CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 565 results for author: <span class="mathjax">Li, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14343">arXiv:2501.14343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14343">pdf</a>, <a href="https://arxiv.org/format/2501.14343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Impact of Nonreciprocal Hopping on Localization in Non-Hermitian Quasiperiodic Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+X">Xianqi Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiling Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaosen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14343v1-abstract-short" style="display: inline;"> We study the non-Hermitian Aubry-Andr茅-Harper model, incorporating complex phase modulation, unmodulated and modulated nonreciprocal hopping. Using Avila&#39;s global theory, we derive analytical phase boundaries and map out the phase diagrams, revealing extended, localized, critical, and skin phases unique to non-Hermitian systems. For complex phase modulation, we determine localization lengths throu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14343v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14343v1-abstract-full" style="display: none;"> We study the non-Hermitian Aubry-Andr茅-Harper model, incorporating complex phase modulation, unmodulated and modulated nonreciprocal hopping. Using Avila&#39;s global theory, we derive analytical phase boundaries and map out the phase diagrams, revealing extended, localized, critical, and skin phases unique to non-Hermitian systems. For complex phase modulation, we determine localization lengths through Lyapunov exponents and show that topological transitions align with localization transitions. In the nonreciprocal case, we use similarity transformations to confirm phase boundaries consistent with Avila&#39;s theory and uncover asymmetric localization behaviors. Importantly, modulated nonreciprocal hopping transforms both extended and critical phases into skin phases under open boundary conditions. These results highlight the interplay between topology, localization, and non-Hermitian effects, offering new perspectives on quasiperiodic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14343v1-abstract-full').style.display = 'none'; document.getElementById('2501.14343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13367">arXiv:2501.13367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Read out the fermion parity of a potential artificial Kitaev chain utilizing a transmon qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+E">Enna Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaozhou Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yunxiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Duolin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yukun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Anqi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bakkers%2C+E+P+A+M">E. P. A. M. Bakkers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaodong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peiling Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+B">Bingbing Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+Z">Ziwei Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13367v1-abstract-short" style="display: inline;"> Artificial Kitaev chains have emerged as a promising platform for realizing topological quantum computing. Once the chains are formed and the Majorana zero modes are braided/fused, reading out the parity of the chains is essential for further verifying the non-Abelian property of the Majorana zero modes. Here we demonstrate the feasibility of using a superconducting transmon qubit, which incorpora&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13367v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13367v1-abstract-full" style="display: none;"> Artificial Kitaev chains have emerged as a promising platform for realizing topological quantum computing. Once the chains are formed and the Majorana zero modes are braided/fused, reading out the parity of the chains is essential for further verifying the non-Abelian property of the Majorana zero modes. Here we demonstrate the feasibility of using a superconducting transmon qubit, which incorporates an end of a four-site quantum dot-superconductor chain based on a Ge/Si nanowire, to directly detect the singlet/doublet state, and thus the parity of the entire chain. We also demonstrate that for multiple-dot chains there are two types of 0-蟺 transitions between different charging states: the parity-flip 0-蟺 transition and the parity-preserved 0-蟺 transition. Furthermore, we show that the inter-dot coupling, hence the strengths of cross Andreev reflection and elastic cotunneling of electrons, can be adjusted by local electrostatic gating in chains fabricated on Ge/Si core-shell nanowires. Our exploration would be helpful for the ultimate realization of topological quantum computing based on artificial Kitaev chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13367v1-abstract-full').style.display = 'none'; document.getElementById('2501.13367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06232">arXiv:2501.06232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06232">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> An Interpretable ML-based Model for Predicting p-y Curves of Monopile Foundations in Sand </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Biao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qing-Kai Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+W">Wen-Gang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Fu-Ping Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06232v1-abstract-short" style="display: inline;"> Predicting the lateral pile response is challenging due to the complexity of pile-soil interactions. Machine learning (ML) techniques have gained considerable attention for their effectiveness in non-linear analysis and prediction. This study develops an interpretable ML-based model for predicting p-y curves of monopile foundations. An XGBoost model was trained using a database compiled from exist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06232v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06232v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06232v1-abstract-full" style="display: none;"> Predicting the lateral pile response is challenging due to the complexity of pile-soil interactions. Machine learning (ML) techniques have gained considerable attention for their effectiveness in non-linear analysis and prediction. This study develops an interpretable ML-based model for predicting p-y curves of monopile foundations. An XGBoost model was trained using a database compiled from existing research. The results demonstrate that the model achieves superior predictive accuracy. Shapley Additive Explanations (SHAP) was employed to enhance interpretability. The SHAP value distributions for each variable demonstrate strong alignment with established theoretical knowledge on factors affecting the lateral response of pile foundations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06232v1-abstract-full').style.display = 'none'; document.getElementById('2501.06232v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01622">arXiv:2501.01622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01622">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Visualization of intervalley coherent phase in PtSe2/HOPG heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+K">Kai Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+W">Wen-Xuan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+T">Ting-Fei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jian-Wang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wen-Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Ying-Shuang Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01622v1-abstract-short" style="display: inline;"> Intervalley coherent (IVC) phase in graphene systems arises from the coherent superposition of wave functions of opposite valleys, whose direct microscopic visualization provides pivotal insight into the emergent physics but remains elusive. Here, we successfully visualize the IVC phase in a heterostructure of monolayer PtSe2 on highly oriented pyrolytic graphite. Using spectroscopic imaging scann&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01622v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01622v1-abstract-full" style="display: none;"> Intervalley coherent (IVC) phase in graphene systems arises from the coherent superposition of wave functions of opposite valleys, whose direct microscopic visualization provides pivotal insight into the emergent physics but remains elusive. Here, we successfully visualize the IVC phase in a heterostructure of monolayer PtSe2 on highly oriented pyrolytic graphite. Using spectroscopic imaging scanning tunneling microscopy, we observe a Root3 by Root3 modulation pattern superimposed on the higher-order moire superlattice of the heterostructure, which correlates with a small gap opening around the Fermi level and displays an anti-phase real-space conductance distribution of the two gap edges. Such modulation pattern and small-gap vanish on the heterostructure of monolayer PtSe2 on bilayer-graphene-covered SiC substrate, due to the increased carrier density in the bilayer graphene. We provide a theoretical mechanism that the Root3 by Root3 modulation pattern originates from the IVC phase of few-layer graphene, which is magnified by the higher-order moire superlattice. Our work achieves visualization of the IVC phase, and develops an avenue for its generation and amplification via a moir茅 interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01622v1-abstract-full').style.display = 'none'; document.getElementById('2501.01622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00338">arXiv:2501.00338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00338">pdf</a>, <a href="https://arxiv.org/format/2501.00338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> The simplest spin glass revisited: finite-size effects of the energy landscape can modify aging dynamics in the thermodynamic limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yuliang Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00338v1-abstract-short" style="display: inline;"> The random energy model is one of the few glass models whose asymptotic activated aging dynamics are solvable. However, the existing aging theory, i.e., Bouchaud&#39;s trap model, does not agree with dynamical simulation results obtained in finite-sized systems. Here we show that this discrepancy originates from non-negligible finite-size corrections in the energy barrier distributions. The finite-siz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00338v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00338v1-abstract-full" style="display: none;"> The random energy model is one of the few glass models whose asymptotic activated aging dynamics are solvable. However, the existing aging theory, i.e., Bouchaud&#39;s trap model, does not agree with dynamical simulation results obtained in finite-sized systems. Here we show that this discrepancy originates from non-negligible finite-size corrections in the energy barrier distributions. The finite-size effects add a logarithmic decay term in the time-correlation aging function, which destroys the asymptotic large-time plateau predicted by Bouchaud&#39;s trap model in the spin glass phase. Surprisingly, the finite-size effects also give corrections, preserved even in the thermodynamic limit, to the value of the asymptotic plateau. It results in an unexpected dynamical transition where weak ergodicity breaking occurs, at a temperature $T_{\rm d}$ above the thermodynamic spin-glass transition temperature $T_{\rm c}$. Based on the barrier distributions obtained by a numerical barrier-tree method and an expansion theory, we propose a generalized trap model to incorporate such finite-size effects. The theoretically derived aging behavior of the generalized trap model explains the Monte-Carlo dynamical simulation data of random energy models with Gaussian and exponential random energies. Our results suggest that the double limits of large system size and long time are not interchangeable for the activated aging dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00338v1-abstract-full').style.display = 'none'; document.getElementById('2501.00338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19429">arXiv:2412.19429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19429">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Seed-Driven Stepwise Crystallization (SDSC) for Growing Rutile GeO2 Films via MOCVD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+I">Imteaz Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Botong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duersch%2C+B">Bobby Duersch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellis%2C+H+D">Hunter D. Ellis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+K">Kai Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19429v1-abstract-short" style="display: inline;"> Germanium dioxide (r-GeO2) is an emerging new ultrawide bandgap (UWBG) semiconductor with significant potential for power electronics, thanks to its large-size substrate compatibility and ambipolar doping capability. However, phase segregation during metal-organic chemical vapor deposition (MOCVD) on substrates like r-TiO2 has posed a significant barrier to achieving high-quality films. Convention&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19429v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19429v1-abstract-full" style="display: none;"> Germanium dioxide (r-GeO2) is an emerging new ultrawide bandgap (UWBG) semiconductor with significant potential for power electronics, thanks to its large-size substrate compatibility and ambipolar doping capability. However, phase segregation during metal-organic chemical vapor deposition (MOCVD) on substrates like r-TiO2 has posed a significant barrier to achieving high-quality films. Conventional optimization of growth parameters has been found so far not very insufficient in film coverage and film quality. To address this, a seed-driven stepwise crystallization (SDSC) growth approach was employed in this study, featuring multiple sequential deposition steps on a pre-templated substrate enriched with r-GeO2 seeds. The process began with an initial 180-minute deposition to establish r-GeO2 nucleation seeds, followed by a sequence of shorter deposition steps (90, 60, 60, 60, 60, and 60 minutes). This stepwise growth strategy progressively increased the crystalline coverage to 57.4%, 77.49%, 79.73%, 93.27%, 99.17%, and ultimately 100%. Concurrently, the crystalline quality improved substantially, evidenced by a ~30% reduction in the Full Width at Half Maximum (FWHM) of X-ray diffraction rocking curves. These findings demonstrate the potential of the SDSC approach for overcoming phase segregation and achieving high-quality, large-area r-GeO2 films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19429v1-abstract-full').style.display = 'none'; document.getElementById('2412.19429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures, 1 Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15488">arXiv:2412.15488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15488">pdf</a>, <a