward and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831274"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831274"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831274; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831274]").text(description); $(".js-view-count[data-work-id=20831274]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831274; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831274']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831274, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831274]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831274,"title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of","translated_title":"","metadata":{"abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon-keys were cued as to","internal_url":"https://www.academia.edu/20831274/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of","translated_internal_url":"","created_at":"2016-01-26T05:46:08.623-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142770,"work_id":20831274,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2725153,"email":"t***r@uni-tuebingen.de","display_order":0,"name":"Thomas Aigner","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of"},{"id":14142779,"work_id":20831274,"tagging_user_id":42086941,"tagged_user_id":38595933,"co_author_invite_id":null,"email":"m***a@md.tsukuba.ac.jp","display_order":4194304,"name":"Munetaka Shidara","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of"}],"downloadable_attachments":[],"slug":"Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":372699,"name":"Information Analysis","url":"https://www.academia.edu/Documents/in/Information_Analysis"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1747114,"name":"Ventral Striatum","url":"https://www.academia.edu/Documents/in/Ventral_Striatum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules"><img alt="Research paper thumbnail of Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules" class="work-thumbnail" src="https://attachments.academia-assets.com/41920795/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules">Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9b074880667f2bcfdc2961fa2e9cd971" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41920795,&quot;asset_id&quot;:20831273,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831273]").text(description); $(".js-view-count[data-work-id=20831273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9b074880667f2bcfdc2961fa2e9cd971" } } $('.js-work-strip[data-work-id=20831273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831273,"title":"Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules","translated_title":"","metadata":{"abstract":"key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"key TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83: 1677-1692, 2000. Anatomic and behavioral evidence shows that TE and perirhinal cortices are two directly connected but distinct inferior temporal areas. Despite this distinctness, physiological properties of neurons in these two areas generally have been similar with neurons in both areas showing selectivity for complex visual","internal_url":"https://www.academia.edu/20831273/Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules","translated_internal_url":"","created_at":"2016-01-26T05:46:08.413-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795215,"work_id":20831273,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"Response Differences in Monkey TE and Perirhinal Cortex: Stimulus Association Related to Reward Schedules"}],"downloadable_attachments":[{"id":41920795,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920795/thumbnails/1.jpg","file_name":"TE_perirhinal_reward_schedules.pdf","download_url":"https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Response_Differences_in_Monkey_TE_and_Pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920795/TE_perirhinal_reward_schedules-libre.pdf?1454481650=\u0026response-content-disposition=attachment%3B+filename%3DResponse_Differences_in_Monkey_TE_and_Pe.pdf\u0026Expires=1732530939\u0026Signature=BQbJ9ADjlBGr0Vnlu63ArVWrXuVuOqo9r5~vyhoX4aI9In0NrXmVp3DEAOFyhAlGkD4oAXEdLj-wjTBYCogZgCMxnu-CZQ8YNHV9TjZ4izQ8HtnOLbcJbKImIBpBj3olERFYqvglpBVr9Fpz8~TPLPzGHLkes2oJGcDaKBvNP5d7ImwTj-r-iMa7K3Rq6hLwgFCQs2OJ~RW0L8qNvVPrxHJc8p193NcBAI-pJcXmD99tIX~H~EoTWZcw1WSsQP~mN--szsjgvy85a2ACu~Zqok9a2Toxb7n3Q9xBgUFC1Rmyd0rB9bdcEHu02tBAMgxmfaBRB8A3jJ-2oyRiX9OvKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Response_Differences_in_Monkey_TE_and_Perirhinal_Cortex_Stimulus_Association_Related_to_Reward_Schedules","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41920795,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920795/thumbnails/1.jpg","file_name":"TE_perirhinal_reward_schedules.pdf","download_url":"https://www.academia.edu/attachments/41920795/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Response_Differences_in_Monkey_TE_and_Pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920795/TE_perirhinal_reward_schedules-libre.pdf?1454481650=\u0026response-content-disposition=attachment%3B+filename%3DResponse_Differences_in_Monkey_TE_and_Pe.pdf\u0026Expires=1732530939\u0026Signature=BQbJ9ADjlBGr0Vnlu63ArVWrXuVuOqo9r5~vyhoX4aI9In0NrXmVp3DEAOFyhAlGkD4oAXEdLj-wjTBYCogZgCMxnu-CZQ8YNHV9TjZ4izQ8HtnOLbcJbKImIBpBj3olERFYqvglpBVr9Fpz8~TPLPzGHLkes2oJGcDaKBvNP5d7ImwTj-r-iMa7K3Rq6hLwgFCQs2OJ~RW0L8qNvVPrxHJc8p193NcBAI-pJcXmD99tIX~H~EoTWZcw1WSsQP~mN--szsjgvy85a2ACu~Zqok9a2Toxb7n3Q9xBgUFC1Rmyd0rB9bdcEHu02tBAMgxmfaBRB8A3jJ-2oyRiX9OvKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":281572,"name":"Response-Selection","url":"https://www.academia.edu/Documents/in/Response-Selection"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":473567,"name":"Neuronal Activity","url":"https://www.academia.edu/Documents/in/Neuronal_Activity"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1751983,"name":"Delayed Matching-to-Sample","url":"https://www.academia.edu/Documents/in/Delayed_Matching-to-Sample"}],"urls":[{"id":6239517,"url":"http://neuron.nimh.nih.gov/richmond/TE_perirhinal_reward_schedules.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831272"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials"><img alt="Research paper thumbnail of Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials">Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Single neurons in the ventral striatum of primates carry signals that are related to reward and m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831272"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831272"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831272; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831272]").text(description); $(".js-view-count[data-work-id=20831272]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831272; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831272']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831272, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831272]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831272,"title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials","translated_title":"","metadata":{"abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"Single neurons in the ventral striatum of primates carry signals that are related to reward and motivation. When monkeys performed a task requiring one to three bar release trials to be completed successfully before a reward was given, they seemed more motivated as the rewarded trials approached; they responded more quickly and accurately. When the mon- keys were cued as","internal_url":"https://www.academia.edu/20831272/Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials","translated_internal_url":"","created_at":"2016-01-26T05:46:08.152-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142771,"work_id":20831272,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2725153,"email":"t***r@uni-tuebingen.de","display_order":0,"name":"Thomas Aigner","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials"},{"id":14142780,"work_id":20831272,"tagging_user_id":42086941,"tagged_user_id":38595933,"co_author_invite_id":null,"email":"m***a@md.tsukuba.ac.jp","display_order":4194304,"name":"Munetaka Shidara","title":"Neuronal Signals in the Monkey Ventral Striatum Related to Progress through a Predictable Series of Trials"}],"downloadable_attachments":[],"slug":"Neuronal_Signals_in_the_Monkey_Ventral_Striatum_Related_to_Progress_through_a_Predictable_Series_of_Trials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":2749,"name":"Animal Behavior","url":"https://www.academia.edu/Documents/in/Animal_Behavior"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":372699,"name":"Information Analysis","url":"https://www.academia.edu/Documents/in/Information_Analysis"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1747114,"name":"Ventral Striatum","url":"https://www.academia.edu/Documents/in/Ventral_Striatum"}],"urls":[{"id":6239516,"url":"http://staff.aist.go.jp/m.shidara/Shidara1998.