CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 426 results for author: <span class="mathjax">Huang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Huang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18045">arXiv:2411.18045</a> <span> [<a href="https://arxiv.org/pdf/2411.18045">pdf</a>, <a href="https://arxiv.org/ps/2411.18045">ps</a>, <a href="https://arxiv.org/format/2411.18045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174448">10.1103/PhysRevB.110.174448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with two-dimensional pseudospin-1/2 triangular lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+S">Songnan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhongcen Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18045v1-abstract-short" style="display: inline;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18045v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18045v1-abstract-full" style="display: none;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation. In this paper, we report the structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$. Both compounds are isostructural to NdTa$_7$O$_{19}$ with no detectable structural disorder. For CeTa$_7$O$_{19}$, the crystal field energy levels and parameters are determined by inelastic neutron scattering measurements. Based on the crystal field result, the magnetic susceptibility data could be well fitted and explained, which reveals that CeTa$_7$O$_{19}$ is a highly anisotropic Ising triangular-lattice antiferromagnet ($g_z$/$g_{xy}$$\sim$3) with very weak exchange interaction (J$\sim$0.22~K). For YbTa$_7$O$_{19}$, millimeter sized single crystals could be grown. The anisotropic magnetization and electron spin resonance data show that YbTa$_7$O$_{19}$ has a contrasting in-plane magnetic anisotropy with $g_z$/$g_{xy}$$\sim$0.67 similar as that of YbMgGaO$_4$. The above results indicate that CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with pseudospin-1/2 ground states might either be quantum spin liquid candidate materials or find applications in adiabatic demagnetization refrigeration due to the weak exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'none'; document.getElementById('2411.18045v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110(2024)174448 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16521">arXiv:2411.16521</a> <span> [<a href="https://arxiv.org/pdf/2411.16521">pdf</a>, <a href="https://arxiv.org/format/2411.16521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Variational functional theory for coulombic correlations in the electric double layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bruch%2C+N">Nils Bruch</a>, <a href="/search/cond-mat?searchtype=author&query=Binninger%2C+T">Tobias Binninger</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Eikerling%2C+M">Michael Eikerling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16521v1-abstract-short" style="display: inline;"> A classical coulombic correlation functional in one-loop (1L) and local-density-approximation (LDA) is derived for electrolyte solutions, starting from a first-principles many-body partition function. The 1L-LDA functional captures correlations between electrolyte ions and solvent dipoles, such as screening and solvation, that are ignored by conventional mean-field theories. This 1L-LDA functional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16521v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16521v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16521v1-abstract-full" style="display: none;"> A classical coulombic correlation functional in one-loop (1L) and local-density-approximation (LDA) is derived for electrolyte solutions, starting from a first-principles many-body partition function. The 1L-LDA functional captures correlations between electrolyte ions and solvent dipoles, such as screening and solvation, that are ignored by conventional mean-field theories. This 1L-LDA functional introduces two parameters that can be tuned to the experimental dielectric permittivity and activity coefficients in the bulk electrolyte solution. The capabilities of the 1L-LDA functional for the description of metal-electrolyte interfaces are demonstrated by embedding the functional into a combined quantum-classical model. Here, the 1L-LDA functional leads to a more pronounced double-peak structure of the interfacial capacitance with higher peaks and shorter peak-to-peak distance, significantly improving the agreement with experimental data and showing that electrolyte correlation effects exert a vital impact on the capacitive response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16521v1-abstract-full').style.display = 'none'; document.getElementById('2411.16521v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16293">arXiv:2411.16293</a> <span> [<a href="https://arxiv.org/pdf/2411.16293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Internal motion of soft granular particles under circular shearing: Rate-dependent quaking and its spatial structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Jr-Jun Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Tsai%2C+C">Cheng-En Tsai</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jung-Ren Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tsai%2C+J">Jih-Chiang Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16293v2-abstract-short" style="display: inline;"> Tightly packed granular particles under shear often exhibit intriguing intermittencies, specifically, sudden stress drops that we refer to as quaking. To probe the nature of this phenomenon, we prototype a circular shear cell that is capable of imposing a uniform and unlimited shear strain under quasi-static cyclic driving. Spherical PDMS(polydimethylsiloxane) particles, immersed in fluid, are dri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16293v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16293v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16293v2-abstract-full" style="display: none;"> Tightly packed granular particles under shear often exhibit intriguing intermittencies, specifically, sudden stress drops that we refer to as quaking. To probe the nature of this phenomenon, we prototype a circular shear cell that is capable of imposing a uniform and unlimited shear strain under quasi-static cyclic driving. Spherical PDMS(polydimethylsiloxane) particles, immersed in fluid, are driven in a fixed total volume at a wide range of shear rates, with particle trajectories captured in 3D space via refraction-index-matched fluorescent tomography. Statistics on the magnitude of fluctuating displacements of individual particles shows distinct dependence on the shear rate. Particle motions are smooth at high shear rates. At intermediate shear rates, quaking emerges with clusters of particles exhibiting relatively large displacements. At low shear rates, a cluster can span the entire system. and the cluster exhibits substructures in view of localized particle movements. Overall, we have confirmed that the quaking phenomena in the current setup are consistent with our previous work [Phys. Rev. Lett.,126, 128001 (2021)], and that the dimensionless shear rate that we have proposed is indeed a good parameter for unifying the transitions observed in different experimental geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16293v2-abstract-full').style.display = 'none'; document.getElementById('2411.16293v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13882">arXiv:2411.13882</a> <span> [<a href="https://arxiv.org/pdf/2411.13882">pdf</a>, <a href="https://arxiv.org/format/2411.13882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&query=Youn%2C+T">Tony Youn</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J+Y">Jonathan Yue Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&query=Dickie%2C+A">Alexandra Dickie</a>, <a href="/search/cond-mat?searchtype=author&query=Yianni%2C+S">Steve Yianni</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Escott%2C+C+C">Christopher C. Escott</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Laucht%2C+A">Arne Laucht</a>, <a href="/search/cond-mat?searchtype=author&query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+K+W">Kok Wai Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Cifuentes%2C+J+D">Jes煤s D. Cifuentes</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13882v1-abstract-short" style="display: inline;"> Recent advances in semiconductor spin qubits have achieved linear arrays exceeding ten qubits. Moving to two-dimensional (2D) qubit arrays is a critical next step to advance towards fault-tolerant implementations, but it poses substantial fabrication challenges, particularly because enabling control of nearest-neighbor entanglement requires the incorporation of interstitial exchange gates between… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13882v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13882v1-abstract-full" style="display: none;"> Recent advances in semiconductor spin qubits have achieved linear arrays exceeding ten qubits. Moving to two-dimensional (2D) qubit arrays is a critical next step to advance towards fault-tolerant implementations, but it poses substantial fabrication challenges, particularly because enabling control of nearest-neighbor entanglement requires the incorporation of interstitial exchange gates between quantum dots in the qubit architecture. In this work, we present a 2D array of silicon metal-oxide-semiconductor (MOS) quantum dots with tunable interdot coupling between all adjacent dots. The device is characterized at 4.2 K, where we demonstrate the formation and isolation of double-dot and triple-dot configurations. We show control of all nearest-neighbor tunnel couplings spanning up to 30 decades per volt through the interstitial exchange gates and use advanced modeling tools to estimate the exchange interactions that could be realized among qubits in this architecture. These results represent a significant step towards the development of 2D MOS quantum processors compatible with foundry manufacturing techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13882v1-abstract-full').style.display = 'none'; document.getElementById('2411.13882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13399">arXiv:2411.13399</a> <span> [<a href="https://arxiv.org/pdf/2411.13399">pdf</a>, <a href="https://arxiv.org/format/2411.13399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Numerical study of bi-layer two-orbital model for La$_{3}$Ni$_{2}$O$_{7}$ on a plaquette ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Y">Yang Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13399v1-abstract-short" style="display: inline;"> The recently discovered high-$T_c$ superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ with $T_c \approx 80K$ provides another intriguing platform to explore the microscopic mechanism of unconventional superconductivity. In this work, we study a previously proposed bi-layer two-orbital model Hamiltonian for La$_{3}$Ni$_{2}$O$_{7}$ [Y. Shen, et al, Chinese Physics Letters 40, 127401 (2023)] on a plaquette… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13399v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13399v1-abstract-full" style="display: none;"> The recently discovered high-$T_c$ superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ with $T_c \approx 80K$ provides another intriguing platform to explore the microscopic mechanism of unconventional superconductivity. In this work, we study a previously proposed bi-layer two-orbital model Hamiltonian for La$_{3}$Ni$_{2}$O$_{7}$ [Y. Shen, et al, Chinese Physics Letters 40, 127401 (2023)] on a plaquette ladder, which is a minimum setup with two-dimensional characteristic. We employ large-scale Density Matrix Renormalization Group calculations to accurately determine the ground state of the model. We determine the density, magnetic structure, and the pairing property of the model. We find that with large effective inter-layer anti-ferromagnetic exchange for the 3$d_{z^2}$ orbital, both spin, charge, and pairing correlation display quasi-long-range behavior, which could be viewed as a precursor of possible true long-range order in the two dimensional limit. Interestingly, sign oscillation for the pairing correlation are observed for both the 3$d_{x^2-y^2}$ and 3$d_{z^2}$ orbitals, indicating the presence of possible pair density wave in the system. Even though we only study the model on a quasi one-dimensional plaquette ladder geometry due to the computational difficulty, the results on the spin, charge, and pairing correlation provide valuable insight in the clarification of the properties of La$_{3}$Ni$_{2}$O$_{7}$ in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13399v1-abstract-full').style.display = 'none'; document.getElementById('2411.13399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12577">arXiv:2411.12577</a> <span> [<a href="https://arxiv.org/pdf/2411.12577">pdf</a>, <a href="https://arxiv.org/format/2411.12577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Complex Frequency Fingerprint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Juntao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+K">Kun Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhesen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12577v1-abstract-short" style="display: inline;"> In this work, we present a novel method called the complex frequency fingerprint (CFF) to detect the complex frequency Green's function, $G(蠅\in\mathbb{C})$, in a driven-dissipative system. By utilizing the CFF, we can measure the complex frequency density of states (DOS) and local DOS (LDOS), providing unique insights into the characterization of non-Hermitian systems. By applying our method to s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12577v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12577v1-abstract-full" style="display: none;"> In this work, we present a novel method called the complex frequency fingerprint (CFF) to detect the complex frequency Green's function, $G(蠅\in\mathbb{C})$, in a driven-dissipative system. By utilizing the CFF, we can measure the complex frequency density of states (DOS) and local DOS (LDOS), providing unique insights into the characterization of non-Hermitian systems. By applying our method to systems exhibiting the non-Hermitian skin effect (NHSE), we demonstrate how to use our theory to detect both the non-Hermitian eigenvalues and eigenstates. This offers a distinctive and reliable approach to identifying the presence or absence of NHSE in experimental settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12577v1-abstract-full').style.display = 'none'; document.getElementById('2411.12577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+5 pages, 4+1 figures, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15709">arXiv:2410.15709</a> <span> [<a href="https://arxiv.org/pdf/2410.15709">pdf</a>, <a href="https://arxiv.org/format/2410.15709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Augmenting Finite Temperature Tensor Network with Clifford Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15709v1-abstract-short" style="display: inline;"> Recent studies have highlighted the combination of tensor network