href="https://arxiv.org/format/2412.15488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.214504">10.1103/PhysRevB.110.214504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical Prediction of High-Temperature Superconductivity in SrAuH$_3$ at Ambient Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Cong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+J">Junjie Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chuanhui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yuxiang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jie Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shengli Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhixiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15488v1-abstract-short" style="display: inline;"> We present a comprehensive computational investigation of electron-phonon interactions in MXH$_3$ hydride compounds, where $M$ represents alkali and post-transition metals, and $X$ denotes 3$d$, 4$d$, and 5$d$ transition metals. Our density functional theory calculations identify 17 dynamically stable compounds. Notably, SrAuH$_3$ and SrZnH$_3$ emerge as theoretical ambient-pressure superconductor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15488v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15488v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15488v1-abstract-full" style="display: none;"> We present a comprehensive computational investigation of electron-phonon interactions in MXH$_3$ hydride compounds, where $M$ represents alkali and post-transition metals, and $X$ denotes 3$d$, 4$d$, and 5$d$ transition metals. Our density functional theory calculations identify 17 dynamically stable compounds. Notably, SrAuH$_3$ and SrZnH$_3$ emerge as theoretical ambient-pressure superconductors with predicted critical temperatures ($T_c$) exceeding 100 K. Analysis of the electronic structure reveals that the $X$ component dominates the density of states at the Fermi level, playing a crucial role in determining electron-phonon coupling strength and superconducting properties. We elucidate the underlying mechanisms governing these properties through detailed examination of the electronic and vibrational spectra. Our findings may challenge the prevailing notion that high-$T_c$ superconductivity in hydrides requires extreme pressures, potentially paving the way for practical applications. This study also provides valuable insights to guide future experimental efforts in the synthesis of ambient-pressure hydride superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15488v1-abstract-full').style.display = 'none'; document.getElementById('2412.15488v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 214504 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12728">arXiv:2412.12728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12728">pdf</a>, <a href="https://arxiv.org/format/2412.12728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic signatures of magnetization-induced band renormalization and strong spin-charge-lattice coupling in EuZn$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhiyu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Boxuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+S">Shaohui Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+L">Lincong Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yubiao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+E">Enkui Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marsik%2C+P">Premysl Marsik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bing Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernhard%2C+C">Christian Bernhard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12728v1-abstract-short" style="display: inline;"> We report an infrared spectroscopy study of the antiferromagnetic (AFM) insulator EuZn$_2$As$_2$ over a broad frequency range, spanning temperatures both above and below the AFM transition $T_{\rm N} \simeq$ 20 K. The optical response reveals an insulating behavior, featuring two prominent infrared-active phonon modes at around 95 and 190 cm$^{-1}$, and two subtle absorption peaks at around 130 (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12728v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12728v1-abstract-full" style="display: none;"> We report an infrared spectroscopy study of the antiferromagnetic (AFM) insulator EuZn$_2$As$_2$ over a broad frequency range, spanning temperatures both above and below the AFM transition $T_{\rm N} \simeq$ 20 K. The optical response reveals an insulating behavior, featuring two prominent infrared-active phonon modes at around 95 and 190 cm$^{-1}$, and two subtle absorption peaks at around 130 ($伪$ peak) and 2700 cm$^{-1}$ ($尾$ peak), along with a strong absorption edge rising around 9000 cm$^{-1}$ ($纬$ peak). Significantly, the temperature-dependent changes in these peaks show noticeable anomalies across the AFM transition, particularly the emergence of the $伪$ peak and an unusual redshift of the $纬$ peak, suggesting a strong interaction between the charge excitations and the AFM order. Band structure calculations reveal that these anomalies arise from magnetization-induced band renormalizations, including shifts and foldings. Additionally, both phonon modes feature asymmetric Fano line shapes at low temperatures, with the 95 cm$^{-1}$ phonon mode exhibiting strong coupling to the fluctuations of Eu spins. These findings highlight a complex interplay of spin, charge, and lattice degrees of freedom in EuZn$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12728v1-abstract-full').style.display = 'none'; document.getElementById('2412.12728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12161">arXiv:2412.12161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12161">pdf</a>, <a href="https://arxiv.org/format/2412.12161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discover Physical Concepts and Equations with Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bao-Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yi Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shao-Feng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12161v1-abstract-short" style="display: inline;"> Machine learning can uncover physical concepts or physical equations when prior knowledge from another one is available. However, in many cases, these two aspects are coupled and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12161v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12161v1-abstract-full" style="display: none;"> Machine learning can uncover physical concepts or physical equations when prior knowledge from another one is available. However, in many cases, these two aspects are coupled and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAEs) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across diverse physical systems. We apply the model to several key examples inspired by the history of physics, including Copernicus&#39; heliocentric solar system, Newton&#39;s law of universal gravitation, the wave function together with the Schr枚dinger equation, and spin-1/2 along with the Pauli equation. The results demonstrate that the neural network successfully reconstructs the corresponding theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12161v1-abstract-full').style.display = 'none'; document.getElementById('2412.12161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02010">arXiv:2412.02010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02010">pdf</a>, <a href="https://arxiv.org/format/2412.02010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Proximity to quantum criticality in the Ising ferromagnet TbV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tianxiong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McKenzie%2C+R+D">R. D. McKenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blawat%2C+J">Joanna Blawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">D. M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singleton%2C+J">John Singleton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+L">Liqin Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonald%2C+R">Ross McDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flint%2C+R">Rebecca Flint</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02010v1-abstract-short" style="display: inline;"> TbV$_6$Sn$_6$ is a topological metal where ferromagnetic Tb ions with strong uniaxial magnetic anisotropy interact with V kagome layers. Inelastic neutron scattering measurements show that the Tb ions adopt an Ising doublet ground state. Here, we consider whether a transverse magnetic field can drive TbV$_6$Sn$_6$ towards a quantum critical point, providing a rare example of transverse-field Ising&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02010v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02010v1-abstract-full" style="display: none;"> TbV$_6$Sn$_6$ is a topological metal where ferromagnetic Tb ions with strong uniaxial magnetic anisotropy interact with V kagome layers. Inelastic neutron scattering measurements show that the Tb ions adopt an Ising doublet ground state. Here, we consider whether a transverse magnetic field can drive TbV$_6$Sn$_6$ towards a quantum critical point, providing a rare example of transverse-field Ising criticality in a metallic compound. High-field magnetization measurements suggest that this quantum criticality is avoided and reveal a first-order-like spin-reorientation transition at 25.6 T due to an excited-state level crossing. Theoretical analysis shows that small changes in the local Hamiltonian can restore the quantum criticality for some in-plane field directions, suggesting that TbV$_6$Sn$_6$ is close to a novel quantum tricritical point induced by in-plane magnetic anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02010v1-abstract-full').style.display = 'none'; document.getElementById('2412.02010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19905">arXiv:2411.19905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19905">pdf</a>, <a href="https://arxiv.org/format/2411.19905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Universal non-Hermitian transport in disordered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19905v1-abstract-short" style="display: inline;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19905v1-abstract-full" style="display: none;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory demonstrates how the tail of imaginary-part density of states dictates wave propagation in the long-time limit. Specifically, for the three typical classes, namely the Gaussian, the uniform, and the linear imaginary-part density of states, we obtain logarithmically suppressed sub-ballistic transport, and two types of subdiffusion with exponents that depend only on spatial dimensions, respectively. Our work highlights the fundamental differences between Hermitian and non-Hermitian Anderson localization, and uncovers unique universality in non-Hermitian wave propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'none'; document.getElementById('2411.19905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+10 pages,3+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06162">arXiv:2411.06162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06162">pdf</a>, <a href="https://arxiv.org/format/2411.06162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.074410">10.1103/PhysRevMaterials.8.074410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proximate Tomonaga-Luttinger liquid in a spin-1/2 ferromagnetic XXZ chain compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Boqiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuqian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhaohua Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Z">Zongtang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuesheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06162v1-abstract-short" style="display: inline;"> The spin-1/2 ferromagnetic XXZ chain is a prototypical many-body quantum model, exactly solvable via the integrable Bethe ansatz method, hosting a Tomonaga-Luttinger spin liquid. However, its clear experimental realizations remain absent. Here, we present a thorough investigation of the magnetism of the structurally disorder-free compound LuCu(OH)$_3$SO$_4$. By conducting magnetization and electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06162v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06162v1-abstract-full" style="display: none;"> The spin-1/2 ferromagnetic XXZ chain is a prototypical many-body quantum model, exactly solvable via the integrable Bethe ansatz method, hosting a Tomonaga-Luttinger spin liquid. However, its clear experimental realizations remain absent. Here, we present a thorough investigation of the magnetism of the structurally disorder-free compound LuCu(OH)$_3$SO$_4$. By conducting magnetization and electron-spin-resonance measurements on the single-crystal sample, we establish that the title compound approximates the spin-1/2 ferromagnetic XXZ chain model with a nearest-neighbor exchange strength of $J_1$ $\sim$ 65 K and an easy-plane anisotropy of $\sim$ 0.994. The specific heat demonstrates a distinctive power-law behavior at low magnetic fields (with energy scales $\leq$ 0.02$J_1$) and low temperatures ($T$ $\leq$ 0.03$J_1$). This behavior is consistent with the expectations of the ideal spin-1/2 ferromagnetic XXZ chain model, thereby supporting the formation of a gapless Tomonaga-Luttinger spin liquid in LuCu(OH)$_3$SO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06162v1-abstract-full').style.display = 'none'; document.getElementById('2411.06162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Materials 8, 074410 (2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 8, 074410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20455">arXiv:2410.20455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20455">pdf</a>, <a href="https://arxiv.org/format/2410.20455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Role of non-magnetic spacers in the magnetic interactions of antiferromagnetic topological insulators MnBi$_{4}$Te$_{7}$ and MnBi$_{2}$Te$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">D. M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20455v1-abstract-short" style="display: inline;"> MnBi$_{4}$Te$_{7}$ belongs to a family of antiferromagnetic topological insulators. It forms a natural heterostructure of magnetic (septuple) and non-magnetic (quintuple) topological blocks. Here, we explore the magnetism and magnetic interactions in this compound using inelastic neutron scattering. We find that the interlayer magnetic coupling is much weaker in MnBi$_{4}$Te$_{7}$ as compared to M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20455v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20455v1-abstract-full" style="display: none;"> MnBi$_{4}$Te$_{7}$ belongs to a family of antiferromagnetic topological insulators. It forms a natural heterostructure of magnetic (septuple) and non-magnetic (quintuple) topological blocks. Here, we explore the magnetism and magnetic interactions in this compound using inelastic neutron scattering. We find that the interlayer magnetic coupling is much weaker in MnBi$_{4}$Te$_{7}$ as compared to MnBi$_{2}$Te$_{4}$ due to the insertion of non-magnetic quintuple layers in the former. However, other key magnetic energy scales residing within a single septuple block, the single-ion anisotropy and long-range intralayer exchanges, are essentially the same. This