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices"><img alt="Research paper thumbnail of Coding Strategies in Monkey V1 and Inferior Temporal Cortices" class="work-thumbnail" src="https://attachments.academia-assets.com/41586620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices">Coding Strategies in Monkey V1 and Inferior Temporal Cortices</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We would like to know whether the statistics of neuronal responses vary across cortical areas. We...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="653637a43f2ad230f72d35cdc07ab729" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586620,&quot;asset_id&quot;:20831271,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831271]").text(description); $(".js-view-count[data-work-id=20831271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "653637a43f2ad230f72d35cdc07ab729" } } $('.js-work-strip[data-work-id=20831271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831271,"title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices","translated_title":"","metadata":{"abstract":"We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and IT cortices of awake monkeys. In both areas the distribution of spike counts for each stimulus was well-described by a Gaussian, with the log of the variance in the spike count linearly related to the","internal_url":"https://www.academia.edu/20831271/Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices","translated_internal_url":"","created_at":"2016-01-26T05:46:07.976-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795222,"work_id":20831271,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":318321,"email":"p***l@gatsby.ucl.ac.uk","display_order":0,"name":"Peter Latham","title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices"},{"id":14142773,"work_id":20831271,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2981897,"email":"m***r@merck.com","display_order":4194304,"name":"Matthew Wiener","title":"Coding Strategies in Monkey V1 and Inferior Temporal Cortices"}],"downloadable_attachments":[{"id":41586620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586620/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586620/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=g4i2IC3H1dqh1DuH-sNu~esstIMuIQSg0PSYdxR7HfaJ8DOadSYYdrbmL5CPzyplEzp7WNejVFKlqjShQZLN2olia6njcQm12YW1ZgI6oZPTz8IwNhi8w52NmC98QcGdrudOJapqdBHxokHN5iynf0VXsdqJ5yByCElIMBhvLfnEWumDMVtwLyLb8jH9Aq~hPXAxNYaGAYQRJvlR5WbUCTTHJ~uVmkCwDKTTO4rT4Wdb7kTkBW2sUxiXw~0EwCORB9fJtVsd8YotD99jfeim5uTTY0rKAh7ogKH3~5FF76QrAnJcKF3vyXF4kiVlC8x4r7z7g60g3Z706odX0WvDew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coding_Strategies_in_Monkey_V1_and_Inferior_Temporal_Cortices","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586620/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586620/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586620/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=g4i2IC3H1dqh1DuH-sNu~esstIMuIQSg0PSYdxR7HfaJ8DOadSYYdrbmL5CPzyplEzp7WNejVFKlqjShQZLN2olia6njcQm12YW1ZgI6oZPTz8IwNhi8w52NmC98QcGdrudOJapqdBHxokHN5iynf0VXsdqJ5yByCElIMBhvLfnEWumDMVtwLyLb8jH9Aq~hPXAxNYaGAYQRJvlR5WbUCTTHJ~uVmkCwDKTTO4rT4Wdb7kTkBW2sUxiXw~0EwCORB9fJtVsd8YotD99jfeim5uTTY0rKAh7ogKH3~5FF76QrAnJcKF3vyXF4kiVlC8x4r7z7g60g3Z706odX0WvDew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41586621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586621/thumbnails/1.jpg","file_name":"0309026.pdf","download_url":"https://www.academia.edu/attachments/41586621/download_file","bulk_download_file_name":"Coding_Strategies_in_Monkey_V1_and_Infer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586621/0309026-libre.pdf?1453828863=\u0026response-content-disposition=attachment%3B+filename%3DCoding_Strategies_in_Monkey_V1_and_Infer.pdf\u0026Expires=1732530939\u0026Signature=KTGnA9~TYzzgECMNg-nZc0POXlCnfLL-ztbGRd4eXNqF1vMWNIkTEpDOBqdP7Ciw0CY7~w2R2ANIDXhEu8JT0Br4WB3ns8kODlF-JbsR1FIbhcSjzPb2B0IbtuaD53ze-PbqyTZ57eMaQ~zN62LF3L8Gyrx~JjFPvrm7~Ltfls2rS3lZ8amDxjUCkdqAsw2Djywd080Hd~B4yHKpACKSHX0Kt7IVLgLqhMoFJv0BO6G29ZK06h3OHRNFGvEGqmujQMI5sEOIyeCjxWIw147yFtgUVifNRTWS3gzjbDTh4rLGLMowyPT4l2TjQGeHwO6~fSzCy360m2kmCd1Fwx5j3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":294768,"name":"Wakefulness","url":"https://www.academia.edu/Documents/in/Wakefulness"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1142720,"name":"Normal Distribution","url":"https://www.academia.edu/Documents/in/Normal_Distribution"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1400558,"name":"Channel Capacity","url":"https://www.academia.edu/Documents/in/Channel_Capacity"},{"id":1956581,"name":"Dynamic Range","url":"https://www.academia.edu/Documents/in/Dynamic_Range"}],"urls":[{"id":6239515,"url":"http://arxiv.org/abs/q-bio/0309026"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831270"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model"><img alt="Research paper thumbnail of Anomalous response variability in a balanced cortical network model" class="work-thumbnail" src="https://attachments.academia-assets.com/41586656/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model">Anomalous response variability in a balanced cortical network model</a></div><div class="wp-workCard_item"><span>Neurocomputing</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d9bb3af5a6c164b0cd83d0a9c52b3771" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586656,&quot;asset_id&quot;:20831270,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831270"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831270"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831270; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831270]").text(description); $(".js-view-count[data-work-id=20831270]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831270; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831270']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831270, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d9bb3af5a6c164b0cd83d0a9c52b3771" } } $('.js-work-strip[data-work-id=20831270]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831270,"title":"Anomalous response variability in a balanced cortical network model","translated_title":"","metadata":{"grobid_abstract":"We use mean field theory to study the response properties of a simple randomlyconnected model cortical network of leaky integrate-and-fire neurons with balanced excitation and inhibition. The formulation permits arbitrary temporal variation of the input to the network and takes exact account of temporal firing correlations. We find that neuronal firing statistics depend sensitively on the firing threshold. In particular, spike count variances can be either significantly greater than or significantly less than those for a Poisson process. These findings may help in understanding the variability observed experimentally in cortical neuronal responses.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Neurocomputing","grobid_abstract_attachment_id":41586656},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831270/Anomalous_response_variability_in_a_balanced_cortical_network_model","translated_internal_url":"","created_at":"2016-01-26T05:46:07.831-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795202,"work_id":20831270,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Anomalous response variability in a balanced cortical network model"},{"id":13795207,"work_id":20831270,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3224551,"email":"k***l@nordita.dk","display_order":4194304,"name":"Kristian Nilsen","title":"Anomalous response variability in a balanced cortical network model"}],"downloadable_attachments":[{"id":41586656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586656/thumbnails/1.jpg","file_name":"0202145.pdf","download_url":"https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_response_variability_in_a_bala.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586656/0202145-libre.pdf?1453828858=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_response_variability_in_a_bala.pdf\u0026Expires=1732530939\u0026Signature=YVOkDp-qiEV6J6oEjm2apw634wKOUbp7-zdXrqfGnRFQC5EP5GcWPGlTeUeCmHWToJwkVn-KvAkQMSQFUAnDo38MNzFzbg0XosYKa9RSfHtGvVUMFDPyAJLTGt-Ru1jbiyG4YgoYzjhFI4xClDIZg0tBVgbYSIGtdx3GSGcR1NLTpkFOhT9gsiCwSy~LK2xyi7nFDiROHES5wltOdj~YJ01gNCHvLvr-VBrN7qQjcKJDOzXyj-IOwBEIqX6cZDCL-NlK9mr4KLwSdpIn7fNN~U-6k2dAGuM5lXlLqJdmB41SLtPQ1ihp3jZCKUW66XXRiy4adNU7XP25A5vVGJU2Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anomalous_response_variability_in_a_balanced_cortical_network_model","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586656/thumbnails/1.jpg","file_name":"0202145.pdf","download_url":"https://www.academia.edu/attachments/41586656/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_response_variability_in_a_bala.