CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 420 results for author: <span class="mathjax">Yang, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Yang%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13882">arXiv:2411.13882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13882">pdf</a>, <a href="https://arxiv.org/format/2411.13882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Youn%2C+T">Tony Youn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J+Y">Jonathan Yue Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dickie%2C+A">Alexandra Dickie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yianni%2C+S">Steve Yianni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Escott%2C+C+C">Christopher C. Escott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+K+W">Kok Wai Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cifuentes%2C+J+D">Jes煤s D. Cifuentes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dzurak%2C+A+S">Andrew S. Dzurak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13882v1-abstract-short" style="display: inline;"> Recent advances in semiconductor spin qubits have achieved linear arrays exceeding ten qubits. Moving to two-dimensional (2D) qubit arrays is a critical next step to advance towards fault-tolerant implementations, but it poses substantial fabrication challenges, particularly because enabling control of nearest-neighbor entanglement requires the incorporation of interstitial exchange gates between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13882v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13882v1-abstract-full" style="display: none;"> Recent advances in semiconductor spin qubits have achieved linear arrays exceeding ten qubits. Moving to two-dimensional (2D) qubit arrays is a critical next step to advance towards fault-tolerant implementations, but it poses substantial fabrication challenges, particularly because enabling control of nearest-neighbor entanglement requires the incorporation of interstitial exchange gates between quantum dots in the qubit architecture. In this work, we present a 2D array of silicon metal-oxide-semiconductor (MOS) quantum dots with tunable interdot coupling between all adjacent dots. The device is characterized at 4.2 K, where we demonstrate the formation and isolation of double-dot and triple-dot configurations. We show control of all nearest-neighbor tunnel couplings spanning up to 30 decades per volt through the interstitial exchange gates and use advanced modeling tools to estimate the exchange interactions that could be realized among qubits in this architecture. These results represent a significant step towards the development of 2D MOS quantum processors compatible with foundry manufacturing techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13882v1-abstract-full').style.display = 'none'; document.getElementById('2411.13882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02990">arXiv:2411.02990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02990">pdf</a>, <a href="https://arxiv.org/format/2411.02990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum surface effects on quantum emitters coupled to surface plasmon polariton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin-Yue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chun-Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+J">Jun-Hong An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02990v1-abstract-short" style="display: inline;"> As an ideal platform to explore strong quantized light-matter interactions, surface plasmon polariton (SPP) has inspired many applications in quantum technologies. It was recently found that quantum surface effects (QSEs) of the metal, including nonlocal optical response, electron spill-out, and Landau damping, contribute additional loss sources to the SPP. Such a deteriorated loss of the SPP seve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02990v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02990v1-abstract-full" style="display: none;"> As an ideal platform to explore strong quantized light-matter interactions, surface plasmon polariton (SPP) has inspired many applications in quantum technologies. It was recently found that quantum surface effects (QSEs) of the metal, including nonlocal optical response, electron spill-out, and Landau damping, contribute additional loss sources to the SPP. Such a deteriorated loss of the SPP severely hinders its realization of long-distance quantum interconnect. Here, we investigate the non-Markovian dynamics of quantum emitters (QEs) coupled to a common SPP in the presence of the QSEs in a planar metal-dielectric nanostructure. A mechanism to overcome the dissipation of the QEs caused by the lossy SPP is discovered. We find that, as long as the QE-SPP bound states favored by the QSEs are formed, a dissipationless entanglement among the QEs is created. It leads to that the separated QEs are coherently correlated in a manner of the Rabi-like oscillation mediated by the SPP even experiencing the metal absorption. Our study on the QSEs refreshes our understanding of the light-matter interactions in the absorptive medium and paves the way for applying the SPP in quantum interconnect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02990v1-abstract-full').style.display = 'none'; document.getElementById('2411.02990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 4 figures in the main text. 4 pages in the supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15590">arXiv:2410.15590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15590">pdf</a>, <a href="https://arxiv.org/format/2410.15590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Steinacker%2C+P">Paul Steinacker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuyck%2C+N+D">Nard Dumoulin Stuyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">MengKe Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nickl%2C+A">Andreas Nickl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Candido%2C+M">Marco Candido</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cifuentes%2C+J+D">Jesus D. Cifuentes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+K+W">Kok Wai Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubicek%2C+S">Stefan Kubicek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jussot%2C+J">Julien Jussot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canvel%2C+Y">Yann Canvel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beyne%2C+S">Sofie Beyne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimura%2C+Y">Yosuke Shimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loo%2C+R">Roger Loo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godfrin%2C+C">Clement Godfrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raes%2C+B">Bart Raes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baudot%2C+S">Sylvain Baudot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+D">Danny Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Escott%2C+C+C">Christopher C. Escott</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15590v2-abstract-short" style="display: inline;"> Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15590v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15590v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15590v2-abstract-full" style="display: none;"> Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to $T_\mathrm{2}^{\mathrm{*}} = 30.4$ $渭$s, $T_\mathrm{2}^{\mathrm{Hahn}} = 803$ $渭$s, and $T_1 = 6.3$ s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15590v2-abstract-full').style.display = 'none'; document.getElementById('2410.15590v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 4 extended data figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13930">arXiv:2410.13930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13930">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evidence of Floquet electronic steady states in graphene under continuous-wave mid-infrared irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yijing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Christopher Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaertner%2C+G">Gabriel Gaertner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huckabee%2C+J">John Huckabee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suslov%2C+A+V">Alexey V. Suslov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nathan%2C+F">Frederik Nathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewandowski%2C+C">Cyprian Lewandowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torres%2C+L+E+F+F">Luis E. F. Foa Torres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esin%2C+I">Iliya Esin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbara%2C+P">Paola Barbara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalugin%2C+N+G">Nikolai G. Kalugin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13930v1-abstract-short" style="display: inline;"> Light-induced phenomena in materials can exhibit exotic behavior that extends beyond equilibrium properties, offering new avenues for understanding and controlling electronic phases. So far, non-equilibrium phenomena in solids have been predominantly explored using femtosecond laser pulses, which generate transient, ultra-fast dynamics. Here, we investigate the steady non-equilibrium regime in gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13930v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13930v1-abstract-full" style="display: none;"> Light-induced phenomena in materials can exhibit exotic behavior that extends beyond equilibrium properties, offering new avenues for understanding and controlling electronic phases. So far, non-equilibrium phenomena in solids have been predominantly explored using femtosecond laser pulses, which generate transient, ultra-fast dynamics. Here, we investigate the steady non-equilibrium regime in graphene induced by a continuous-wave (CW) mid-infrared laser. Our transport measurements reveal signatures of a long-lived Floquet phase, where a non-equilibrium electronic population is stabilized by the interplay between coherent photoexcitation and incoherent phonon cooling. The observation of non-equilibrium steady states using CW lasers opens a new regime for low-temperature Floquet phenomena, paving the way toward Floquet engineering of steady-state phases of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13930v1-abstract-full').style.display = 'none'; document.getElementById('2410.13930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages + supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07506">arXiv:2410.07506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07506">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Interfacial fatigue fracture of pressure sensitive adhesives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yichen Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Q">Qianfeng Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Canhui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+R">Ruobing Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07506v2-abstract-short" style="display: inline;"> Pressure sensitive adhesives (PSAs) are viscoelastic polymers that can form fast and robust adhesion with various adherends under fingertip pressure. The rapidly expanding application domain of PSAs, such as healthcare, wearable electronics, and flexible displays, requires PSAs to sustain prolonged loads throughout their lifetime, calling for fundamental studies on their fatigue behaviors. However&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07506v2-abstract-full').style.display = 'inline'; document.getElementById('2410.07506v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07506v2-abstract-full" style="display: none;"> Pressure sensitive adhesives (PSAs) are viscoelastic polymers that can form fast and robust adhesion with various adherends under fingertip pressure. The rapidly expanding application domain of PSAs, such as healthcare, wearable electronics, and flexible displays, requires PSAs to sustain prolonged loads throughout their lifetime, calling for fundamental studies on their fatigue behaviors. However, fatigue of PSAs has remained poorly investigated. Here we study interfacial fatigue fracture of PSAs, focusing on the cyclic interfacial crack propagation due to the gradual rupture of noncovalent bonds between a PSA and an adherend. We fabricate a model PSA made of a hysteresis-free poly(butyl acrylate) bulk elastomer dip-coated with a viscoelastic poly(butyl acrylate-co-isobornyl acrylate) sticky surface, both crosslinked by poly(ethylene glycol) diacrylate. We adhere the fabricated PSA to a polyester strip to form a bilayer. The bilayer is covered by another polyester film as an inextensible backing layer. Using cyclic and monotonic peeling tests, we characterize the interfacial fatigue and fracture behaviors of the bilayer. From the experimental data, we obtain the interfacial fatigue threshold (4.6 J/m2) under cyclic peeling, the slow crack threshold (33.9 J/m2) under monotonic peeling, and the adhesion toughness (~ 400 J/m2) at a finite peeling speed. We develop a modified Lake-Thomas model to describe the interfacial fatigue threshold due to noncovalent bond breaking. The theoretical prediction (2.6 J/m2) agrees well with the experimental measurement (4.6 J/m2). Finally, we discuss possible additional dissipation mechanisms involved in the larger slow crack threshold and much larger adhesion toughness. It is hoped that this study will provide new fundamental knowledge for fracture mechanics of PSAs, as well as guidance for future tough and durable PSAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07506v2-abstract-full').style.display = 'none'; document.getElementById('2410.07506v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10254">arXiv:2409.10254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10254">pdf</a>, <a href="https://arxiv.org/format/2409.10254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.042205">10.1103/PhysRevA.110.042205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Multifractal Critical Phases in Two-Dimensional Quasiperiodic Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weizhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongjian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10254v2-abstract-short" style="display: inline;"> The multifractal critical phase (MCP) fundamentally differs from extended and localized phases, exhibiting delocalized distributions in both position and momentum spaces. The investigation on the MCP has largely focused on one-dimensional quasiperiodic systems. Here, we introduce a two-dimensional (2D) quasiperiodic model with a MCP. We present its phase diagram and investigate the characteristics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10254v2-abstract-full').style.display = 'inline'; document.getElementById('2409.10254v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10254v2-abstract-full" style="display: none;"> The multifractal critical phase (MCP) fundamentally differs from extended and localized phases, exhibiting delocalized distributions in both position and momentum spaces. The investigation on the MCP has largely focused on one-dimensional quasiperiodic systems. Here, we introduce a two-dimensional (2D) quasiperiodic model with a MCP. We present its phase diagram and investigate the characteristics of the 2D system&#39;s MCP in terms of wave packet diffusion and transport based on this model. We further investigate the movement of the phase boundary induced by the introduction of next-nearest-neighbor hopping by calculating the fidelity susceptibility. Finally, we consider how to realize our studied model in superconducting circuits. Our work opens the door to exploring MCP in 2D systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10254v2-abstract-full').style.display = 'none'; document.getElementById('2409.10254v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 042205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15529">arXiv:2408.15529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15529">pdf</a>, <a href="https://arxiv.org/format/2408.15529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasi-Lindblad pseudomode theory for open quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+G">Gunhee Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuanran Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15529v1-abstract-short" style="display: inline;"> We introduce a new framework to study the dynamics of open quantum systems with linearly coupled Gaussian baths. Our approach replaces the continuous bath with an auxiliary discrete set of pseudomodes with dissipative dynamics, but we further relax the complete positivity requirement in the Lindblad master equation and formulate a quasi-Lindblad pseudomode theory. We show that this quasi-Lindblad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15529v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15529v1-abstract-full" style="display: none;"> We introduce a new framework to study the dynamics of open quantum systems with linearly coupled Gaussian baths. Our approach replaces the continuous bath with an auxiliary discrete set of pseudomodes with dissipative dynamics, but we further relax the complete positivity requirement in the Lindblad master equation and formulate a quasi-Lindblad pseudomode theory. We show that this quasi-Lindblad pseudomode formulation directly leads to a representation of the bath correlation function in terms of a complex weighted sum of complex exponentials, an expansion that is known to be rapidly convergent in practice and thus leads to a compact set of pseudomodes. The pseudomode representation is not unique and can differ by a gauge choice. When the global dynamics can be simulated exactly, the system dynamics is unique and independent of the specific pseudomode representation. However, the gauge choice may affect the stability of the global dynamics, and we provide an analysis of why and when the global dynamics can retain stability despite losing positivity. We showcase the performance of this formulation across various spectral densities in both bosonic and fermionic problems, finding significant improvements over conventional pseudomode formulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15529v1-abstract-full').style.display = 'none'; document.getElementById('2408.15529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures (main text); 8 pages, 1 figure (Supplementary Material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14157">arXiv:2408.14157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Atomic-scale observation of geometric frustration in a fluorine-intercalated infinite layer nickelate superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+R+A">Roberto A. