CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–8 of 8 results for author: <span class="mathjax">Johnson, M A I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Johnson%2C+M+A+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Johnson, M A I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Johnson%2C+M+A+I&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Johnson, M A I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20434">arXiv:2310.20434</a> <span> [<a href="https://arxiv.org/pdf/2310.20434">pdf</a>, <a href="https://arxiv.org/format/2310.20434">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01304-y">10.1038/s41928-024-01304-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid cryogenic characterisation of 1024 integrated silicon quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+E+J">Edward J. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Ciriano-Tejel%2C+V+N">Virginia N. Ciriano-Tejel</a>, <a href="/search/cond-mat?searchtype=author&query=Wise%2C+D+F">David F. Wise</a>, <a href="/search/cond-mat?searchtype=author&query=Prete%2C+D">Domenic Prete</a>, <a href="/search/cond-mat?searchtype=author&query=de+Kruijf%2C+M">Mathieu de Kruijf</a>, <a href="/search/cond-mat?searchtype=author&query=Ibberson%2C+D+J">David J. Ibberson</a>, <a href="/search/cond-mat?searchtype=author&query=Noah%2C+G+M">Grayson M. Noah</a>, <a href="/search/cond-mat?searchtype=author&query=Gomez-Saiz%2C+A">Alberto Gomez-Saiz</a>, <a href="/search/cond-mat?searchtype=author&query=Gonzalez-Zalba%2C+M+F">M. Fernando Gonzalez-Zalba</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Morton%2C+J+J+L">John J. L. Morton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20434v1-abstract-short" style="display: inline;"> Quantum computers are nearing the thousand qubit mark, with the current focus on scaling to improve computational performance. As quantum processors grow in complexity, new challenges arise such as the management of device variability and the interface with supporting electronics. Spin qubits in silicon quantum dots are poised to address these challenges with their proven control fidelities and po… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20434v1-abstract-full').style.display = 'inline'; document.getElementById('2310.20434v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20434v1-abstract-full" style="display: none;"> Quantum computers are nearing the thousand qubit mark, with the current focus on scaling to improve computational performance. As quantum processors grow in complexity, new challenges arise such as the management of device variability and the interface with supporting electronics. Spin qubits in silicon quantum dots are poised to address these challenges with their proven control fidelities and potential for compatibility with large-scale integration. Here, we demonstrate the integration of 1024 silicon quantum dots with on-chip digital and analogue electronics, all operating below 1 K. A high-frequency analogue multiplexer provides fast access to all devices with minimal electrical connections, enabling characteristic data across the quantum dot array to be acquired in just 5 minutes. We achieve this by leveraging radio-frequency reflectometry with state-of-the-art signal integrity, reaching a minimum integration time of 160 ps. Key quantum dot parameters are extracted by fast automated machine learning routines to assess quantum dot yield and understand the impact of device design. We find correlations between quantum dot parameters and room temperature transistor behaviour that may be used as a proxy for in-line process monitoring. Our results show how rapid large-scale studies of silicon quantum devices can be performed at lower temperatures and measurement rates orders of magnitude faster than current probing techniques, and form a platform for the future on-chip addressing of large scale qubit arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20434v1-abstract-full').style.display = 'none'; document.getElementById('2310.20434v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 14 pages, 8 figures, 1 table Supplementary: 8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Electron 1 9 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15463">arXiv:2309.15463</a> <span> [<a href="https://arxiv.org/pdf/2309.15463">pdf</a>, <a href="https://arxiv.org/format/2309.15463">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stemp%2C+H+G">Holly G. Stemp</a>, <a href="/search/cond-mat?searchtype=author&query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&query=van+Blankenstein%2C+M+R">Mark R. van Blankenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Vaartjes%2C+A">Arjen Vaartjes</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=M%C4%85dzik%2C+M+T">Mateusz T. M膮dzik</a>, <a href="/search/cond-mat?searchtype=author&query=Heskes%2C+A+J+A">Amber J. A. Heskes</a>, <a href="/search/cond-mat?searchtype=author&query=Firgau%2C+H+R">Hannes R. Firgau</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+R+Y">Rocky Y. Su</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrove%2C+C+I">Corey I. Ostrove</a>, <a href="/search/cond-mat?searchtype=author&query=Rudinger%2C+K+M">Kenneth M. Rudinger</a>, <a href="/search/cond-mat?searchtype=author&query=Young%2C+K">Kevin Young</a>, <a href="/search/cond-mat?searchtype=author&query=Blume-Kohout%2C+R">Robin Blume-Kohout</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Jakob%2C+A+M">Alexander M. Jakob</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+B+C">Brett C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15463v2-abstract-short" style="display: inline;"> Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15463v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15463v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15463v2-abstract-full" style="display: none;"> Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal 1- and 2-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation. We surprisingly observe that the exchange interaction has no effect on the qubit coherence. We quantify the fidelity of the quantum operations using gate set tomography (GST), and we use the universal gate set to create entangled Bell states of the electrons spins, with fidelity ~ 93%, and concurrence 0.91 +/- 0.08. These results form the necessary basis for scaling up donor-based quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15463v2-abstract-full').style.display = 'none'; document.getElementById('2309.15463v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14103">arXiv:2307.14103</a> <span> [<a href="https://arxiv.org/pdf/2307.14103">pdf</a>, <a href="https://arxiv.org/format/2307.14103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.085302">10.1103/PhysRevB.109.085302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Error channels in quantum nondemolition measurements on spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Joecker%2C+B">Benjamin Joecker</a>, <a href="/search/cond-mat?searchtype=author&query=Stemp%2C+H+G">Holly G. Stemp</a>, <a href="/search/cond-mat?searchtype=author&query=de+Fuentes%2C+I+F">Irene Fern谩ndez de Fuentes</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14103v2-abstract-short" style="display: inline;"> Quantum nondemolition (QND) measurements are a precious resource for quantum information processing. Repetitive QND measurements can boost the fidelity of qubit preparation and measurement, even when the underlying single-shot measurements are of low fidelity. However, this fidelity boost is limited by the degree in which the physical system allows for a truly QND process -- slight deviations from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14103v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14103v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14103v2-abstract-full" style="display: none;"> Quantum nondemolition (QND) measurements are a precious resource for quantum information processing. Repetitive QND measurements can boost the fidelity of qubit preparation and measurement, even when the underlying single-shot measurements are of low fidelity. However, this fidelity boost is limited by the degree in which the physical system allows for a truly QND process -- slight deviations from ideal QND measurement result in bit flip errors (`quantum jumps') if the measurement is repeated too often. Here, we develop a theoretical framework to understand and quantify the resulting error arising from deviation from perfect QND measurement in model spin qubit systems. We first develop our model on the ubiquitous example of exchange-coupled electron spins qubits tunnel-coupled to a charge reservoir. We then extend it to electron-nuclear spin systems, to illustrate the crucial similarities and differences between the two limits. Applied to the well-understood platform of a donor nuclear spin in silicon, the model shows excellent agreement with experiments. For added generality, we conclude the work by considering the effect of anisotropic spin couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14103v2-abstract-full').style.display = 'none'; document.getElementById('2307.14103v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B 109 (2024) 085302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.07453">arXiv:2306.07453</a> <span> [<a href="https://arxiv.org/pdf/2306.07453">pdf</a>, <a href="https://arxiv.org/format/2306.07453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45368-y">10.1038/s41467-024-45368-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=de+Fuentes%2C+I+F">Irene Fern谩ndez de Fuentes</a>, <a href="/search/cond-mat?searchtype=author&query=Botzem%2C+T">Tim Botzem</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Vaartjes%2C+A">Arjen Vaartjes</a>, <a href="/search/cond-mat?searchtype=author&query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&query=Mourik%2C+V">Vincent Mourik</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+B+C">Brett C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Jakob%2C+A+M">Alexander M. Jakob</a>, <a href="/search/cond-mat?searchtype=author&query=McCallum%2C+J+C">Jeffrey C. McCallum</a>, <a href="/search/cond-mat?searchtype=author&query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.07453v2-abstract-short" style="display: inline;"> Efficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07453v2-abstract-full').style.display = 'inline'; document.getElementById('2306.07453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.07453v2-abstract-full" style="display: none;"> Efficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of the interactions. Here, we present an atom-based semiconductor platform where a 16-dimensional Hilbert space is built by the combined electron-nuclear states of a single antimony donor in silicon. We demonstrate the ability to navigate this large Hilbert space using both electric and magnetic fields, with gate fidelity exceeding 99.8% on the nuclear spin, and unveil fine details of the system Hamiltonian and its susceptibility to control and noise fields. These results establish high-spin donors as a rich platform for practical quantum information and to explore quantum foundations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07453v2-abstract-full').style.display = 'none'; document.getElementById('2306.07453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages and 19 figures including Supplementary Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 1380 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02046">arXiv:2110.02046</a> <span> [<a