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586656/0202145-libre.pdf?1453828858=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_response_variability_in_a_bala.pdf\u0026Expires=1732530939\u0026Signature=YVOkDp-qiEV6J6oEjm2apw634wKOUbp7-zdXrqfGnRFQC5EP5GcWPGlTeUeCmHWToJwkVn-KvAkQMSQFUAnDo38MNzFzbg0XosYKa9RSfHtGvVUMFDPyAJLTGt-Ru1jbiyG4YgoYzjhFI4xClDIZg0tBVgbYSIGtdx3GSGcR1NLTpkFOhT9gsiCwSy~LK2xyi7nFDiROHES5wltOdj~YJ01gNCHvLvr-VBrN7qQjcKJDOzXyj-IOwBEIqX6cZDCL-NlK9mr4KLwSdpIn7fNN~U-6k2dAGuM5lXlLqJdmB41SLtPQ1ihp3jZCKUW66XXRiy4adNU7XP25A5vVGJU2Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":306573,"name":"Neurocomputing","url":"https://www.academia.edu/Documents/in/Neurocomputing"},{"id":411912,"name":"Poisson Process","url":"https://www.academia.edu/Documents/in/Poisson_Process"},{"id":871148,"name":"Network Model","url":"https://www.academia.edu/Documents/in/Network_Model"},{"id":1151194,"name":"Mean Field Theory","url":"https://www.academia.edu/Documents/in/Mean_Field_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model"><img alt="Research paper thumbnail of Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model" class="work-thumbnail" src="https://attachments.academia-assets.com/41586690/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model">Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model</a></div><div class="wp-workCard_item"><span>The Journal of neuroscience : the official journal of the Society for Neuroscience</span><span>, Jan 15, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the brain, spike trains are generated in time and presumably also interpreted as they unfold i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0be4b60bbb82970cdad33b3b7974453d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586690,&quot;asset_id&quot;:20831269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831269]").text(description); $(".js-view-count[data-work-id=20831269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0be4b60bbb82970cdad33b3b7974453d" } } $('.js-work-strip[data-work-id=20831269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831269,"title":"Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model","translated_title":"","metadata":{"abstract":"In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...","publication_date":{"day":15,"month":1,"year":2003,"errors":{}},"publication_name":"The Journal of neuroscience : the official journal of the Society for Neuroscience"},"translated_abstract":"In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approxim...","internal_url":"https://www.academia.edu/20831269/Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model","translated_internal_url":"","created_at":"2016-01-26T05:46:07.709-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142775,"work_id":20831269,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2981897,"email":"m***r@merck.com","display_order":0,"name":"Matthew Wiener","title":"Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model"}],"downloadable_attachments":[{"id":41586690,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586690/thumbnails/1.jpg","file_name":"2394.pdf","download_url":"https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoding_spike_trains_instant_by_instant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586690/2394-libre.pdf?1453828855=\u0026response-content-disposition=attachment%3B+filename%3DDecoding_spike_trains_instant_by_instant.pdf\u0026Expires=1732530939\u0026Signature=XD8bh4VxSWuj6n6DBru6CRVkT3-Q1fE1DaOmOZqEI1zcdpsAhJPHE~xudAfaOFNa97bB5jTv89EqCFN0~qLCxTk0Fk0~3Cip3UEjHvpUg65M4nX8B05~1xjQZDv43MLvo~LNrkWpNGzR~BdXff9ARklUBHzhLAGZYt3f~9MuZNDCMFjhJurcCQsvT9~S2MNmEVYBPIx9IH5gkotFpCuo1Y9y7bnogISR-S7WsMTl-3EWGzINQj~G9ICvxghxxuF5EKSMANV6htzelzKZz8Cn~GKyKYcrTDpP7OkHgH7x~qMYJ5~oRD05AIdaFPMJOIJmC9jYpUdCCwP-rNxsOy-K5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decoding_spike_trains_instant_by_instant_using_order_statistics_and_the_mixture_of_Poissons_model","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586690,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586690/thumbnails/1.jpg","file_name":"2394.pdf","download_url":"https://www.academia.edu/attachments/41586690/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoding_spike_trains_instant_by_instant.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586690/2394-libre.pdf?1453828855=\u0026response-content-disposition=attachment%3B+filename%3DDecoding_spike_trains_instant_by_instant.pdf\u0026Expires=1732530939\u0026Signature=XD8bh4VxSWuj6n6DBru6CRVkT3-Q1fE1DaOmOZqEI1zcdpsAhJPHE~xudAfaOFNa97bB5jTv89EqCFN0~qLCxTk0Fk0~3Cip3UEjHvpUg65M4nX8B05~1xjQZDv43MLvo~LNrkWpNGzR~BdXff9ARklUBHzhLAGZYt3f~9MuZNDCMFjhJurcCQsvT9~S2MNmEVYBPIx9IH5gkotFpCuo1Y9y7bnogISR-S7WsMTl-3EWGzINQj~G9ICvxghxxuF5EKSMANV6htzelzKZz8Cn~GKyKYcrTDpP7OkHgH7x~qMYJ5~oRD05AIdaFPMJOIJmC9jYpUdCCwP-rNxsOy-K5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":49483,"name":"Spike train analysis","url":"https://www.academia.edu/Documents/in/Spike_train_analysis"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":196189,"name":"Sample Size","url":"https://www.academia.edu/Documents/in/Sample_Size"},{"id":411912,"name":"Poisson Process","url":"https://www.academia.edu/Documents/in/Poisson_Process"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1844830,"name":"Poisson Model","url":"https://www.academia.edu/Documents/in/Poisson_Model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831268"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831268/Knowing_without_doing"><img alt="Research paper thumbnail of Knowing without doing" class="work-thumbnail" src="https://attachments.academia-assets.com/42347324/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831268/Knowing_without_doing">Knowing without doing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="517c62fec1c03b2c9610a0bd1c0dcdb4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42347324,&quot;asset_id&quot;:20831268,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831268"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831268"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831268; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831268]").text(description); $(".js-view-count[data-work-id=20831268]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831268; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831268']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831268, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "517c62fec1c03b2c9610a0bd1c0dcdb4" } } $('.js-work-strip[data-work-id=20831268]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831268,"title":"Knowing without doing","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831268/Knowing_without_doing","translated_internal_url":"","created_at":"2016-01-26T05:46:07.480-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795223,"work_id":20831268,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3224554,"email":"l***r@gatsby.ucl.ac.uk","display_order":0,"name":"Alexander Lerchner","title":"Knowing without doing"},{"id":13795224,"work_id":20831268,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":840569,"email":"l***9@duke.edu","display_order":4194304,"name":"Giancarlo La Camera","title":"Knowing without doing"}],"downloadable_attachments":[{"id":42347324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347324/thumbnails/1.jpg","file_name":"Knowing_without_doing20160207-14055-w8vylw.pdf","download_url":"https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowing_without_doing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347324/Knowing_without_doing20160207-14055-w8vylw-libre.pdf?1454907377=\u0026response-content-disposition=attachment%3B+filename%3DKnowing_without_doing.pdf\u0026Expires=1732530939\u0026Signature=Ci2Uzvg62VmmNYZ5Xlh1f97qLQ3xNxoYsaChyYjgeOpTXpKuhyeGSOogbn1mDODVavYrtppMHWm1sW0e3n5byo907SQpkQdWXGqrB6nEt-dSZl4aEgjHa265aXqxyxhFio1PQILM4dKZddpnwmTQPXqiJZjpej0hB2S4OlWFIJL6Jy4rbNbaPnYkd8XxI3XEGhHLoWO70KXKu5wyNn5fwfuDovS5zq2cHmqrNQHTT4bPwh5TYKyA7Agh3tS9f52YRCJfaeUiu~6oRZfkn8PdhrsFImrfkj6MQU55ZJsWMuEcIbjHhw~1v-8bXCc6JkA8dllDdlusorMtuoS5yBpPdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Knowing_without_doing","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":42347324,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347324/thumbnails/1.jpg","file_name":"Knowing_without_doing20160207-14055-w8vylw.pdf","download_url":"https://www.academia.edu/attachments/42347324/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Knowing_without_doing.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347324/Knowing_without_doing20160207-14055-w8vylw-libre.pdf?1454907377=\u0026response-content-disposition=attachment%3B+filename%3DKnowing_without_doing.pdf\u0026Expires=1732530939\u0026Signature=Ci2Uzvg62VmmNYZ5Xlh1f97qLQ3xNxoYsaChyYjgeOpTXpKuhyeGSOogbn1mDODVavYrtppMHWm1sW0e3n5byo907SQpkQdWXGqrB6nEt-dSZl4aEgjHa265aXqxyxhFio1PQILM4dKZddpnwmTQPXqiJZjpej0hB2S4OlWFIJL6Jy4rbNbaPnYkd8XxI3XEGhHLoWO70KXKu5wyNn5fwfuDovS5zq2cHmqrNQHTT4bPwh5TYKyA7Agh3tS9f52YRCJfaeUiu~6oRZfkn8PdhrsFImrfkj6MQU55ZJsWMuEcIbjHhw~1v-8bXCc6JkA8dllDdlusorMtuoS5yBpPdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":246,"name":"Psychophysics","url":"https://www.academia.edu/Documents/in/Psychophysics"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4307,"name":"Behavior","url":"https://www.academia.edu/Documents/in/Behavior"},{"id":15594,"name":"Systems Neuroscience","url":"https://www.academia.edu/Documents/in/Systems_Neuroscience"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":61684,"name":"Model","url":"https://www.academia.edu/Documents/in/Model"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":100946,"name":"Functional Imaging","url":"https://www.academia.edu/Documents/in/Functional_Imaging"},{"id":114550,"name":"Cortex","url":"https://www.academia.edu/Documents/in/Cortex"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1756573,"name":"Motor