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hongguang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sigle%2C+W">Wilfried Sigle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anggara%2C+K">Kelvin Anggara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benckiser%2C+E">Eva Benckiser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Aken%2C+P+A">Peter A. van Aken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14157v1-abstract-short" style="display: inline;"> Anion doping offers immense potential for tailoring material properties, but achieving precise control over anion incorporation remains a challenge due to complex synthesis processes and limitations in local dopant detection. Here, we investigate the F-ion intercalation within an infinite layer NdNiO2+x/SrTiO3 superlattice film using a two-step synthesis approach. We employ advanced four-dimension&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14157v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14157v1-abstract-full" style="display: none;"> Anion doping offers immense potential for tailoring material properties, but achieving precise control over anion incorporation remains a challenge due to complex synthesis processes and limitations in local dopant detection. Here, we investigate the F-ion intercalation within an infinite layer NdNiO2+x/SrTiO3 superlattice film using a two-step synthesis approach. We employ advanced four-dimensional scanning transmission electron microscopy (4D-STEM) coupled with electron energy loss spectroscopy to map the F distribution and its impact on the atomic and electronic structure. Our observations reveal a striking geometric reconstruction of the infinite layer structure upon fluorination, resulting in a more distorted orthorhombic phase compared to the pristine perovskite. Notably, F-ion intercalation occurs primarily at the apical sites of the polyhedron, with some occupation of basal sites in localized regions. This process leads to the formation of two distinct domains within the nickelate layer, reflecting a competition between polyhedral distortion and geometric frustration-induced neodymium (Nd) displacement near domain interfaces. Interestingly, we observe an anomalous structural distortion where basal site anions are displaced in the same direction as Nd atoms, potentially linked to the partial basal site F-ion occupation. This coexistence of diverse structural distortions signifies a locally disordered F-ion distribution within the infinite layer structure with distinct F-ion configurations. These findings provide crucial insights into understanding and manipulating anion doping at the atomic level, paving the way for the development of novel materials with precisely controlled functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14157v1-abstract-full').style.display = 'none'; document.getElementById('2408.14157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07345">arXiv:2408.07345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07345">pdf</a>, <a href="https://arxiv.org/format/2408.07345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Missing spectral weight in a paramagnetic heavy-fermion system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingwen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Priyadarshi%2C+D">Debankit Priyadarshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chia-Jung Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohl%2C+U">Ulli Pohl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stockert%2C+O">Oliver Stockert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Loehneysen%2C+H">Hilbert von Loehneysen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+S">Shovon Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiebig%2C+M">Manfred Fiebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kroha%2C+J">Johann Kroha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07345v1-abstract-short" style="display: inline;"> The competition between the Kondo spin-screening effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in heavy-fermion systems drives the quantum phase transition between the magnetically ordered and the heavy-Fermi-liquid ground states. Despite intensive investigations of heavy quasiparticles on the Kondo-screened side of the quantum phase transition and of their breakdown at the quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07345v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07345v1-abstract-full" style="display: none;"> The competition between the Kondo spin-screening effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in heavy-fermion systems drives the quantum phase transition between the magnetically ordered and the heavy-Fermi-liquid ground states. Despite intensive investigations of heavy quasiparticles on the Kondo-screened side of the quantum phase transition and of their breakdown at the quantum critical point, studies on the magnetically ordering side are scarce. Using terahertz time-domain spectroscopy, we report a suppression of the Kondo quasiparticle weight in CeCu6-xAux samples on the antiferromagnetic side of the quantum phase transition at temperatures as much as two orders of magnitude above the Neel temperature TN. The suppression results from a quantum frustration effect induced by the temperature-independent RKKY interaction. Hence, our results emphasize that besides critical fluctuations, the RKKY interaction may play an important role in the quantum-critical scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07345v1-abstract-full').style.display = 'none'; document.getElementById('2408.07345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07338">arXiv:2408.07338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07338">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Symmetric n-and p-Type Sub-5-nm 1D Graphene Nanoribbon Transistors for Homogeneous CMOS Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Linqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shiqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiuhui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Shibo Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Ying Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07338v1-abstract-short" style="display: inline;"> Graphene nanoribbon (GNR) emerges as an exceptionally promising channel candidate due to its tunable sizable bandgap (0-3 eV), ultrahigh carrier mobility (up to 4600 cm^(2) V^(-1) s^(-1)), and excellent device performance (current on-off ratio of 10^(7)). However, the asymmetry of reported n-type and p-type GNR field-effect transistors (FETs) at ultrashort gate length (Lg) has become an obstacle t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07338v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07338v1-abstract-full" style="display: none;"> Graphene nanoribbon (GNR) emerges as an exceptionally promising channel candidate due to its tunable sizable bandgap (0-3 eV), ultrahigh carrier mobility (up to 4600 cm^(2) V^(-1) s^(-1)), and excellent device performance (current on-off ratio of 10^(7)). However, the asymmetry of reported n-type and p-type GNR field-effect transistors (FETs) at ultrashort gate length (Lg) has become an obstacle to future complementary metal-oxide-semiconductor (CMOS) integration. Here, we conduct ab initio quantum transport simulations to investigate the transport properties of sub-5-nm Lg 7 armchair-edge GNR (7 AGNR) FETs. The on-state current, delay time, and power dissipation of the n-type and p-type 7 AGNR FETs fulfill the International Technology Roadmap for Semiconductors targets for high-performance devices when Lg is reduced to 3 nm. Remarkably, the 7 AGNR FETs exhibit superior n-type and p-type symmetry to the 7-9-7 AGNR FETs due to the more symmetrical electron/hole effective masses. Compared to the monolayer MoS2 and MoTe2 counterparts, the 7 AGNR FETs have better device performance, which could be further improved via gate engineering. Our results shed light on the immense potential of 7 AGNR in advancing CMOS electronics beyond silicon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07338v1-abstract-full').style.display = 'none'; document.getElementById('2408.07338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17368">arXiv:2407.17368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17368">pdf</a>, <a href="https://arxiv.org/format/2407.17368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202412831">10.1002/adfm.202412831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelectric phase control at domain-wall-like epitaxial oxide multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gradauskaite%2C+E">Elzbieta Gradauskaite</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chia-Jung Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+S">Shovon Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiebig%2C+M">Manfred Fiebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trassin%2C+M">Morgan Trassin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17368v1-abstract-short" style="display: inline;"> Ferroelectric domain walls are nanoscale objects that can be created, positioned, and erased on demand. They often embody functional properties that are distinct from the surrounding bulk material. Enhanced conductivity, for instance, is observed at charged ferroelectric domain walls. Regrettably, domain walls of this type are scarce because of the energetically unfavorable electrostatics. This hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17368v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17368v1-abstract-full" style="display: none;"> Ferroelectric domain walls are nanoscale objects that can be created, positioned, and erased on demand. They often embody functional properties that are distinct from the surrounding bulk material. Enhanced conductivity, for instance, is observed at charged ferroelectric domain walls. Regrettably, domain walls of this type are scarce because of the energetically unfavorable electrostatics. This hinders the current technological development of domain-wall nanoelectronics. Here we overcome this constraint by creating robust domain-wall-like objects in epitaxial oxide heterostructures. We design charged head-to-head (HH) and tail-to-tail (TT) junctions with two ferroelectric layers (BaTiO$_{3}$ and BiFeO$_{3}$) that have opposing out-of-plane polarization. To test domain-wall-like functionalities, we insert an ultrathin ferromagnetic La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ layer into the junctions. The interfacial electron or hole accumulation at the interfaces, set by the HH and TT polarization configurations, respectively, controls the LSMO conductivity and magnetization. We thus propose that trilayers reminiscent of artificial domain walls provide magnetoelectric functionality and may constitute an important building block in the design of oxide-based electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17368v1-abstract-full').style.display = 'none'; document.getElementById('2407.17368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15778">arXiv:2407.15778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15778">pdf</a>, <a href="https://arxiv.org/format/2407.15778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Violating Bell&#39;s inequality in gate-defined quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Steinacker%2C+P">Paul Steinacker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuyck%2C+N+D">Nard Dumoulin Stuyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">MengKe Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vahapoglu%2C+E">Ensar Vahapoglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R+Y">Rocky Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J+Y">Jonathan Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+C">Cameron Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Escott%2C+C+C">Christopher C. Escott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morello%2C+A">Andrea Morello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15778v2-abstract-short" style="display: inline;"> Superior computational power promised by quantum computers utilises the fundamental quantum mechanical principle of entanglement. However, achieving entanglement and verifying that the generated state does not follow the principle of local causality has proven difficult for spin qubits in gate-defined quantum dots, as it requires simultaneously high concurrence values and readout fidelities to bre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15778v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15778v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15778v2-abstract-full" style="display: none;"> Superior computational power promised by quantum computers utilises the fundamental quantum mechanical principle of entanglement. However, achieving entanglement and verifying that the generated state does not follow the principle of local causality has proven difficult for spin qubits in gate-defined quantum dots, as it requires simultaneously high concurrence values and readout fidelities to break the classical bound imposed by Bell&#39;s inequality. Here we employ heralded initialization and calibration via gate set tomography (GST), to reduce all relevant errors and push the fidelities of the full 2-qubit gate set above 99 %, including state preparation and measurement (SPAM). We demonstrate a 97.17 % Bell state fidelity without correcting for readout errors and violate Bell&#39;s inequality with a Bell signal of S = 2.731 close to the theoretical maximum of $2\sqrt{2}$. Our measurements exceed the classical limit even at elevated temperatures of 1.1 K or entanglement lifetimes of 100 $渭s$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15778v2-abstract-full').style.display = 'none'; document.getElementById('2407.15778v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 main figures, 9 extended data figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81P68; 81-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15151">arXiv:2407.15151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15151">pdf</a>, <a href="https://arxiv.org/format/2407.15151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin Qubits with Scalable milli-kelvin CMOS Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bartee%2C+S+K">Samuel K. Bartee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+W">Will Gilbert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+K">Kun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+K">Kushal Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuyck%2C+N+D">Nard Dumoulin Stuyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pauka%2C+S+J">Sebastian J. Pauka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R+Y">Rocky Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Escott%2C+C+C">Christopher C. Escott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reilly%2C+D+J">David J. Reilly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15151v1-abstract-short" style="display: inline;"> A key virtue of spin qubits is their sub-micron footprint, enabling a single silicon chip to host the millions of qubits required to execute useful quantum algorithms with error correction. With each physical qubit needing multiple control lines however, a fundamental barrier to scale is the extreme density of connections that bridge quantum devices to their external control and readout hardware.