methods and the stabilizer formalism as a very effective framework for simulating quantum many-body systems, encompassing areas from ground state to time evolution simulations. In these approaches, the entanglement associated with stabilizers is transferred to Clifford circuits, which can be efficiently managed due to the Gottesman-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15709v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15709v1-abstract-full" style="display: none;"> Recent studies have highlighted the combination of tensor network methods and the stabilizer formalism as a very effective framework for simulating quantum many-body systems, encompassing areas from ground state to time evolution simulations. In these approaches, the entanglement associated with stabilizers is transferred to Clifford circuits, which can be efficiently managed due to the Gottesman-Knill theorem. Consequently, only the non-stabilizerness entanglement needs to be handled, thereby reducing the computational resources required for accurate simulations of quantum many-body systems in tensor network related methods. In this work, we adapt this paradigm for finite temperature simulations in the framework of Time-Dependent Variational Principle, in which imaginary time evolution is performed using the purification scheme. Our numerical results on the one-dimensional Heisenberg model and the two-dimensional $J_1-J_2$ Heisenberg model demonstrate that Clifford circuits can significantly improve the efficiency and accuracy of finite temperature simulations for quantum many-body systems. This improvement not only provides a useful tool for calculating finite temperature properties of quantum many-body systems, but also paves the way for further advancements in boosting the finite temperature tensor network calculations with Clifford circuits and other quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15709v1-abstract-full').style.display = 'none'; document.getElementById('2410.15709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06147">arXiv:2410.06147</a> <span> [<a href="https://arxiv.org/pdf/2410.06147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53722-3">10.1038/s41467-024-53722-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+A">Ananya Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+K">Kevin Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qirui Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A">Asish Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06147v1-abstract-short" style="display: inline;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06147v1-abstract-full" style="display: none;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe d_xy+d_(x^2-y^2 ) spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'none'; document.getElementById('2410.06147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9376 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02471">arXiv:2410.02471</a> <span> [<a href="https://arxiv.org/pdf/2410.02471">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the material genome of wurtzite ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jinhai Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+K">Kan-Hao Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+H">Heng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shengxin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shujuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiqun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+X">Xiangshui Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02471v1-abstract-short" style="display: inline;"> As the dielectric film thickness shrinks to ~10 nm, some traditional wurtzite piezoelectric materials demonstrate ferroelectricity through element doping. Among them, Sc doped AlN and Mg doped ZnO are the most famous examples. While it is widely acknowledged that the dopant atoms effectively reduce the coercive field, enabling ferroelectric polarization switching, the material genome of these wurt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02471v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02471v1-abstract-full" style="display: none;"> As the dielectric film thickness shrinks to ~10 nm, some traditional wurtzite piezoelectric materials demonstrate ferroelectricity through element doping. Among them, Sc doped AlN and Mg doped ZnO are the most famous examples. While it is widely acknowledged that the dopant atoms effectively reduce the coercive field, enabling ferroelectric polarization switching, the material genome of these wurtzite (WZ) ferroelectrics is still less understood. In this work, we analyze the features of WZ ferroelectrics, ascribing them to five-coordination (5C) ferroelectrics, which may be compared with 6C ferroelectrics (perovskite-type) and 7C ferroelectrics (hafnia-like). In particular, the exact reason for their adopting the hexagonal WZ structure instead of the zinc blende structure is studied. Emphasis is paid to the degree of ionicity in promoting the hexagonal arrangement, and the phenomenon of layer distance compression is discovered and explained in WZ ferroelectrics. The role of element doping in coercive field reduction is understood within this context. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02471v1-abstract-full').style.display = 'none'; document.getElementById('2410.02471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16895">arXiv:2409.16895</a> <span> [<a href="https://arxiv.org/pdf/2409.16895">pdf</a>, <a href="https://arxiv.org/format/2409.16895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-stabilizerness Entanglement Entropy: a measure of hardness in the classical simulation of quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16895v1-abstract-short" style="display: inline;"> Classical and quantum states can be distinguished by entanglement entropy, which can be viewed as a measure of quantum resources. Entanglement entropy also plays a pivotal role in understanding computational complexity in simulating quantum systems. However, stabilizer states formed solely by Clifford gates can be efficiently simulated with the tableau algorithm according to the Gottesman-Knill th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16895v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16895v1-abstract-full" style="display: none;"> Classical and quantum states can be distinguished by entanglement entropy, which can be viewed as a measure of quantum resources. Entanglement entropy also plays a pivotal role in understanding computational complexity in simulating quantum systems. However, stabilizer states formed solely by Clifford gates can be efficiently simulated with the tableau algorithm according to the Gottesman-Knill theorem, although they can host large entanglement entropy. In this work, we introduce the concept of non-stabilizerness entanglement entropy which is basically the minimum residual entanglement entropy for a quantum state by excluding the contribution from Clifford circuits. It can serve as a new practical and better measure of difficulty in the classical simulation of quantum many-body systems. We discuss why it is a better criterion than previously proposed metrics such as Stabilizer R茅nyi Entropy. We also show numerical results of non-stabilizerness entanglement entropy with concrete quantum many-body models. The concept of non-stabilizerness entanglement entropy expands our understanding of the ``hardness`` in the classical simulation of quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16895v1-abstract-full').style.display = 'none'; document.getElementById('2409.16895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12423">arXiv:2409.12423</a> <span> [<a href="https://arxiv.org/pdf/2409.12423">pdf</a>, <a href="https://arxiv.org/format/2409.12423">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Surface State Evolution in Bi$_2$Se$_3$ via Surface Etching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Ruohan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jia-Wan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12423v1-abstract-short" style="display: inline;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12423v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12423v1-abstract-full" style="display: none;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the quintuple bulk. Our method allows us to track the topological surface state and confirm its robustness throughout the surface modification. Importantly, we report a relocation of the topological Dirac cone in both real space and momentum space, as the top surface layer transitions from quintuple Se-Bi-Se-Bi-Se to bilayer-Bi. Additionally, charge transfer among different surface layers is identified. Our study provides a precise method to manipulate surface configurations, allowing for the fine-tuning of the topological surface states in Bi$_2$Se$_3$, which represents a significant advancement towards nano-engineering of topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'none'; document.getElementById('2409.12423v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, accepted for publication in Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07698">arXiv:2409.07698</a> <span> [<a href="https://arxiv.org/pdf/2409.07698">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Engineering of Lattice Dynamics and Elastic Constants of 2D Layered Nanomaterials under Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+G">Guoshuai Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuchang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Susu Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+W">Wuxiao Han</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiayin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yubing Du</a>, <a href="/search/cond-mat?searchtype=author&query=Ming%2C+J">Jiaxin Ming</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tiansong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+J">Jun Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Weigao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yabin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07698v1-abstract-short" style="display: inline;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07698v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07698v1-abstract-full" style="display: none;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains vague, despite significant efforts. Herein, the layer-dependent lattice dynamics and elastic constants of 2D nanomaterials have been systematically investigated via pressure-engineering strategy based on ultralow frequency Raman spectroscopy. The shearing mode and layer-breathing Raman shifts of MoS2 with various thicknesses were analyzed by the linear chain model. Intriguingly, it was found that the layer-dependent d蠅/dP of shearing and breathing Raman modes display the opposite trends, quantitatively consistent with our molecular dynamics simulations and density functional theory calculations. These results can be generalized to other van der Waals systems, and may shed light on the potential applications of 2D materials in nanomechanics and nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'none'; document.getElementById('2409.07698v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04800">arXiv:2409.04800</a> <span> [<a href="https://arxiv.org/pdf/2409.04800">pdf</a>, <a href="https://arxiv.org/ps/2409.04800">ps</a>, <a href="https://arxiv.org/format/2409.04800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c04910">10.1021/jacs.4c04910 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FePd2Te2: An Anisotropic Two-Dimensional Ferromagnet with One-Dimensional Fe Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Geng%2C+Y">Yanyan Geng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hengning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianhui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Manyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+J">Jianfei Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+L">Lijie Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+G">Guolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04800v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04800v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals of FePd2Te2 with centimeter-size could be grown. Density functional theory calculations, mechanical exfoliation and atomic force microscopy on these crystals reveal that they are 2D materialsthat can be thinned down to 5 nm. Magnetic characterization shows that FePd2Te2 is an easy-plane ferromagnet with Tc 183 K and strong in-plane uniaxial magnetic anisotropy. Magnetoresistance and anomalous Hall effect demonstrate that ferromagnetism could maintain in FePd2Te2 flakes with large coercivity. A crystal twinning effect is observed by scanning tunneling microscopy which makes the Fe chains right-angle bent in the cleavage plane and creates an intriguing spin texture. Our results show that FePd2Te2 is a correlated anisotropic 2D magnets that may attract multidisciplinary research interests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'none'; document.getElementById('2409.04800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Am.Chem.Soc.2024,146,21546-21554 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04713">arXiv:2409.04713</a> <span> [<a href="https://arxiv.org/pdf/2409.04713">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chiral damping of magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dae-Yun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Berrai%2C+I">Imane Berrai</a>, <a href="/search/cond-mat?searchtype=author&query=Suraj%2C+T+S">T. S. Suraj</a>, <a href="/search/cond-mat?searchtype=author&query=Roussigne%2C+Y">Yves Roussigne</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shuhan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Belmeguenai%2C+M">Mohamed Belmeguenai</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+F">Fanrui Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+G">Guoyi Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H+R">Hui Ru Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jifei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Soumyanarayanan%2C+A">Anjan Soumyanarayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kyoung-Whan Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cherif%2C+S+M">Salim Mourad Cherif</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hyunsoo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04713v1-abstract-short" style="display: inline;"> Chiral magnets have garnered significant interest due to the emergence of unique phenomena prohibited in inversion-symmetric magnets. While the equilibrium characteristics of chiral magnets have been extensively explored through the Dzyaloshinskii-Moriya interaction (DMI), non-equilibrium properties like magnetic damping have received comparatively less attention. We present the inaugural direct o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04713v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04713v1-abstract-full" style="display: none;"> Chiral magnets have garnered significant interest due to the emergence of unique phenomena prohibited in inversion-symmetric magnets. While the equilibrium characteristics of chiral magnets have been extensively explored through the Dzyaloshinskii-Moriya interaction (DMI), non-equilibrium properties like magnetic damping have received comparatively less attention. We present the inaugural direct observation of chiral damping through Brillouin light scattering (BLS) spectroscopy. Employing BLS spectrum analysis, we independently deduce the Dzyaloshinskii-Moriya interaction (DMI) and chiral damping, extracting them from the frequency shift and linewidth of the spectrum peak, respectively. The resulting linewidths exhibit clear odd symmetry with respect to the magnon wave vector, unambiguously confirming the presence of chiral damping. Our study introduces a novel methodology for quantifying chiral damping, with potential ramifications on diverse nonequilibrium phenomena within chiral magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04713v1-abstract-full').style.display = 'none'; document.getElementById('2409.04713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04383">arXiv:2409.04383</a> <span> [<a href="https://arxiv.org/pdf/2409.04383">pdf</a>, <a href="https://arxiv.org/format/2409.04383">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Origin of yield stress and mechanical plasticity in biological tissues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+A+Q">Anh Q. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junxiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+D">Dapeng Bi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04383v1-abstract-short" style="display: inline;"> During development and under normal physiological conditions, biological tissues are continuously subjected to substantial mechanical stresses. In response to large deformations cells in a tissue must undergo multicellular rearrangements in order to maintain integrity and robustness. However, how these events are connected in time and space remains unknown. Here, using computational and theoretica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04383v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04383v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04383v1-abstract-full" style="display: none;"> During development and under normal physiological conditions, biological tissues are continuously subjected to substantial mechanical stresses. In response to large deformations cells in a tissue must undergo multicellular rearrangements in order to maintain integrity and robustness. However, how these events are connected in time and space remains unknown. Here, using computational and theoretical modeling, we studied the mechanical plasticity of epithelial monolayers under large deformations. Our results demonstrate that the jamming-unjamming (solid-fluid) transition in tissues can vary significantly depending on the degree of deformation, implying that tissues are highly unconventional materials. Using analytical modeling, we elucidate the origins of this behavior. We also demonstrate how a tissue accommodates large deformations through a collective series of rearrangements, which behave similarly to avalanches in non-living materials. We find that these tissue avalanches are governed by stress redistribution and the spatial distribution of vulnerable spots. Finally, we propose a simple and experimentally accessible framework to predict avalanches and infer tissue mechanical stress based on static images. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04383v1-abstract-full').style.display = 'none'; document.getElementById('2409.04383v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00963">arXiv:2409.00963</a> <span> [<a href="https://arxiv.org/pdf/2409.00963">pdf</a>, <a href="https://arxiv.org/format/2409.00963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-024-00745-w">10.1038/s42254-024-00745-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological thermal transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhoufei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+P">Peng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+M">Min Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chengmeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Marchesoni%2C+F">Fabio Marchesoni</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Jian-Hua Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00963v1-abstract-short" style="display: inline;"> Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, is closely intertwined with thermal metamaterial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00963v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00963v1-abstract-full" style="display: none;"> Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, is closely intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub `topological thermotics', which encompasses three primary branches: topological thermal conduction, convection, and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine learning techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00963v1-abstract-full').style.display = 'none'; document.getElementById('2409.00963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This perpective summarizes the topological physics in thermal metamaterials and proposes a new research field, "topological thermotics"</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Rev. Phys. 6, 554-565 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14863">arXiv:2408.14863</a> <span> [<a href="https://arxiv.org/pdf/2408.14863">pdf</a>, <a href="https://arxiv.org/format/2408.14863">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Phase behavior of symmetric diblock copolymers under 3D soft confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+Z">Zhijuan He</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kai Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+A">An-Chang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14863v1-abstract-short" style="display: inline;"> The phase behavior of symmetric diblock copolymers under three-dimensional (3D) soft confinement is investigated using the self-consistent field theory. The soft confinement is realized in binary blends composed AB diblock copolymers and C homopolymers, where the copolymers self-assemble to form a droplet embedded in the homopolymer matrix. The phase behavior of the confined block copolymers is re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14863v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14863v1-abstract-full" style="display: none;"> The phase behavior of symmetric diblock copolymers under three-dimensional (3D) soft confinement is investigated using the self-consistent field theory. The soft confinement is realized in binary blends composed AB diblock copolymers and C homopolymers, where the copolymers self-assemble to form a droplet embedded in the homopolymer matrix. The phase behavior of the confined block copolymers is regulated by the degree of confinement and the selectivity of the homopolymers, resulting in a rich variety of novel structures. When the C homopolymers are neutral to the A- and B-blocks, stacked lamellae (SL) are formed where the number of layers increases with the droplet volume, resulting in a morphological transition sequence from Janus particle to square SL. When the C homopolymers are strongly selective to the B-blocks, a series of non-lamellar morphologies, including onion-, hamburger-, cross-, ring-, and cookie-like structures, are observed. A detailed free energy analysis reveals a first-order reversible transformation between SL and onion-like (OL) structures when the selectivity of the homopolymers is changed. Our results provide a comprehensive understanding of how various factors, such as the copolymer concentration, homopolymer chain length, degree of confinement, homopolymer selectivity, affect the self-assembled structures of diblock copolymers under soft 3D confinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14863v1-abstract-full').style.display = 'none'; document.getElementById('2408.14863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9pages,7figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05878">arXiv:2408.05878</a> <span> [<a href="https://arxiv.org/pdf/2408.05878">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Drone based superconducting single photon detection system with detection efficiency more than 90% </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+R">Ruoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhimin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Dai Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xiaojun Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">You Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">ChengJun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+J">Jiamin Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jia Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+L">Liangliang Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaofu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+L">Lixing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05878v1-abstract-short" style="display: inline;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05878v1-abstract-full" style="display: none;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographical constraints. We herein designed and manufactured the first drone based SSPD system with a SDE as high as 91.8%. This drone based SSPD system is established with high performance NbTiN SSPDs, self-developed miniature liquid helium dewar, and homemade integrated electric setups, which is able to be launched in complex topographical conditions. Such a drone based SSPD system may open the use of SSPDs for applications that demand high-SDE in complex environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'none'; document.getElementById('2408.05878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03857">arXiv:2408.03857</a> <span> [<a href="https://arxiv.org/pdf/2408.03857">pdf</a>, <a href="https://arxiv.org/ps/2408.03857">ps</a>, <a href="https://arxiv.org/format/2408.03857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reply to "Comment on `Towards exact solutions of superconducting $T_c$ induced by electron-phonon interaction' " </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guo-Zhu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhao-Kun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+X">Xiao-Yin Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jing-Rong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Hao-Fu Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jie Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03857v1-abstract-short" style="display: inline;"> In a series of papers, we have proposed a non-perturbative field-theoretic approach to deal with strong electron-phonon and strong Coulomb interactions. The key ingredient of such an approach is to determine the full fermion-boson vertex corrections by solving a number of self-consistent Ward-Takahashi identities. Palle (see Phys. Rev. B 110, 026501 (2024), arXiv:2404.02918) argued that our Ward-T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03857v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03857v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03857v1-abstract-full" style="display: none;"> In a series of papers, we have proposed a non-perturbative field-theoretic approach to deal with strong electron-phonon and strong Coulomb interactions. The key ingredient of such an approach is to determine the full fermion-boson vertex corrections by solving a number of self-consistent Ward-Takahashi identities. Palle (see Phys. Rev. B 110, 026501 (2024), arXiv:2404.02918) argued that our Ward-Takahashi identities failed to include some important additional terms and thus are incorrect. We agree that our Ward-Takahashi identities have ignored some potentially important contributions and here give some remarks on the role played by the additional terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03857v1-abstract-full').style.display = 'none'; document.getElementById('2408.03857v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Reply to arXiv:2404.02918, which is published as Phys. Rev. B 110, 026501 (2024), by Palle, commenting on arXiv:1911.05528</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 026502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20606">arXiv:2407.20606</a> <span> [<a href="https://arxiv.org/pdf/2407.20606">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Two-dimensional Weyl Fermions in Air-Stable Monolayer PtTe$_{1.75}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Z">Zhihao Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+H">Haijun Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+X">Xuegao Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhenyu Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qiaoxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jisong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Ideta%2C+S">Shin-ichiro Ideta</a>, <a href="/search/cond-mat?searchtype=author&query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiawei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+K">Kehui Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+B">Baojie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20606v1-abstract-short" style="display: inline;"> The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20606v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20606v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20606v1-abstract-full" style="display: none;"> The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing. Here, we report the realization of 2D Weyl fermions in monolayer PtTe$_{1.75}$, which has strong spin-orbit coupling and lacks inversion symmetry, by combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy, second harmonic generation, X-ray photoelectron spectroscopy measurements, and first-principles calculations. The giant Rashba splitting and band inversion lead to the emergence of three pairs of critical Weyl cones. Moreover, monolayer PtTe$_{1.75}$ exhibits excellent chemical stability in ambient conditions, which is critical for future device applications. The discovery of 2D Weyl fermions in monolayer PtTe$_{1.75}$ opens up new possibilities for designing and fabricating novel spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20606v1-abstract-full').style.display = 'none'; document.getElementById('2407.20606v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters, In Press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15778">arXiv:2407.15778</a> <span> [<a href="https://arxiv.org/pdf/2407.15778">pdf</a>, <a href="https://arxiv.org/format/2407.15778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Violating Bell's inequality in gate-defined quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Steinacker%2C+P">Paul Steinacker</a>, <a href="/search/cond-mat?searchtype=author&query=Tanttu%2C+T">Tuomo Tanttu</a>, <a href="/search/cond-mat?searchtype=author&query=Lim%2C+W+H">Wee Han Lim</a>, <a href="/search/cond-mat?searchtype=author&query=Stuyck%2C+N+D">Nard Dumoulin Stuyck</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+M">MengKe Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Serrano%2C+S">Santiago Serrano</a>, <a href="/search/cond-mat?searchtype=author&query=Vahapoglu%2C+E">Ensar Vahapoglu</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+R+Y">Rocky Y. Su</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J+Y">Jonathan Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jones%2C+C">Cameron Jones</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+K+M">Kohei M. