CINXE.COM

Search results for: Wiener filter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Wiener filter</title> <meta name="description" content="Search results for: Wiener filter"> <meta name="keywords" content="Wiener filter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Wiener filter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Wiener filter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 873</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Wiener filter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Javidnia">Hossein Javidnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehe%20Taheri"> Salehe Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20noise%20filtering" title="ECG noise filtering">ECG noise filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20filtering" title=" Wiener filtering"> Wiener filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filtering" title=" median filtering"> median filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20noise" title=" Gaussian noise"> Gaussian noise</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20performance" title=" filtering performance"> filtering performance</a> </p> <a href="https://publications.waset.org/abstracts/9623/additive-white-gaussian-noise-filtering-from-ecg-by-wiener-filter-and-median-filter-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajish%20K.%20Abraham">Ajish K. Abraham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hearing%20aid%20output%20speech" title="hearing aid output speech">hearing aid output speech</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=SNR%20improvement" title=" SNR improvement"> SNR improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20filter" title=" Wiener filter"> Wiener filter</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title=" speech enhancement"> speech enhancement</a> </p> <a href="https://publications.waset.org/abstracts/91241/efficacy-of-a-wiener-filter-based-technique-for-speech-enhancement-in-hearing-aids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Naimi">Hilal Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amelbahahouda%20Adamou-Mitiche"> Amelbahahouda Adamou-Mitiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Mitiche"> Lahcene Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifting%20wavelet%20transform" title="lifting wavelet transform">lifting wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20tree%20complex%20wavelet%20transform" title=" dual tree complex wavelet transform"> dual tree complex wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20shrinkage" title=" wavelet shrinkage"> wavelet shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20filter" title=" wiener filter"> wiener filter</a> </p> <a href="https://publications.waset.org/abstracts/135374/hybrid-thresholding-lifting-dual-tree-complex-wavelet-transform-with-wiener-filter-for-quality-assurance-of-medical-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Hosoya Polynomials of Zero-Divisor Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Jalil%20M.%20Khalaf">Abdul Jalil M. Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Esraa%20M.%20Kadhim"> Esraa M. Kadhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hosoya polynomial of a graph G is a graphical invariant polynomial that its first derivative at x= 1 is equal to the Wiener index and second derivative at x=1 is equal to the Hyper-Wiener index. In this paper we study the Hosoya polynomial of zero-divisor graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosoya%20polynomial" title="Hosoya polynomial">Hosoya polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyper-Wiener%20index" title=" Hyper-Wiener index"> Hyper-Wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-divisor%20graphs" title=" zero-divisor graphs"> zero-divisor graphs</a> </p> <a href="https://publications.waset.org/abstracts/27159/hosoya-polynomials-of-zero-divisor-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Identification of Wiener Model Using Iterative Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Saini">Vikram Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20non-linearity" title="hard non-linearity">hard non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation%20gradient" title=" stochastic approximation gradient"> stochastic approximation gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20model" title=" Wiener model"> Wiener model</a> </p> <a href="https://publications.waset.org/abstracts/70632/identification-of-wiener-model-using-iterative-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enver%20Kucukkulahli">Enver Kucukkulahli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Erdogmus"> Pakize Erdogmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat"> Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=GUI" title=" GUI"> GUI</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20MRI" title=" 2D MRI "> 2D MRI </a> </p> <a href="https://publications.waset.org/abstracts/68097/design-of-a-graphical-user-interface-for-data-preprocessing-and-image-segmentation-process-in-2d-mri-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Detection of Image Blur and Its Restoration for Image Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy">M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title="image enhancement">image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20analysis" title=" motion analysis"> motion analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20detection" title=" motion detection"> motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title=" motion estimation"> motion estimation</a> </p> <a href="https://publications.waset.org/abstracts/59485/detection-of-image-blur-and-its-restoration-for-image-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen">Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Guo"> Bo Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jiang"> Ping Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20nonlinear%20wiener%20process" title="multi-phase nonlinear wiener process">multi-phase nonlinear wiener process</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20life%20estimation" title=" residual life estimation"> residual life estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20plus%20capacitor" title=" high voltage plus capacitor"> high voltage plus capacitor</a> </p> <a href="https://publications.waset.org/abstracts/45882/residual-life-estimation-based-on-multi-phase-nonlinear-wiener-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brouri">A. Brouri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Giri"> F. Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mkhida"> A. Mkhida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elkarkri"> A. Elkarkri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Chhibat"> M. L. Chhibat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system%20identification" title="nonlinear system identification">nonlinear system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammerstein-Wiener%20systems" title=" Hammerstein-Wiener systems"> Hammerstein-Wiener systems</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20identification" title=" frequency identification"> frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20decomposition" title=" polynomial decomposition"> polynomial decomposition</a> </p> <a href="https://publications.waset.org/abstracts/7969/identification-of-nonlinear-systems-structured-by-hammerstein-wiener-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Frequency Identification of Wiener-Hammerstein Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brouri%20Adil">Brouri Adil</a>, <a href="https://publications.waset.org/abstracts/search?q=Giri%20Fouad"> Giri Fouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiener-Hammerstein%20systems" title="Wiener-Hammerstein systems">Wiener-Hammerstein systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20series%20expansions" title=" Fourier series expansions"> Fourier series expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20identification" title=" frequency identification"> frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20science" title=" automation science"> automation science</a> </p> <a href="https://publications.waset.org/abstracts/7941/frequency-identification-of-wiener-hammerstein-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajani%20S.%20Pujar">Rajani S. Pujar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pandurangarao%20N.%20Kulkarni"> Pandurangarao N. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOS" title="MOS">MOS</a>, <a href="https://publications.waset.org/abstracts/search?q=PESQ" title=" PESQ"> PESQ</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20subtraction" title=" spectral subtraction"> spectral subtraction</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20splitting" title=" temporal splitting"> temporal splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20filter" title=" wiener filter"> wiener filter</a> </p> <a href="https://publications.waset.org/abstracts/94278/effect-of-noise-reduction-algorithms-on-temporal-splitting-of-speech-signal-to-improve-speech-perception-for-binaural-hearing-aids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Noise Removal Techniques in Medical Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amhimmid%20Mohammed%20Saffour">Amhimmid Mohammed Saffour</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Salama"> Abdelkader Salama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20imaging" title="CT imaging">CT imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filter" title=" median filter"> median filter</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filter%20and%20average%20filter" title=" adaptive filter and average filter"> adaptive filter and average filter</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/45416/noise-removal-techniques-in-medical-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> Gaussian Particle Flow Bernoulli Filter for Single Target Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongbok%20Kim">Hyeongbok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Zhao"> Lingling Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Su"> Xiaohong Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Wang"> Junjie Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernoulli%20filter" title="Bernoulli filter">Bernoulli filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20filter" title=" particle flow filter"> particle flow filter</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20finite%20sets" title=" random finite sets"> random finite sets</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title=" target tracking"> target tracking</a> </p> <a href="https://publications.waset.org/abstracts/162210/gaussian-particle-flow-bernoulli-filter-for-single-target-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Hosoya Polynomials of Mycielskian Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Vaidya">Sanju Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Li"> Aihua Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hosoya%20polynomial" title="hosoya polynomial">hosoya polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=mycielskian%20graph" title=" mycielskian graph"> mycielskian graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20vulnerability%20measure" title=" graph vulnerability measure"> graph vulnerability measure</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/172528/hosoya-polynomials-of-mycielskian-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Kalman Filter Gain Elimination in Linear Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20D.%20Assimakis">Nicholas D. Assimakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20time" title="discrete time">discrete time</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter%20gain" title=" Kalman filter gain"> Kalman filter gain</a> </p> <a href="https://publications.waset.org/abstracts/123040/kalman-filter-gain-elimination-in-linear-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20R.