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15151v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15151v1-abstract-full" style="display: none;"> A key virtue of spin qubits is their sub-micron footprint, enabling a single silicon chip to host the millions of qubits required to execute useful quantum algorithms with error correction. With each physical qubit needing multiple control lines however, a fundamental barrier to scale is the extreme density of connections that bridge quantum devices to their external control and readout hardware. A promising solution is to co-locate the control system proximal to the qubit platform at milli-kelvin temperatures, wired-up via miniaturized interconnects. Even so, heat and crosstalk from closely integrated control have potential to degrade qubit performance, particularly for two-qubit entangling gates based on exchange coupling that are sensitive to electrical noise. Here, we benchmark silicon MOS-style electron spin qubits controlled via heterogeneously-integrated cryo-CMOS circuits with a low enough power density to enable scale-up. Demonstrating that cryo-CMOS can efficiently enable universal logic operations for spin qubits, we go on to show that mill-kelvin control has little impact on the performance of single- and two-qubit gates. Given the complexity of our milli-kelvin CMOS platform, with some 100-thousand transistors, these results open the prospect of scalable control based on the tight packaging of spin qubits with a chiplet style control architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15151v1-abstract-full').style.display = 'none'; document.getElementById('2407.15151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15145">arXiv:2407.15145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Janus MoSSe nanotubes on one-dimensional SWCNT-BNNT van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chunxia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Q">Qingyun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+Y">Yuta Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yanlin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yongjia Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yicheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+M">Mina Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okada%2C+S">Susumu Okada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suenaga%2C+K">Kazu Suenaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+S">Shigeo Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+R">Rong Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15145v1-abstract-short" style="display: inline;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diamete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15145v1-abstract-full" style="display: none;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diameters surpassing 4 nm and Se positioned externally, consistently demonstrate lower energy states than their Janus monolayer counterparts. However, there have been limited studies on the preparation of Janus nanotubes, due to the synthesis challenge and limited sample quality. Here we first synthesized MoS2 nanotubes based on SWCNT-BNNT heterostructure and then explored the growth of Janus MoSSe nanotubes from MoS2 nanotubes with the assistance of H2 plasma at room temperature. The successful formation of the Janus structure was confirmed via Raman spectroscopy, and microscopic morphology and elemental distribution of the grown samples were further characterized. The synthesis of Janus MoSSe nanotubes based on SWCNT-BNNT enables the further exploration of novel properties in Janus TMDC nanotubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v1-abstract-full').style.display = 'none'; document.getElementById('2407.15145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13655">arXiv:2407.13655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13655">pdf</a>, <a href="https://arxiv.org/format/2407.13655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Can dissipation induce a transition between many-body localized and thermal states? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yutao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13655v1-abstract-short" style="display: inline;"> The many-body mobility edge (MBME) in energy, which separates thermal states from many-body localization (MBL) states, is a critical yet controversial concept in many-body systems. Here we examine the quasiperiodic $t_1-t_2$ model that features a mobility edge. With the addition of nearest-neighbor interactions, we demonstrate the potential existence of a MBME. Then we investigate the impact of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13655v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13655v1-abstract-full" style="display: none;"> The many-body mobility edge (MBME) in energy, which separates thermal states from many-body localization (MBL) states, is a critical yet controversial concept in many-body systems. Here we examine the quasiperiodic $t_1-t_2$ model that features a mobility edge. With the addition of nearest-neighbor interactions, we demonstrate the potential existence of a MBME. Then we investigate the impact of a type of bond dissipation on the many-body system by calculating the steady-state density matrix and analyzing the transport behavior, and demonstrate that dissipation can cause the system to predominantly occupy either the thermal region or the MBL region, irrespective of the initial state. Finally, we discuss the effects of increasing system size. Our results indicate that dissipation can induce transitions between thermal and MBL states, providing a new approach for experimentally determining the existence of the MBME. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13655v1-abstract-full').style.display = 'none'; document.getElementById('2407.13655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09773">arXiv:2407.09773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09773">pdf</a>, <a href="https://arxiv.org/format/2407.09773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Predicting nonequilibrium Green&#39;s function dynamics and photoemission spectra via nonlinear integral operator learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuanran Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reeves%2C+C+C">Cian C. Reeves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlcek%2C+V">Vojtech Vlcek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09773v2-abstract-short" style="display: inline;"> Understanding the dynamics of nonequilibrium quantum many-body systems is an important research topic in a wide range of fields across condensed matter physics, quantum optics, and high-energy physics. However, numerical studies of large-scale nonequilibrium phenomena in realistic materials face serious challenges due to intrinsic high-dimensionality of quantum many-body problems. The nonequilibri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09773v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09773v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09773v2-abstract-full" style="display: none;"> Understanding the dynamics of nonequilibrium quantum many-body systems is an important research topic in a wide range of fields across condensed matter physics, quantum optics, and high-energy physics. However, numerical studies of large-scale nonequilibrium phenomena in realistic materials face serious challenges due to intrinsic high-dimensionality of quantum many-body problems. The nonequilibrium properties of many-body systems can be described by the dynamics of the Green&#39;s function of the system, whose time evolution is given by a high-dimensional system of integro-differential equations, known as the Kadanoff-Baym equations (KBEs). The time-convolution term in KBEs, which needs to be recalculated at each time step, makes it difficult to perform long-time simulations. In this paper, we develop an operator-learning framework based on Recurrent Neural Networks (RNNs) to address this challenge. The proposed framework utilizes RNNs to learn the nonlinear mapping between Green&#39;s functions and convolution integrals in KBEs. By using the learned operators as a surrogate model in the KBE solver, we obtain a general machine-learning scheme for predicting the dynamics of nonequilibrium Green&#39;s functions. This new methodology reduces the temporal computational complexity from $O(N_t^3)$ to $O(N_t)$, where $N_t$ is the total time steps taken in a simulation, thereby making it possible to study large many-body problems which are currently infeasible with conventional KBE solvers. Through different numerical examples, we demonstrate the effectiveness of the operator-learning based approach in providing accurate predictions of physical observables such as the reduced density matrix and time-resolved photoemission spectra. Moreover, our framework exhibits clear numerical convergence and can be easily parallelized, thereby facilitating many possible further developments and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09773v2-abstract-full').style.display = 'none'; document.getElementById('2407.09773v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16744">arXiv:2406.16744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16744">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Lone Pair Induced 1D Character and Weak Cation-anion Interactions: Two Ingredients for Low Thermal Conductivity in Mixed-anion Metal Chalcohalides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xingchen Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+K">Koushik Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharyya%2C+P">Paribesh Acharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raveau%2C+B">Bernard Raveau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boullay%2C+P">Philippe Boullay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prestipino%2C+C">Carmelo Prestipino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+S">Susumu Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chun-Chuen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsao%2C+I">I-Yu Tsao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Renaud%2C+A">Adele Renaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemoine%2C+P">Pierric Lemoine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Candolfi%2C+C">Christophe Candolfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guilmeau%2C+E">Emmanuel Guilmeau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16744v1-abstract-short" style="display: inline;"> Mixed-anion compounds, which incorporate multiple types of anions into materials, displays tailored crystal structures and physical/chemical properties, garnering immense interests in various applications such as batteries, catalysis, photovoltaics, and thermoelectrics. However, detailed studies regarding correlations between crystal structure, chemical bonding, and thermal/vibrational properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16744v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16744v1-abstract-full" style="display: none;"> Mixed-anion compounds, which incorporate multiple types of anions into materials, displays tailored crystal structures and physical/chemical properties, garnering immense interests in various applications such as batteries, catalysis, photovoltaics, and thermoelectrics. However, detailed studies regarding correlations between crystal structure, chemical bonding, and thermal/vibrational properties are rare for these compounds, which limits the exploration of mixed-anion compounds for associated thermal applications. In this work, we investigate the lattice dynamics and thermal transport properties of the metal chalcohalides, CuBiSCl2. A high-purity polycrystalline CuBiSCl2 sample, successfully synthesized via modified solid-state synthetic method, exhibits a low lattice thermal conductivity of 0.9-0.6 W m-1 K-1 from 300 to 573 K. By combining various experimental techniques including 3D electron diffraction with theoretical calculations, we elucidate the origin of low lattice thermal conductivity in CuBiSCl2. The stereo-chemical activity of the 6s2 lone pair of Bi3+ favors an asymmetric environment with neighboring anions involving both short and long bond lengths. This particularity often implies weak bonding, low structure dimensionality, and strong anharmonicity, leading to low lattice thermal conductivity. In addition, the strong two-fold linear S-Cu-S coordination with weak Cu -- Cl interactions induces large anisotropic vibration of Cu or structural disorder, which enables strong phonon-phonon scattering and decreases lattice thermal conductivity. The investigations into lattice dynamics and thermal transport properties of CuBiSCl2 broadens the scope of the existing mixed-anion compounds suitable for the associated thermal applications, offering a new avenue for the search of low thermal conductivity materials in low-cost mixed-anion compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16744v1-abstract-full').style.display = 'none'; document.getElementById('2406.16744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04183">arXiv:2406.04183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04183">pdf</a>, <a href="https://arxiv.org/format/2406.04183">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104305">10.1103/PhysRevB.110.104305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating the Relaxation Time of Boundary-Dissipative Systems through Bond Dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04183v4-abstract-short" style="display: inline;"> Relaxation time plays a crucial role in describing the relaxation processes of quantum systems. We study the effect of a type of bond dissipation on the relaxation time of boundary dissipative systems and find that it can change the scaling of the relaxation time $T_c\sim L^{z}$ from $z=3$ to a value significantly less than $3$. We further reveal that the reason such bond dissipation can significa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04183v4-abstract-full').style.display = 'inline'; document.getElementById('2406.04183v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04183v4-abstract-full" style="display: none;"> Relaxation time plays a crucial role in describing the relaxation processes of quantum systems. We study the effect of a type of bond dissipation on the relaxation time of boundary dissipative systems and find that it can change the scaling of the relaxation time $T_c\sim L^{z}$ from $z=3$ to a value significantly less than $3$. We further reveal that the reason such bond dissipation can significantly reduce the relaxation time is that it can selectively target specific states. For Anderson localized systems, the scaling behavior of the relaxation time changes from an exponential form to a power-law form as the system size varies. This is because the bond dissipation we consider can not only select specific states but also disrupt the localization properties. Our work reveals that in open systems, one type of dissipation can be used to regulate the effects produced by another type of dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04183v4-abstract-full').style.display = 'none'; document.getElementById('2406.04183v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 104305 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08814">arXiv:2405.08814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08814">pdf</a>, <a