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Hudson%2C+F+E">Fay E. Hudson</a>, <a href="/search/cond-mat?searchtype=author&query=Escott%2C+C+C">Christopher C. Escott</a>, <a href="/search/cond-mat?searchtype=author&query=Morello%2C+A">Andrea Morello</a>, <a href="/search/cond-mat?searchtype=author&query=Saraiva%2C+A">Andre Saraiva</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C+H">Chih Hwan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Dzurak%2C+A+S">Andrew S. Dzurak</a>, <a href="/search/cond-mat?searchtype=author&query=Laucht%2C+A">Arne Laucht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15778v2-abstract-short" style="display: inline;"> Superior computational power promised by quantum computers utilises the fundamental quantum mechanical principle of entanglement. However, achieving entanglement and verifying that the generated state does not follow the principle of local causality has proven difficult for spin qubits in gate-defined quantum dots, as it requires simultaneously high concurrence values and readout fidelities to bre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15778v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15778v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15778v2-abstract-full" style="display: none;"> Superior computational power promised by quantum computers utilises the fundamental quantum mechanical principle of entanglement. However, achieving entanglement and verifying that the generated state does not follow the principle of local causality has proven difficult for spin qubits in gate-defined quantum dots, as it requires simultaneously high concurrence values and readout fidelities to break the classical bound imposed by Bell's inequality. Here we employ heralded initialization and calibration via gate set tomography (GST), to reduce all relevant errors and push the fidelities of the full 2-qubit gate set above 99 %, including state preparation and measurement (SPAM). We demonstrate a 97.17 % Bell state fidelity without correcting for readout errors and violate Bell's inequality with a Bell signal of S = 2.731 close to the theoretical maximum of $2\sqrt{2}$. Our measurements exceed the classical limit even at elevated temperatures of 1.1 K or entanglement lifetimes of 100 $渭s$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15778v2-abstract-full').style.display = 'none'; document.getElementById('2407.15778v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 main figures, 9 extended data figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81P68; 81-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05350">arXiv:2407.05350</a> <span> [<a href="https://arxiv.org/pdf/2407.05350">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiple boundary states in bilayer and decorated Su-Schrieffer-Heeger-like models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">Shengqun Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jinke Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+R">Ruimin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhuang%2C+F">Fengjiang Zhuang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Z">Zhili Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+W">Weibin Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05350v1-abstract-short" style="display: inline;"> Topological boundary states have attracted widespread fascination due to their series of intriguing properties. In this paper, we investigate the multiple boundary states within the two kinds of extended Su-Schrieffer-Heeger (SSH) models. The coexistence of boundary states that exist both in the bulk and band gaps is realized based on the bilayer SSH-like model, which consists of two conventional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05350v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05350v1-abstract-full" style="display: none;"> Topological boundary states have attracted widespread fascination due to their series of intriguing properties. In this paper, we investigate the multiple boundary states within the two kinds of extended Su-Schrieffer-Heeger (SSH) models. The coexistence of boundary states that exist both in the bulk and band gaps is realized based on the bilayer SSH-like model, which consists of two conventional square-root SSH models that are directly coupled. We further show the square-root topology within the decorated SSH-like model, which supports multiple boundary states that could be embedded into the bulk continuum by tuning the hopping parameters. In addition, the connection between the decorated SSH-like model and its effectively decomposed counterparts is revealed. Our results broaden insight into the multiple boundary states and open up an exciting avenue for the future exploration of square-root topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05350v1-abstract-full').style.display = 'none'; document.getElementById('2407.05350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03202">arXiv:2407.03202</a> <span> [<a href="https://arxiv.org/pdf/2407.03202">pdf</a>, <a href="https://arxiv.org/format/2407.03202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Clifford Circuits Augmented Time-Dependent Variational Principle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03202v1-abstract-short" style="display: inline;"> The recently proposed Clifford Circuits Augmented Matrix Product States (CA-MPS) (arXiv:2405.09217) seamlessly augments Density Matrix Renormalization Group with Clifford circuits. In CA-MPS, the entanglement from stabilizers is transferred to the Clifford circuits which can be easily handled according to the Gottesman-Knill theorem. As a result, MPS needs only to deal with the non-stabilizer enta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03202v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03202v1-abstract-full" style="display: none;"> The recently proposed Clifford Circuits Augmented Matrix Product States (CA-MPS) (arXiv:2405.09217) seamlessly augments Density Matrix Renormalization Group with Clifford circuits. In CA-MPS, the entanglement from stabilizers is transferred to the Clifford circuits which can be easily handled according to the Gottesman-Knill theorem. As a result, MPS needs only to deal with the non-stabilizer entanglement, which largely reduce the bond dimension and the resource required for the accurate simulation of many-body systems. In this work, we generalize CA-MPS to the framework of Time-Dependent Variational Principle (TDVP) for time evolution simulations. In this method, we apply Clifford circuits to the resulting MPS in each TDVP step with a two-site sweeping process similar as in DMRG, aiming at reducing the entanglement entropy in the MPS, and the Hamiltonian is transformed accordingly using the chosen Clifford circuits. Similar as in CA-MPS, the Clifford circuits doesn't increase the number of terms in the Hamiltonian which makes the overhead very small in the new method. We test this method in both XXZ chain and two dimensional Heisenberg model. The results show that the Clifford circuits augmented TDVP method can reduce the entanglement entropy in the time evolution process and hence makes the simulation reliable for longer time. The Clifford circuits augmented Time-Dependent Variational Principle provides a useful tool for the simulation of time evolution process of many-body systems in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03202v1-abstract-full').style.display = 'none'; document.getElementById('2407.03202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17417">arXiv:2406.17417</a> <span> [<a href="https://arxiv.org/pdf/2406.17417">pdf</a>, <a href="https://arxiv.org/format/2406.17417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195111">10.1103/PhysRevB.110.195111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plaquette-type valence bond solid state in the $J_1$-$J_2$ square-lattice Heisenberg mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17417v2-abstract-short" style="display: inline;"> We utilize Density Matrix Renormalization Group (DMRG) and Fully Augmented Matrix Product States (FAMPS) methods to investigate the Valence Bond Solid (VBS) phase in the $J_1$-$J_2$ square lattice Heisenberg model. To differentiate between the Columnar Valence Bond Solid (CVBS) and Plaquette Valence Bond Solid (PVBS) phases, we introduce an anisotropy $螖_y$ in the nearest neighboring coupling in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17417v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17417v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17417v2-abstract-full" style="display: none;"> We utilize Density Matrix Renormalization Group (DMRG) and Fully Augmented Matrix Product States (FAMPS) methods to investigate the Valence Bond Solid (VBS) phase in the $J_1$-$J_2$ square lattice Heisenberg model. To differentiate between the Columnar Valence Bond Solid (CVBS) and Plaquette Valence Bond Solid (PVBS) phases, we introduce an anisotropy $螖_y$ in the nearest neighboring coupling in the $y$-direction, aiming at detecting the possible spontaneous rotational symmetry breaking in the VBS phase. In the calculations, we push the bond dimension to as large as $D = 25000$ in FAMPS, simulating systems at a maximum size of $14 \times 14$. With a careful extrapolation of the truncation errors and appropriate finite-size scaling, followed by finite $螖_y$ scaling analysis of the VBS dimer order parameters, we identify the VBS phase as a PVBS type, meaning there is no spontaneous rotational symmetry breaking in the VBS phase. This study not only resolves the long-standing issue of the characterization of the VBS order in the $J_1$-$J_2$ square lattice Heisenberg model but also highlights the capabilities of FAMPS in the study of two-dimensional quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17417v2-abstract-full').style.display = 'none'; document.getElementById('2406.17417v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B 110,195111 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16398">arXiv:2406.16398</a> <span> [<a href="https://arxiv.org/pdf/2406.16398">pdf</a>, <a href="https://arxiv.org/format/2406.16398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the orbital flux phase in $A$V$_3$Sb$_5$ from polar Kerr effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junkang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+W">Wen Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16398v1-abstract-short" style="display: inline;"> The $A$V$_3$Sb$_5$ ($A=$ K, Rb, Cs) family of Kagome metals hosts unconventional charge density wave order whose nature is still an open puzzle. Accumulated evidences point to a time-reversal symmetry breaking orbital flux phase that carries loop currents. Such an order may support anomalous Hall effect. However, the polar Kerr effect measurements that probe the a.c. anomalous Hall conductivity se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16398v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16398v1-abstract-full" style="display: none;"> The $A$V$_3$Sb$_5$ ($A=$ K, Rb, Cs) family of Kagome metals hosts unconventional charge density wave order whose nature is still an open puzzle. Accumulated evidences point to a time-reversal symmetry breaking orbital flux phase that carries loop currents. Such an order may support anomalous Hall effect. However, the polar Kerr effect measurements that probe the a.c. anomalous Hall conductivity seems to have yielded contradictory results. We first argue on symmetry grounds that some previously proposed orbital flux order, most notably the one with Star-of-David distortion, shall not give rise to anomalous Hall or polar Kerr effects. We further take the tri-hexagonal orbital flux phase as an exemplary Kagome flux order that does exhibit anomalous Hall response, and show that the Kerr rotation angle at two relevant experimental optical frequencies generally reaches microradians to sub-milliradians levels. A particularly sharp resonance enhancement is observed at around $\hbar 蠅=1$ eV, suggesting exceedingly large Kerr rotation at the corresponding probing frequencies not yet accessed by previous experiments. Our study can help to interpret the Kerr measurements on $A$V$_3$Sb$_5$ and to eventually resolve the nature of their CDW order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16398v1-abstract-full').style.display = 'none'; document.getElementById('2406.16398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+1 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15273">arXiv:2406.15273</a> <span> [<a href="https://arxiv.org/pdf/2406.15273">pdf</a>, <a href="https://arxiv.org/ps/2406.15273">ps</a>, <a href="https://arxiv.org/format/2406.15273">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134502">10.1103/PhysRevB.110.134502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Charge Density Waves on Superconductivity and Topological Properties in AV$_3$Sb$_5$ Kagome Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+X">Xin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junkang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15273v1-abstract-short" style="display: inline;"> We investigates the electronic structure and superconducting gaps in the charge density wave (CDW) states of vanadium-based Kagome superconductors AV$_3$Sb$_5$, focusing on the concurrent presence of CDW and superconducting orders. Two predominant CDW configurations are explored: the trihexagonal (TrH) and star-of-David (SoD) patterns, involving charge bond order (CBO) and chiral flux phase (CFP),… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15273v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15273v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15273v1-abstract-full" style="display: none;"> We investigates the electronic structure and superconducting gaps in the charge density wave (CDW) states of vanadium-based Kagome superconductors AV$_3$Sb$_5$, focusing on the concurrent presence of CDW and superconducting orders. Two predominant CDW configurations are explored: the trihexagonal (TrH) and star-of-David (SoD) patterns, involving charge bond order (CBO) and chiral flux phase (CFP), corresponding to real and imaginary bond orders. In the isotropic $s$-wave superconducting state, the presence of CBO alone maintains an isotropic superconducting gap, whereas the introduction of CFP induces anisotropy in the gap, manifesting time-reversal symmetry breaking due to the CFP. Our analysis extends to the topological properties of these states, revealing a marked topological phase transition in the TrH configuration from a trivial to a non-trivial state with increasing CFP intensity. This transition suggests that the introduction of CFP could catalyze the emergence of topological superconductivity, potentially leading to the presence of Majorana excitations. The results contribute significantly to understanding the complex interplay between various CDW patterns and superconductivity in Kagome superconductors. They provide a theoretical framework for the diverse experimental observations of energy gaps and open new avenues for research into topological superconductivity and its potential applications. This study underscores the necessity for further experimental and theoretical exploration to unveil novel interwinded quantum states and functionalities in these intriguing materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15273v1-abstract-full').style.display = 'none'; document.getElementById('2406.15273v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09217">arXiv:2405.09217</a> <span> [<a href="https://arxiv.org/pdf/2405.09217">pdf</a>, <a href="https://arxiv.org/format/2405.09217">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.190402">10.1103/PhysRevLett.133.190402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Augmenting Density Matrix Renormalization Group with Clifford Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09217v2-abstract-short" style="display: inline;"> Density Matrix Renormalization Group (DMRG) or Matrix Product States (MPS) are widely acknowledged as highly effective and accurate methods for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study two-dimensional systems encounters challenges due to the limited entanglement encoded in the wave-function ansatz. Conversely, Clifford circuits offer a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09217v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09217v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09217v2-abstract-full" style="display: none;"> Density Matrix Renormalization Group (DMRG) or Matrix Product States (MPS) are widely acknowledged as highly effective and accurate methods for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study two-dimensional systems encounters challenges due to the limited entanglement encoded in the wave-function ansatz. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09217v2-abstract-full').style.display = 'none'; document.getElementById('2405.09217v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 190402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07675">arXiv:2405.07675</a> <span> [<a href="https://arxiv.org/pdf/2405.07675">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-concentrated alkali hydroxide electrolytes for rechargeable Zn batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yilin Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiajia Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">Shengyong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+i">iangyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+Z">Zhibin Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+D">Diwen Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+C+K+K">Cheuk Kai Kevin Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+D">Ding Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07675v1-abstract-short" style="display: inline;"> Rechargeable Zn batteries offer safe, inexpensive energy storage, but when deeply discharged to compete with lithium-ion batteries, they are plagued by parasitic reactions at the Zn anodes. We apply super-concentrated alkaline electrolytes to suppress two key parasitic reactions, hydrogen evolution and ZnO passivation. An electrolyte with 15 M KOH displays a broad electrochemical window (>2.5 V on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07675v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07675v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07675v1-abstract-full" style="display: none;"> Rechargeable Zn batteries offer safe, inexpensive energy storage, but when deeply discharged to compete with lithium-ion batteries, they are plagued by parasitic reactions at the Zn anodes. We apply super-concentrated alkaline electrolytes to suppress two key parasitic reactions, hydrogen evolution and ZnO passivation. An electrolyte with 15 M KOH displays a broad electrochemical window (>2.5 V on Au), a high ZnO solubility (>1.5 M), and an exceptionally high ionic conductivity (>0.27 S/cm at 25 C). Spectroscopies and ab-initio molecular dynamics simulation suggest K+-OH- pairs and a tightened water network to underpin the stability. The simulation further reveals unique triggered proton hopping that offsets the lack of water wires to sustain the conductivity. Low hydrogen evolution, confirmed via online mass spectroscopy, and slow passivation enable a NiOOH||Zn battery to deliver a cumulative capacity of 8.4 Ah cm-2 and a Zn-air battery to last for over 110 hours. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07675v1-abstract-full').style.display = 'none'; document.getElementById('2405.07675v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02831">arXiv:2405.02831</a> <span> [<a href="https://arxiv.org/pdf/2405.02831">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonvolatile optical control of interlayer stacking order in 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Pei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuchong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zhaoyang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+M">Mengxue Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Huaixin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jianqi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xun Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02831v1-abstract-short" style="display: inline;"> Nonvolatile optical manipulation of material properties on demand is a highly sought-after feature in the advancement of future optoelectronic applications. While the discovery of such metastable transition in various materials holds good promise for achieving this goal, their practical implementation is still in the nascent stage. Here, we unravel the nature of the ultrafast laser-induced hidden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02831v1-abstract-full" style="display: none;"> Nonvolatile optical manipulation of material properties on demand is a highly sought-after feature in the advancement of future optoelectronic applications. While the discovery of such metastable transition in various materials holds good promise for achieving this goal, their practical implementation is still in the nascent stage. Here, we unravel the nature of the ultrafast laser-induced hidden state in 1T-TaS2 by systematically characterizing the electronic structure evolution throughout the reversible transition cycle. We identify it as a mixed-stacking state involving two similarly low-energy interlayer orders, which is manifested as the charge density wave phase disruption. Furthermore, our comparative experiments utilizing the single-pulse writing, pulse-train erasing and pulse-pair control explicitly reveal the distinct mechanism of the bidirectional transformations -- the ultrafast formation of the hidden state is initiated by a coherent phonon which triggers a competition of interlayer stacking orders, while its recovery to the initial state is governed by the progressive domain coarsening. Our work highlights the deterministic role of the competing interlayer orders in the nonvolatile phase transition in the layered material 1T-TaS2, and promises the coherent control of the phase transition and switching speed. More importantly, these results establish all-optical engineering of stacking orders in low-dimensional materials as a viable strategy for achieving desirable nonvolatile electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02831v1-abstract-full').style.display = 'none'; document.getElementById('2405.02831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18146">arXiv:2404.18146</a> <span> [<a href="https://arxiv.org/pdf/2404.18146">pdf</a>, <a href="https://arxiv.org/format/2404.18146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ad3b12">10.1088/2053-1583/ad3b12 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring coercive fields and the Curie temperature via proximity coupling in WSe$_2$/Fe$_3$GeTe$_2$ van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+G">Guodong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+R">Renjun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+F">Fuzhuo Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+S">Song Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zijing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+X">Xiaofan Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+J">Jingkuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yaqing Han</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Siqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiabei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xinglong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Mayorov%2C+A+S">Alexander S. Mayorov</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jinsheng Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G">Geliang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18146v1-abstract-short" style="display: inline;"> Hybrid structures consisting of two-dimensional (2D) magnets and semiconductors have exhibited extensive functionalities in spintronics and opto-spintronics. In this work, we have fabricated WSe$_2$/Fe$_3$GeTe$_2$ van der Waals (vdW) heterostructures and investigated the proximity effects on 2D magnetism. Through reflective magnetic circular dichroism (RMCD), we have observed a temperature-depende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18146v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18146v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18146v1-abstract-full" style="display: none;"> Hybrid structures consisting of two-dimensional (2D) magnets and semiconductors have exhibited extensive functionalities in spintronics and opto-spintronics. In this work, we have fabricated WSe$_2$/Fe$_3$GeTe$_2$ van der Waals (vdW) heterostructures and investigated the proximity effects on 2D magnetism. Through reflective magnetic circular dichroism (RMCD), we have observed a temperature-dependent modulation of magnetic order in the heterostructure. For temperatures above $40$ K, WSe$_2$-covered Fe$_3$GeTe$_2$ exhibits a larger coercive field than that observed in bare Fe$_3$GeTe$_2$, accompanied by a noticeable enhancement of the Curie temperature by $21$ K. This strengthening suggests an increase in magnetic anisotropy in the interfacial Fe$_3$GeTe$_2$ layer, which can be attributed to the spin-orbit coupling (SOC) proximity effect induced by the adjacent WSe$_2$ layers. However, at much lower temperatures ($T<20$ K), a non-monotonic modification of the coercive field is observed, showing both reduction and enhancement, which depends on the thickness of the WSe$_2$ and Fe$_3$GeTe$_2$ layers. Moreover, an unconventional two-step magnetization process emerges in the heterostructure, indicating the short-range nature of SOC proximity effects. Our findings revealing proximity effects on 2D magnetism may shed light on the design of future spintronic and memory devices based on 2D magnetic heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18146v1-abstract-full').style.display = 'none'; document.getElementById('2404.18146v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16738">arXiv:2404.16738</a> <span> [<a href="https://arxiv.org/pdf/2404.16738">pdf</a>, <a href="https://arxiv.org/format/2404.16738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting Klein and anti-Klein tunneling in Weyl junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiajia Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Luyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16738v1-abstract-short" style="display: inline;"> Klein tunneling is an old topic in relativistic quantum physics, and has been observed recently in graphene where massless particles reside. Here, we propose a new heterostructure platform for Klein tunneling to occur, which consists of a Weyl-semimetal-based normal state/superconductor (NS) junction. By developing a Blonder-Tinkham-Klapwijk-like theory, we find that Klein tunneling occurs at norm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16738v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16738v1-abstract-full" style="display: none;"> Klein tunneling is an old topic in relativistic quantum physics, and has been observed recently in graphene where massless particles reside. Here, we propose a new heterostructure platform for Klein tunneling to occur, which consists of a Weyl-semimetal-based normal state/superconductor (NS) junction. By developing a Blonder-Tinkham-Klapwijk-like theory, we find that Klein tunneling occurs at normal incidence, which can lead to differential conductance doubling. If the (single) Weyl semimeltals are replaced by double Weyl semimetals, anti-Klein tunneling will take place of Klein tunneling. Our work provides a theoretical guide for the detection of (anti-)Klein tunneling in three-dimensional chiral NS junctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16738v1-abstract-full').style.display = 'none'; document.getElementById('2404.16738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09162">arXiv:2404.09162</a> <span> [<a href="https://arxiv.org/pdf/2404.09162">pdf</a>, <a href="https://arxiv.org/ps/2404.09162">ps</a>, <a href="https://arxiv.org/format/2404.09162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L060506">10.1103/PhysRevB.110.L060506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer Pairing Induced Partially Gapped Fermi Surface in Trilayer La$_4$Ni$_3$O$_{10}$ Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junkang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09162v1-abstract-short" style="display: inline;"> We explore the superconducting pairing mechanisms in the trilayer $\mathrm{La}_4\mathrm{Ni}_3\mathrm{O}_{10}$ material through self-consistent mean-field calculations. Our findings demonstrate that intralayer pairings are substantially weaker compared to interlayer ones. Remarkably, in the state characterized by interlayer pairing, we detect the presence of partially gapped Fermi surfaces, a fasci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09162v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09162v1-abstract-full" style="display: none;"> We explore the superconducting pairing mechanisms in the trilayer $\mathrm{La}_4\mathrm{Ni}_3\mathrm{O}_{10}$ material through self-consistent mean-field calculations. Our findings demonstrate that intralayer pairings are substantially weaker compared to interlayer ones. Remarkably, in the state characterized by interlayer pairing, we detect the presence of partially gapped Fermi surfaces, a fascinating occurrence attributable to the disparity between the inner and outer conducting layers of $\mathrm{La}_4\mathrm{Ni}_3\mathrm{O}_{10}$. Moreover, this study provides valuable insights into the lower superconducting transition temperatures observed in $\mathrm{La}_4\mathrm{Ni}_3\mathrm{O}_{10}$ compounds. This contributes to a deeper understanding of its distinct superconducting attributes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09162v1-abstract-full').style.display = 'none'; document.getElementById('2404.09162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L060506 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02011">arXiv:2404.02011</a> <span> [<a