href="https://arxiv.org/pdf/2110.02046">pdf</a>, <a href="https://arxiv.org/format/2110.02046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.041008">10.1103/PhysRevX.12.041008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beating the thermal limit of qubit initialization with a Bayesian Maxwell's demon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=M%C4%85dzik%2C+M+T">Mateusz T. M膮dzik</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Jakob%2C+A+M">Alexander M. Jakob</a>, <a href="/search/cond-mat?searchtype=author&query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A">Andrew Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02046v3-abstract-short" style="display: inline;"> Fault-tolerant quantum computing requires initializing the quantum register in a well-defined fiducial state. In solid-state systems, this is typically achieved through thermalization to a cold reservoir, such that the initialization fidelity is fundamentally limited by temperature. Here, we present a method of preparing a fiducial quantum state with a confidence beyond the thermal limit. It is ba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02046v3-abstract-full').style.display = 'inline'; document.getElementById('2110.02046v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02046v3-abstract-full" style="display: none;"> Fault-tolerant quantum computing requires initializing the quantum register in a well-defined fiducial state. In solid-state systems, this is typically achieved through thermalization to a cold reservoir, such that the initialization fidelity is fundamentally limited by temperature. Here, we present a method of preparing a fiducial quantum state with a confidence beyond the thermal limit. It is based on real time monitoring of the qubit through a negative-result measurement -- the equivalent of a `Maxwell's demon' that triggers the experiment only upon the appearance of a qubit in the lowest-energy state. We experimentally apply it to initialize an electron spin qubit in silicon, achieving a ground-state initialization fidelity of 98.9(4)%, corresponding to a 20$\times$ reduction in initialization error compared to the unmonitored system. A fidelity approaching 99.9% could be achieved with realistic improvements in the bandwidth of the amplifier chain or by slowing down the rate of electron tunneling from the reservoir. We use a nuclear spin ancilla, measured in quantum nondemolition mode, to prove the value of the electron initialization fidelity far beyond the intrinsic fidelity of the electron readout. However, the method itself does not require an ancilla for its execution, saving the need for additional resources. The quantitative analysis of the initialization fidelity reveals that a simple picture of spin-dependent electron tunneling does not correctly describe the data. Our digital `Maxwell's demon' can be applied to a wide range of quantum systems, with minimal demands on control and detection hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02046v3-abstract-full').style.display = 'none'; document.getElementById('2110.02046v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 12, (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03980">arXiv:2003.03980</a> <span> [<a href="https://arxiv.org/pdf/2003.03980">pdf</a>, <a href="https://arxiv.org/format/2003.03980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.042429">10.1103/PhysRevA.106.042429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring out-of-time-ordered correlation functions without reversing time evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Blocher%2C+P+D">Philip Daniel Blocher</a>, <a href="/search/cond-mat?searchtype=author&query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&query=Mourik%2C+V">Vincent Mourik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B8lmer%2C+K">Klaus M酶lmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03980v3-abstract-short" style="display: inline;"> Out-of-time-ordered correlation functions (OTOCs) play a crucial role in the study of thermalization, entanglement, and quantum chaos, as they quantify the scrambling of quantum information due to complex interactions. As a consequence of their out-of-time-ordered nature, OTOCs are difficult to measure experimentally. Here we propose an OTOC measurement protocol that does not rely on the reversal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03980v3-abstract-full').style.display = 'inline'; document.getElementById('2003.03980v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03980v3-abstract-full" style="display: none;"> Out-of-time-ordered correlation functions (OTOCs) play a crucial role in the study of thermalization, entanglement, and quantum chaos, as they quantify the scrambling of quantum information due to complex interactions. As a consequence of their out-of-time-ordered nature, OTOCs are difficult to measure experimentally. Here we propose an OTOC measurement protocol that does not rely on the reversal of time evolution and is easy to implement in a range of experimental settings. The protocol accounts for both pure and mixed initial states, and is applicable to systems that interact with environmental degrees of freedom. We demonstrate the application of our protocol by the characterization of scrambling in a periodically-driven spin that exhibits quantum chaos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03980v3-abstract-full').style.display = 'none'; document.getElementById('2003.03980v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures. Updated figure labels and author affiliation. Made a few minor edits to the main text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 106, 042429 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01086">arXiv:1906.01086</a> <span> [<a