href="https://arxiv.org/format/2405.08814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Performance of wave function and Green&#39;s functions based methods for non equilibrium many-body dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reeves%2C+C+C">Cian C. Reeves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harsha%2C+G">Gaurav Harsha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shee%2C+A">Avijit Shee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuanran Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whaley%2C+K+B">K Birgitta Whaley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zgid%2C+D">Dominika Zgid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlcek%2C+V">Vojtech Vlcek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08814v1-abstract-short" style="display: inline;"> Theoretical descriptions of non equilibrium dynamics of quantum many-body systems essentially employ either (i) explicit treatments, relying on truncation of the expansion of the many-body wave function, (ii) compressed representations of the many-body wave function, or (iii) evolution of an effective (downfolded) representation through Green&#39;s functions. In this work, we select representative cas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08814v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08814v1-abstract-full" style="display: none;"> Theoretical descriptions of non equilibrium dynamics of quantum many-body systems essentially employ either (i) explicit treatments, relying on truncation of the expansion of the many-body wave function, (ii) compressed representations of the many-body wave function, or (iii) evolution of an effective (downfolded) representation through Green&#39;s functions. In this work, we select representative cases of each of the methods and address how these complementary approaches capture the dynamics driven by intense field perturbations to non equilibrium states. Under strong driving, the systems are characterized by strong entanglement of the single particle density matrix and natural populations approaching those of a strongly interacting equilibrium system. We generate a representative set of results that are numerically exact and form a basis for critical comparison of the distinct families of methods. We demonstrate that the compressed formulation based on similarity transformed Hamiltonians (coupled cluster approach) is practically exact in weak fields and, hence, weakly or moderately correlated systems. Coupled cluster, however, struggles for strong driving fields, under which the system exhibits strongly correlated behavior, as measured by the von Neumann entropy of the single particle density matrix. The dynamics predicted by Green&#39;s functions in the (widely popular) GW approximation are less accurate by improve significantly upon the mean-field results in the strongly driven regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08814v1-abstract-full').style.display = 'none'; document.getElementById('2405.08814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 figures in main text. 11 page supplemental information with 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05287">arXiv:2405.05287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05287">pdf</a>, <a href="https://arxiv.org/format/2405.05287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10773-024-05695-8">10.1007/s10773-024-05695-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-Dirac Integrals in Degenerate Regimes: A Novel Asymptotic Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birrell%2C+J">Jeremiah Birrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Formanek%2C+M">Martin Formanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinmetz%2C+A">Andrew Steinmetz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+T">Cheng Tao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rafelski%2C+J">Johann Rafelski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05287v2-abstract-short" style="display: inline;"> We characterize in a novel manner the physical properties of the low temperature Fermi gas in the degenerate domain as a function of temperature and chemical potential. For the first time we obtain low temperature $T$ results in the domain where several fermions are found within a de Broglie spatial cell. In this regime, the usual high degeneracy Sommerfeld expansion fails. The other known semi-cl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05287v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05287v2-abstract-full" style="display: none;"> We characterize in a novel manner the physical properties of the low temperature Fermi gas in the degenerate domain as a function of temperature and chemical potential. For the first time we obtain low temperature $T$ results in the domain where several fermions are found within a de Broglie spatial cell. In this regime, the usual high degeneracy Sommerfeld expansion fails. The other known semi-classical Boltzmann domain applies when fewer than one particle is found in the de Broglie cell. We also improve on the understanding of the Sommerfeld expansion in the regime where the chemical potential is close to the mass and also in the high temperature regime. In these calculcations we use a novel characterization of the Fermi distribution allowing the separation of the finite and zero temperature phenomena. The relative errors of the three approximate methods (Boltzmann limit, Sommerfeld expansion, and the new domain of several particles in the de Broglie cell) are quantified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05287v2-abstract-full').style.display = 'none'; document.getElementById('2405.05287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages 1+7 double figures, v2 format accepted for publication in the International Journal of Theoretical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11647">arXiv:2404.11647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11647">pdf</a>, <a href="https://arxiv.org/format/2404.11647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantized Acoustoelectric Floquet Effect in Quantum Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Christopher Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunt%2C+W">Will Hunt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refael%2C+G">Gil Refael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esin%2C+I">Iliya Esin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11647v1-abstract-short" style="display: inline;"> External coherent fields can drive quantum materials into non-equilibrium states, revealing exotic properties that are unattainable under equilibrium conditions -- an approach known as ``Floquet engineering.&#39;&#39; While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11647v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11647v1-abstract-full" style="display: none;"> External coherent fields can drive quantum materials into non-equilibrium states, revealing exotic properties that are unattainable under equilibrium conditions -- an approach known as ``Floquet engineering.&#39;&#39; While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire. The quantization of the current is achieved due to the coupling of electrons to the nanowire&#39;s vibrational modes, providing the low-temperature heat bath and energy relaxation mechanisms. Our findings underscore the potential of using non-optical drives, such as coherent phonon sources, to induce non-equilibrium phenomena in materials. Furthermore, our approach suggests a new method for the high-precision detection of coherent phonon oscillations via transport measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11647v1-abstract-full').style.display = 'none'; document.getElementById('2404.11647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures + supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12349">arXiv:2403.12349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12349">pdf</a>, <a href="https://arxiv.org/format/2403.12349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Denoising of Imaginary Time Response Functions with Hankel projections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">Alexander F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12349v2-abstract-short" style="display: inline;"> Imaginary-time response functions of finite-temperature quantum systems are often obtained with methods that exhibit stochastic or systematic errors. Reducing these errors comes at a large computational cost -- in quantum Monte Carlo simulations, the reduction of noise by a factor of two incurs a simulation cost of a factor of four. In this paper, we relate certain imaginary-time response function&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12349v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12349v2-abstract-full" style="display: none;"> Imaginary-time response functions of finite-temperature quantum systems are often obtained with methods that exhibit stochastic or systematic errors. Reducing these errors comes at a large computational cost -- in quantum Monte Carlo simulations, the reduction of noise by a factor of two incurs a simulation cost of a factor of four. In this paper, we relate certain imaginary-time response functions to an inner product on the space of linear operators on Fock space. We then show that data with noise typically does not respect the positive definiteness of its associated Gramian. The Gramian has the structure of a Hankel matrix. As a method for denoising noisy data, we introduce an alternating projection algorithm that finds the closest positive definite Hankel matrix consistent with noisy data. We test our methodology at the example of fermion Green&#39;s functions for continuous-time quantum Monte Carlo data and show remarkable improvements of the error, reducing noise by a factor of up to 20 in practical examples. We argue that Hankel projections should be used whenever finite-temperature imaginary-time data of response functions with errors is analyzed, be it in the context of quantum Monte Carlo, quantum computing, or in approximate semianalytic methodologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12349v2-abstract-full').style.display = 'none'; document.getElementById('2403.12349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11232">arXiv:2403.11232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11232">pdf</a>, <a href="https://arxiv.org/format/2403.11232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Incommensurate Charge Super-modulation and Hidden Dipole Order in Layered Kitaev Material $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaohu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cuiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huaxue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chongli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanigaki%2C+K">Katsumi Tanigaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+R">Rui-Rui Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11232v2-abstract-short" style="display: inline;"> The magnetism of Kitaev materials has been widely studied, but their charge properties and the coupling to other degrees of freedom are less known. Here we investigate the charge states of $伪$-RuCl$_3$, a promising Kitaev quantum spin liquid candidate, in proximity to graphite. We discover that few-layered $伪$-RuCl$_3$ experiences a clear modulation of charge states, where a Mott-insulator to weak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11232v2-abstract-full').style.display = 'inline'; document.getElementById('2403.11232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11232v2-abstract-full" style="display: none;"> The magnetism of Kitaev materials has been widely studied, but their charge properties and the coupling to other degrees of freedom are less known. Here we investigate the charge states of $伪$-RuCl$_3$, a promising Kitaev quantum spin liquid candidate, in proximity to graphite. We discover that few-layered $伪$-RuCl$_3$ experiences a clear modulation of charge states, where a Mott-insulator to weak charge-transfer-insulator transition in the 2D limit occurs by means of heterointerfacial polarization. More notably, distinct signals of incommensurate charge and lattice super-modulations, regarded as an unconventional charge order, accompanied in the insulator. Our theoretical calculations have reproduced the incommensurate charge order by taking into account the antiferroelectricity of $伪$-RuCl$_3$ that is driven by dipole order in the internal electric fields. The findings imply that there is strong coupling between the charge, spin, and lattice degrees of freedom in layered $伪$-RuCl$_3$ in the heterostructure, which offers an opportunity to electrically access and tune its magnetic interactions inside the Kitaev compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11232v2-abstract-full').style.display = 'none'; document.getElementById('2403.11232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature Communications (20 pages, 4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03088">arXiv:2403.03088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Shear-enhanced Liquid Crystal Spinning of Conjugated Polymer Fibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chi-yuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+D">Deyu Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+L">Liang-wen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hengda Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hongzhi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabiano%2C+S">Simone Fabiano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">Meifang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03088v2-abstract-short" style="display: inline;"> Conjugated polymer fibers can be used to manufacture various soft fibrous optoelectronic devices, significantly advancing wearable devices and smart textiles. Recently, conjugated polymer-based fibrous electronic devices have been widely used in energy conversion, electrochemical sensing, and human-machine interaction. However, the insufficient mechanical properties of conjugated polymer fibers, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03088v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03088v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03088v2-abstract-full" style="display: none;"> Conjugated polymer fibers can be used to manufacture various soft fibrous optoelectronic devices, significantly advancing wearable devices and smart textiles. Recently, conjugated polymer-based fibrous electronic devices have been widely used in energy conversion, electrochemical sensing, and human-machine interaction. However, the insufficient mechanical properties of conjugated polymer fibers, the difficulty in solution processing semiconductors with rigid main chains, and the challenges in large-scale continuous production have limited their further development in the wearable field. We regulated the pi - pi stacking interactions in conjugated polymer molecules below their critical liquid crystal concentration by applying fluid shear stress. We implemented secondary orientation, leading to the continuous fabrication of anisotropic semiconductor fibers. This strategy enables conjugated polymers with rigid backbones to synergistically enhance the mechanical and semiconductor properties of fibers through liquid crystal spinning. Furthermore, conjugated polymer fibers, exhibiting excellent electrochemical performance and high mechanical strength (600 MPa) that essentially meet the requirements for industrialized preparation, maintain stability under extreme temperatures, radiation, and chemical reagents. Lastly, we have demonstrated logic circuits using semiconductor fiber organic electrochemical transistors, showcasing its application potential in the field of wearable fabric-style logic processing. These findings confirm the importance of the liquid crystalline state and solution control in optimizing the performance of conjugated polymer fibers, thus paving the way for developing a new generation of soft fiber semiconductor devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03088v2-abstract-full').style.display = 'none'; document.getElementById('2403.03088v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01158">arXiv:2403.01158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01158">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Bayesian Committee Machine Potential for Oxygen-containing Organic Compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Seungwon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D+C">D. ChangMo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willow%2C+S+Y">Soohaeng Yoo Willow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myung%2C+C+W">Chang Woo Myung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01158v1-abstract-short" style="display: inline;"> Understanding the pivotal role of oxygen-containing organic compounds in serving as an energy source for living organisms and contributing to protein formation is crucial in the field of biochemistry. This study addresses the challenge of comprehending protein-protein interactions (PPI) and developing predicitive models for proteins and organic compounds, with a specific focus on quantifying their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01158v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01158v1-abstract-full" style="display: none;"> Understanding the pivotal role of oxygen-containing organic compounds in serving as an energy source for living organisms and contributing to protein formation is crucial in the field of biochemistry. This study addresses the challenge of comprehending protein-protein interactions (PPI) and developing predicitive models for proteins and organic compounds, with a specific focus on quantifying their binding affinity. Here, we introduce the active Bayesian Committee Machine (BCM) potential, specifically designed to predict oxygen-containing organic compounds within eight groups of CHO. The BCM potential adopts a committee-based approach to tackle scalability issues associated with kernel regressors, particularly when dealing with large datasets. Its adaptable structure allows for efficient and cost-effective expansion, maintaing both transferability and scalability. Through systematic benchmarking, we position the sparse BCM potential as a promising contender in the pursuit of a universal machine learning potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01158v1-abstract-full').style.display = 'none'; document.getElementById('2403.01158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17132">arXiv:2402.17132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17132">pdf</a>, <a href="https://arxiv.org/format/2402.17132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Bayesian Committee Machine Potential for Organic Nitrogen Compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H+G">Hyun Gyu Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willow%2C+S+Y">Soohaeng Yoo Willow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D+C">D. ChangMo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myung%2C+C+W">Chang Woo Myung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17132v1-abstract-short" style="display: inline;"> Large-scale computer simulations of chemical atoms are used in a wide range of applications, including batteries, drugs, and more. However, there is a problem with efficiency as it takes a long time due to the large amount of calculation. To solve these problems, machine learning interatomic potential (ML-IAP) technology is attracting attention as an alternative. ML-IAP not only has high accuracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17132v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17132v1-abstract-full" style="display: none;"> Large-scale computer simulations of chemical atoms are used in a wide range of applications, including batteries, drugs, and more. However, there is a problem with efficiency as it takes a long time due to the large amount of calculation. To solve these problems, machine learning interatomic potential (ML-IAP) technology is attracting attention as an alternative. ML-IAP not only has high accuracy by faithfully expressing the density functional theory (DFT), but also has the advantage of low computational cost. However, there is a problem that the potential energy changes significantly depending on the environment of each atom, and expansion to a wide range of compounds within a single model is still difficult to build in the case of a kernel-based model. To solve this problem, we would like to develop a universal ML-IAP using this active Bayesian Committee Machine (BCM) potential methodology for carbon-nitrogen-hydrogen (CNH) with various compositions. ML models are trained and generated through first-principles calculations and molecular dynamics simulations for molecules with only CNH. Using long amine structures to test an ML model trained only with short chains, the results show excellent consistency with DFT calculations. Consequently, machine learning-based models for organic molecules not only demonstrate the ability to accurately describe various physical properties but also hold promise for investigating a broad spectrum of diverse materials systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17132v1-abstract-full').style.display = 'none'; document.getElementById('2402.17132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01496">arXiv:2402.01496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.01496">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Constructing 100 M惟 and 1 G惟 Resistance Standards via Star-Mesh Transformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarrett%2C+D+G">Dean G. Jarrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigosi%2C+A+F">Albert F. Rigosi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scaletta%2C+D+S">Dominick S. Scaletta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+N+T+M">Ngoc Thanh Mai Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+H+M">Heather M. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panna%2C+A+R">Alireza R. Panna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Cheng Hsueh Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yanfei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elmquist%2C+R+E">Randolph E. Elmquist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Newell%2C+D+B">David B. Newell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01496v1-abstract-short" style="display: inline;"> A recent mathematical framework for optimizing resistor networks to achieve values in the M惟 through G惟 levels was employed for two specific cases. Objectives here include proof of concept and identification of possible apparatus limitations for future experiments involving graphene-based quantum Hall array resistance standards. Using fractal-like, or recursive, features of the framework allows on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01496v1-abstract-full').style.display = 'inline'; document.getElementById('2402.01496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01496v1-abstract-full" style="display: none;"> A recent mathematical framework for optimizing resistor networks to achieve values in the M惟 through G惟 levels was employed for two specific cases. Objectives here include proof of concept and identification of possible apparatus limitations for future experiments involving graphene-based quantum Hall array resistance standards. Using fractal-like, or recursive, features of the framework allows one to calculate and implement network designs with substantially lower-valued resistors. The cases of 100 M惟 and 1 G惟 demonstrate that, theoretically, one would not need more than 100 quantum Hall elements to achieve these high resistances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01496v1-abstract-full').style.display = 'none'; document.getElementById('2402.01496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17020">arXiv:2401.17020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17020">pdf</a>, <a href="https://arxiv.org/format/2401.17020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Terahertz crystal electric field transitions in a Kondo-lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shee%2C+P">Payel Shee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chia-Jung Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S+K">Shishir Kumar Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nandy%2C+A+K">Ashis Kumar Nandy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulkarni%2C+R">Ruta Kulkarni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thamizhavel%2C+A">Arumugam Thamizhavel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiebig%2C+M">Manfred Fiebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+S">Shovon Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17020v1-abstract-short" style="display: inline;"> Hybridization between the localized f-electrons and the delocalized conduction electrons together with the crystal electric field (CEF) play a determinant role in governing the many-body ground state of a correlated-electron system. Here, we investigate the low-energy CEF states in CeAg_2Ge_2, a prototype Kondo-lattice antiferromagnet where Kondo correlation is found to exist within the antiferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17020v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17020v1-abstract-full" style="display: none;"> Hybridization between the localized f-electrons and the delocalized conduction electrons together with the crystal electric field (CEF) play a determinant role in governing the many-body ground state of a correlated-electron system. Here, we investigate the low-energy CEF states in CeAg_2Ge_2, a prototype Kondo-lattice antiferromagnet where Kondo correlation is found to exist within the antiferromagnetic phase. Using time-domain THz reflection spectroscopy, we show the first direct evidence of two low-energy CEF transitions at 0.6 THz (2.5 meV) and 2.1 THz (8.7 meV). The presence of low-frequency infrared-active phonon modes further manifests as a Fano-modified lineshape of the 2.1 THz CEF conductivity peak. The temporal spectral weights obtained directly from the THz time traces, in addition, corroborate the corresponding CEF temperature scales of the compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17020v1-abstract-full').style.display = 'none'; document.getElementById('2401.17020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16737">arXiv:2401.16737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16737">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Formation of highly stable interfacial nitrogen gas hydrate overlayers under ambient conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chung-Kai Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+C">Cheng-Hao Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chih-Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zheng-Rong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+W">Wei-Hao Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chia-Hsin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+I">Ing-Shouh Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16737v1-abstract-short" style="display: inline;"> Surfaces (interfaces) dictate many physical and chemical properties of solid materials and adsorbates considerably affect these properties. Nitrogen molecules, which are the most abundant constituent in ambient air, are considered to be inert. Our study combining atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS), and thermal desorption spectroscopy (TDS) revealed that nitrogen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16737v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16737v1-abstract-full" style="display: none;"> Surfaces (interfaces) dictate many physical and chemical properties of solid materials and adsorbates considerably affect these properties. Nitrogen molecules, which are the most abundant constituent in ambient air, are considered to be inert. Our study combining atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS), and thermal desorption spectroscopy (TDS) revealed that nitrogen and water molecules can self-assemble into two-dimensional domains, forming ordered stripe structures on graphitic surfaces in both water and ambient air. The stripe structures of this study were composed of approximately 90% and 10% water and nitrogen molecules, respectively, and survived in ultra-high vacuum (UHV) conditions at temperatures up to approximately 350 K. Because pure water molecules completely desorb from graphitic surfaces in a UHV at temperatures lower than 200 K, our results indicate that the incorporation of nitrogen molecules substantially enhanced the stability of the crystalline water hydrogen bonding network. Additional studies on interfacial gas hydrates can provide deeper insight into the mechanisms underlying formation of gas hydrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16737v1-abstract-full').style.display = 'none'; document.getElementById('2401.16737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10067">arXiv:2401.10067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10067">pdf</a>, <a href="https://arxiv.org/format/2401.10067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.214210">10.1103/PhysRevB.109.214210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Level spacing distribution of localized phases induced by quasiperiodic potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10067v4-abstract-short" style="display: inline;"> Level statistics is a crucial tool in the exploration of localization physics. The level spacing distribution of the disordered localized phase follows Poisson statistics, and many studies naturally apply it to the quasiperiodic localized phase. Here we analytically obtain the level spacing distribution of the quasiperiodic localized phase, and find that it deviates from Poisson statistics. Moreov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10067v4-abstract-full').style.display = 'inline'; document.getElementById('2401.10067v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10067v4-abstract-full" style="display: none;"> Level statistics is a crucial tool in the exploration of localization physics. The level spacing distribution of the disordered localized phase follows Poisson statistics, and many studies naturally apply it to the quasiperiodic localized phase. Here we analytically obtain the level spacing distribution of the quasiperiodic localized phase, and find that it deviates from Poisson statistics. Moreover, based on this level statistics, we derive the ratio of adjacent gaps and find that for a single sample, it is a $未$ function, which is in excellent agreement with numerical studies. Additionally, unlike disordered systems, in quasiperiodic systems, there are variations in the level spacing distribution across different regions of the spectrum, and increasing the size and increasing the sample are non-equivalent. Our findings carry significant implications for the reevaluation of level statistics in quasiperiodic systems and a profound understanding of the distinct effects of quasiperiodic potentials and disorder induced localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10067v4-abstract-full').style.display = 'none'; document.getElementById('2401.10067v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B.109,214210 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09825">arXiv:2401.09825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09825">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202106447">10.1002/adfm.202106447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synergistic Effect of Multi-Walled Carbon Nanotubes and Ladder-Type Conjugated Polymers on the Performance of N-Type Organic Electrochemical Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Massetti%2C+M">M. Massetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruoko%2C+T+P">T. P. Ruoko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+D">D. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+Y">C. Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kroon%2C+R">R. Kroon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+P">P. Persson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woo%2C+H+Y">H. Y. Woo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berggren%2C+M">M. Berggren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+C">C. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fahlman%2C+M">M. Fahlman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabiano%2C+S">S. Fabiano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09825v1-abstract-short" style="display: inline;"> Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p-type (semi-)conducting polymers as the channel material, while n-type OECTs are yet at an early stage of development, with the best performing electron-transporting materials still suffering from low transconductance, low electron mobili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09825v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09825v1-abstract-full" style="display: none;"> Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p-type (semi-)conducting polymers as the channel material, while n-type OECTs are yet at an early stage of development, with the best performing electron-transporting materials still suffering from low transconductance, low electron mobility, and slow response time. Here, the high electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and the large volumetric capacitance of the ladder-type 蟺-conjugated redox polymer poly(benzimidazobenzophenanthroline) (BBL) are leveraged to develop n-type OECTs with record-high performance. It is demonstrated that the use of MWCNTs enhances the electron mobility by more than one order of magnitude, yielding fast transistor transient response (down to 15 ms) and high uC* (electron mobility x volumetric capacitance) of about 1 F/cmVs. This enables the development of complementary inverters with a voltage gain of &gt; 16 and a large worst-case noise margin at a supply voltage of &lt; 0.6 V, while consuming less than 1 uW of power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09825v1-abstract-full').style.display = 'none'; document.getElementById('2401.09825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09549">arXiv:2401.09549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09549">pdf</a>, <a href="https://arxiv.org/format/2401.09549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interferometric Single-Shot Parity Measurement in an InAs-Al Hybrid Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghaee%2C+M">Morteza Aghaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+A+A">Alejandro Alcaraz Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alam%2C+Z">Zulfi Alam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+R">Rizwan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrzejczuk%2C+M">Mariusz Andrzejczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A">Andrey Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astafev%2C+M">Mikhail Astafev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barzegar%2C+A">Amin Barzegar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+B">Bela Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">Jonathan Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhaskar%2C+U+K">Umesh Kumar Bhaskar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bocharov%2C+A">Alex Bocharov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boddapati%2C+S">Srini Boddapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohn%2C+D">David Bohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bommer%2C+J">Jouri Bommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourdet%2C+L">Leo Bourdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bousquet%2C+A">Arnaud Bousquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boutin%2C+S">Samuel Boutin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casparis%2C+L">Lucas Casparis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapman%2C+B+J">Benjamin James Chapman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatoor%2C+S">Sohail Chatoor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+A+W">Anna Wulff Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chua%2C+C">Cassandra Chua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Codd%2C+P">Patrick Codd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+W">William Cole</a> , et al. (137 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09549v4-abstract-short" style="display: inline;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostruct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'inline'; document.getElementById('2401.09549v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09549v4-abstract-full" style="display: none;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostructures with a gate-defined nanowire. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of these quantum dots&#39; quantum capacitance of up to 1 fF. Our quantum capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio of 1 in 3.7 $渭$s at optimal flux values. From the time traces of the quantum capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. These results are consistent with a measurement of the fermion parity encoded in a pair of Majorana zero modes that are separated by approximately 3 $渭$m and subjected to a low rate of poisoning by non-equilibrium quasiparticles. The large capacitance shift and long poisoning time enable a parity measurement error probability of 1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'none'; document.getElementById('2401.09549v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added data on a second measurement of device A and a measurement of device B, expanded discussion of a trivial scenario. Refs added, author list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04790">arXiv:2401.04790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04790">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Co-doping Er plus V or Er plus Nb into CaWO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04790v1-abstract-short" style="display: inline;"> Er3+ plus V5+, and Er3+ plus Nb5+ co-doped CaWO4, formulas Ca1-xErxW1-xMxO4, were synthesized in air by a conventional solid-state method. A color change from white to pink was observed in the final products. An equal fraction of dopants was employed to obtain charge neutrality, and the limits of the solubility for our conditions are lower than x=0.15. The magnetic susceptibility data shows that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04790v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04790v1-abstract-full" style="display: none;"> Er3+ plus V5+, and Er3+ plus Nb5+ co-doped CaWO4, formulas Ca1-xErxW1-xMxO4, were synthesized in air by a conventional solid-state method. A color change from white to pink was observed in the final products. An equal fraction of dopants was employed to obtain charge neutrality, and the limits of the solubility for our conditions are lower than x=0.15. The magnetic susceptibility data shows that that the magnetic coupling becomes increasingly antiferromagnetic with increasing Er3+content. The Curie-Weiss fit and isothermal magnetization imply that different degrees of spin-orbit coupling appear to be present in the two doping systems. No transitions were observed in the heat capacity data above 0.4 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04790v1-abstract-full').style.display = 'none'; document.getElementById('2401.04790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08918">arXiv:2312.08918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08918">pdf</a>, <a href="https://arxiv.org/format/2312.08918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.035106">10.1103/PhysRevB.109.035106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insulator-to-metal Mott transition facilitated by lattice deformation in monolayer $伪$-RuCl$_3$ on graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaohu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takuma%2C+O">Ogasawara Takuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huaxue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chongli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Junhai Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanigaki%2C+K">Katsumi Tanigaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+R">Rui-Rui Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08918v1-abstract-short" style="display: inline;"> Creating heterostructures with graphene/graphite is a practical method for charge-doping $伪$-RuCl$_3$, but not sufficient to cause the insulator-to-metal transition. In this study, detailed scanning tunneling microscopy/spectroscopy measurements on $伪$-RuCl$_3$ with various lattice deformations reveal that both in-plane and out-of-plane lattice distortions may collapse the Mott-gap in the case of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08918v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08918v1-abstract-full" style="display: none;"> Creating heterostructures with graphene/graphite is a practical method for charge-doping $伪$-RuCl$_3$, but not sufficient to cause the insulator-to-metal transition. In this study, detailed scanning tunneling microscopy/spectroscopy measurements on $伪$-RuCl$_3$ with various lattice deformations reveal that both in-plane and out-of-plane lattice distortions may collapse the Mott-gap in the case of monolayer $伪$-RuCl$_3$ in proximity to graphite, but have little impact on its bulk form alone. In the Mott-Hubbard framework, the transition is attributed to the lattice distortion-facilitated substantial modulation of the electron correlation parameter. Observation of the orbital textures on a highly compressed monolayer $伪$-RuCl$_3$ flake on graphite provides valuable evidence that electrons are efficiently transferred from the heterointerface into Cl3$p$ orbitals under the lattice distortion. It is believed that the splitting of Ru $t_{2g}$ bands within the trigonal distortion of Ru-Cl-Ru octahedra bonds generated the electrons transfer pathways. The increase of the Cl3$p$ states enhance the hopping integral in the Mott-Hubbard bands, resulting in the Mott-transition. These findings suggest a new route for implementing the insulator-to-metal transition upon doping in $伪$-RuCl$_3$ by deforming the lattice in addition to the formation of heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08918v1-abstract-full').style.display = 'none'; document.getElementById('2312.08918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Accepted for publication in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 035106(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06931">arXiv:2312.06931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06931">pdf</a>, <a href="https://arxiv.org/format/2312.06931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.235103">10.1103/PhysRevB.109.235103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo coherence versus superradiance in THz radiation-driven heavy-fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chia-Jung Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woerner%2C+M">Michael Woerner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stockert%2C+O">Oliver Stockert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loehneysen%2C+H+v">Hilbert v. Loehneysen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kroha%2C+J">Johann Kroha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiebig%2C+M">Manfred Fiebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+S">Shovon Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06931v1-abstract-short" style="display: inline;"> In strongly correlated systems such as heavy-fermion materials, the coherent superposition of localized and mobile spin states leads to the formation of Kondo resonant states, which on a dense, periodic array of Kondo ions develop lattice coherence. Characteristically, these quantum-coherent superposition states respond to a terahertz (THz) excitation by a delayed THz pulse on the scale of the mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06931v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06931v1-abstract-full" style="display: none;"> In strongly correlated systems such as heavy-fermion materials, the coherent superposition of localized and mobile spin states leads to the formation of Kondo resonant states, which on a dense, periodic array of Kondo ions develop lattice coherence. Characteristically, these quantum-coherent superposition states respond to a terahertz (THz) excitation by a delayed THz pulse on the scale of the material&#39;s Kondo energy scale and, hence, independent of the pump-light intensity. However, delayed response is also typical for superradiance in an ensemble of excited atoms. In this case, quantum coherence is established by the coupling to an external, electromagnetic mode and, hence, dependent on the pump-light intensity. In the present work, we investigate the physical origin of the delayed pulse, i.e., inherent, correlation-induced versus light-induced coherence, in the prototypical heavy-fermion compound CeCu_5.9Au_0.1. We study the delay, duration and amplitude of the THz pulse at various temperatures in dependence on the electric-field strength of the incident THz excitation, ranging from 0.3 to 15.2 kV/cm. We observe a robust delayed response at approximately 6 ps with an amplitude proportional to the amplitude of the incident THz wave. This is consistent with theoretical expectation for the Kondo-like coherence and thus provides compelling evidence for the dominance of condensed-matter versus optical coherence in the heavy-fermion compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06931v1-abstract-full').style.display = 'none'; document.getElementById('2312.06931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 235103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06929">arXiv:2312.06929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06929">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interacting Floquet topological magnons in laser-irradiated Heisenberg honeycomb ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+H">Hongchao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Heng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Bing Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06929v1-abstract-short" style="display: inline;"> When a Heisenberg honeycomb ferromagnet is irradiated by high frequency circularly polarized light, the underlying uncharged magnons acquire a time dependent Aharonov Casher phase, which makes it a Floquet topological magnon insulator. In this context, we investigate the many body interaction effects of Floquet magnons in laser irradiated Heisenberg honeycomb ferromagnets with ocontaining Dzyalosh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06929v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06929v1-abstract-full" style="display: none;"> When a Heisenberg honeycomb ferromagnet is irradiated by high frequency circularly polarized light, the underlying uncharged magnons acquire a time dependent Aharonov Casher phase, which makes it a Floquet topological magnon insulator. In this context, we investigate the many body interaction effects of Floquet magnons in laser irradiated Heisenberg honeycomb ferromagnets with ocontaining Dzyaloshinskii Moriya interaction under the application of circularly polarized off resonant light. We demonstrate that the quantum ferromagnet systems periodically laser driven exhibits temperature driven topological phase transitions due to Floquet magnon magnon interactions. The thermal Hall effect of Floquet magnons serves as a prominent signature for detecting these many body effects near the critical point, enabling experimental investigation into this phenomenon. Our study complements the lack of previous theoretical works that the topological phase transition of the Floquet magnon under the linear spin wave approximation is only tunable by the light field. Our study presents a novel approach for constructing Floquet topological phases in periodically driven quantum magnet systems that goes beyond the limitations of the linear spin wave theory. We provide numerical results based on the well known van der Waals quantum magnet CrX3 (X=F, Cl, Br, and I), calling for experimental implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06929v1-abstract-full').style.display = 'none'; document.getElementById('2312.06929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04376">arXiv:2312.04376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The Er doping of ZnCr2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+D">Danrui Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04376v1-abstract-short" style="display: inline;"> Magnetic Er3+ is doped into the well-studied frustrated normal spinel ZnCr2O4. Various spectroscopies are employed to prove that Er3+ successfully enters the spinel to form ZnCr2-xErxO4 for x less than 0.005. The low levels of Er3+ doping possible nonetheless have a significant effect on the frustrated magnetism and the ordering that is seen near 12 K in the undoped material. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04376v1-abstract-full" style="display: none;"> Magnetic Er3+ is doped into the well-studied frustrated normal spinel ZnCr2O4. Various spectroscopies are employed to prove that Er3+ successfully enters the spinel to form ZnCr2-xErxO4 for x less than 0.005. The low levels of Er3+ doping possible nonetheless have a significant effect on the frustrated magnetism and the ordering that is seen near 12 K in the undoped material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04376v1-abstract-full').style.display = 'none'; document.getElementById('2312.04376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02479">arXiv:2312.02479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02479">pdf</a>, <a href="https://arxiv.org/format/2312.02479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Applications of Domain Adversarial Neural Network in phase transition of 3D Potts model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiangna Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feiyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Weibing Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papp%2C+G">Gabor Papp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chunbin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02479v2-abstract-short" style="display: inline;"> Machine learning techniques exhibit significant performance in discriminating different phases of matter and provide a new avenue for studying phase transitions. We investigate the phase transitions of three dimensional $q$-state Potts model on cubic lattice by using a transfer learning approach, Domain Adversarial Neural Network (DANN). With the unique neural network architecture, it could evalua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02479v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02479v2-abstract-full" style="display: none;"> Machine learning techniques exhibit significant performance in discriminating different phases of matter and provide a new avenue for studying phase transitions. We investigate the phase transitions of three dimensional $q$-state Potts model on cubic lattice by using a transfer learning approach, Domain Adversarial Neural Network (DANN). With the unique neural network architecture, it could evaluate the high-temperature (disordered) and low-temperature (ordered) phases, and identify the first and second order phase transitions. Meanwhile, by training the DANN with a few labeled configurations, the critical points for $q=2,3,4$ and $5$ can be predicted with high accuracy, which are consistent with those of the Monte Carlo simulations. These findings would promote us to learn and explore the properties of phase transitions in high-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02479v2-abstract-full').style.display = 'none'; document.getElementById('2312.02479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18pages,36 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14300">arXiv:2311.14300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of unconventional van der Waals multiferroics near room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yangliu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haipeng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaocang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chendi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Nanshu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaoxu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Longjiang Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+B">Bo Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14300v2-abstract-short" style="display: inline;"> The search for two-dimensional (2D) van der Waals (vdW) multiferroics is an exciting yet challenging endeavor. Room-temperature 2D vdW few-layer multiferroic is a much bigger insurmountable obstacle. Here we report the discovery of an unconventional 2D vdW multiferroic with out-of-plane ferroelectric polarization and long-range magnetic orders in trilayer NiI2 device from 10 K to 295 K. The evolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14300v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14300v2-abstract-full" style="display: none;"> The search for two-dimensional (2D) van der Waals (vdW) multiferroics is an exciting yet challenging endeavor. Room-temperature 2D vdW few-layer multiferroic is a much bigger insurmountable obstacle. Here we report the discovery of an unconventional 2D vdW multiferroic with out-of-plane ferroelectric polarization and long-range magnetic orders in trilayer NiI2 device from 10 K to 295 K. The evolutions of magnetic domains with magnetic field, and the evolutions between ferroelectric and antiferroelectric phase have been unambiguously observed. More significantly, we realize a robust mutual control of magnetism and ferroelectricity at room temperature. The magnetic domains are manipulated by a small voltage ranging from 1 V to 6 V at 0 T and 295 K. This work opens opportunities for exploring multiferroic physics at the limit of few atomic layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14300v2-abstract-full').style.display = 'none'; document.getElementById('2311.14300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 14J60 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2; I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09567">arXiv:2311.09567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09567">pdf</a>, <a href="https://arxiv.org/format/2311.09567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-52010-4">10.1038/s41467-024-52010-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entangling gates on degenerate spin qubits dressed by a global field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+I">Ingvild Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seedhouse%2C+A+E">Amanda E. Seedhouse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nickl%2C+A">Andreas Nickl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">MengKe Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J+Y">Jonathan Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuyck%2C+N+D">Nard Dumoulin Stuyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09567v2-abstract-short" style="display: inline;"> Coherently dressed spins have shown promising results as building blocks for future quantum computers owing to their resilience to environmental noise and their compatibility with global control fields. This mode of operation allows for more amenable qubit architecture requirements and simplifies signal routing on the chip. However, multi-qubit operations, such as qubit addressability and two-qubi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09567v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09567v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09567v2-abstract-full" style="display: none;"> Coherently dressed spins have shown promising results as building blocks for future quantum computers owing to their resilience to environmental noise and their compatibility with global control fields. This mode of operation allows for more amenable qubit architecture requirements and simplifies signal routing on the chip. However, multi-qubit operations, such as qubit addressability and two-qubit gates, are yet to be demonstrated to establish global control in combination with dressed qubits as a viable path to universal quantum computing. Here we demonstrate simultaneous on-resonance driving of degenerate qubits using a global field while retaining addressability for qubits with equal Larmor frequencies. Furthermore, we implement SWAP oscillations during on-resonance driving, constituting the demonstration of driven two-qubit gates. Significantly, our findings highlight the fragility of entangling gates between superposition states and how dressing can increase the noise robustness. These results represent a crucial milestone towards global control operation with dressed qubits. It also opens a door to interesting spin physics on degenerate spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09567v2-abstract-full').style.display = 'none'; document.getElementById('2311.09567v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 7656 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08162">arXiv:2311.08162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08162">pdf</a>, <a href="https://arxiv.org/ps/2311.08162">ps</a>, <a href="https://arxiv.org/format/2311.08162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Bright solitons in a spin-orbit-coupled dipolar Bose-Einstein condensate trapped within a double-lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+J">Jieli Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Junjie Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+L">Lu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yingying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Lu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xuejing Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chunjie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zunlue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xingdong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08162v1-abstract-short" style="display: inline;"> By effectively controlling the dipole-dipole interaction, we investigate the characteristics of the ground state of bright solitons in a spin-orbit coupled dipolar Bose-Einstein condensate. The dipolar atoms are trapped within a double-lattice which consists of a linear and a nonlinear lattice. We derive the motion equations of the different spin components, taking the controlling mechanisms of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08162v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08162v1-abstract-full" style="display: none;"> By effectively controlling the dipole-dipole interaction, we investigate the characteristics of the ground state of bright solitons in a spin-orbit coupled dipolar Bose-Einstein condensate. The dipolar atoms are trapped within a double-lattice which consists of a linear and a nonlinear lattice. We derive the motion equations of the different spin components, taking the controlling mechanisms of the diolpe-dipole interaction into account. An analytical expression of dipole-dipole interaction is derived. By adjusting the dipole polarization angle, the dipole interaction can be adjusted from attraction to repulsion. On this basis, we study the generation and manipulation of the bright solitons using both the analytical variational method and numerical imaginary time evolution. The stability of the bright solitons is also analyzed and we map out the stability phase diagram. By adjusting the long-range dipole-dipole interaction, one can achieve manipulation of bright solitons in all aspects, including the existence, width, nodes, and stability. Considering the complexity of our system, our results will have enormous potential applications in quantum simulation of complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08162v1-abstract-full').style.display = 'none'; document.getElementById('2311.08162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07520">arXiv:2311.07520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07520">pdf</a>, <a href="https://arxiv.org/format/2311.07520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamic mode decomposition of nonequilibrium electron-phonon dynamics: accelerating the first-principles real-time Boltzmann equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maliyov%2C+I">Ivan Maliyov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Jia Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardi%2C+M">Marco Bernardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07520v1-abstract-short" style="display: inline;"> Nonequilibrium dynamics governed by electron-phonon (e-ph) interactions plays a key role in electronic devices and spectroscopies and is central to understanding electronic excitations in materials. The real-time Boltzmann transport equation (rt-BTE) with collision processes computed from first principles can describe the coupled dynamics of electrons and atomic vibrations (phonons). Yet, a bottle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07520v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07520v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07520v1-abstract-full" style="display: none;"> Nonequilibrium dynamics governed by electron-phonon (e-ph) interactions plays a key role in electronic devices and spectroscopies and is central to understanding electronic excitations in materials. The real-time Boltzmann transport equation (rt-BTE) with collision processes computed from first principles can describe the coupled dynamics of electrons and atomic vibrations (phonons). Yet, a bottleneck of these simulations is the calculation of e-ph scattering integrals on dense momentum grids at each time step. Here we show a data-driven approach based on dynamic mode decomposition (DMD) that can accelerate the time propagation of the rt-BTE and identify dominant electronic processes. We apply this approach to two case studies, high-field charge transport and ultrafast excited electron relaxation. In both cases, simulating only a short time window of ~10% of the dynamics suffices to predict the dynamics from initial excitation to steady state using DMD extrapolation. Analysis of the momentum-space modes extracted from DMD sheds light on the microscopic mechanisms governing electron relaxation to steady state or equilibrium. The combination of accuracy and efficiency makes our DMD-based method a valuable tool for investigating ultrafast dynamics in a wide range of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07520v1-abstract-full').style.display = 'none'; document.getElementById('2311.07520v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17145">arXiv:2310.17145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216883">10.1063/5.0216883 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling microstructural damage for leakage current degradation in SiC Schottky diode after heavy ions irradiation under 200 V </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiaoyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+P">Pengfei Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Shiwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+S">Shuai Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+P">Peipei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Teng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lijun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zongzhen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17145v2-abstract-short" style="display: inline;"> Single-event burnout and single-event leakage current (SELC) in SiC power devices induced by heavy ions severely limit their space application, and the underlying mechanism is still unclear. One fundamental problem is lack of high-resolution characterization of radiation damage in the irradiated SiC power devices, which is a crucial indicator of the related mechanism. In this letter, high-resoluti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17145v2-abstract-full').style.display = 'inline'; document.getElementById('2310.17145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17145v2-abstract-full" style="display: none;"> Single-event burnout and single-event leakage current (SELC) in SiC power devices induced by heavy ions severely limit their space application, and the underlying mechanism is still unclear. One fundamental problem is lack of high-resolution characterization of radiation damage in the irradiated SiC power devices, which is a crucial indicator of the related mechanism. In this letter, high-resolution transmission electron microscopy (TEM) was used to characterize the radiation damage in the 1437.6 MeV 181Ta-irradiated SiC junction barrier Schottky diode under 200 V. The amorphous radiation damage with about 52 nm in diameter and 121 nm in length at the Schottky metal (Ti)-semiconductor (SiC) interface was observed. More importantly, in the damage site the atomic mixing of Ti, Si, and C was identified by electron energy loss spectroscopy and high-angle annular dark-field scanning TEM. It indicates that the melting of the Ti-SiC interface induced by localized Joule heating is responsible for the amorphization and the formation of titanium silicide, titanium carbide, or ternary phases. These modifications at nanoscale in turn cause the localized degradation of the Schottky contact, resulting in the permanent increase in leakage current. This experimental study provides very valuable clues to thorough understanding of the SELC mechanism in SiC diode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17145v2-abstract-full').style.display = 