Skills","url":"https://www.academia.edu/Documents/in/Motor_Skills"}],"urls":[{"id":6543507,"url":"https://www.researchgate.net/profile/Giancarlo_La_Camera/publication/6610522_Knowing_without_doing/links/0c960524ee8a6ed282000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex"><img alt="Research paper thumbnail of Learning motivational significance of visual cues for reward schedules requires rhinal cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex">Learning motivational significance of visual cues for reward schedules requires rhinal cortex</a></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The limbic system is necessary to associate stimuli with their motivational and emotional signifi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey&amp;#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831267]").text(description); $(".js-view-count[data-work-id=20831267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831267,"title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex","translated_title":"","metadata":{"abstract":"The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey\u0026#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Nature Neuroscience"},"translated_abstract":"The limbic system is necessary to associate stimuli with their motivational and emotional significance. The perirhinal cortex is directly connected to this system, and neurons in this region carry signals related to a monkey\u0026#39;s progress through visually cued reward schedules. This task manipulates motivation by displaying different visual cues to indicate the amount of work remaining until reward delivery. We","internal_url":"https://www.academia.edu/20831267/Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex","translated_internal_url":"","created_at":"2016-01-26T05:46:07.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795214,"work_id":20831267,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex"},{"id":14142782,"work_id":20831267,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":4194304,"name":"Elisabeth Murray","title":"Learning motivational significance of visual cues for reward schedules requires rhinal cortex"}],"downloadable_attachments":[],"slug":"Learning_motivational_significance_of_visual_cues_for_reward_schedules_requires_rhinal_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":42162,"name":"Emotions","url":"https://www.academia.edu/Documents/in/Emotions"},{"id":46406,"name":"Motivation","url":"https://www.academia.edu/Documents/in/Motivation"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":72150,"name":"Discrimination Learning","url":"https://www.academia.edu/Documents/in/Discrimination_Learning"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":230879,"name":"Denervation","url":"https://www.academia.edu/Documents/in/Denervation"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":494840,"name":"Limbic System","url":"https://www.academia.edu/Documents/in/Limbic_System"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831266"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations"><img alt="Research paper thumbnail of Role of perirhinal cortex in object perception, memory, and associations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations">Role of perirhinal cortex in object perception, memory, and associations</a></div><div class="wp-workCard_item"><span>Current Opinion in Neurobiology - CURR OPIN NEUROBIOL</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831266"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831266"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831266; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831266]").text(description); $(".js-view-count[data-work-id=20831266]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831266; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831266']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831266, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831266]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831266,"title":"Role of perirhinal cortex in object perception, memory, and associations","translated_title":"","metadata":{"abstract":"The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Current Opinion in Neurobiology - CURR OPIN NEUROBIOL"},"translated_abstract":"The perirhinal cortex plays a key role in acquiring knowledge about objects. It contributes to at least four cognitive functions, and recent findings provide new insights into how the perirhinal cortex contributes to each: first, it contributes to recognition memory in an automatic fashion; second, it probably contributes to perception as well as memory; third, it helps identify objects by associating together the different sensory features of an object; and fourth, it associates objects with other objects and with abstractions.","internal_url":"https://www.academia.edu/20831266/Role_of_perirhinal_cortex_in_object_perception_memory_and_associations","translated_internal_url":"","created_at":"2016-01-26T05:46:07.037-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142783,"work_id":20831266,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":0,"name":"Elisabeth Murray","title":"Role of perirhinal cortex in object perception, memory, and associations"}],"downloadable_attachments":[],"slug":"Role_of_perirhinal_cortex_in_object_perception_memory_and_associations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":867,"name":"Perception","url":"https://www.academia.edu/Documents/in/Perception"},{"id":17113,"name":"Face recognition (Psychology)","url":"https://www.academia.edu/Documents/in/Face_recognition_Psychology_"},{"id":24782,"name":"Recognition memory","url":"https://www.academia.edu/Documents/in/Recognition_memory"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":72150,"name":"Discrimination Learning","url":"https://www.academia.edu/Documents/in/Discrimination_Learning"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":118256,"name":"Object Perception","url":"https://www.academia.edu/Documents/in/Object_Perception"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":6239514,"url":"http://www.sciencedirect.com/science/article/pii/S0959438800001951"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831265"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831265/Role_of_inferior_ROLLS"><img alt="Research paper thumbnail of Role of inferior ROLLS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831265/Role_of_inferior_ROLLS">Role of inferior ROLLS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831265"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831265"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831265; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831265]").text(description); $(".js-view-count[data-work-id=20831265]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831265; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831265']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831265, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831265]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831265,"title":"Role of inferior ROLLS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831265/Role_of_inferior_ROLLS","translated_internal_url":"","created_at":"2016-01-26T05:46:06.912-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795212,"work_id":20831265,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":215356,"email":"d***n@yahoo.fr","display_order":0,"name":"L. Optican","title":"Role of inferior ROLLS"},{"id":14142772,"work_id":20831265,"tagging_user_id":42086941,"tagged_user_id":38914104,"co_author_invite_id":null,"email":"e***r@partners.org","display_order":4194304,"name":"Emad Eskandar","title":"Role of inferior ROLLS"}],"downloadable_attachments":[],"slug":"Role_of_inferior_ROLLS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons"><img alt="Research paper thumbnail of First-spike timing precision of monkey V1 neurons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons">First-spike timing precision of monkey V1 neurons</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831264]").text(description); $(".js-view-count[data-work-id=20831264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831264, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831264,"title":"First-spike timing precision of monkey V1 neurons","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831264/First_spike_timing_precision_of_monkey_V1_neurons","translated_internal_url":"","created_at":"2016-01-26T05:46:06.785-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795206,"work_id":20831264,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"First-spike timing precision of monkey V1 neurons"}],"downloadable_attachments":[],"slug":"First_spike_timing_precision_of_monkey_V1_neurons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward"><img alt="Research paper thumbnail of DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward" class="work-thumbnail" src="https://attachments.academia-assets.com/41920896/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward">DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When schedules of several operant trials must be successfully completed to obtain a reward, monke...