href="https://arxiv.org/pdf/1906.01086">pdf</a>, <a href="https://arxiv.org/format/1906.01086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2057-7">10.1038/s41586-020-2057-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent electrical control of a single high-spin nucleus in silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&query=Mourik%2C+V">Vincent Mourik</a>, <a href="/search/cond-mat?searchtype=author&query=Joecker%2C+B">Benjamin Joecker</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Baczewski%2C+A+D">Andrew D. Baczewski</a>, <a href="/search/cond-mat?searchtype=author&query=Firgau%2C+H+R">Hannes R. Firgau</a>, <a href="/search/cond-mat?searchtype=author&query=M%C4%85dzik%2C+M+T">Mateusz T. M膮dzik</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+V">Vivien Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Pla%2C+J+J">Jarryd J. Pla</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=McCallum%2C+J+C">Jeffrey C. McCallum</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01086v1-abstract-short" style="display: inline;"> Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and demonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01086v1-abstract-full').style.display = 'inline'; document.getElementById('1906.01086v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01086v1-abstract-full" style="display: none;"> Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and demonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lattice strain, results in coherent nuclear spin transitions. The spin dephasing time, 0.1 seconds, surpasses by orders of magnitude those obtained via methods that require a coupled electron spin for electrical drive. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots could pave the way to scalable nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01086v1-abstract-full').style.display = 'none'; document.getElementById('1906.01086v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text and figures followed by methods, extended data, and supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 579, 205 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.06644">arXiv:1812.06644</a> <span> [<a href="https://arxiv.org/pdf/1812.06644">pdf</a>, <a href="https://arxiv.org/format/1812.06644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.205306">10.1103/PhysRevB.99.205306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tenberg%2C+S+B">Stefanie B. Tenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Asaad%2C+S">Serwan Asaad</a>, <a href="/search/cond-mat?searchtype=author&query=M%C4%85dzik%2C+M+T">Mateusz T. M膮dzik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+M+A+I">Mark A. I. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Joecker%2C+B">Benjamin Joecker</a>, <a href="/search/cond-mat?searchtype=author&query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Jakob%2C+A+M">A. Malwin Jakob</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+B+C">Brett C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&query=McCallum%2C+J+C">Jeffrey C. McCallum</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Joynt%2C+R">Robert Joynt</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.06644v2-abstract-short" style="display: inline;"> We analyze the electron spin relaxation rate $1/T_1$ of individual ion-implanted $^{31}$P donors, in a large set of metal-oxide-semiconductor (MOS) silicon nanoscale devices, with the aim of identifying spin relaxation mechanisms peculiar to the environment of the spins. The measurements are conducted at low temperatures ($T\approx 100$~mK), as a function of external magnetic field $B_0$ and donor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06644v2-abstract-full').style.display = 'inline'; document.getElementById('1812.06644v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.06644v2-abstract-full" style="display: none;"> We analyze the electron spin relaxation rate $1/T_1$ of individual ion-implanted $^{31}$P donors, in a large set of metal-oxide-semiconductor (MOS) silicon nanoscale devices, with the aim of identifying spin relaxation mechanisms peculiar to the environment of the spins. The measurements are conducted at low temperatures ($T\approx 100$~mK), as a function of external magnetic field $B_0$ and donor electrochemical potential $渭_{\rm D}$. We observe a magnetic field dependence of the form $1/T_1\propto B_0^5$ for $B_0\gtrsim 3\,$ T, corresponding to the phonon-induced relaxation typical of donors in the bulk. However, the relaxation rate varies by up to two orders of magnitude between different devices. We attribute these differences to variations in lattice strain at the location of the donor. For $B_0\lesssim 3\,$T, the relaxation rate changes to $1/T_1\propto B_0$ for two devices. This is consistent with relaxation induced by evanescent-wave Johnson noise created by the metal structures fabricated above the donors. At such low fields, where $T_1>1\,$s, we also observe and quantify the spurious increase of $1/T_1$ when the electrochemical potential of the spin excited state $|\uparrow\rangle$ comes in proximity to empty states in the charge reservoir, leading to spin-dependent tunneling that resets the spin to $|\downarrow\rangle$. These results give precious insights into the microscopic phenomena that affect spin relaxation in MOS nanoscale devices, and provide strategies for engineering spin qubits with improved spin lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06644v2-abstract-full').style.display = 'none'; document.getElementById('1812.06644v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures. Version 2 has extensive text revisions, typo corrections, and two extra authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 205306 (2019) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>