href="https://arxiv.org/pdf/2404.02011">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Superionic Fluoride Gate Dielectrics with Low Diffusion Barrier for Advanced Electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+K">Kui Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zeya Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xingyue Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiayi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+F">Feng Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+C">Caiyu Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yilin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yu Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yurong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+H">Hongtao Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02011v1-abstract-short" style="display: inline;"> Exploration of new dielectrics with large capacitive coupling is an essential topic in modern electronics when conventional dielectrics suffer from the leakage issue near breakdown limit. To address this looming challenge, we demonstrate that rare-earth-metal fluorides with extremely-low ion migration barriers can generally exhibit an excellent capacitive coupling over 20 $渭$F cm$^{-2}$ (with an e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02011v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02011v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02011v1-abstract-full" style="display: none;"> Exploration of new dielectrics with large capacitive coupling is an essential topic in modern electronics when conventional dielectrics suffer from the leakage issue near breakdown limit. To address this looming challenge, we demonstrate that rare-earth-metal fluorides with extremely-low ion migration barriers can generally exhibit an excellent capacitive coupling over 20 $渭$F cm$^{-2}$ (with an equivalent oxide thickness of ~0.15 nm and a large effective dielectric constant near 30) and great compatibility with scalable device manufacturing processes. Such static dielectric capability of superionic fluorides is exemplified by MoS$_2$ transistors exhibiting high on/off current ratios over 10$^8$, ultralow subthreshold swing of 65 mV dec$^{-1}$, and ultralow leakage current density of ~10$^{-6}$ A cm$^{-2}$. Therefore, the fluoride-gated logic inverters can achieve significantly higher static voltage gain values, surpassing ~167, compared to conventional dielectric. Furthermore, the application of fluoride gating enables the demonstration of NAND, NOR, AND, and OR logic circuits with low static energy consumption. Notably, the superconductor-to-insulator transition at the clean-limit Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ can also be realized through fluoride gating. Our findings highlight fluoride dielectrics as a pioneering platform for advanced electronics applications and for tailoring emergent electronic states in condensed matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02011v1-abstract-full').style.display = 'none'; document.getElementById('2404.02011v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00695">arXiv:2404.00695</a> <span> [<a href="https://arxiv.org/pdf/2404.00695">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01732-z">10.1038/s41565-024-01732-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Even-integer Quantum Hall Effect in an Oxide Caused by Hidden Rashba Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jingyue Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Kaplan%2C+D">Daniel Kaplan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xuehan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+C">Congwei Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+G">Gangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Cong%2C+X">Xuzhong Cong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yongchao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xiaoyin Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+R">Ruixue Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Stern%2C+A">Ady Stern</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongtao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+H">Hongtao Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+H">Hailin Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00695v2-abstract-short" style="display: inline;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00695v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00695v2-abstract-full" style="display: none;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on ab initio band structures of Bi2O2Se thin films, we can ascribe the absence of odd-integer states in thicker films to the hidden Rasbha effect, where the local inversion symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one unit cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'none'; document.getElementById('2404.00695v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures, 23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 19, 1452 -- 1459 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14116">arXiv:2403.14116</a> <span> [<a href="https://arxiv.org/pdf/2403.14116">pdf</a>, <a href="https://arxiv.org/format/2403.14116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanistic Insights into Temperature Effects for Ionic Conductivity in Li6PS5Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zicun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianxing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+X">Xinguo Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jinbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Ruijuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14116v1-abstract-short" style="display: inline;"> Ensuring solid-state lithium batteries perform well across a wide temperature range is crucial for their practical use. Molecular dynamics (MD) simulations can provide valuable insights into the temperature dependence of the battery materials, however, the high computational cost of ab initio MD poses challenges for simulating ion migration dynamics at low temperatures. To address this issue, accu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14116v1-abstract-full').style.display = 'inline'; document.getElementById('2403.14116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14116v1-abstract-full" style="display: none;"> Ensuring solid-state lithium batteries perform well across a wide temperature range is crucial for their practical use. Molecular dynamics (MD) simulations can provide valuable insights into the temperature dependence of the battery materials, however, the high computational cost of ab initio MD poses challenges for simulating ion migration dynamics at low temperatures. To address this issue, accurate machine-learning interatomic potentials were trained, which enable efficient and reliable simulations of the ionic diffusion processes in Li6PS5Cl over a large temperature range for long-time evolution. Our study revealed the significant impact of subtle lattice parameter variations on Li+ diffusion at low temperatures and identified the increasing influence of surface contributions as the temperature decreases. Our findings elucidate the factors influencing low temperature performance and present strategic guidance towards improving the performance of solid-state lithium batteries under these conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14116v1-abstract-full').style.display = 'none'; document.getElementById('2403.14116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02575">arXiv:2403.02575</a> <span> [<a href="https://arxiv.org/pdf/2403.02575">pdf</a>, <a href="https://arxiv.org/format/2403.02575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01800-9">10.1038/s42005-024-01800-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological protection revealed by real-time longitudinal and transverse studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hoai%2C+A+H">Anh Ho Hoai</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jian Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Pfeiffer%2C+L+N">L. N. Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&query=West%2C+K+W">K. W. West</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02575v1-abstract-short" style="display: inline;"> Topology provides an essential concept for achieving unchanged (or protected) quantum properties in the presence of perturbations. A challenge facing realistic applications is that the level of protection displayed in real systems is subject to substantial variations. Some key differences stem from mechanisms influencing the reconstruction behaviors of extended dissipationless modes. Despite vario… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02575v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02575v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02575v1-abstract-full" style="display: none;"> Topology provides an essential concept for achieving unchanged (or protected) quantum properties in the presence of perturbations. A challenge facing realistic applications is that the level of protection displayed in real systems is subject to substantial variations. Some key differences stem from mechanisms influencing the reconstruction behaviors of extended dissipationless modes. Despite various insightful results on potential causes of backscattering, the edge-state-based approach is limited because the bulk states, as shown by breakdown tests, contribute indispensably. This study investigates the influence of bulk reconstruction where dissipationless modes are global objects instead of being restricted to the sample edge. An integer quantum Hall effect (IQHE) hosted in a Corbino sample geometry is adopted and brought continuously to the verge of a breakdown. A detection technique is developed to include two independent setups capable of simultaneously capturing the onset of dissipation in both longitudinal and transverse directions. The real-time correspondence between orthogonal results confirms two facts. 1. Dissipationless charge modes undergo frequent reconstruction in response to electrochemical potential changes, causing dissipationless current paths to expand transversely into the bulk while preserving chirality. A breakdown only occurs when a backscattering emerges between reconfigured dissipationless current paths bridging opposite edge contacts. 2. Impurity screening is vital in enhancing protection, and topological protection is subject to an intriguing interplay of disorder, electron-electron interaction, and topology. The proposed reconstruction mechanism qualitatively explains the robustness variations, beneficial for developing means for optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02575v1-abstract-full').style.display = 'none'; document.getElementById('2403.02575v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Commun Phys 7, 318 (2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics volume 7, Article number: 318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18996">arXiv:2402.18996</a> <span> [<a href="https://arxiv.org/pdf/2402.18996">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Metasurface spectrometers beyond resolution-sensitivity constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+F">Feng Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jingjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Albrow-Owen%2C+T">Tom Albrow-Owen</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+H">Hanxiao Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Fujia Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yaqi Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+L">Lan Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xuhan Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yijun Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jikui Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+B">Bingfeng Ju</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shuangli Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Liming Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Munro%2C+E+A">Eric Anthony Munro</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+W">Wanguo Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Joyce%2C+H+J">Hannah J. Joyce</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Che%2C+L">Lufeng Che</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shurong Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+T">Tawfique Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+X">Xin Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yihao Yang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18996v2-abstract-short" style="display: inline;"> Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18996v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18996v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18996v2-abstract-full" style="display: none;"> Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum9, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultra-low-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18996v2-abstract-full').style.display = 'none'; document.getElementById('2402.18996v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14104">arXiv:2402.14104</a> <span> [<a href="https://arxiv.org/pdf/2402.14104">pdf</a>, <a href="https://arxiv.org/ps/2402.14104">ps</a>, <a href="https://arxiv.org/format/2402.14104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L042021">10.1103/PhysRevResearch.6.L042021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Density Shift Coefficients for the Thermal Conductivity and Shear Viscosity of a Unitary Fermi Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+J+E">J. E. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14104v2-abstract-short" style="display: inline;"> We measure universal temperature-independent density shifts for the thermal conductivity $魏_T$ and shear viscosity $畏$, relative to the high temperature limits, for a normal phase unitary Fermi gas confined in a box potential. We show that a time-dependent kinetic theory model enables extraction of the hydrodynamic transport times $蟿_畏$ and $蟿_魏$ from the time-dependent free-decay of a spatially p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14104v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14104v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14104v2-abstract-full" style="display: none;"> We measure universal temperature-independent density shifts for the thermal conductivity $魏_T$ and shear viscosity $畏$, relative to the high temperature limits, for a normal phase unitary Fermi gas confined in a box potential. We show that a time-dependent kinetic theory model enables extraction of the hydrodynamic transport times $蟿_畏$ and $蟿_魏$ from the time-dependent free-decay of a spatially periodic density perturbation, yielding the static transport properties and density shifts, corrected for finite relaxation times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14104v2-abstract-full').style.display = 'none'; document.getElementById('2402.14104v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevResearch.6.L042021(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15162">arXiv:2401.15162</a> <span> [<a href="https://arxiv.org/pdf/2401.15162">pdf</a>, <a href="https://arxiv.org/ps/2401.15162">ps</a>, <a href="https://arxiv.org/format/2401.15162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.083404">10.1103/PhysRevLett.133.083404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective dynamical Fermi suppression of optically-induced inelastic scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Royse%2C+C+A">Camen A. Royse</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+J+E">J. E. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15162v3-abstract-short" style="display: inline;"> We observe strong dynamical suppression of optically induced loss in a weakly interacting Fermi gas as the $s$-wave scattering length is increased. The single, cigar-shaped cloud behaves as a large spin lattice in energy space with a tunable Heisenberg Hamiltonian. The loss suppression occurs as the lattice transitions into a magnetized state, where the fermionic nature of the atoms inhibits inter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15162v3-abstract-full').style.display = 'inline'; document.getElementById('2401.15162v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15162v3-abstract-full" style="display: none;"> We observe strong dynamical suppression of optically induced loss in a weakly interacting Fermi gas as the $s$-wave scattering length is increased. The single, cigar-shaped cloud behaves as a large spin lattice in energy space with a tunable Heisenberg Hamiltonian. The loss suppression occurs as the lattice transitions into a magnetized state, where the fermionic nature of the atoms inhibits interactions. The data are quantitatively explained by incorporating spin-dependent loss into a quasi-classical collective spin vector model, the success of which enables the application of optical control of effective long-range interactions to this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15162v3-abstract-full').style.display = 'none'; document.getElementById('2401.15162v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevLett.133.083404(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13427">arXiv:2401.13427</a> <span> [<a href="https://arxiv.org/pdf/2401.13427">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Grayscale Electron Beam Lithography Direct Patterned Antimony Sulfide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%BCbner%2C+U">Uwe H眉bner</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rtner%2C+A">Anne G盲rtner</a>, <a href="/search/cond-mat?searchtype=author&query=K%C3%B6bel%2C+J">Joseph K枚bel</a>, <a href="/search/cond-mat?searchtype=author&query=Jahn%2C+F">Franka Jahn</a>, <a href="/search/cond-mat?searchtype=author&query=Schneidwind%2C+H">Henrik Schneidwind</a>, <a href="/search/cond-mat?searchtype=author&query=Dellith%2C+A">Andrea Dellith</a>, <a href="/search/cond-mat?searchtype=author&query=Dellith%2C+J">Jan Dellith</a>, <a href="/search/cond-mat?searchtype=author&query=Wieduwilt%2C+T">Torsten Wieduwilt</a>, <a href="/search/cond-mat?searchtype=author&query=Zeisberger%2C+M">Matthias Zeisberger</a>, <a href="/search/cond-mat?searchtype=author&query=Shaik%2C+T+A">Tanveer Ahmed Shaik</a>, <a href="/search/cond-mat?searchtype=author&query=Bingel%2C+A">Astrid Bingel</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+M+A">Markus A Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jer-Shing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Deckert%2C+V">Volker Deckert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13427v1-abstract-short" style="display: inline;"> The rise of micro/nanooptics and lab-on-chip devices demands the fabrication of three-dimensional structures with decent resolution. Here, we demonstrate the combination of grayscale electron beam lithography and direct forming methodology to fabricate antimony sulfide structures with free form for the first time. The refractive index of the electron beam patterned structure was calculated based o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13427v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13427v1-abstract-full" style="display: none;"> The rise of micro/nanooptics and lab-on-chip devices demands the fabrication of three-dimensional structures with decent resolution. Here, we demonstrate the combination of grayscale electron beam lithography and direct forming methodology to fabricate antimony sulfide structures with free form for the first time. The refractive index of the electron beam patterned structure was calculated based on an optimization algorithm that is combined with genetic algorithm and transfer matrix method. By adopting electron irradiation with variable doses, 4-level Fresnel Zone Plates and metalens were produced and characterized. This method can be used for the fabrication of three-dimensional diffractive optical elements and metasurfaces in a single step manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13427v1-abstract-full').style.display = 'none'; document.getElementById('2401.13427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, 1 table, 1 scheme. The Supplement Information will be given in a second Arxiv submission or the published journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11768">arXiv:2401.11768</a> <span> [<a href="https://arxiv.org/pdf/2401.11768">pdf</a>, <a href="https://arxiv.org/format/2401.11768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> ADA-GNN: Atom-Distance-Angle Graph Neural Network for Crystal Material Property Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+Q">Qianli Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+J">Jinglong Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+B">Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11768v1-abstract-short" style="display: inline;"> Property prediction is a fundamental task in crystal material research. To model atoms and structures, structures represented as graphs are widely used and graph learning-based methods have achieved significant progress. Bond angles and bond distances are two key structural information that greatly influence crystal properties. However, most of the existing works only consider bond distances and o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11768v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11768v1-abstract-full" style="display: none;"> Property prediction is a fundamental task in crystal material research. To model atoms and structures, structures represented as graphs are widely used and graph learning-based methods have achieved significant progress. Bond angles and bond distances are two key structural information that greatly influence crystal properties. However, most of the existing works only consider bond distances and overlook bond angles. The main challenge lies in the time cost of handling bond angles, which leads to a significant increase in inference time. To solve this issue, we first propose a crystal structure modeling based on dual scale neighbor partitioning mechanism, which uses a larger scale cutoff for edge neighbors and a smaller scale cutoff for angle neighbors. Then, we propose a novel Atom-Distance-Angle Graph Neural Network (ADA-GNN) for property prediction tasks, which can process node information and structural information separately. The accuracy of predictions and inference time are improved with the dual scale modeling and the specially designed architecture of ADA-GNN. The experimental results validate that our approach achieves state-of-the-art results in two large-scale material benchmark datasets on property prediction tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11768v1-abstract-full').style.display = 'none'; document.getElementById('2401.11768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06741">arXiv:2401.06741</a> <span> [<a href="https://arxiv.org/pdf/2401.06741">pdf</a>, <a href="https://arxiv.org/ps/2401.06741">ps</a>, <a href="https://arxiv.org/format/2401.06741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.074006">10.1103/PhysRevMaterials.8.074006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of van der Waals layered single crystals DyOBr and SmOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+S">Songnan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+J">Jianfei Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+L">Lijie Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06741v2-abstract-short" style="display: inline;"> Two-dimensional van der Waals single crystals DyOBr and SmOCl have been grown by flux method and their anisotropic magnetic properties are reported. DyOBr orders antiferromagnetically at T$_{N}$=9.5 K with magnetic moments lying along $a$-axis, similar as DyOCl. Its magnetic susceptibility shows an anomaly at T$^{*}$=30 K possibly due to the crystal field effect. Furthermore a 1/3 magnetization pl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06741v2-abstract-full').style.display = 'inline'; document.getElementById('2401.06741v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06741v2-abstract-full" style="display: none;"> Two-dimensional van der Waals single crystals DyOBr and SmOCl have been grown by flux method and their anisotropic magnetic properties are reported. DyOBr orders antiferromagnetically at T$_{N}$=9.5 K with magnetic moments lying along $a$-axis, similar as DyOCl. Its magnetic susceptibility shows an anomaly at T$^{*}$=30 K possibly due to the crystal field effect. Furthermore a 1/3 magnetization plateau is clearly observed under H$\parallel$a and H$\parallel$[110], which might be a field-induced spin-flop phase or some exotic quantum magnetic state. On the other hand, isostructural SmOCl undergoes an antiferromagnetic transition at T$_{N}$=7.1 K and exhibits a contrasting Ising-like perpendicular $c$-axis magnetic anisotropy, which could be well explained by our crystal field calculations. Both DyOBr and SmOCl are insulators with band gap of $\sim$5 eV, our results suggest they are promising in building van der Waals heterostructures and applications in multifunctional devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06741v2-abstract-full').style.display = 'none'; document.getElementById('2401.06741v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03004">arXiv:2401.03004</a> <span> [<a href="https://arxiv.org/pdf/2401.03004">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> SAPNet: a deep learning model for identification of single-molecule peptide post-translational modifications with surface enhanced Raman spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yaltaye%2C+M+W">Mulusew W. Yaltaye</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yingqi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Bozo%2C+E">Eva Bozo</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+P">Pei-Lin Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Farrah%2C+V">Vahid Farrah</a>, <a href="/search/cond-mat?searchtype=author&query=De+Angelis%2C+F">Francesco De Angelis</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jian-An Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03004v1-abstract-short" style="display: inline;"> Nanopore resistive pulse sensors are emerging technologies for single-molecule protein sequencing. But they can hardly detect small post-translational modifications (PTMs) such as hydroxylation in single-molecule level. While a combination of surface enhanced Raman spectroscopy (SERS) with plasmonic nanopores can detect the small PTMs, the blinking Raman peaks in the single-molecule SERS spectra l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03004v1-abstract-full" style="display: none;"> Nanopore resistive pulse sensors are emerging technologies for single-molecule protein sequencing. But they can hardly detect small post-translational modifications (PTMs) such as hydroxylation in single-molecule level. While a combination of surface enhanced Raman spectroscopy (SERS) with plasmonic nanopores can detect the small PTMs, the blinking Raman peaks in the single-molecule SERS spectra leads to a big challenge in data analysis and PTM identification. Herein, we developed and validated a one-dimensional convolutional neural network (1D-CNN) for amino acids and peptides identification from their PTMs including hydroxylation and phosphorylation by their single-molecule SERS spectra, named Single Amino acid and Peptide Network (SAPNet). Our work combines cutting-edge plasmonic nanopore technology for SERS signal acquisition and deep learning for fully automated extraction of information from the SERS signals. The SAPNet model achieved an overall accuracy of 99.66% for the identification of amino acids from their modification, and 98.38% for the identification of peptides from their PTM translation. We also evaluated the model with out-of-sample examples with good performance. Our work can be beneficial for early detection of diseases such as cancers and Alzheimer's disease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03004v1-abstract-full').style.display = 'none'; document.getElementById('2401.03004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01602">arXiv:2401.01602</a> <span> [<a href="https://arxiv.org/pdf/2401.01602">pdf</a>, <a href="https://arxiv.org/ps/2401.01602">ps</a>, <a href="https://arxiv.org/format/2401.01602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.205144">10.1103/PhysRevB.109.205144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exotic Topological Phenomena in Chiral Superconducting States on Doped Quantum Spin Hall Insulators with Honeycomb Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junkang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z+D">Z. D. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01602v1-abstract-short" style="display: inline;"> We have conducted a theoretical investigation of the topological phenomena associated with chiral superconducting pairing states induced in a doped Kane-Mele model on a honeycomb lattice. Through numerical analysis, we have obtained exotic phase diagrams for both the $d+id$ and $p+ip$ superconducting states. In the case of the $d+id$ pairing state, higher Chern number states with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01602v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01602v1-abstract-full" style="display: none;"> We have conducted a theoretical investigation of the topological phenomena associated with chiral superconducting pairing states induced in a doped Kane-Mele model on a honeycomb lattice. Through numerical analysis, we have obtained exotic phase diagrams for both the $d+id$ and $p+ip$ superconducting states. In the case of the $d+id$ pairing state, higher Chern number states with $\left| C \right| = \pm 4$ emerge. The Chern number decreases as the spin-orbit coupling is introduced. For the $p+ip$ pairing state, additional phase transition lines are present in the overdoped region near the Van Hove singularity point, leading to the emergence of higher Chern number phases with $\left| C \right| = \pm 6$. These higher Chern number phases are further verified through the bulk-edge correspondence. To understand the origin of the exotic topological phase diagrams in the chiral superconducting state, we have examined the electronic structure at the phase transition lines. This investigation provides insight into the complex interplay between chiral superconductivity and topological properties, potentially paving the way for the discovery of new materials with unique topological properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01602v1-abstract-full').style.display = 'none'; document.getElementById('2401.01602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 205144 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01223">arXiv:2401.01223</a> <span> [<a href="https://arxiv.org/pdf/2401.01223">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Twinning induced by elastic anisotropy in FCC crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+M">Mingyu Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+G">Guangpeng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">Guochun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+B">Bin Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01223v1-abstract-short" style="display: inline;"> Dislocation slip and deformation twin are widely regarded as two important mechanisms of active competition in the process of plastic deformation. Calculating and comparing the critical resolved shear stress (CRSS) of two deformation modes are the key to discussing the mechanical properties reflected by different mechanisms in crystals. Here, the paper proposes a model to predict the CRSS of discr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01223v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01223v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01223v1-abstract-full" style="display: none;"> Dislocation slip and deformation twin are widely regarded as two important mechanisms of active competition in the process of plastic deformation. Calculating and comparing the critical resolved shear stress (CRSS) of two deformation modes are the key to discussing the mechanical properties reflected by different mechanisms in crystals. Here, the paper proposes a model to predict the CRSS of discrete twins, resembling thin layers, using the elastic anisotropy theory and a macroscopic energy perspective. In addition, the directionality of deformation twinning is also verified. We investigated twinning in FCC crystals to illustrate the methodology, and predicted the CRSS of twinning under different variables such as temperature and strain rate, both of which were in excellent agreement with experimental and other theory results. It draws the conclusion that we can promote twinning nucleation by applying shear stress along the <112> direction to reduce the interface energy as a resistance term and increase the difference in strain energy for twinning nucleation. This conclusion provides a guiding direction for exploring and accurately predicting the conditions of twinning in FCC crystals in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01223v1-abstract-full').style.display = 'none'; document.getElementById('2401.01223v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15492">arXiv:2312.15492</a> <span> [<a href="https://arxiv.org/pdf/2312.15492">pdf</a>, <a href="https://arxiv.org/format/2312.15492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> DPA-2: a large atomic model as a multi-task learner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+C">Chun Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+H">Hangrui Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yiming Du</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+X">Xuejian Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+A">Anyang Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiameng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bowen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shan%2C+Y">Yifan Shan</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+J">Jinzhe Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yifan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">Junhan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xinyan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shuo Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianchuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+X">Xiaoshan Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wanrun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yudi Yang</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15492v2-abstract-short" style="display: inline;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applicatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15492v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15492v2-abstract-full" style="display: none;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'none'; document.getElementById('2312.15492v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14936">arXiv:2312.14936</a> <span> [<a href="https://arxiv.org/pdf/2312.14936">pdf</a>, <a href="https://arxiv.org/format/2312.14936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> PerCNet: Periodic Complete Representation for Crystal Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+Q">Qianli Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+J">Jinglong Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+B">Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14936v1-abstract-short" style="display: inline;"> Crystal material representation is the foundation of crystal material research. Existing works consider crystal molecules as graph data with different representation methods and leverage the advantages of techniques in graph learning. A reasonable crystal representation method should capture the local and global information. However, existing methods only consider the local information of crystal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14936v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14936v1-abstract-full" style="display: none;"> Crystal material representation is the foundation of crystal material research. Existing works consider crystal molecules as graph data with different representation methods and leverage the advantages of techniques in graph learning. A reasonable crystal representation method should capture the local and global information. However, existing methods only consider the local information of crystal molecules by modeling the bond distance and bond angle of first-order neighbors of atoms, which leads to the issue that different crystals will have the same representation. To solve this many-to-one issue, we consider the global information by further considering dihedral angles, which can guarantee that the proposed representation corresponds one-to-one with the crystal material. We first propose a periodic complete representation and calculation algorithm for infinite extended crystal materials. A theoretical proof for the representation that satisfies the periodic completeness is provided. Based on the proposed representation, we then propose a network for predicting crystal material properties, PerCNet, with a specially designed message passing mechanism. Extensive experiments are conducted on two real-world material benchmark datasets. The PerCNet achieves the best performance among baseline methods in terms of MAE. In addition, our results demonstrate the importance of the periodic scheme and completeness for crystal representation learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14936v1-abstract-full').style.display = 'none'; document.getElementById('2312.14936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14455">arXiv:2312.14455</a> <span> [<a href="https://arxiv.org/pdf/2312.14455">pdf</a>, <a href="https://arxiv.org/format/2312.14455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.011046">10.1103/PhysRevX.14.011046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for an Excitonic Insulator State in Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+J">Jingyu Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yupeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhenyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">Shunye Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qingming Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14455v2-abstract-short" style="display: inline;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical invest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14455v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14455v2-abstract-full" style="display: none;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical investigations, we provide evidence for the existence of an EI ground state in a van der Waals compound Ta$_2$Pd$_3$Te$_5$. Density-functional-theory calculations suggest that it is a semimetal with a small band overlap, whereas various experiments exhibit an insulating ground state with a clear band gap. Upon incorporating electron-hole Coulomb interaction into our calculations, we obtain an EI phase where the electronic symmetry breaking opens a many-body gap. Angle-resolved photoemission spectroscopy measurements exhibit that the band gap is closed with a significant change in the dispersions as the number of thermally excited charge carriers becomes sufficiently large in both equilibrium and nonequilibrium states. Structural measurements reveal a slight breaking of crystal symmetry with exceptionally small lattice distortion in the insulating state, which cannot account for the significant gap opening. Therefore, we attribute the insulating ground state with a gap opening in Ta$_2$Pd$_3$Te$_5$ to exciton condensation, where the coupling to the symmetry-breaking electronic state induces a subtle change in the crystal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'none'; document.getElementById('2312.14455v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 011046, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11732">arXiv:2312.11732</a> <span> [<a href="https://arxiv.org/pdf/2312.11732">pdf</a>, <a href="https://arxiv.org/format/2312.11732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.045416">10.1103/PhysRevB.109.045416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Step Electronic Response to Magnetic Ordering in a van der Waals Ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lebing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Butcher%2C+M+W">Matthew W Butcher</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+D">Dongsheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Shan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Cheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11732v2-abstract-short" style="display: inline;"> The two-dimensional (2D) material Cr$_2$Ge$_2$Te$_6$ is a member of the class of insulating van der Waals magnets. Here, using high resolution angle-resolved photoemission spectroscopy in a detailed temperature dependence study, we identify a clear response of the electronic structure to a dimensional crossover in the form of two distinct temperature scales marking onsets of modifications in the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11732v2-abstract-full').style.display = 'inline'; document.getElementById('2312.11732v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11732v2-abstract-full" style="display: none;"> The two-dimensional (2D) material Cr$_2$Ge$_2$Te$_6$ is a member of the class of insulating van der Waals magnets. Here, using high resolution angle-resolved photoemission spectroscopy in a detailed temperature dependence study, we identify a clear response of the electronic structure to a dimensional crossover in the form of two distinct temperature scales marking onsets of modifications in the electronic structure. Specifically, we observe Te $p$-orbital-dominated bands to undergo changes at the Curie transition temperature T$_C$ while the Cr $d$-orbital-dominated bands begin evolving at a higher temperature scale. Combined with neutron scattering, density functional theory calculations, and Monte Carlo simulations, we find that the electronic system can be consistently understood to respond sequentially to the distinct temperatures at which in-plane and out-of-plane spin correlations exceed a characteristic length scale. Our findings reveal the sensitivity of the orbital-selective electronic structure for probing the dynamical evolution of local moment correlations in vdW insulating magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11732v2-abstract-full').style.display = 'none'; document.getElementById('2312.11732v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRB, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 045416 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09375">arXiv:2312.09375</a> <span> [<a href="https://arxiv.org/pdf/2312.09375">pdf</a>, <a href="https://arxiv.org/format/2312.09375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatial Confinement Affects the Heterogeneity and Interactions Between Shoaling Fish </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kuntz%2C+G">Gabriel Kuntz</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junxiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Rask%2C+M">Mitchell Rask</a>, <a href="/search/cond-mat?searchtype=author&query=Lindgren-Ruby%2C+A">Alex Lindgren-Ruby</a>, <a href="/search/cond-mat?searchtype=author&query=Shinsato%2C+J+Y">Jacob Y. Shinsato</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+D">Dapeng Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Tabatabai%2C+A+P">A. Pasha Tabatabai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09375v1-abstract-short" style="display: inline;"> Living objects are able to consume chemical energy and process information independently from others. However, living objects can coordinate to form ordered groups such as schools of fish. This work considers these complex groups as living materials and presents imaging-based experiments of laboratory schools of fish to understand how this non-equilibrium activity affects the mechanical properties… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09375v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09375v1-abstract-full" style="display: none;"> Living objects are able to consume chemical energy and process information independently from others. However, living objects can coordinate to form ordered groups such as schools of fish. This work considers these complex groups as living materials and presents imaging-based experiments of laboratory schools of fish to understand how this non-equilibrium activity affects the mechanical properties of a group. We use spatial confinement to control the motion and structure of fish within quasi-2D shoals of fish. Using image analysis techniques, we make quantitative observations of the structures, their spatial heterogeneity, and their temporal fluctuations. Furthermore, we utilize Monte Carlo simulations to replicate the experimentally observed area distribution patterns which provide insight into the effective interactions between fish and confirm the presence of a confinement-based behavioral preference transition. In addition, unlike in short-range interacting systems, here structural heterogeneity and dynamic activities are positively correlated as a result of complex interplay between spatial arrangement and behavioral dynamics in fish collectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09375v1-abstract-full').style.display = 'none'; document.getElementById('2312.09375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 Figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>