identifies a transferable set of magnetic interactions applicable to the extended family of magnetic topological insulators based on MnBi$_2$Te$_4$-Bi$_2$Te$_3$ heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20455v1-abstract-full').style.display = 'none'; document.getElementById('2410.20455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18086">arXiv:2410.18086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18086">pdf</a>, <a href="https://arxiv.org/ps/2410.18086">ps</a>, <a href="https://arxiv.org/format/2410.18086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Directionally asymmetric nonlinear optics in planar chiral MnTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinshu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbin%2C+T">Tyler Carbin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">Kai Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bingqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kefeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Casey Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogar%2C+A">Anshul Kogar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18086v1-abstract-short" style="display: inline;"> Planar chiral structures possess a two dimensional handedness that is associated with broken mirror symmetry. Such motifs span vast length scales; examples include certain pinwheel molecules, nautilus shells, cyclone wind patterns and spiral galaxies. Although pervasive in nature, it has only recently been found that condensed matter systems can exhibit a form of planar chirality through toroidal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18086v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18086v1-abstract-full" style="display: none;"> Planar chiral structures possess a two dimensional handedness that is associated with broken mirror symmetry. Such motifs span vast length scales; examples include certain pinwheel molecules, nautilus shells, cyclone wind patterns and spiral galaxies. Although pervasive in nature, it has only recently been found that condensed matter systems can exhibit a form of planar chirality through toroidal arrangements of electric dipoles, known as ferro-rotational (FR) order. A key characteristic of such order is that enantiomorph conversion occurs when the solid is flipped by 180 degrees about an in-plane axis. Consequently, ferro-rotationally ordered materials may exhibit directionally asymmetric response functions, even while preserving inversion and time-reversal symmetry. Such an effect, however, has yet to be observed. Using second harmonic interferometry, we show here that when circularly polarized light is incident on MnTiO$_3$, the generated nonlinear signal exhibits directional asymmetry. Depending on whether the incident light is parallel or anti-parallel to the FR axis, we observe a different conversion efficiency of two right (left) circularly polarized photons into a frequency-doubled left (right) circularly polarized photon. Our work uncovers a fundamentally new optical effect in ordered solids and opens up the possibility for developing novel nonlinear and directionally asymmetric optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18086v1-abstract-full').style.display = 'none'; document.getElementById('2410.18086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16610">arXiv:2410.16610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16610">pdf</a>, <a href="https://arxiv.org/format/2410.16610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the interplay of electron-phonon coupling, pseudogap, and superconductivity in CsCa$_2$Fe$_4$As$_4$F$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi-Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiao-Jiao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hai-Yun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+Y">Yu-Xia Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jian-Qiao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16610v1-abstract-short" style="display: inline;"> The quasiparticle relaxation dynamics of the iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ ($T_c$ $\sim$ 29 K) were investigated using ultrafast optical spectroscopy. A pseudogap ($螖_{PG}$ $\approx$ 3.3 meV) was observed to open below $T^{\ast}$ $\approx$ 60 K, prior to the emergence of a superconducting gap ($螖$ $\approx$ 6.6 meV). At high excitation fluence, a coherent $A_{1g}$ phonon mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16610v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16610v1-abstract-full" style="display: none;"> The quasiparticle relaxation dynamics of the iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ ($T_c$ $\sim$ 29 K) were investigated using ultrafast optical spectroscopy. A pseudogap ($螖_{PG}$ $\approx$ 3.3 meV) was observed to open below $T^{\ast}$ $\approx$ 60 K, prior to the emergence of a superconducting gap ($螖$ $\approx$ 6.6 meV). At high excitation fluence, a coherent $A_{1g}$ phonon mode at 5.49 THz was identified, exhibiting deviations from anharmonic behavior below $T_c$. The electron-phonon coupling constant for this mode was estimated to be $位_{A_{1g}}$ $\approx$ 0.225 $\pm$ 0.02. These results provide insights into the interplay between the electron-phonon interactions, pseudogap, and the superconducting pairing mechanism in CsCa$_2$Fe$_4$As$_4$F$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16610v1-abstract-full').style.display = 'none'; document.getElementById('2410.16610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15327">arXiv:2410.15327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15327">pdf</a>, <a href="https://arxiv.org/ps/2410.15327">ps</a>, <a href="https://arxiv.org/format/2410.15327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.155139">10.1103/PhysRevB.110.155139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inter-Cation Charge Transfer Mediated Antiferromagnetism in Co$_{1+x}$Ir$_{2-x}$S$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Liang-Wen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Si-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wu-Zhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15327v1-abstract-short" style="display: inline;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measuremen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15327v1-abstract-full" style="display: none;"> The antiferromagnetism in transition metal compounds is mostly mediated by the bridging anions through a so-called superexchange mechanism. However, in materials like normal spinels $AB_2X_4$ with local moments only at the $A$ site, such an anion-mediated superexchange needs to be modified. Here we report a new spinel compound Co$_{1+x}$Ir$_{2-x}$S$_4$ ($x$ = 0.3). The physical property measurements strongly suggest an antiferromagnetic-like transition at 292 K in the Co($A$) diamond sublattice. The first-principle calculations reveal that the nearest-neighbor Co($A$) spins align antiferromagnetically with an ordered magnetic moment of 1.67 $渭_\mathrm{B}$, smaller than the expected $S = 3/2$ for Co$^{2+}$. In the antiferromagnetic state, there exists an inter-cation charge-transfer gap between the non-bonding Ir-$t_\mathrm{2g}$ orbitals at the valence band maximum and the Co-S antibonding molecular orbitals at the conduction band minimum. The small charge transfer energy significantly enhances the virtual hopping between these two states, facilitating a robust long-range superexchange interaction between two neighboring CoS$_4$ complexes, which accounts for the high N茅el temperature in Co$_{1+x}$Ir$_{2-x}$S$_4$. This inter-cation charge transfer mediated magnetic interaction expands the traditional superexchange theory, which could be applicable in complex magnetic materials with multiple cations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15327v1-abstract-full').style.display = 'none'; document.getElementById('2410.15327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 155139 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13199">arXiv:2410.13199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A TEM Study of MOCVD-Grown Rutile GeO2 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+I">Imteaz Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Botong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellis%2C+H+D">Hunter D. Ellis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Devener%2C+B+R">Brian Roy Van Devener</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polson%2C+R+C">Randy C Polson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+K">Kai Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13199v1-abstract-short" style="display: inline;"> Ultrawide bandgap (UWBG) semiconductors are promising for next-generation power electronics, largely attributed to their substantial bandgap and exceptional breakdown electric field. Rutile GeO2 (r-GeO2) emerges as a promising alternative, particularly because of its ambipolar dopability. However, research on r-GeO2 is still in its infancy, and further investigation into its structural properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13199v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13199v1-abstract-full" style="display: none;"> Ultrawide bandgap (UWBG) semiconductors are promising for next-generation power electronics, largely attributed to their substantial bandgap and exceptional breakdown electric field. Rutile GeO2 (r-GeO2) emerges as a promising alternative, particularly because of its ambipolar dopability. However, research on r-GeO2 is still in its infancy, and further investigation into its structural properties is essential for enhancing epilayer quality. In our previous work, we identified distinct surface morphologies; square-patterned and smooth regions of epitaxial r-GeO2 films grown on r-TiO2 (001) substrates using metal-organic chemical vapor deposition (MOCVD).This research employs transmission electron microscopy (TEM) to investigate the structural characteristics of the material. The findings indicate that the square-patterned regions are crystalline, whereas the smooth regions exhibit amorphous properties. The measured lattice spacing in the (110) plane is 0.324 nm, slightly exceeding the theoretical value of 0.312 nm. This discrepancy suggests the presence of tensile strain in the r-GeO2 film, resulting from lattice mismatch or thermal expansion differences with the substrate. We also observed a threading dislocation density of 1.83*10^9 cm-2, consisting of 11.76% screw-type, 29.41% edge-type, 55.89% mixed-type dislocations, and 2.94% planar defects. These findings offer valuable insights into the growth mechanisms and defect characteristics of r-GeO2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13199v1-abstract-full').style.display = 'none'; document.getElementById('2410.13199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06323">arXiv:2410.06323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06323">pdf</a>, <a href="https://arxiv.org/format/2410.06323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High Pressure Structural Behavior of Silicon Telluride (Si2Te3) Nanoplates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cerasoli%2C+F">Frank Cerasoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+E">Ethan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunz%2C+M">Martin Kunz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donadio%2C+D">Davide Donadio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koski%2C+K+J">Kristie J. Koski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06323v1-abstract-short" style="display: inline;"> The high-pressure behavior of silicon telluride (Si2Te3), a two-dimensional (2D) layered material, was investigated using synchrotron X-ray powder diffraction in a diamond anvil cell to 11.5 GPa coupled with first-principles theory. Si2Te3 undergoes a phase transition at &lt; 1 GPa from a trigonal to a hexagonal crystal structure. At higher pressures (&gt; 8.5 GPa), X-ray diffraction showed the appearan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06323v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06323v1-abstract-full" style="display: none;"> The high-pressure behavior of silicon telluride (Si2Te3), a two-dimensional (2D) layered material, was investigated using synchrotron X-ray powder diffraction in a diamond anvil cell to 11.5 GPa coupled with first-principles theory. Si2Te3 undergoes a phase transition at &lt; 1 GPa from a trigonal to a hexagonal crystal structure. At higher pressures (&gt; 8.5 GPa), X-ray diffraction showed the appearance of new peaks possibly coincident with a new phase transition, though we suspect Si2Te3 retains a hexagonal structure. Density functional theory calculations of the band structure reveal metallization above 9.1 GPa consistent with previous measurements of the Raman spectra and disappearance of color and transparency at pressure. The theoretical Raman spectra reproduce the prominent features of the experiment, though a deeper analysis suggests that the orientation of Si dimers dramatically influences the vibrational response. Given the complex structure of Si2Te3, simulation of the resulting high-pressure phase is complicated by disordered vacancies and the initial orientations of Si-Si dimers in the crushed layered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06323v1-abstract-full').style.display = 'none'; document.getElementById('2410.06323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05818">arXiv:2410.05818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hot electron lifetime exceeds 300 nanoseconds in quantum dots with high quantum efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Beibei Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yingying Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiaojiao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiaohan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaosuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Huaibin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+F">Fengjia Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05818v1-abstract-short" style="display: inline;"> Hot electrons are theoretically predicted to be long-lived in strongly confined quantum dots, which could play vital roles in quantum dot-based optoelectronics; however, existing photoexcitation transient spectroscopy investigations reveal that their lifetime is less than 1 ps in well-passivated quantum dots because of the ultrafast electron-hole Auger-assisted cooling. Therefore, they are general&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05818v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05818v1-abstract-full" style="display: none;"> Hot electrons are theoretically predicted to be long-lived in strongly confined quantum dots, which could play vital roles in quantum dot-based optoelectronics; however, existing photoexcitation transient spectroscopy investigations reveal that their lifetime is less than 1 ps in well-passivated quantum dots because of the ultrafast electron-hole Auger-assisted cooling. Therefore, they are generally considered absent in quantum dot optoelectronic devices. Here, by using our newly developed electrically excited transient absorption spectroscopy, we surprisingly observed abundant hot electrons in both II-VI and III-VI compound quantum dot light-emitting diodes at elevated bias (&gt;4 V), of which the lifetimes reach 59 to 371 ns, lengthened by more than 5 orders of magnitude compared with the photoexcited