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a705a2e14d745984f62007a8f623436" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41920896,&quot;asset_id&quot;:20831263,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831263]").text(description); $(".js-view-count[data-work-id=20831263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831263, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a705a2e14d745984f62007a8f623436" } } $('.js-work-strip[data-work-id=20831263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831263,"title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward","translated_title":"","metadata":{"abstract":"When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.","internal_url":"https://www.academia.edu/20831263/DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward","translated_internal_url":"","created_at":"2016-01-26T05:46:06.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795213,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":328155,"email":"z***u@niwus.com","display_order":0,"name":"Z. Liu","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":13795216,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":33439206,"co_author_invite_id":null,"email":"r***s@mail.nih.gov","display_order":4194304,"name":"Richard Saunders","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142765,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289041,"email":"d***m@stanford.edu","display_order":6291456,"name":"D. Montague","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142766,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":44515232,"co_author_invite_id":3289042,"email":"b***d@oregonstate.edu","display_order":7340032,"name":"B. Stubblefield","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142767,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":14252097,"co_author_invite_id":null,"email":"s***d@mac.com","display_order":7864320,"name":"Sarah Steenrod","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"},{"id":14142784,"work_id":20831263,"tagging_user_id":42086941,"tagged_user_id":53481677,"co_author_invite_id":3250470,"email":"m***e@mail.nih.gov","display_order":8126464,"name":"Elisabeth Murray","title":"DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward"}],"downloadable_attachments":[{"id":41920896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920896/thumbnails/1.jpg","file_name":"12336.full.pdf","download_url":"https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DNA_targeting_of_rhinal_cortex_D2_recept.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920896/12336.full-libre.pdf?1454481768=\u0026response-content-disposition=attachment%3B+filename%3DDNA_targeting_of_rhinal_cortex_D2_recept.pdf\u0026Expires=1732498551\u0026Signature=RkPWAaj8IFqub3TX6Lr5uPELF-VNvq-zBJQwpXkfvInmx6Yr7e94zC4D8CzKgnQreD7xLdSI3wwxk5RhzVmE4auGWyaip5lI-ZYyKs96fOzXIr9FtETTFXLbmklGSgWR1YHNabQY9EoVYwwqT0WUzuTeBLb3gVYFRTLCmj-0Piotx67rMmNedRy3kLLqi~Uxf3TGUkcBtFrE~6trex50f-~~fmt2cjLhisFEYDkP2wYucxS3b8FOGs4wj49Ygb4y8Gr5U19YrTmCot0CWUkRrvfPTyoXQ~ttF0xHEEwYkY33PkQwiDSYkvDZtDQlBNuZWSg26TEW5j~4lL4SxThdtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DNA_targeting_of_rhinal_cortex_D2_receptor_protein_reversibly_blocks_learning_of_cues_that_predict_reward","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41920896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41920896/thumbnails/1.jpg","file_name":"12336.full.pdf","download_url":"https://www.academia.edu/attachments/41920896/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DNA_targeting_of_rhinal_cortex_D2_recept.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41920896/12336.full-libre.pdf?1454481768=\u0026response-content-disposition=attachment%3B+filename%3DDNA_targeting_of_rhinal_cortex_D2_recept.pdf\u0026Expires=1732498551\u0026Signature=RkPWAaj8IFqub3TX6Lr5uPELF-VNvq-zBJQwpXkfvInmx6Yr7e94zC4D8CzKgnQreD7xLdSI3wwxk5RhzVmE4auGWyaip5lI-ZYyKs96fOzXIr9FtETTFXLbmklGSgWR1YHNabQY9EoVYwwqT0WUzuTeBLb3gVYFRTLCmj-0Piotx67rMmNedRy3kLLqi~Uxf3TGUkcBtFrE~6trex50f-~~fmt2cjLhisFEYDkP2wYucxS3b8FOGs4wj49Ygb4y8Gr5U19YrTmCot0CWUkRrvfPTyoXQ~ttF0xHEEwYkY33PkQwiDSYkvDZtDQlBNuZWSg26TEW5j~4lL4SxThdtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":35637,"name":"Molecular Mechanics","url":"https://www.academia.edu/Documents/in/Molecular_Mechanics"},{"id":41012,"name":"Recombinant DNA Technology","url":"https://www.academia.edu/Documents/in/Recombinant_DNA_Technology"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":51566,"name":"Dopamine","url":"https://www.academia.edu/Documents/in/Dopamine"},{"id":72218,"name":"Vitamin D receptor","url":"https://www.academia.edu/Documents/in/Vitamin_D_receptor"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":120297,"name":"Ligand Binding","url":"https://www.academia.edu/Documents/in/Ligand_Binding"},{"id":238160,"name":"relational Learning","url":"https://www.academia.edu/Documents/in/relational_Learning"},{"id":245811,"name":"Vector control","url":"https://www.academia.edu/Documents/in/Vector_control"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues"},{"id":319071,"name":"Entorhinal Cortex","url":"https://www.academia.edu/Documents/in/Entorhinal_Cortex"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":502720,"name":"Gene Targeting","url":"https://www.academia.edu/Documents/in/Gene_Targeting"},{"id":509439,"name":"Autoradiography","url":"https://www.academia.edu/Documents/in/Autoradiography"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations"><img alt="Research paper thumbnail of The relation between V1 neuronal responses and eye movement-like stimulus presentations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations">The relation between V1 neuronal responses and eye movement-like stimulus presentations</a></div><div class="wp-workCard_item"><span>Neurocomputing</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831262]").text(description); $(".js-view-count[data-work-id=20831262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831262, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831262,"title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations","translated_title":"","metadata":{"abstract":"... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurocomputing"},"translated_abstract":"... References. [1] JL Gallant, CE Connor and DC Van Essen, Neural activity in V1, V2 and V4 ... Tim A. Gawne received his Ph.D. in Physiology from the Uniformed Services University of the Health Sciences in 1985 studying cardiovascular reflexes related to exercise and shock. ...","internal_url":"https://www.academia.edu/20831262/The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations","translated_internal_url":"","created_at":"2016-01-26T05:46:06.479-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795205,"work_id":20831262,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations"},{"id":13795209,"work_id":20831262,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":744680,"email":"t***e@gmail.com","display_order":4194304,"name":"Timothy Gawne","title":"The relation between V1 neuronal responses and eye movement-like stimulus presentations"}],"downloadable_attachments":[],"slug":"The_relation_between_V1_neuronal_responses_and_eye_movement_like_stimulus_presentations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":159957,"name":"Complex Cell","url":"https://www.academia.edu/Documents/in/Complex_Cell"},{"id":306573,"name":"Neurocomputing","url":"https://www.academia.edu/Documents/in/Neurocomputing"},{"id":453610,"name":"Eye Movement","url":"https://www.academia.edu/Documents/in/Eye_Movement"},{"id":1015743,"name":"Image Sequence","url":"https://www.academia.edu/Documents/in/Image_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="13053340"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples"><img alt="Research paper thumbnail of How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?" class="work-thumbnail" src="https://attachments.academia-assets.com/45735931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples">How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://sissa.academia.edu/ATreves">Alessandro Treves</a></span></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b32b32e53fd8eccfdd266356b989e97" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45735931,&quot;asset_id&quot;:13053340,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13053340"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13053340"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13053340; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13053340]").text(description); $(".js-view-count[data-work-id=13053340]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13053340; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13053340']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13053340, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b32b32e53fd8eccfdd266356b989e97" } } $('.js-work-strip[data-work-id=13053340]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13053340,"title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?","translated_title":"","metadata":{"grobid_abstract":"It is difficult to extract the information carried by neuronal responses about a set of stimuli because limited data samples result in biased estimates. Recently two improved procedures have been developed to calculate information from experimental results: a binning-and-correcting procedure and a neural network procedure. We have used data produced from a model of the spatiotemporal receptive fields of parvocellular and magnocellular lateral geniculate neurons to study the performance of these methods as a function of the number of trials used. Both procedures yield accurate results for one-dimensional neuronal codes. They can also be used to produce a reasonable estimate of the extra information in a three-dimensional code, in this instance, within 0.05-0.1 bit of the asymptotically calculated value-about 10% of the total transmitted information. We believe that this performance is much more accurate than previous procedures.