%20Moshtagh">Mohamad R. Moshtagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Bagheri"> Ahmad Bagheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=gearbox" title=" gearbox"> gearbox</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20method" title=" wiener method"> wiener method</a> </p> <a href="https://publications.waset.org/abstracts/169701/enhancing-fault-detection-in-rotating-machinery-using-wiener-cnn-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Operation Parameters of Vacuum Cleaned Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilhelm%20Hoeflinger">Wilhelm Hoeflinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Laminger"> Thomas Laminger</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wolfslehner"> Johannes Wolfslehner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For vacuum cleaned dust filters, used e. g. in textile industry, there exist no calculation methods to determine design parameters (e. g. traverse speed of the nozzle, filter area...). In this work a method to calculate the optimum traverse speed of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20dust%20filter" title="design of dust filter">design of dust filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20removing" title=" dust removing"> dust removing</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20regeneration" title=" filter regeneration"> filter regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20parameters" title=" operation parameters"> operation parameters</a> </p> <a href="https://publications.waset.org/abstracts/2536/operation-parameters-of-vacuum-cleaned-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Compact Microstrip Ultra-Wideband Bandstop Filter With Quasi-Elliptic Function Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Shaman">Hussein Shaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20Almansour"> Faris Almansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a modified optimum bandstop filter with ultra-wideband stopband. The filter consists of three shunt open-circuited stubs and two non-redundant unit elements. The proposed bandstop filter is designed with unequal electrical lengths of the open-circuited stubs at the mid-stopband. Therefore, the filter can exhibit a quasi-elliptic function response that improves the selectivity and enhances the rejection bandwidth. The filter is designed to exhibit a fractional bandwidth of about 114% at a mid-stopband frequency of 3.0 GHz. The filter is successfully realized in theory, simulated, fabricated and measured. An excellent agreement is obtained between calculated, simulated and measured. The fabricated filter has a compact size with a low insertion loss in the passbands, high selectivity and good attenuation level inside the desired stopband <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstrip%20filter" title="microstrip filter">microstrip filter</a>, <a href="https://publications.waset.org/abstracts/search?q=bandstop%20filter" title=" bandstop filter"> bandstop filter</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB%20filter" title=" UWB filter"> UWB filter</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line%20filter" title=" transmission line filter"> transmission line filter</a> </p> <a href="https://publications.waset.org/abstracts/151305/compact-microstrip-ultra-wideband-bandstop-filter-with-quasi-elliptic-function-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leili%20Esmaeilani">Leili Esmaeilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Ghaisari"> Jafar Ghaisari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ahmadian"> Mohsen Ahmadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hammerstein&ndash;Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein&ndash;Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H&ndash;W system to validate the results and illustrate the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identi%EF%AC%81cation" title="identification">identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammerstein-Wiener" title=" Hammerstein-Wiener"> Hammerstein-Wiener</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/80222/optimization-approach-to-estimate-hammerstein-wiener-nonlinear-blocks-in-presence-of-noise-and-disturbance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> A Finite Memory Residual Generation Filter for Fault Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20generation%20filter" title="residual generation filter">residual generation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20structure" title=" finite memory structure"> finite memory structure</a>, <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title=" kalman filter"> kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20detection" title=" fast detection"> fast detection</a> </p> <a href="https://publications.waset.org/abstracts/35140/a-finite-memory-residual-generation-filter-for-fault-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chan%20Jong%20Park">Chan Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Min%20Park"> Hye Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Ho%20Kim"> Jeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Hyun%20Park"> Ki Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Koan%20Sik%20Joo"> Koan Sik Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray" title="X-ray">X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title=" MCNPX"> MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/53350/study-on-filter-for-semiconductor-of-minimizing-damage-by-x-ray-laminography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packet%20loss%20probability%20estimation" title="packet loss probability estimation">packet loss probability estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20filter" title=" finite memory filter"> finite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20memory%20filter" title=" infinite memory filter"> infinite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/9519/a-packet-loss-probability-estimation-filter-using-most-recent-finite-traffic-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Design Dual Band Band-Pass Filter by Using Stepped Impedance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawzia%20Al-Sakeer">Fawzia Al-Sakeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Aldeeb"> Hassan Aldeeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20pass%20filter" title="band pass filter">band pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20band%20band-pass%20filter" title=" dual band band-pass filter"> dual band band-pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=ADS" title=" ADS"> ADS</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20filter" title=" microstrip