hot electrons. These results experimentally prove the presence of a strong phonon bottleneck effect, refreshing our understanding of the role of hot electrons in quantum dot optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05818v1-abstract-full').style.display = 'none'; document.getElementById('2410.05818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04489">arXiv:2409.04489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04489">pdf</a>, <a href="https://arxiv.org/format/2409.04489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2024.101549">10.1016/j.mtphys.2024.101549 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An interpretable formula for lattice thermal conductivity of crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+G">Guoyu Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+G">Guimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiansheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jun Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiangdong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhibin Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04489v1-abstract-short" style="display: inline;"> Lattice thermal conductivity (kL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining kL poses a considerable challenge. In this study, we introduce an formula that achieves high precision (mean relative error=8.97%) and provides fast predictions,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04489v1-abstract-full" style="display: none;"> Lattice thermal conductivity (kL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining kL poses a considerable challenge. In this study, we introduce an formula that achieves high precision (mean relative error=8.97%) and provides fast predictions, taking less than one minute, for kL across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts kL values for 4,601 binary and 6,995 ternary materials in the Materials Project database. Notably, we predict undiscovered high kL values for AlBN2 (kL=101 W/ m/ K) and the undetectedlow kL Cs2Se (kL=0.98 W/ m/ K) at room temperature. This method for determining kL streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme kL values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Gruneisen parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04489v1-abstract-full').style.display = 'none'; document.getElementById('2409.04489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 48, 101549 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00180">arXiv:2409.00180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Slow Dephasing of Coherent Optical Phonons in Two-dimensional Lead Organic Chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hanjun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">Sagarmoy Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+T+K">Tushar Kanti Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+J+M">Jonas Mark Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peijun Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+L">Letian Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Ming Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Libai Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00180v1-abstract-short" style="display: inline;"> Hybrid organic-inorganic semiconductors with strong electron-phonon interactions provide a programmable platform for developing a variety of electronic, optoelectronic, and quantum materials by controlling these interactions. However, in current hybrid semiconductors, such as halide perovskites, anharmonic vibrations with rapid dephasing hinder the ability to coherently manipulate phonons. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00180v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00180v1-abstract-full" style="display: none;"> Hybrid organic-inorganic semiconductors with strong electron-phonon interactions provide a programmable platform for developing a variety of electronic, optoelectronic, and quantum materials by controlling these interactions. However, in current hybrid semiconductors, such as halide perovskites, anharmonic vibrations with rapid dephasing hinder the ability to coherently manipulate phonons. Here, we report the observation of long-lived coherent phonons in lead organic chalcogenides (LOCs), a new family of hybrid two-dimensional semiconductors. These materials feature harmonic phonon dynamics despite distorted lattices, combining long phonon dephasing times with tunable semiconducting properties. Dephasing time as long as 75 ps at 10 K, with up to 500 cycles of phonon oscillation between scattering events, was observed, corresponding to a dimensionless harmonicity parameter more than an order of magnitude larger than that of halide perovskites. The phonon dephasing time is significantly influenced by anharmonicity and centrosymmetry, both of which can be tuned through the design of the organic ligands thanks to the direct bonding between the organic and inorganic motifs. This research opens new opportunities for the manipulation of electronic properties with coherent phonons in hybrid semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00180v1-abstract-full').style.display = 'none'; document.getElementById('2409.00180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12545">arXiv:2408.12545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12545">pdf</a>, <a href="https://arxiv.org/format/2408.12545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.111.014303">10.1103/PhysRevE.111.014303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of Meta-learning Representation in the Teacher-student Scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yip%2C+C+T">Cho Tung Yip</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12545v2-abstract-short" style="display: inline;"> Gradient-based meta-learning algorithms have gained popularity for their ability to train models on new tasks using limited data. Empirical observations indicate that such algorithms are able to learn a shared representation across tasks, which is regarded as a key factor in their success. However, the in-depth theoretical understanding of the learning dynamics and the origin of the shared represe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12545v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12545v2-abstract-full" style="display: none;"> Gradient-based meta-learning algorithms have gained popularity for their ability to train models on new tasks using limited data. Empirical observations indicate that such algorithms are able to learn a shared representation across tasks, which is regarded as a key factor in their success. However, the in-depth theoretical understanding of the learning dynamics and the origin of the shared representation remains underdeveloped. In this work, we investigate the meta-learning dynamics of nonlinear two-layer neural networks trained on streaming tasks in the teacher-student scenario. Through the lens of statistical physics analysis, we characterize the macroscopic behavior of the meta-training processes, the formation of the shared representation, and the generalization ability of the model on new tasks. The analysis also points to the importance of the choice of certain hyperparameters of the learning algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12545v2-abstract-full').style.display = 'none'; document.getElementById('2408.12545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 111, 014303 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00234">arXiv:2408.00234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00234">pdf</a>, <a href="https://arxiv.org/format/2408.00234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssb.202400240">10.1002/pssb.202400240 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductive Sodalite-like Clathrate Hydrides MXH$_{12}$ with Critical Temperatures of near 300 K under Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yuxiang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Cong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jie Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shengli Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhixiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00234v1-abstract-short" style="display: inline;"> We designed and investigated a series of ternary hydride compounds MXH$_{12}$ crystallizing in the cubic $Pm\overline{3}m$ structure as potential rare-earth and alkaline-earth superconductors. First-principles calculations were performed on these prospective superconductors across the pressure range of 50-200 GPa, revealing their electronic band structures, phonon dispersions, electron-phonon inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00234v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00234v1-abstract-full" style="display: none;"> We designed and investigated a series of ternary hydride compounds MXH$_{12}$ crystallizing in the cubic $Pm\overline{3}m$ structure as potential rare-earth and alkaline-earth superconductors. First-principles calculations were performed on these prospective superconductors across the pressure range of 50-200 GPa, revealing their electronic band structures, phonon dispersions, electron-phonon interactions, and superconducting properties. Several compounds were identified as dynamically stable, with ScYbH$_{12}$ and LuYbH$_{12}$ remaining stable at 70 GPa, and ScLuH$_{12}$ at 100 GPa. Notably, Eliashberg theory and electron-phonon coupling calculations predict CaLuH$_{12}$ to exhibit a remarkable $T_{c}$ of up to 294 K at 180 GPa. These findings unveil ternary hydrides as a promising class of high-temperature superconductors and provide insights for achieving superconductivity at lower or ambient pressures through material design and exploration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00234v1-abstract-full').style.display = 'none'; document.getElementById('2408.00234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Status Solidi B 2400240 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19124">arXiv:2407.19124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19124">pdf</a>, <a href="https://arxiv.org/format/2407.19124">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> ReactCA: A Cellular Automaton for Predicting Phase Evolution in Solid-State Reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gallant%2C+M+C">Max C. Gallant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDermott%2C+M+J">Matthew J. McDermott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bryant Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persson%2C+K+A">Kristin A. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19124v1-abstract-short" style="display: inline;"> New computational tools for solid-state synthesis recipe design are needed in order to accelerate the experimental realization of novel functional materials proposed by high-throughput materials discovery workflows. This work contributes a cellular automaton simulation framework (ReactCA) for predicting the time-dependent evolution of intermediate and product phases during solid-state reactions as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19124v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19124v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19124v1-abstract-full" style="display: none;"> New computational tools for solid-state synthesis recipe design are needed in order to accelerate the experimental realization of novel functional materials proposed by high-throughput materials discovery workflows. This work contributes a cellular automaton simulation framework (ReactCA) for predicting the time-dependent evolution of intermediate and product phases during solid-state reactions as a function of precursor choice and amount, reaction atmosphere, and heating profile. The simulation captures rudimentary kinetic effects, the effects of reactant particle spatial distribution, particle melting and reaction atmosphere. It achieves conservation of mass using a stochastic, asynchronous evolution rule and estimates reaction rates using density functional theory data from the Materials Project [1] and machine learning estimators for the the melting point [2] and the vibrational entropy component of the Gibbs free energy [3]. The resulting simulation framework allows for the prediction of the likely outcome of a reaction recipe before any experiments are performed. We analyze five experimental solid-state recipes for BaTiO$_3$, CaZrN$_2$ and YMnO$_3$ found in the literature to illustrate the performance of the model in capturing reaction pathways as a function of temperature, reaction selectivity and the effect of precursor choice. Our approach allows for straightforward comparison of predicted mass fractions of intermediates and products with experimental results. This simulation framework presents a step toward $\textit{in silico}$ synthesis recipe design and an easier way to optimize existing recipes, aid in the identification of intermediates and identify effective recipes for yet unrealized inorganic solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19124v1-abstract-full').style.display = 'none'; document.getElementById('2407.19124v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16208">arXiv:2407.16208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16208">pdf</a>, <a href="https://arxiv.org/format/2407.16208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Gapless spin excitations in a quantum spin liquid state of S=1/2 perfect kagome antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Suetsugu%2C+S">S. Suetsugu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asaba%2C+T">T. Asaba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikemori%2C+S">S. Ikemori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sekino%2C+Y">Y. Sekino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasahara%2C+Y">Y. Kasahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Totsuka%2C+K">K. Totsuka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">B. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohama%2C+Y">Y. Kohama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y">Y. Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16208v1-abstract-short" style="display: inline;"> Quantum spin liquids (QSLs) represent an exotic quantum many-body state characterized by the suppression of long-range magnetic order due to strong quantum fluctuations. The kagome spin-1/2 antiferromagnet (AFM) is a prime candidate for realizing QSLs, but its ground state remains an unresolved conundrum. Here we investigate the recently discovered perfect kagome AFM YCu$_3$(OH)$_{6.5}$Br$_{2.5}$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16208v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16208v1-abstract-full" style="display: none;"> Quantum spin liquids (QSLs) represent an exotic quantum many-body state characterized by the suppression of long-range magnetic order due to strong quantum fluctuations. The kagome spin-1/2 antiferromagnet (AFM) is a prime candidate for realizing QSLs, but its ground state remains an unresolved conundrum. Here we investigate the recently discovered perfect kagome AFM YCu$_3$(OH)$_{6.5}$Br$_{2.5}$ to elucidate two central enigmas surrounding the kagome AFM. Ultra-sensitive torque magnetometry experiments reveal that the intrinsic magnetic susceptibility arising from the kagome layer remains nearly temperature-independent down to exceedingly low temperatures. This observation seemingly implies the emergence of gapless fermionic spin excitations akin to Pauli paramagnetism in metals. However, most strikingly, these results stand in stark contrast to the conspicuous absence of a temperature-linear contribution to the specific heat. These findings appear irreconcilable with the widely-discussed theoretical frameworks assuming fermionic quasiparticles (QPs), instead suggesting a transition of bosonic QPs into a superfluid state with a gapless Goldstone mode. Furthermore, magnetocaloric measurements evince an entropy anomaly, constituting thermodynamic evidence that magnetic fields instigate the opening of a spin gap, driving a quantum phase transition into a 1/9 magnetization plateau state. These results shed light on the nature of the low-energy excitations in zero and strong magnetic fields, providing crucial insights into the long-standing unresolved issues of the ground state of the kagome AFM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16208v1-abstract-full').style.display = 'none'; document.getElementById('2407.16208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16044">arXiv:2407.16044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16044">pdf</a>, <a href="https://arxiv.org/format/2407.16044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Unconventional superconductivity in magic-strain graphene superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Q">Qingxiang Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+J">Johan Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Changguo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kadic%2C+M">Muamer Kadic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16044v1-abstract-short" style="display: inline;"> Extensive investigations on the Moir茅 magic-angle have been conducted in twisted bilayer graphene, unlocking the mystery of unconventional superconductivity and insulating states. In analog to magic angle, here we demonstrate the new concept of magic-strain in graphene systems by judiciously tailoring mechanical relaxation (stretch and compression) which is easier to implement in practice. We eluc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16044v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16044v1-abstract-full" style="display: none;"> Extensive investigations on the Moir茅 magic-angle have been conducted in twisted bilayer graphene, unlocking the mystery of unconventional superconductivity and insulating states. In analog to magic angle, here we demonstrate the new concept of magic-strain in graphene systems by judiciously tailoring mechanical relaxation (stretch and compression) which is easier to implement in practice. We elucidate the interplay of strain-induced effects and delve into the resulting unconventional superconductivity or semimetal-insulator transition in relaxation-strained graphene, going beyond the traditional twisting approach. Our findings reveal how relaxation strain can trigger superconducting transitions (with an ultra-flat band at the Fermi level) or the semimetal-insulator transition (with a gap opening at the $K$ point of $0.39\rm{~eV}$) in both monolayer and bilayer graphene. These discoveries open up a new branch for correlated phenomena and provide deeper insights into the underlying physics of superconductors, which positions graphene as a highly tunable platform for novel electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16044v1-abstract-full').style.display = 'none'; document.getElementById('2407.16044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04784">arXiv:2407.04784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04784">pdf</a>, <a href="https://arxiv.org/format/2407.04784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity QED in a High NA Resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shadmany%2C+D">Danial Shadmany</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Aishwarya Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soper%2C+A">Anna Soper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palm%2C+L">Lukas Palm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chuan Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+H">Henry Ando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taneja%2C+L">Lavanya Taneja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffe%2C+M">Matt Jaffe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuster%2C+D">David Schuster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+J">Jon Simon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04784v1-abstract-short" style="display: inline;"> From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control interactions between atoms and photons. The coherence of such interactions is determined by the product of the single-pass atomic absorption and the number of photon round-trips. Reducing the cavity loss has ena&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04784v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04784v1-abstract-full" style="display: none;"> From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control interactions between atoms and photons. The coherence of such interactions is determined by the product of the single-pass atomic absorption and the number of photon round-trips. Reducing the cavity loss has enabled resonators supporting nearly 1-million optical roundtrips at the expense of severely limited optical material choices and increased alignment sensitivity. The single-pass absorption probability can be increased through the use of near-concentric, fiber or nanophotonic cavities, which reduce the mode waists at the expense of constrained optical access and exposure to surface fields. Here we present a new high numerical-aperture, lens-based resonator that pushes the single-atom-single-photon absorption probability per round trip close to its fundamental limit by reducing the mode size at the atom below a micron while keeping the atom mm-to-cm away from all optics. This resonator provides strong light-matter coupling in a cavity where the light circulates only ~ 10 times. We load a single 87Rb atom into such a cavity, observe strong coupling, demonstrate cavity-enhanced atom detection with imaging fidelity of 99.55(6) percent and survival probability of 99.89(4) percent in 130 microseconds, and leverage this new platform for a time-resolved exploration of cavity cooling. The resonator&#39;s loss-resilience paves the way to coupling of atoms to nonlinear and adaptive optical elements and provides a minimally invasive route to readout of defect centers. Introduction of intra-cavity imaging systems will enable the creation of cavity arrays compatible with Rydberg atom array computing technologies, vastly expanding the applicability of the cavity QED toolbox. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04784v1-abstract-full').style.display = 'none'; document.getElementById('2407.04784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07013">arXiv:2406.07013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07013">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic Relations between Free Energy and Mobility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A+B">Andrew Boshi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinno%2C+T">Talid Sinno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07013v1-abstract-short" style="display: inline;"> Stochastic and dynamical processes lie at the heart of all physical, chemical, and biological systems. However, kinetic and thermodynamic properties which characterize these processes have largely been treated separately as they can be obtained independently for many systems at thermodynamic equilibrium. In this work we demonstrate the existence of a class of relations between kinetic and thermody&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07013v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07013v1-abstract-full" style="display: none;"> Stochastic and dynamical processes lie at the heart of all physical, chemical, and biological systems. However, kinetic and thermodynamic properties which characterize these processes have largely been treated separately as they can be obtained independently for many systems at thermodynamic equilibrium. In this work we demonstrate the existence of a class of relations between kinetic and thermodynamic factors which holds even in the hydrodynamic limit, and which must be satisfied for all systems that satisfy detailed balance and Boltzmann distribution at equilibrium. We achieve this by proving that for systems with inhomogeneous equilibrium states governed by dynamics such as the Cahn-Hilliard (CH) dynamics, the chemical potential and self-diffusivity must mutually constrain each other. We discuss common issues in the literature which result in inconsistent formulations, construct the consistency requirement mathematically, develop a class of self-diffusivities that guarantee consistency, and discuss how the requirement originates from detailed balance and Boltzmann distribution, and is therefore applicable to both conserved and non-conserved dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07013v1-abstract-full').style.display = 'none'; document.getElementById('2406.07013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05380">arXiv:2406.05380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05380">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00699-3">10.1038/s41535-024-00699-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of floating surface state in obstructed atomic insulator candidate NiP$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">Ming-Yuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yuanwen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">Meng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiao-Ming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yu-Jie Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yue Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+R">Rong-Hao Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia-Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05380v2-abstract-short" style="display: inline;"> Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized angle-resolved photoemission spectroscopy and density functional theory calculatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05380v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05380v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05380v2-abstract-full" style="display: none;"> Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP$_2$. A floating surface state with large effective mass that is isolated from all bulk states is resolved on the (100) cleavage plane, distinct from previously reported surface states in obstructed atomic insulators that are merged into bulk bands. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction that splits the half-filled obstructed surface state. Our findings not only shed lights on the spectroscopy study of obstructed atomic insulators and obstructed surface states, but also provide possible route for development of new catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05380v2-abstract-full').style.display = 'none'; document.getElementById('2406.05380v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 9, 85 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02482">arXiv:2406.02482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02482">pdf</a>, <a href="https://arxiv.org/format/2406.02482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205108">10.1103/PhysRevB.110.205108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional fracton topological orders with boundary Toeplitz braiding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo-Xi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02482v4-abstract-short" style="display: inline;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'inline'; document.getElementById('2406.02482v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02482v4-abstract-full" style="display: none;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The effective field theory is given by the infinite-component Chern-Simons (iCS) field theory, with an integer-valued symmetric block-tridiagonal Toeplitz \(K\)-matrix whose size is thermodynamically large. With open boundary conditions (OBC) along \(z\), certain choice of \(K\)-matrices exhibits exotic boundary ``Toeplitz braiding&#39;&#39;, where the mutual braiding phase angle between two anyons at opposite boundaries oscillates and remains non-zero in the thermodynamic limit. In contrast, in trivial case, the mutual braiding phase angle decays exponentially to zero in the thermodynamical limit. As a necessary condition, this phenomenon requires the existence of boundary zero modes in the \(K\)-matrix spectrum under OBC. We categorize nontrivial \(K\)-matrices into two distinct types. Each type-I possesses two boundary zero modes, whereas each type-II possesses only one boundary zero mode. Interestingly, the integer-valued Hamiltonian matrix of the familiar 1D SSH can be used as a non-trivial $K$-matrix. Importantly, since large-gauge-invariance ensures integer quantized \(K\)-matrix entries, global symmetries are not needed to protect these zero modes. We also present numerical simulation as well as finite size scaling, further confirming the above analytical results. Symmetry fractionalization is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'none'; document.getElementById('2406.02482v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 205108 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20307">arXiv:2405.20307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20307">pdf</a>, <a href="https://arxiv.org/format/2405.20307">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Variational Mapping of Chern Bands to Landau Levels: Application to Fractional Chern Insulators in Twisted MoTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fengcheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20307v1-abstract-short" style="display: inline;"> We present a theoretical study of mapping between Chern bands and generalized Landau levels in twisted bilayer MoTe$_2$, where fractional Chern insulators have been observed. We construct an exact Landau-level representation of moir茅 bands, where the bases are derived from Landau-level wavefunctions dressed by spinors aligned or antialigned with the layer pseudospin skyrmion field and maintain uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20307v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20307v1-abstract-full" style="display: none;"> We present a theoretical study of mapping between Chern bands and generalized Landau levels in twisted bilayer MoTe$_2$, where fractional Chern insulators have been observed. We construct an exact Landau-level representation of moir茅 bands, where the bases are derived from Landau-level wavefunctions dressed by spinors aligned or antialigned with the layer pseudospin skyrmion field and maintain uniform quantum geometry. We further generalize the dressed zeroth Landau level to a variational wavefunction with an ideal yet nonuniform quantum geometry and variationally maximize its weight in the first moir茅 band. The variational wavefunction quantitatively reproduces the exact diagonalization spectra of fractional Chern insulators at hole-filling factors $谓_h=2/3$ and $3/5$ across a large twist-angle range. Our work introduces a new approach to studying fractional states by bridging the gap between Chern bands and Landau levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20307v1-abstract-full').style.display = 'none'; document.getElementById('2405.20307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13761">arXiv:2405.13761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13761">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Monolithic Germanium Tin on Si Avalanche Photodiodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rudie%2C+J">Justin Rudie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amoah%2C+S">Sylvester Amoah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+R">Rajesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+G">Grey Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akwabli%2C+S">Steven Akwabli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grant%2C+P+C">Perry C. Grant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baohua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+W">Wei Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shui-Qing Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13761v1-abstract-short" style="display: inline;"> We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before ava&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13761v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13761v1-abstract-full" style="display: none;"> We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before avalanche breakdown in GeSn/Si APDs for the first time. The spectral response covers 1500 to 1700 nm. The measured punch-through and breakdown voltages are 15 and 17 V, respectively. Undisputed multiplication gain was obtained with the maximum value of 4.5 at 77 K, and 1.4 at 250 K, directly in reference to the saturated primary responsivity from the same device rather than a different GeSn p-i-n photodiode in previous reports. A peak responsivity was measured as 1.12 A/W at 1550 nm and 77 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13761v1-abstract-full').style.display = 'none'; document.getElementById('2405.13761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, invited paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13752">arXiv:2405.13752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13752">pdf</a>, <a href="https://arxiv.org/format/2405.13752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184517">10.1103/PhysRevB.109.184517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity near 70 K in boron-carbon clathrates MB$_2$C$_8$ (M = Na, K, Rb, Cs) at ambient pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yulan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Cong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jie Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shengli Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13752v1-abstract-short" style="display: inline;"> Inspired by the first boron-carbon (B-C) clathrate SrB$_3$C$_3$ and the ternary borohydride KB$_2$H$_8$ [Miao et al., Phys. Rev. B 104 L100504 (2021)], we have performed first-principles density functional theory calculations of the electronic and phonon band structures for B-C compounds MB$_2$C$_8$ (M = Na, K, Rb, Cs). Our calculations reveal that these materials are dynamically stable and can po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13752v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13752v1-abstract-full" style="display: none;"> Inspired by the first boron-carbon (B-C) clathrate SrB$_3$C$_3$ and the ternary borohydride KB$_2$H$_8$ [Miao et al., Phys. Rev. B 104 L100504 (2021)], we have performed first-principles density functional theory calculations of the electronic and phonon band structures for B-C compounds MB$_2$C$_8$ (M = Na, K, Rb, Cs). Our calculations reveal that these materials are dynamically stable and can potentially exhibit superconductivity at ambient pressure. However, only the K, Rb, and Cs compounds exhibit thermodynamic stability below 50 GPa, while NaB$_2$C$_8$ remains thermodynamically unstable at all pressures considered. Based on the Allen and Dynes modified McMillan equation, we predict the superconducting transition temperature $T_c$ of these compounds to be over 65 K at ambient pressure, with $T_c$ decreasing under higher pressures. Remarkably, we find CsB$_2$C$_8$ possesses the highest predicted $T_c$ of 68.76 K. Our findings demonstrate the possibility of high temperature superconductivity in cubic MB$_2$C$_8$ at ambient pressure, expanding the B-C clathrate superconductor family. These results provide valuable insights to guide the identification of new atmospheric pressure superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13752v1-abstract-full').style.display = 'none'; document.getElementById('2405.13752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109,184517 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08633">arXiv:2405.08633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08633">pdf</a>, <a href="https://arxiv.org/format/2405.08633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> On the superconducting gap structure of the miassite Rh17S15: Nodal or nodeless? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J+Y">J. Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C+C">C. C. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Q">C. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">B. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C+P">C. P. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D+Z">D. Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+R">H. R. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">S. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+W">Wenhe Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+M">B. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu&#39;an Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08633v1-abstract-short" style="display: inline;"> Recent penetration depth measurement claimed the observation of unconventional superconductivity in the miassite Rh$_{17}$S$_{15}$ single crystals, evidenced by the linear-in-temperature penetration depth at low temperatures, thereby arguing for the presence of the lines of node in its superconducting gap structure. Here we measure the thermal conductivity of Rh$_{17}$S$_{15}$ single crystals down&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08633v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08633v1-abstract-full" style="display: none;"> Recent penetration depth measurement claimed the observation of unconventional superconductivity in the miassite Rh$_{17}$S$_{15}$ single crystals, evidenced by the linear-in-temperature penetration depth at low temperatures, thereby arguing for the presence of the lines of node in its superconducting gap structure. Here we measure the thermal conductivity of Rh$_{17}$S$_{15}$ single crystals down to 110 mK and up to a field of 8 T ($\simeq 0.4H{\rm_{c2}}$). In marked contrast to the penetration depth measurement, we observe a negligible residual linear term $魏_0/T$ in zero field, in line with the nodeless gap structure. The field dependence of $魏_0(H)/T$ shows a profile that is more consistent with either a highly anisotropic gap structure or multiple nodeless gaps with significantly different magnitudes. Moreover, first-principles calculations give two electronic bands with complex shape of Fermi surfaces. These results suggest multigap nodeless superconductivity in this multiband Rh$_{17}$S$_{15}$ superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08633v1-abstract-full').style.display = 'none'; document.getElementById('2405.08633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04479">arXiv:2405.04479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04479">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07584-w">10.1038/s41586-024-07584-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chushan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guoan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+B">Bingbing Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04479v1-abstract-short" style="display: inline;"> Graphene-based, high quality two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity. Specifically, superconductivity has been observed in both electron-doped and hole-doped twisted graphene moire systems, whereas in crystalline graphene systems, superconductivity has so far only been observed in hole-doped rhombohedral trilayer and hole-doped Be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04479v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04479v1-abstract-full" style="display: none;"> Graphene-based, high quality two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity. Specifically, superconductivity has been observed in both electron-doped and hole-doped twisted graphene moire systems, whereas in crystalline graphene systems, superconductivity has so far only been observed in hole-doped rhombohedral trilayer and hole-doped Bernal bilayer graphene (BBG). Recently, enhanced superconductivity has been demonstrated in BBG due to the proximity with a monolayer WSe2. Here, we report the observation of superconductivity and a series of flavor-symmetry-breaking phases in both electron- and hole-doped BBG/WSe2 device by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when applied electric fields drive BBG electron or hole wavefunctions toward the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. We find the hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. In contrast, the electron-doped superconductivity obeys the Pauli limit, even though the proximity induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of novel superconductor devices based on BBG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04479v1-abstract-full').style.display = 'none'; document.getElementById('2405.04479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09185">arXiv:2404.09185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09185">pdf</a>, <a href="https://arxiv.org/format/2404.09185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Robust spin order and fragile charge order in Na0.5CoO2 as revealed by time-resolved terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+Y">X. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B+H">B. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S+F">S. F. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+M">Q. M. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T+C">T. C. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R+S">R. S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J+Y">J. Y. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S+X">S. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Q. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">L. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09185v1-abstract-short" style="display: inline;"> Near-infrared (NIR) pump-terahertz (THz) probe spectroscopy is used to investigate the charge and spin exciations in a strongly correlated electron compound Na0.5CoO2. This compound exhibits a coexistence of various charge and spin orders arising from intricate interactions among charge, spin, and orbital degrees of freedom. NIR pulses create significantly diverse effects on the charge and spin or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09185v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09185v1-abstract-full" style="display: none;"> Near-infrared (NIR) pump-terahertz (THz) probe spectroscopy is used to investigate the charge and spin exciations in a strongly correlated electron compound Na0.5CoO2. This compound exhibits a coexistence of various charge and spin orders arising from intricate interactions among charge, spin, and orbital degrees of freedom. NIR pulses create significantly diverse effects on the charge and spin orders; while the charge order is easily melted,coherent magnon excitations are present in all fluences examined. Furthermore, a novel 蟺 phase shift of the coherent magnon oscillations is observed in the pump-induced change of the terahertz electric field between regions of increasing and decreasing field change. These results unequivocally illustrate that ultrashort laser pulses enable the disentanglement of different interactions within complex systems characterized by multiple orders, providing a fresh perspective on the interplay between itinerant and localized electrons within the Co 3d t2g multiplets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09185v1-abstract-full').style.display = 'none'; document.getElementById('2404.09185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01600">arXiv:2404.01600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01600">pdf</a>, <a href="https://arxiv.org/format/2404.01600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/3/037104">10.1088/0256-307X/41/3/037104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> C-type antiferromagnetic structure of topological semimetal CaMnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xu-Tao Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qianhui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+J">Junsen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Hengyang Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+S">Sihao Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Juping Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W">Wen Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huiying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+X">Xian-Lei Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+W">Wentao Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01600v1-abstract-short" style="display: inline;"> Determination of the magnetic structure and confirmation of the presence or absence of inversion ($\mathcal{P}$) and time reversal ($\mathcal{T}$) symmetry is imperative for correctly understanding the topological magnetic materials. Here high-quality single crystals of the layered manganese pnictide CaMnSb$_2$ are synthesized using the self-flux method. De Haas-van Alphen oscillations indicate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01600v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01600v1-abstract-full" style="display: none;"> Determination of the magnetic structure and confirmation of the presence or absence of inversion ($\mathcal{P}$) and time reversal ($\mathcal{T}$) symmetry is imperative for correctly understanding the topological magnetic materials. Here high-quality single crystals of the layered manganese pnictide CaMnSb$_2$ are synthesized using the self-flux method. De Haas-van Alphen oscillations indicate a nontrivial Berry phase of $\sim$ $蟺$ and a notably small cyclotron effective mass, supporting the Dirac semimetal nature of CaMnSb$_2$. Neutron diffraction measurements identify a C-type antiferromagnetic (AFM) structure below $T\rm_{N}$ = 303(1) K with the Mn moments aligned along the $a$ axis, which is well supported by the density functional theory (DFT) calculations. The corresponding magnetic space group is $Pn&#39;m&#39;a&#39;$, preserving a $\mathcal{P}\times\mathcal{T}$ symmetry. Adopting the experimentally determined magnetic structure, band crossings near the Y point in momentum space and linear dispersions of the Sb $5p_{y,z}$ bands are revealed by the DFT calculations. Furthermore, our study predicts the possible existence of an intrinsic second-order nonlinear Hall effect in CaMnSb$_2$, offering a promising platform to study the impact of topological properties on nonlinear electrical transports in antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01600v1-abstract-full').style.display = 'none'; document.getElementById('2404.01600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 41, 037104 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00818">arXiv:2404.00818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00818">pdf</a>, <a href="https://arxiv.org/format/2404.00818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.045122">10.1103/PhysRevB.110.045122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal superfluidlike topological spin transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+A+A">Alexey A. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwartz%2C+E">Edward Schwartz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00818v2-abstract-short" style="display: inline;"> We study superfluidlike spin transport facilitated by thermal diffusion of magnetic domain walls, where the positive and negative chiralities of domain walls act as opposite topological charges. The topological charge conservation leads to algebraic decay of spin current carried by domain walls, allowing for the transport of spin over extended distances. We demonstrate that the presence of the Dzy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00818v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00818v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00818v2-abstract-full" style="display: none;"> We study superfluidlike spin transport facilitated by thermal diffusion of magnetic domain walls, where the positive and negative chiralities of domain walls act as opposite topological charges. The topological charge conservation leads to algebraic decay of spin current carried by domain walls, allowing for the transport of spin over extended distances. We demonstrate that the presence of the Dzyaloshinskii-Moriya interaction can lead to nonreciprocity in spin flow, thus effectively realizing a spin ratchet. In one scenario, the nonreciprocity arises due to diode-like behavior where the nucleation of domain walls is governed by thermal activation for one direction of spin current and by viscous injection for the other direction of spin current. We confirm our predictions by micromagnetic simulations of domain walls in TmIG nanowire. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00818v2-abstract-full').style.display = 'none'; document.getElementById('2404.00818v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 045122 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13813">arXiv:2403.13813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13813">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.12768/zw0r-6z73">10.12768/zw0r-6z73 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intercomparison exercise on Monte Carlo simulations of electron spectra and energy depositions by a single gold nanoparticle under X-ray irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W+B">Wei Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabus%2C+H">Hans Rabus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villagrasa%2C+C">Carmen Villagrasa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuemann%2C+J">Jan Schuemann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13813v1-abstract-short" style="display: inline;"> Computational approaches, such as Monte Carlo (MC) radiation transport simulations, are used to estimate the dosimetric effects of GNPs, where results differing by orders of magnitudes have been reported by different investigators. This has motivated an intercomparison exercise, which was conducted as a joint activity of EURADOS Working Groups 6 &#34;Computational Dosimetry&#34; and 7 &#34;Internal Dosimetry&#34;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13813v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13813v1-abstract-full" style="display: none;"> Computational approaches, such as Monte Carlo (MC) radiation transport simulations, are used to estimate the dosimetric effects of GNPs, where results differing by orders of magnitudes have been reported by different investigators. This has motivated an intercomparison exercise, which was conducted as a joint activity of EURADOS Working Groups 6 &#34;Computational Dosimetry&#34; and 7 &#34;Internal Dosimetry&#34;. The aim of this exercise was to determine the extent of such discrepancies between the results obtained by different researchers and different codes in a very simple simulation setup. Several individual EURADOS associate members and two code developer groups from outside Europe participated in this exercise applying seven different MC codes to perform the simulations of a simple defined geometry set-up of one single GNP irradiated in water by kilo-voltage X-rays. Two GNP diameters of 50 nm and 100 nm of were considered and two photon spectra as generated by X-ray tubes operated at 50 kV and 100 kV peak voltages. The geometry set-up and X-ray spectra were provided by the EURADOS task group. The participants were asked to determine for each combination of GNP size and X-ray spectrum the dose enhancement ratio (DER) of 10 nm-thick water shells up to 1000 nm and 1 $渭$m-thick water shells up to 50 $渭$m around the GNP. Furthermore, the electron spectra emitted from the GNP and the energy depositions in water shells around it were also to be reported. This EURADOS report summarizes the motivation and background for the exercise, the tasks to be solved, the codes used, the results reported by the participants, the consistency checks applied in their evaluation and a best estimates and uncertainty bands derived from the final results for the energy spectra of emitted electrons and the energy imparted in the vicinity of the GNP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13813v1-abstract-full').style.display = 'none'; document.getElementById('2403.13813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 Pages, 27 Figures, 15 Tables, submitted to EURADOS e.V</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EURADOS Report 2024-1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11049">arXiv:2403.11049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11049">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> High order nonlinear electrophoresis in a nematic liquid crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rajabi%2C+M">Mojtaba Rajabi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turiv%2C+T">Taras Turiv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baza%2C+H">Hend Baza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golovaty%2C+D">Dmitry Golovaty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lavrentovich%2C+O+D">Oleg D. Lavrentovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11049v1-abstract-short" style="display: inline;"> Electrophoresis is the motion of particles relative to a surrounding fluid driven by a uniform electric field. In conventional electrophoresis, the electrophoretic velocity grows linearly with the applied field. Nonlinear effects with a quadratic speed vs field dependence are gaining research interest since an alternating current field could drive them. Here we report on the giant nonlinearity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11049v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11049v1-abstract-full" style="display: none;"> Electrophoresis is the motion of particles relative to a surrounding fluid driven by a uniform electric field. In conventional electrophoresis, the electrophoretic velocity grows linearly with the applied field. Nonlinear effects with a quadratic speed vs field dependence are gaining research interest since an alternating current field could drive them. Here we report on the giant nonlinearity of electrophoresis in a nematic liquid crystal in which the speed grows with the fourth and sixth powers of the electric field. The mechanism is attributed to the shear thinning of the nematic environment induced by the moving colloid. The observed giant nonlinear effect dramatically enhances the efficiency of electrophoretic transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11049v1-abstract-full').style.display = 'none'; document.getElementById('2403.11049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 2 figures, 3 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05227">arXiv:2403.05227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05227">pdf</a>, <a href="https://arxiv.org/ps/2403.05227">ps</a>, <a href="https://arxiv.org/format/2403.05227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad1c5e">10.1088/1674-1056/ad1c5e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in kagome metal ThRu3Si2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wu-Zhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+B">Bo-Ya Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hua-Xun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+W">Wan-Li Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Si-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yun-Lei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+W">Wen-He Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W">Wang Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiao-Feng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+R">Ren Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05227v1-abstract-short" style="display: inline;"> We report the physical properties of ThRu$_3$Si$_2$ featured with distorted Ru kagome lattice. The combined experiments of resistivity, magnetization and specific heat reveal bulk superconductivity with $T_{\rm{c}}$ = 3.8 K. The specific heat jump and calculated electron-phonon coupling indicate a moderate coupled BCS superconductor. In comparison with LaRu$_3$Si$_2$, the calculated electronic str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05227v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05227v1-abstract-full" style="display: none;"> We report the physical properties of ThRu$_3$Si$_2$ featured with distorted Ru kagome lattice. The combined experiments of resistivity, magnetization and specific heat reveal bulk superconductivity with $T_{\rm{c}}$ = 3.8 K. The specific heat jump and calculated electron-phonon coupling indicate a moderate coupled BCS superconductor. In comparison with LaRu$_3$Si$_2$, the calculated electronic structure in ThRu$_3$Si$_2$ shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it. This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu$_3$Si$_2$. Our work suggests the $T_{\rm{c}}$ and electronic correlations in kagome superconductor could have intimate connection with the flat bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05227v1-abstract-full').style.display = 'none'; document.getElementById('2403.05227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18996">arXiv:2402.18996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18996">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Metasurface spectrometers beyond resolution-sensitivity constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+F">Feng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albrow-Owen%2C+T">Tom Albrow-Owen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Hanxiao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fujia Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yaqi Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+L">Lan Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuhan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yijun Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jikui Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+B">Bingfeng Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuangli Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Munro%2C+E+A">Eric Anthony Munro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wanguo Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joyce%2C+H+J">Hannah J. Joyce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+L">Lufeng Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shurong Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+T">Tawfique Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+X">Xin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18996v2-abstract-short" style="display: inline;"> Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18996v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18996v2-abstract-full" style="display: none;"> Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum9, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultra-low-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18996v2-abstract-full').style.display = 'none'; document.getElementById('2402.18996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13471">arXiv:2402.13471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13471">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal transport in a 2D amorphous material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xingxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+W">Wujuan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+N">Nianjie Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Haiyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+X">Xinwei Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fuwei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Buxuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Te-Huan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jia Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Bai Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13471v2-abstract-short" style="display: inline;"> Two-dimensional (2D) crystals proved revolutionary soon after graphene was discovered in 2004. However, 2D amorphous materials only became accessible in 2020 and remain largely unexplored. In particular, the thermophysical properties of amorphous materials are of great interest upon transition from 3D to 2D. Here, we probe thermal transport in 2D amorphous carbon. A cross-plane thermal conductivit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13471v2-abstract-full').style.display = 'inline'; document.getElementById('2402.13471v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13471v2-abstract-full" style="display: none;"> Two-dimensional (2D) crystals proved revolutionary soon after graphene was discovered in 2004. However, 2D amorphous materials only became accessible in 2020 and remain largely unexplored. In particular, the thermophysical properties of amorphous materials are of great interest upon transition from 3D to 2D. Here, we probe thermal transport in 2D amorphous carbon. A cross-plane thermal conductivity ($魏$) down to 0.079 $\rm{Wm}^{-1}K^{-1}$ is measured for van der Waals stacked multilayers at room temperature, which is among the lowest reported to date. Meanwhile, an unexpectedly high in-plane $魏$ is obtained for freestanding monolayers which is a few times larger than what is predicted by conventional wisdom for 3D amorphous carbon with similar $\rm{sp}^{2}$ fraction. Our molecular dynamics simulations reveal the role of disorder and highlight the impact of dimensionality. Amorphous materials at the 2D limit open up new avenues for understanding and manipulating heat at the atomic scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13471v2-abstract-full').style.display = 'none'; document.getElementById('2402.13471v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15572">arXiv:2401.15572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15572">pdf</a>, <a href="https://arxiv.org/format/2401.15572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.214414">10.1103/PhysRevB.109.214414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic interactions and excitations in SrMnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+Z">Zhenhua Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+W">Weilun Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fanelli%2C+V">Victor Fanelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D">Doug Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">Benjamin G Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+L">Liqin Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15572v2-abstract-short" style="display: inline;"> The magnetic interactions in the antiferromagnetic (AFM) Dirac semimetal candidate SrMnSb$_2$ are investigated using \textit{ab initio} linear response theory and inelastic neutron scattering (INS). Our calculations reveal that the first two nearest in-plane couplings ($J_1$ and $J_2$) are both AFM in nature, indicating a significant degree of spin frustration, which aligns with experimental obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15572v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15572v2-abstract-full" style="display: none;"> The magnetic interactions in the antiferromagnetic (AFM) Dirac semimetal candidate SrMnSb$_2$ are investigated using \textit{ab initio} linear response theory and inelastic neutron scattering (INS). Our calculations reveal that the first two nearest in-plane couplings ($J_1$ and $J_2$) are both AFM in nature, indicating a significant degree of spin frustration, which aligns with experimental observations. The orbital resolution of exchange interactions shows that $J_1$ and $J_2$ are dominated by direct and superexchange, respectively. In a broader context, a rigid-band model suggests that electron doping fills the minority spin channel and results in a decrease in the AFM coupling strength for both $J_1$ and $J_2$. To better compare with INS measurements, we calculate the spin wave spectra within a linear spin wave theory, utilizing the computed exchange parameters. Although the calculated spin wave spectra somewhat overestimate the magnon bandwidth, they exhibit overall good agreement with measurements from INS experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15572v2-abstract-full').style.display = 'none'; document.getElementById('2401.15572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08963">arXiv:2401.08963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A critical review on recent progress of solution-processed monolayer assembly of nanomaterials and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+C">Chenchi Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dyke%2C+A">Alexis Dyke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08963v1-abstract-short" style="display: inline;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08963v1-abstract-full" style="display: none;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, we outlook the opportunities as well as challenges in manufacturing and new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'none'; document.getElementById('2401.08963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15492">arXiv:2312.15492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15492">pdf</a>, <a href="https://arxiv.org/format/2312.15492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> DPA-2: a large atomic model as a multi-task learner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+C">Chun Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+H">Hangrui Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yiming Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+X">Xuejian Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+A">Anyang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiameng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Y">Yifan Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Jinzhe Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yifan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Junhan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianchuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiaoshan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanrun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yudi Yang</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15492v2-abstract-short" style="display: inline;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applicatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15492v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15492v2-abstract-full" style="display: none;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'none'; document.getElementById('2312.15492v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14735">arXiv:2312.14735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14735">pdf</a>, <a href="https://arxiv.org/format/2312.14735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Line defects in nematic liquid crystals as charged superelastic rods with negative twist--stretch coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+S">Shengzhu Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M">Miao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Q">Qi-huo Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14735v1-abstract-short" style="display: inline;"> Topological defects are a ubiquitous phenomenon in diverse physical systems. In nematic liquid crystals (LCs), they are dynamic, physicochemically distinct, sensitive to stimuli, and are thereby promising for a range of applications. However, our current understanding of the mechanics and dynamics of defects in nematic LCs remain limited and are often overwhelmed by the intricate details of the sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14735v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14735v1-abstract-full" style="display: none;"> Topological defects are a ubiquitous phenomenon in diverse physical systems. In nematic liquid crystals (LCs), they are dynamic, physicochemically distinct, sensitive to stimuli, and are thereby promising for a range of applications. However, our current understanding of the mechanics and dynamics of defects in nematic LCs remain limited and are often overwhelmed by the intricate details of the specific systems. Here, we unify singular and nonsingular line defects as superelastic rods and combine theory, simulation, and experiment to quantitatively measure their effective elastic moduli, including line tension, torsional rigidity, and twist--stretch coefficient. Interestingly, we found that line defects exhibit a negative twist--stretch coupling, meaning that twisted line defects tend to unwind under stretching, which is reminiscent of DNA molecules. A patterned nematic cell experiment further confirmed the above findings. Taken together, we have established an effective elasticity theory for nematic defects, paving the way towards understanding and engineering their deformation and transformation in driven and active nematic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14735v1-abstract-full').style.display = 'none'; document.getElementById('2312.14735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07810">arXiv:2312.07810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07810">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient Up-Conversion in CsPbBr3 Nanocrystals via Phonon-Driven Exciton-Polaron Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abbas%2C+A+S">Abdullah S. Abbas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B+C">Beiye C. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schaller%2C+R+D">Richard D. Schaller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V+B">Vitali B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">Stella Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+G+S">Gregory S. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alivisatos%2C+A+P">A. Paul Alivisatos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07810v2-abstract-short" style="display: inline;"> Lead halide perovskite nanocrystals demonstrate efficient up-conversion, although the precise mechanism remains a subject of active research. This study utilizes steady-state and time-resolved spectroscopy methods to unravel the mechanism driving the up-conversion process in CsPbBr3 nanocrystals. Employing above- and below-gap photoluminescence measurements, we extract a distinct phonon mode with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07810v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07810v2-abstract-full" style="display: none;"> Lead halide perovskite nanocrystals demonstrate efficient up-conversion, although the precise mechanism remains a subject of active research. This study utilizes steady-state and time-resolved spectroscopy methods to unravel the mechanism driving the up-conversion process in CsPbBr3 nanocrystals. Employing above- and below-gap photoluminescence measurements, we extract a distinct phonon mode with an energy of ~7 meV and identify the Pb-Br-Pb bending mode as the phonon involved in the up-conversion process. This result was corroborated by Raman spectroscopy. We confirm an up-conversion efficiency reaching up to 75%. Transient absorption measurements under conditions of sub-gap excitation also unexpectedly reveal coherent phonons for the subset of nanocrystals undergoing up-conversion. This coherence implies that the up-conversion and subsequent relaxation is accompanied by a synchronized and phased lattice motion. This study reveals that efficient up-conversion in CsPbBr3 nanocrystals is powered by a unique interplay between the soft lattice structure, phonons, and excited states dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07810v2-abstract-full').style.display = 'none'; document.getElementById('2312.07810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text has 6 figures, supporting information has 7 figures. total number of pages 39</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06271">arXiv:2312.06271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06271">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.macromol.2c02166">10.1021/acs.macromol.2c02166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanospheres with Patches Arranged in Polyhedrons from Self-Assembly of Solution-State Diblock Copolymers under Spherical Confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiaping Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yuhua Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+R">Run Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baohui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06271v2-abstract-short" style="display: inline;"> Self-assembly of sphere-forming solution-state amphiphilic diblock copolymers under spherical nanopore confinement is investigated using a simulated annealing technique. For two types of cases of different pore-surface/copolymer interactions, sequences of self-assembled patchy nanospheres are obtained, and phase diagrams are constructed. Self-assembled patchy nanospheres with 1-21 solvophobic doma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06271v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06271v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06271v2-abstract-full" style="display: none;"> Self-assembly of sphere-forming solution-state amphiphilic diblock copolymers under spherical nanopore confinement is investigated using a simulated annealing technique. For two types of cases of different pore-surface/copolymer interactions, sequences of self-assembled patchy nanospheres are obtained, and phase diagrams are constructed. Self-assembled patchy nanospheres with 1-21 solvophobic domains are observed. The outermost solvophobic domains (patches) are packed into various polyhedrons when their number is larger than 3, where three Platonic solids of a regular tetrahedron, an octahedron, and an icosahedron and seven Johnson solids of J12, J13, J17, J50, J51, J86, and J87 are identified. In addition, another Johnson solid of J84 is identified in a structure with two categories of B-domains. These polyhedrons have all or most of their faces in a triangular shape, and hence, they are closer to spherical in shape, which may relieve the chain stretching. Nanospheres with 1, 4, 6, 9, and 12 numbers of patches occur in relatively large windows in the phase diagrams of both types of cases. In one of the two types of cases, all nanospheres with any number of 1-14 patches occur in the phase diagram, whereas in the other type of cases, nanospheres with 2, 3, 5, 11, and 13 numbers of patches are absent in the phase diagram. Furthermore, at a given pore size, the number of patches changes nonmonotonically or is unchanged with an increase in the strength of the pore-surface/copolymer interactions for one type or the other type of case, respectively. Quantitative calculations are performed to elucidate mechanisms of the window size in the phase diagrams of nanospheres with different numbers of patches and structure details. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06271v2-abstract-full').style.display = 'none'; document.getElementById('2312.06271v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Macromolecules 56 (1), 335-348 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06262">arXiv:2312.06262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06262">pdf</a>, <a href="https://arxiv.org/format/2312.06262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3SM01227A">10.1039/D3SM01227A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-assembly of Colloids with Competing Interactions Confined in Spheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Ningyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qing%2C+L">Lijingting Qing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+S">Shicheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baohui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06262v1-abstract-short" style="display: inline;"> At low temperatures, colloidal particles with short-range attractive and long-range repulsive interactions can form various periodic microphases in bulk.In this paper, we investigate the self-assembly behaviour of colloids with competing interactions under spherical confinement by conducting molecular dynamics simulations. We find that the cluster, mixture, cylindrical, perforated lamellar and lam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06262v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06262v1-abstract-full" style="display: none;"> At low temperatures, colloidal particles with short-range attractive and long-range repulsive interactions can form various periodic microphases in bulk.In this paper, we investigate the self-assembly behaviour of colloids with competing interactions under spherical confinement by conducting molecular dynamics simulations. We find that the cluster, mixture, cylindrical, perforated lamellar and lamellar structures can be obtained, but the details of the ordered structures are different from those in bulk systems. Interestingly, the system tends to form more perforated structures when confined in smaller spheres. The mechanism behind this phenomenon is the relationship between the energy of the ordered structures and the bending of the confinement wall, which is different from the mechanism in copolymer systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06262v1-abstract-full').style.display = 'none'; document.getElementById('2312.06262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in Soft Matter</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10