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":45735931},"translated_abstract":null,"internal_url":"https://www.academia.edu/13053340/How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples","translated_internal_url":"","created_at":"2015-06-17T08:55:33.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32288545,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1109346,"work_id":13053340,"tagging_user_id":32288545,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?"},{"id":1109214,"work_id":13053340,"tagging_user_id":32288545,"tagged_user_id":null,"co_author_invite_id":371861,"email":"s***i@ncl.ac.uk","display_order":null,"name":"Stefano Panzeri","title":"How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?"}],"downloadable_attachments":[{"id":45735931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45735931/thumbnails/1.jpg","file_name":"How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e.pdf","download_url":"https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_Well_Can_We_Estimate_the_Information.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45735931/How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e-libre.pdf?1463558399=\u0026response-content-disposition=attachment%3B+filename%3DHow_Well_Can_We_Estimate_the_Information.pdf\u0026Expires=1732530939\u0026Signature=COVHt0wp07i7JjzVwtdMbLFAzvlBN2k-NmOTPlBi-rKke0hTqIIsGzXyhI4q1XW1COKdzPliGh1tkJ7uAvqOwnXlJz9RabhP-r1v4ryEMPZWFouT8JFSRGsKfdnhjXl5V7~5iZoCGjoSn-3wr6D9nOZwxwhtDwwXomxIl3Dtt8wpgsJpXax0Ecl1kh5Gg5-iz4PyTv2J1wKb8H~0Ut0foMuYif2mdXtsTZ-~-PXA4MlneW3W-E4Fsf~ArFydlNQt4GEhrZcdW5e9dy-PWSDimVufpdW182hQ4FFP-s4fxjPvOSzfNufff8P1m~M36OiH5GaMFb9uxDzxPNHlqC-ueA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"How_Well_Can_We_Estimate_the_Information_Carried_in_Neuronal_Responses_from_Limited_Samples","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32288545,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"ATreves","domain_name":"sissa","created_at":"2015-06-17T08:51:16.709-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/ATreves"},"attachments":[{"id":45735931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45735931/thumbnails/1.jpg","file_name":"How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e.pdf","download_url":"https://www.academia.edu/attachments/45735931/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_Well_Can_We_Estimate_the_Information.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45735931/How_Well_Can_We_Estimate_the_Information20160518-11281-lsq69e-libre.pdf?1463558399=\u0026response-content-disposition=attachment%3B+filename%3DHow_Well_Can_We_Estimate_the_Information.pdf\u0026Expires=1732530939\u0026Signature=COVHt0wp07i7JjzVwtdMbLFAzvlBN2k-NmOTPlBi-rKke0hTqIIsGzXyhI4q1XW1COKdzPliGh1tkJ7uAvqOwnXlJz9RabhP-r1v4ryEMPZWFouT8JFSRGsKfdnhjXl5V7~5iZoCGjoSn-3wr6D9nOZwxwhtDwwXomxIl3Dtt8wpgsJpXax0Ecl1kh5Gg5-iz4PyTv2J1wKb8H~0Ut0foMuYif2mdXtsTZ-~-PXA4MlneW3W-E4Fsf~ArFydlNQt4GEhrZcdW5e9dy-PWSDimVufpdW182hQ4FFP-s4fxjPvOSzfNufff8P1m~M36OiH5GaMFb9uxDzxPNHlqC-ueA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831261"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure"><img alt="Research paper thumbnail of A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure" class="work-thumbnail" src="https://attachments.academia-assets.com/41586667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure">A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure</a></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0d63d166e2062d9c93b8b57fcb3fde5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586667,&quot;asset_id&quot;:20831261,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831261"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831261"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831261; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831261]").text(description); $(".js-view-count[data-work-id=20831261]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831261; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831261']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831261, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0d63d166e2062d9c93b8b57fcb3fde5" } } $('.js-work-strip[data-work-id=20831261]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831261,"title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure","translated_title":"","metadata":{"grobid_abstract":"In examining spike trains, different models are used to describe their structure. The different models often seem quite similar, but because they are cast in different formalisms, it is often difficult to compare their predictions. Here we use the information-geometric measure, an orthogonal coordinate representation of point processes, to express different models of stochastic point processes in a common coordinate system. Within such a framework, it becomes straightforward to visualize higher-order correlations of different models and thereby assess the differences between models. We apply the information-geometric measure to compare two similar but not identical models of neuronal spike trains: the inhomogeneous Markov and the mixture of Poisson models. It is shown that they differ in the second-and higher-order interaction terms. In the mixture of Poisson model, the second-and higher-order interactions are of comparable magnitude within each order, whereas in the inhomogeneous Markov model, they have alternating signs over different orders. This provides guidance about what measurements would effectively separate the two models. As newer models are proposed, they also can be compared to these models using information geometry.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":41586667},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831261/A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure","translated_internal_url":"","created_at":"2016-01-26T05:46:06.170-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795217,"work_id":20831261,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":2107164,"email":"h***n@brain.riken.jp","display_order":0,"name":"Hiroyuki Nakahara","title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure"},{"id":13795218,"work_id":20831261,"tagging_user_id":42086941,"tagged_user_id":35325170,"co_author_invite_id":null,"email":"a***i@brain.riken.jp","display_order":4194304,"name":"Arigon Am","title":"A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure"}],"downloadable_attachments":[{"id":41586667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586667/thumbnails/1.jpg","file_name":"A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute.pdf","download_url":"https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Descriptive_Models_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586667/A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute-libre.pdf?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Descriptive_Models_of_a.pdf\u0026Expires=1732530939\u0026Signature=GvKuX6a8ZblMbc3g7xKwi63-7O-BiPPzFaHNdi-EUc0HB8kH4ZrHxawJzP90ZbEctOl-PIQhLHUuPJ-P5CciT1WHJe9JXJFbDTlzqgL8yrhfB35bV55l5HrFEne9ULh3k8lzf33-8QR6AA0lwuBpQi3wKbeRJjE~wfG-~U~7FVI2U7Hz1EZwighMg6YllrEKFaXZSHeixo4sIDUC~2VgNcpB1lNK73g3WzwVsS4i-goVswMikeKz0yLmOV8gpxJjyfaQ08MdMTRCFsAw4HAUk9-RHpZ1dBRhbOYM~Xlnx6MTfOedapBoEUdVgxpSrF2XiEaBfQfjVRVOao0RSybu9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_of_Descriptive_Models_of_a_Single_Spike_Train_by_Information_Geometric_Measure","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586667/thumbnails/1.jpg","file_name":"A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute.pdf","download_url":"https://www.academia.edu/attachments/41586667/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Descriptive_Models_of_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586667/A_Comparison_of_Descriptive_Models_of_a_20160126-32082-j5mute-libre.pdf?