filter"> microstrip filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20impedance" title=" stepped impedance"> stepped impedance</a> </p> <a href="https://publications.waset.org/abstracts/177757/design-dual-band-band-pass-filter-by-using-stepped-impedance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Arda%20Adrina%20Daud">Noor Arda Adrina Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hanafi%20Ali"> Mohd Hanafi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compensating%20filter" title="compensating filter">compensating filter</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral" title=" lateral"> lateral</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracolumbar" title=" thoracolumbar "> thoracolumbar </a> </p> <a href="https://publications.waset.org/abstracts/6135/the-effect-of-compensating-filter-on-image-quality-in-lateral-projection-of-thoracolumbar-radiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Thermal Properties of Chitosan-Filled Empty Fruit Bunches Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziatul%20Niza%20Sadikin">Aziatul Niza Sadikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norasikin%20Othman"> Norasikin Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ghazali%20Mohd%20Nawawi"> Mohd Ghazali Mohd Nawawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Aisah%20Asli"> Umi Aisah Asli</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshafima%20Rasit%20Ali"> Roshafima Rasit Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiziana%20Md%20Kasmani"> Rafiziana Md Kasmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-woven fibrous filter media from empty fruit bunches were fabricated by using chitosan as a binder. Chitosan powder was dissolved in a 1 wt% aqueous acetic acid and 1 wt% to 4 wt% of chitosan solutions was prepared. Chitosan-filled empty fruit bunches filter media have been prepared via wet-layup method. Thermogravimetric analysis (TGA) was performed to study various thermal properties of the fibrous filter media. It was found that the fibrous filter media have undergone several decomposition stages over a range of temperatures as revealed by TGA thermo-grams, where the temperature for 10% weight loss for chitosan-filled EFB filter media and binder-less filter media was at 150oC and 300oC, Respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunches" title="empty fruit bunches">empty fruit bunches</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/3285/thermal-properties-of-chitosan-filled-empty-fruit-bunches-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Frequency Transformation with Pascal Matrix Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal&rsquo;s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title="frequency transformation">frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title=" bilinear z-transformation"> bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-warping%20frequency" title=" pre-warping frequency"> pre-warping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20filters" title=" digital filters"> digital filters</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filters" title=" analog filters"> analog filters</a>, <a href="https://publications.waset.org/abstracts/search?q=pascal%E2%80%99s%20triangle" title=" pascal’s triangle"> pascal’s triangle</a> </p> <a href="https://publications.waset.org/abstracts/34866/frequency-transformation-with-pascal-matrix-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Design of Wide-Range Variable Fractional-Delay FIR Digital Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Jy%20Shyu">Jong-Jy Shyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Chang%20Pei"> Soo-Chang Pei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Da%20Huang"> Yun-Da Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20filter" title="digital filter">digital filter</a>, <a href="https://publications.waset.org/abstracts/search?q=FIR%20filter" title=" FIR filter"> FIR filter</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20fractional-delay%20%28VFD%29%20filter" title=" variable fractional-delay (VFD) filter"> variable fractional-delay (VFD) filter</a>, <a href="https://publications.waset.org/abstracts/search?q=least-squares%20approximation" title=" least-squares approximation"> least-squares approximation</a> </p> <a href="https://publications.waset.org/abstracts/8390/design-of-wide-range-variable-fractional-delay-fir-digital-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbahuddin%20Mahammad">Misbahuddin Mahammad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chandra%20Sekhar"> P. Chandra Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Metuku%20Shyamsunder"> Metuku Shyamsunder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sigma%20delta%20modulator" title="sigma delta modulator">sigma delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=CIC%20filter" title=" CIC filter"> CIC filter</a>, <a href="https://publications.waset.org/abstracts/search?q=decimation%20filter" title=" decimation filter"> decimation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=compensation%20filter" title=" compensation filter"> compensation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20shaping" title=" noise shaping"> noise shaping</a> </p> <a href="https://publications.waset.org/abstracts/15366/design-of-decimation-filter-using-cascade-structure-for-sigma-delta-adc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soudabeh%20Shemehsavar">Soudabeh Shemehsavar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20normal" title="bivariate normal">bivariate normal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fisher%20information%20matrix" title=" Fisher information matrix"> Fisher information matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20Gaussian%20distribution" title=" inverse Gaussian distribution"> inverse Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20process" title=" Wiener process"> Wiener process</a> </p> <a href="https://publications.waset.org/abstracts/4424/failure-inference-and-optimization-for-step-stress-model-based-on-bivariate-wiener-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wiener%20filter&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10