'none'; document.getElementById('2310.17145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 125, 042103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14904">arXiv:2310.14904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14904">pdf</a>, <a href="https://arxiv.org/format/2310.14904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.216301">10.1103/PhysRevLett.132.216301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipation induced extended-localized transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yaru Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zeqing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jie%2C+J">Jianwen Jie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14904v3-abstract-short" style="display: inline;"> Mobility edge (ME), representing the critical energy that distinguishes between extended and localized states, is a key concept in understanding the transition between extended (metallic) and localized (insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14904v3-abstract-full').style.display = 'inline'; document.getElementById('2310.14904v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14904v3-abstract-full" style="display: none;"> Mobility edge (ME), representing the critical energy that distinguishes between extended and localized states, is a key concept in understanding the transition between extended (metallic) and localized (insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzing quench dynamics with sudden introduction of dissipation, and demonstrate that dissipation can lead the system into specific states predominantly characterized by either extended or localized states, irrespective of the initial state. Our results establish the use of dissipation as a new avenue for inducing transitions between extended and localized states, and for manipulating dynamic behaviors of particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14904v3-abstract-full').style.display = 'none'; document.getElementById('2310.14904v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 216301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12961">arXiv:2310.12961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12961">pdf</a>, <a href="https://arxiv.org/format/2310.12961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multi-moir茅 trilayer graphene: lattice relaxation, electronic structure, and magic angles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Charles Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May-Mann%2C+J">Julian May-Mann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devakul%2C+T">Trithep Devakul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12961v2-abstract-short" style="display: inline;"> We systematically explore the structural and electronic properties of twisted trilayer graphene systems. In general, these systems are characterized by two twist angles, which lead to two incommensurate moir茅 periods. We show that lattice relaxation results in the formation of domains of periodic single-moir茅 structures only for twist angles close to the simplest fractions. For the majority of oth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12961v2-abstract-full').style.display = 'inline'; document.getElementById('2310.12961v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12961v2-abstract-full" style="display: none;"> We systematically explore the structural and electronic properties of twisted trilayer graphene systems. In general, these systems are characterized by two twist angles, which lead to two incommensurate moir茅 periods. We show that lattice relaxation results in the formation of domains of periodic single-moir茅 structures only for twist angles close to the simplest fractions. For the majority of other twist angles, the incommensurate moir茅 periods lead to a quasicrystalline structure. We identify experimentally relevant magic angles at which the electronic density of states is sharply peaked and strongly correlated physics is most likely to be realized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12961v2-abstract-full').style.display = 'none'; document.getElementById('2310.12961v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11+7 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11839">arXiv:2310.11839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11839">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Neel tensor torque at the ferromagnet/antiferromagnet interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sheng-Huai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+C">Chih-Hsiang Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsiu-Hau Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+C">Chih-Huang Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11839v1-abstract-short" style="display: inline;"> Antiferromagnets (AFMs) exhibit spin arrangements with no net magnetization, positioning them as promising candidates for spintronics applications. While electrical manipulation of the single-crystal AFMs, composed of periodic spin configurations, is achieved recently, it remains a daunting challenge to characterize and to manipulate polycrystalline AFMs. Utilizing statistical analysis in data sci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11839v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11839v1-abstract-full" style="display: none;"> Antiferromagnets (AFMs) exhibit spin arrangements with no net magnetization, positioning them as promising candidates for spintronics applications. While electrical manipulation of the single-crystal AFMs, composed of periodic spin configurations, is achieved recently, it remains a daunting challenge to characterize and to manipulate polycrystalline AFMs. Utilizing statistical analysis in data science, we demonstrate that polycrystalline AFMs can be described using a real, symmetric, positive semi-definite, rank-two tensor, which we term the Neel tensor. This tensor introduces a unique spin torque, diverging from the conventional field-like and Slonczewski torques in spintronics devices. Remarkably, Neel tensors can be trained to retain a specific orientation, functioning as a form of working memory. This attribute enables zero-field spin-orbit-torque switching in trilayer devices featuring a heavy-metal/ferromagnet/AFM structure and is also consistent with the X-ray magnetic linear dichroism measurements. Our findings uncover hidden statistical patterns in polycrystalline AFMs and establishes the presence of Neel tensor torque, highlighting its potential to drive future spintronics innovations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11839v1-abstract-full').style.display = 'none'; document.getElementById('2310.11839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text 18 pages, supplementary information 10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01606">arXiv:2310.01606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stuffed Rare Earth Garnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+L">Lun Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01606v1-abstract-short" style="display: inline;"> We report the synthesis and magnetic characterization of stuffed rare earth gallium garnets, RE3+xGa5-xO12 (RE=Lu, Yb, Er, Dy, Gd), for x up to 0.5. The excess rare earth ions partly fill the octahedral sites normally fully occupied by Ga3+, forming disordered pairs of corner-shared face-sharing magnetic tetrahedra. The Curie-Weiss constants and observed effective moments per rare earth are smalle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01606v1-abstract-full').style.display = 'inline'; document.getElementById('2310.01606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01606v1-abstract-full" style="display: none;"> We report the synthesis and magnetic characterization of stuffed rare earth gallium garnets, RE3+xGa5-xO12 (RE=Lu, Yb, Er, Dy, Gd), for x up to 0.5. The excess rare earth ions partly fill the octahedral sites normally fully occupied by Ga3+, forming disordered pairs of corner-shared face-sharing magnetic tetrahedra. The Curie-Weiss constants and observed effective moments per rare earth are smaller than are seen for the unstuffed gallium garnets. No significant change in the field-dependent magnetization is observed but missing entropy is seen when integrating the low-temperature heat capacity to 0.5 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01606v1-abstract-full').style.display = 'none'; document.getElementById('2310.01606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15813">arXiv:2309.15813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15813">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fractal-like star-mesh transformations using graphene quantum Hall arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scaletta%2C+D+S">Dominick S. Scaletta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mhatre%2C+S+M">Swapnil M. Mhatre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+N+T+M">Ngoc Thanh Mai Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Cheng-Hsueh Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+H+M">Heather M. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yanfei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+L">Linli Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panna%2C+A+R">Alireza R. Panna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Payagala%2C+S+U">Shamith U. Payagala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elmquist%2C+R+E">Randolph E. Elmquist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrett%2C+D+G">Dean G. Jarrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Newell%2C+D+B">David B. Newell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigosi%2C+A+F">Albert F. Rigosi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15813v1-abstract-short" style="display: inline;"> A mathematical approach is adopted for optimizing the number of total device elements required for obtaining high effective quantized resistances in graphene-based quantum Hall array devices. This work explores an analytical extension to the use of star-mesh transformations such that fractal-like, or recursive, device designs can yield high enough resistances (like 1 E惟, arguably the highest resis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15813v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15813v1-abstract-full" style="display: none;"> A mathematical approach is adopted for optimizing the number of total device elements required for obtaining high effective quantized resistances in graphene-based quantum Hall array devices. This work explores an analytical extension to the use of star-mesh transformations such that fractal-like, or recursive, device designs can yield high enough resistances (like 1 E惟, arguably the highest resistance with meaningful applicability) while still being feasible to build with modern fabrication techniques. Epitaxial graphene elements are tested, whose quantized Hall resistance at the nu=2 plateau (R_H = 12906.4 惟) becomes the building block for larger effective, quantized resistances. It is demonstrated that, mathematically, one would not need more than 200 elements to achieve the highest pertinent resistances <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15813v1-abstract-full').style.display = 'none'; document.getElementById('2309.15813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15463">arXiv:2309.15463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15463">pdf</a>, <a href="https://arxiv.org/format/2309.15463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stemp%2C+H+G">Holly G. Stemp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Blankenstein%2C+M+R">Mark R. van Blankenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaartjes%2C+A">Arjen Vaartjes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C4%85dzik%2C+M+T">Mateusz T. M膮dzik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heskes%2C+A+J+A">Amber J. A. Heskes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Firgau%2C+H+R">Hannes R. Firgau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R+Y">Rocky Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ostrove%2C+C+I">Corey I. Ostrove</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rudinger%2C+K+M">Kenneth M. Rudinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+K">Kevin Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blume-Kohout%2C+R">Robin Blume-Kohout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+A+M">Alexander M. Jakob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+B+C">Brett C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15463v2-abstract-short" style="display: inline;"> Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15463v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15463v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15463v2-abstract-full" style="display: none;"> Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal 1- and 2-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation. We surprisingly observe that the exchange interaction has no effect on the qubit coherence. We quantify the fidelity of the quantum operations using gate set tomography (GST), and we use the universal gate set to create entangled Bell states of the electrons spins, with fidelity ~ 93%, and concurrence 0.91 +/- 0.08. These results form the necessary basis for scaling up donor-based quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15463v2-abstract-full').style.display = 'none'; document.getElementById('2309.15463v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13210">arXiv:2309.13210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13210">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ad18f6">10.1088/1361-6463/ad18f6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-area polycrystalline $伪$-MoO3 thin films for IR photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Larciprete%2C+M+C">Maria Cristina Larciprete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ceneda%2C+D">Daniele Ceneda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chiyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dereshgi%2C+S+A">Sina Abedini Dereshgi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupo%2C+F+V">Federico Vittorio Lupo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casaletto%2C+M+P">Maria Pia Casaletto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macaluso%2C+R">Roberto Macaluso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antezza%2C+M">Mauro Antezza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+M">Zhuomin M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Centini%2C+M">Marco Centini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aydin%2C+K">Koray Aydin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13210v1-abstract-short" style="display: inline;"> In recent years, excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide ($伪$-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10-20&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13210v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13210v1-abstract-full" style="display: none;"> In recent years, excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide ($伪$-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10-20 $渭$m). Here, we report on the fabrication and IR characterization of large-area (over 1 cm$^2$ size) $伪$-MoO3 polycrystalline films deposited on fused silica substrates by pulsed laser deposition. Single alpha-phase MoO3 films exhibiting a polarization-dependent reflection peak at 1006 cm$^{-1}$ with a resonance Q-factor as high as 53 were achieved. Reflection can be tuned via changing incident polarization with a dynamic range of $螖$R=0.3 at 45 deg. incidence angle. We also report a polarization-independent almost perfect absorption condition (R&lt;0.01) at 972 cm$^{-1}$ which is preserved for a broad angle of incidence. The development of a low-cost polaritonic platform with high-Q resonances in the mid-infrared (mid-IR) range is crucial for a wide number of functionalities including sensors, filters, thermal emitters, and label-free biochemical sensing devices. In this framework our findings appear extremely promising for the further development of lithography-free, scalable films, for efficient and large-scale devices operating in the free space, using far-field detection setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13210v1-abstract-full').style.display = 'none'; document.getElementById('2309.13210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. D: App. Phys. 57, 135107 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10