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Descriptive_Models_of_a.pdf\u0026Expires=1732530939\u0026Signature=GvKuX6a8ZblMbc3g7xKwi63-7O-BiPPzFaHNdi-EUc0HB8kH4ZrHxawJzP90ZbEctOl-PIQhLHUuPJ-P5CciT1WHJe9JXJFbDTlzqgL8yrhfB35bV55l5HrFEne9ULh3k8lzf33-8QR6AA0lwuBpQi3wKbeRJjE~wfG-~U~7FVI2U7Hz1EZwighMg6YllrEKFaXZSHeixo4sIDUC~2VgNcpB1lNK73g3WzwVsS4i-goVswMikeKz0yLmOV8gpxJjyfaQ08MdMTRCFsAw4HAUk9-RHpZ1dBRhbOYM~Xlnx6MTfOedapBoEUdVgxpSrF2XiEaBfQfjVRVOao0RSybu9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":30838,"name":"Information Geometry","url":"https://www.academia.edu/Documents/in/Information_Geometry"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":49247,"name":"Higher Order Thinking","url":"https://www.academia.edu/Documents/in/Higher_Order_Thinking"},{"id":49483,"name":"Spike train analysis","url":"https://www.academia.edu/Documents/in/Spike_train_analysis"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":67962,"name":"Markov chains","url":"https://www.academia.edu/Documents/in/Markov_chains"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":147195,"name":"Central Nervous System","url":"https://www.academia.edu/Documents/in/Central_Nervous_System"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1156037,"name":"Poisson Distribution","url":"https://www.academia.edu/Documents/in/Poisson_Distribution"},{"id":1844830,"name":"Poisson Model","url":"https://www.academia.edu/Documents/in/Poisson_Model"},{"id":2050770,"name":"Markov model","url":"https://www.academia.edu/Documents/in/Markov_model"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831260/Where_did_the_time_go"><img alt="Research paper thumbnail of Where did the time go?" class="work-thumbnail" src="https://attachments.academia-assets.com/41586651/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831260/Where_did_the_time_go">Where did the time go?</a></div><div class="wp-workCard_item"><span>Nature Neuroscience</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="91db4de3dfe4dad0c611ae81a7f0fc3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586651,&quot;asset_id&quot;:20831260,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831260]").text(description); $(".js-view-count[data-work-id=20831260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831260, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "91db4de3dfe4dad0c611ae81a7f0fc3f" } } $('.js-work-strip[data-work-id=20831260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831260,"title":"Where did the time go?","translated_title":"","metadata":{"grobid_abstract":"How do we form arbitrary associations, such as 'stop at red' or 'go at green'? A report in Nature suggests that these associations are first formed in the striatum but that activity changes in the prefrontal cortex are more closely related to improved performance.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Nature Neuroscience","grobid_abstract_attachment_id":41586651},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831260/Where_did_the_time_go","translated_internal_url":"","created_at":"2016-01-26T05:46:06.039-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14142778,"work_id":20831260,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289045,"email":"s***l@univ-amu.fr","display_order":0,"name":"Sabrina Ravel","title":"Where did the time go?"}],"downloadable_attachments":[{"id":41586651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586651/thumbnails/1.jpg","file_name":"nn0605-705.pdf20160126-32085-b3yfik","download_url":"https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Where_did_the_time_go.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586651/nn0605-705-libre.pdf20160126-32085-b3yfik?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DWhere_did_the_time_go.pdf\u0026Expires=1732530939\u0026Signature=UGYH3ksQNDHkvnuDcildBfAvihu-32G6llJTDT06~FyGwoUjRKYnfRsRj1Ng9K4qwNLn6E2I-6eD8lZ2h8N32KvVBOubq28HTM4DWjjnizyksorTH0mJATw6oPzjglW0mD-H0tU~Lo9bT2moEBqUtY5qZMSlHGqM7iGG6mrHfdbDQw28LPFINALRvKWLrWFnX6w6qN8s8XC6IXAyDpnju0WhYxtlaWh-KCy9j30mpjuQnL7Mi-f8KUV4Mp3Pp3HjIEifGtMY-4qtHk7AANmXqqpyvfGsqV0rfywXZ7c9DkL3AZabQ2MPa6R31PsuxnzZeCWYuIIZt7GKNjpaoif1Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Where_did_the_time_go","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586651,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586651/thumbnails/1.jpg","file_name":"nn0605-705.pdf20160126-32085-b3yfik","download_url":"https://www.academia.edu/attachments/41586651/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Where_did_the_time_go.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586651/nn0605-705-libre.pdf20160126-32085-b3yfik?1453828859=\u0026response-content-disposition=attachment%3B+filename%3DWhere_did_the_time_go.pdf\u0026Expires=1732530939\u0026Signature=UGYH3ksQNDHkvnuDcildBfAvihu-32G6llJTDT06~FyGwoUjRKYnfRsRj1Ng9K4qwNLn6E2I-6eD8lZ2h8N32KvVBOubq28HTM4DWjjnizyksorTH0mJATw6oPzjglW0mD-H0tU~Lo9bT2moEBqUtY5qZMSlHGqM7iGG6mrHfdbDQw28LPFINALRvKWLrWFnX6w6qN8s8XC6IXAyDpnju0WhYxtlaWh-KCy9j30mpjuQnL7Mi-f8KUV4Mp3Pp3HjIEifGtMY-4qtHk7AANmXqqpyvfGsqV0rfywXZ7c9DkL3AZabQ2MPa6R31PsuxnzZeCWYuIIZt7GKNjpaoif1Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"},{"id":49021,"name":"Reward","url":"https://www.academia.edu/Documents/in/Reward"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":65637,"name":"Caudate Nucleus","url":"https://www.academia.edu/Documents/in/Caudate_Nucleus"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":107148,"name":"Saccades","url":"https://www.academia.edu/Documents/in/Saccades"},{"id":115437,"name":"Nature Neuroscience","url":"https://www.academia.edu/Documents/in/Nature_Neuroscience"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":383087,"name":"Globus Pallidus","url":"https://www.academia.edu/Documents/in/Globus_Pallidus"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831259"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning"><img alt="Research paper thumbnail of Decoding cortical neuronal signals: Network models, information estimation and spatial tuning" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning">Decoding cortical neuronal signals: Network models, information estimation and spatial tuning</a></div><div class="wp-workCard_item"><span>Journal of Computational Neuroscience</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have studied the encoding of spatial pattern information by complex cells in the primary visua...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831259"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831259]").text(description); $(".js-view-count[data-work-id=20831259]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831259']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831259, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20831259]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831259,"title":"Decoding cortical neuronal signals: Network models, information estimation and spatial tuning","translated_title":"","metadata":{"abstract":"We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Journal of Computational Neuroscience"},"translated_abstract":"We have studied the encoding of spatial pattern information by complex cells in the primary visual cortex of awake monkeys. Three models for the conditional probabilities of different stimuli, given the neuronal response, were fit and compared using cross-validation. For our data, a feed-forward neural network proved to be the best of these models. The information carried by a cell about a stimulus set can be calculated from the estimated conditional probabilities. We performed a spatial spectroscopy of the encoding, examining how the transmitted information varies with both the average coarseness of the stimulus set and the coarseness differences within it. We find that each neuron encodes information about many features at multiple scales. Our data do not appear to allow a characterization of these variations in terms of the detection of simple single features such as oriented bars.","internal_url":"https://www.academia.edu/20831259/Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning","translated_internal_url":"","created_at":"2016-01-26T05:46:05.868-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795204,"work_id":20831259,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Decoding cortical neuronal signals: Network models, information estimation and spatial tuning"}],"downloadable_attachments":[],"slug":"Decoding_cortical_neuronal_signals_Network_models_information_estimation_and_spatial_tuning","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":159957,"name":"Complex Cell","url":"https://www.academia.edu/Documents/in/Complex_Cell"},{"id":187402,"name":"Cross Validation","url":"https://www.academia.edu/Documents/in/Cross_Validation"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":207885,"name":"Conditional probability","url":"https://www.academia.edu/Documents/in/Conditional_probability"},{"id":242997,"name":"Computational","url":"https://www.academia.edu/Documents/in/Computational"},{"id":286413,"name":"Spatial Pattern","url":"https://www.academia.edu/Documents/in/Spatial_Pattern"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":956026,"name":"Somatic Cell Count","url":"https://www.academia.edu/Documents/in/Somatic_Cell_Count"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20831258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision"><img alt="Research paper thumbnail of Information flow and temporal coding in primate pattern vision" class="work-thumbnail" src="https://attachments.academia-assets.com/41586661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision">Information flow and temporal coding in primate pattern vision</a></div><div class="wp-workCard_item"><span>Journal of Computational Neuroscience</span><span>, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2454eec1bc0ce9642ee7eddbda2d9a6f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41586661,&quot;asset_id&quot;:20831258,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20831258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20831258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20831258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20831258]").text(description); $(".js-view-count[data-work-id=20831258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20831258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20831258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20831258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2454eec1bc0ce9642ee7eddbda2d9a6f" } } $('.js-work-strip[data-work-id=20831258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20831258,"title":"Information flow and temporal coding in primate pattern vision","translated_title":"","metadata":{"grobid_abstract":"We perform time-resolved calculations of the information transmitted about visual patterns by neurons in primary visual and inferior temporal cortices. All measurable information is carried in an e ective timevarying ring rate, obtained by averaging the neuronal response with a resolution no ner than about 25 ms in primary visual cortex and around twice that in inferior temporal cortex. We found no better way for a neuron receiving these messages to decode them than simply to count spikes for this long. Most of the information tends to be concentrated in one or, more often, two brief packets, one at the very beginning of the response and the other typically 100 ms later. The rst packet is the most informative part of the message, but the second one generally contains new information. A small but signi cant part of the total information in the message accumulates gradually over the entire course of the response. These ndings impose strong constraints on the codes used by these neurons.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Journal of Computational Neuroscience","grobid_abstract_attachment_id":41586661},"translated_abstract":null,"internal_url":"https://www.academia.edu/20831258/Information_flow_and_temporal_coding_in_primate_pattern_vision","translated_internal_url":"","created_at":"2016-01-26T05:46:05.710-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42086941,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":13795203,"work_id":20831258,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":322394,"email":"h***z@nordita.dk","display_order":0,"name":"J. Hertz","title":"Information flow and temporal coding in primate pattern vision"},{"id":14142769,"work_id":20831258,"tagging_user_id":42086941,"tagged_user_id":null,"co_author_invite_id":3289044,"email":"j***r@mountsinai.org","display_order":4194304,"name":"Joshua Heller","title":"Information flow and temporal coding in primate pattern vision"}],"downloadable_attachments":[{"id":41586661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586661/thumbnails/1.jpg","file_name":"Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5.pdf","download_url":"https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_flow_and_temporal_coding_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586661/Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5-libre.pdf?1453828860=\u0026response-content-disposition=attachment%3B+filename%3DInformation_flow_and_temporal_coding_in.pdf\u0026Expires=1732530939\u0026Signature=FfPbfaLLcnXEt-73H3ih-WbJbrGhlaOYLawsD4ApD1a3PfO5prQLY2eQKqWKzmMiQHIfliVIewkRieAI2x2c4K07kOcTc-6pRMCqjAhu03pekQn78yv4yqRXqdwAqUsXv~ptuoYXg-UA34ML0BwD9ajeUrYjGDVa7BFOobAyZqG~7n8N1sJ6NnYtrRFkEmo7hvE3t7zsKiaCdIExXCiRFDNjW1gcmhQixC1tQVLfXGuhyaaBWs6RDCt-Lu5mY80pBxJ~rJe6d0r8HY3V-5dqWm-nM0y2fGEU2X5g6~~El4F86PeFj8JCRQ6P6xfl3hwJ8~yd0pNy~w453MZvHHe3LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_flow_and_temporal_coding_in_primate_pattern_vision","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":42086941,"first_name":"Barry","middle_initials":null,"last_name":"Richmond","page_name":"BarryRichmond3","domain_name":"independent","created_at":"2016-01-25T13:40:57.648-08:00","display_name":"Barry Richmond","url":"https://independent.academia.edu/BarryRichmond3"},"attachments":[{"id":41586661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41586661/thumbnails/1.jpg","file_name":"Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5.pdf","download_url":"https://www.academia.edu/attachments/41586661/download_file?st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&st=MTczMjUyNzMzOSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_flow_and_temporal_coding_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41586661/Information_flow_and_temporal_coding_in_20160126-26512-1k8ovx5-libre.pdf?1453828860=\u0026response-content-disposition=attachment%3B+filename%3DInformation_flow_and_temporal_coding_in.pdf\u0026Expires=1732530939\u0026Signature=FfPbfaLLcnXEt-73H3ih-WbJbrGhlaOYLawsD4ApD1a3PfO5prQLY2eQKqWKzmMiQHIfliVIewkRieAI2x2c4K07kOcTc-6pRMCqjAhu03pekQn78yv4yqRXqdwAqUsXv~ptuoYXg-UA34ML0BwD9ajeUrYjGDVa7BFOobAyZqG~7n8N1sJ6NnYtrRFkEmo7hvE3t7zsKiaCdIExXCiRFDNjW1gcmhQixC1tQVLfXGuhyaaBWs6RDCt-Lu5mY80pBxJ~rJe6d0r8HY3V-5dqWm-nM0y2fGEU2X5g6~~El4F86PeFj8JCRQ6P6xfl3hwJ8~yd0pNy~w453MZvHHe3LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":47964,"name":"Information Flow","url":"https://www.academia.edu/Documents/in/Information_Flow"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":965407,"name":"Temporal Coding","url":"https://www.academia.edu/Documents/in/Temporal_Coding"},{"id":1480215,"name":"Time varying","url":"https://www.academia.edu/Documents/in/Time_varying"},{"id":1554042,"name":"Inferior temporal cortex","url":"https://www.academia.edu/Documents/in/Inferior_temporal_cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18825667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks"><img alt="Research paper thumbnail of Measuring Natural Neural Processing with Artificial Neural Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks">Measuring Natural Neural Processing with Artificial Neural Networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/EmadEskandar">Emad Eskandar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarryRichmond3">Barry Richmond</a></span></div><div class="wp-workCard_item"><span>International Journal of Neural Systems</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real ne...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18825667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18825667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18825667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18825667]").text(description); $(".js-view-count[data-work-id=18825667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18825667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18825667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18825667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18825667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18825667,"title":"Measuring Natural Neural Processing with Artificial Neural Networks","translated_title":"","metadata":{"abstract":"ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"International Journal of Neural Systems"},"translated_abstract":"ABSTRACT We show how to use artificial neural networks as a quantitative tool in studying real neuronal processing in the monkey visual system. Training a network to classify neuronal signals according to the stimulus that elicited them permits us to calculate the information transmitted by these signals. We illustrate this for neurons in the primary visual cortex with measurements of the information transmitted about visual stimuli and for cells in inferior temporal cortex with measurements of information about behavioral context. For the latter neurons we also illustrate how artificial neural networks can be used to model the computation they do.","internal_url":"https://www.academia.edu/18825667/Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks","translated_internal_url":"","created_at":"2015-11-22T15:34:28.635-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38914104,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":10625900,"work_id":18825667,"tagging_user_id":38914104,"tagged_user_id":42086941,"co_author_invite_id":371871,"email":"b***r@ln.nimh.nih.gov","display_order":0,"name":"Barry Richmond","title":"Measuring Natural Neural Processing with Artificial Neural Networks"}],"downloadable_attachments":[],"slug":"Measuring_Natural_Neural_Processing_with_Artificial_Neural_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38914104,"first_name":"Emad","middle_initials":null,"last_name":"Eskandar","page_name":"EmadEskandar","domain_name":"independent","created_at":"2015-11-22T15:34:15.378-08:00","display_name":"Emad Eskandar","url":"https://independent.academia.edu/EmadEskandar"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":6071102,"url":"http://dx.doi.org/10.1142/S0129065792000425"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2699398f57d41be0da1dd00eea3edae0ed1621269d83b3e1b6e30658a450aa92", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="c/xQu2NKED1ponnHRIGgG41NlRJuZUVjrLOH2P/3iOrOxjGHTnoCrxW30tCZbqe5MFrm1kWtiGO1NgrAZq0uCQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/BarryRichmond3" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="PjoWP+0uwgHG5ZYvgU4l4F6SHMRsinhmRjiQvcgjZZWDAHcDwB7Qk7rwPThcoSJC44VvAEdCtWZfvR2lUXnDdg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10