CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 74 results for author: <span class="mathjax">Brandt, B B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brandt, B B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brandt%2C+B+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brandt, B B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05051">arXiv:2502.05051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05051">pdf</a>, <a href="https://arxiv.org/format/2502.05051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion condensation at non-zero isospin chemical potential with Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basta%2C+R+F">Rocco Francesco Basta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Philipsen%2C+O">Owe Philipsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05051v1-abstract-short" style="display: inline;"> In contrast to the case of non-zero baryon chemical potential, the isospin chemical potential does not introduce a sign problem and can be simulated on the lattice. When the isospin chemical potential is large enough, a phase transition to a Bose-Einstein condensate of pions takes place. Currently available results in the literature on the phase diagram and the equation of state in this setup empl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05051v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05051v1-abstract-full" style="display: none;"> In contrast to the case of non-zero baryon chemical potential, the isospin chemical potential does not introduce a sign problem and can be simulated on the lattice. When the isospin chemical potential is large enough, a phase transition to a Bose-Einstein condensate of pions takes place. Currently available results in the literature on the phase diagram and the equation of state in this setup employ staggered fermions. We present preliminary results on the onset of the pion condensation phase in simulations with Wilson fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05051v1-abstract-full').style.display = 'none'; document.getElementById('2502.05051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">talk presented at the 41st International Symposium on Lattice Field Theory (LATTICE2024), July 28th - August 3rd, 2024, The University of Liverpool</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04025">arXiv:2502.04025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.04025">pdf</a>, <a href="https://arxiv.org/format/2502.04025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Renormalization group invariant mean-field model for QCD at finite isospin density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marko%2C+G">Gergely Marko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Scheid%2C+D">Daniel Scheid</a>, <a href="/search/hep-lat?searchtype=author&amp;query=von+Smekal%2C+L">Lorenz von Smekal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04025v1-abstract-short" style="display: inline;"> QCD at nonzero isospin chemical potentials has phenomenological relevance for a series of physical systems and provides an ideal testground for the modeling of dense strongly interacting matter. The two-flavor quark-meson model is known to effectively describe the condensation of charged pions in QCD that occurs in this setting. In this paper, we work out a renormalization-group invariant mean-fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04025v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04025v1-abstract-full" style="display: none;"> QCD at nonzero isospin chemical potentials has phenomenological relevance for a series of physical systems and provides an ideal testground for the modeling of dense strongly interacting matter. The two-flavor quark-meson model is known to effectively describe the condensation of charged pions in QCD that occurs in this setting. In this paper, we work out a renormalization-group invariant mean-field formulation of the model and demonstrate that the resulting phase diagram and equation of state is in quantitative agreement with data from lattice QCD simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04025v1-abstract-full').style.display = 'none'; document.getElementById('2502.04025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01155">arXiv:2502.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01155">pdf</a>, <a href="https://arxiv.org/format/2502.01155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Out-of-equilibrium Chiral Magnetic Effect via Kubo formulas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">E. Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01155v1-abstract-short" style="display: inline;"> In this proceedings article, we present the first steps towards the determination of the out-of-equilibrium conductivity of the Chiral Magnetic Effect (CME) in the presence of strong interactions. Using linear response theory, we obtain an analytical expression for the spectral function associated with this effect at one-loop in perturbation theory. In addition, we provide a first estimate of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01155v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01155v1-abstract-full" style="display: none;"> In this proceedings article, we present the first steps towards the determination of the out-of-equilibrium conductivity of the Chiral Magnetic Effect (CME) in the presence of strong interactions. Using linear response theory, we obtain an analytical expression for the spectral function associated with this effect at one-loop in perturbation theory. In addition, we provide a first estimate of the CME conductivity by calculating the associated Euclidean correlator using quenched Wilson fermions and dynamical staggered fermions in physical Quantum Chromodynamics (QCD) simulations. In particular, we focus on the midpoint of the correlator, which can be used as a proxy of the full conductivity. We present results in a wide range of temperatures, showing how this observable is suppressed at low temperatures, while at high temperatures it approaches the perturbation theory prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01155v1-abstract-full').style.display = 'none'; document.getElementById('2502.01155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, contribution to the 41st International Symposium on Lattice Field Theory (LATTICE2024), 28 July - 3 August 2024, Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19291">arXiv:2501.19291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19291">pdf</a>, <a href="https://arxiv.org/format/2501.19291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Condensation of lighter-than-physical pions in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19291v1-abstract-short" style="display: inline;"> We report on the results of the 2+1 flavour QCD simulations at nonzero isospin chemical potential performed at half the physical light quark mass. At low temperatures and large isospin chemical potential Bose-Einstein Condensation (BEC) occurs, creating a pion condensed phase, separated from the hadronic and quark-gluon plasma phases by the BEC transition line. For physical quark masses, the secti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19291v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19291v1-abstract-full" style="display: none;"> We report on the results of the 2+1 flavour QCD simulations at nonzero isospin chemical potential performed at half the physical light quark mass. At low temperatures and large isospin chemical potential Bose-Einstein Condensation (BEC) occurs, creating a pion condensed phase, separated from the hadronic and quark-gluon plasma phases by the BEC transition line. For physical quark masses, the section of this line between the hadronic and BEC phases was found to be almost perfectly vertical, i.e. aligned with the temperature axis. We show that for lighter than physical pions, this section remains vertical, and approaches the axis of vanishing chemical potential linearly with the pion mass, giving a prediction of the phase diagram in the chiral limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19291v1-abstract-full').style.display = 'none'; document.getElementById('2501.19291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, talk presented at the 41st International Symposium on Lattice Field Theory (LATTICE2024), July 28th - August 3rd, 2024, The University of Liverpool</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12918">arXiv:2411.12918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12918">pdf</a>, <a href="https://arxiv.org/format/2411.12918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of isospin asymmetric QCD with small baryon chemical potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12918v2-abstract-short" style="display: inline;"> We extend our measurement of the equation of state of isospin asymmetric QCD to small baryon and strangeness chemical potentials, using the leading order Taylor expansion coefficients computed directly at non-zero isospin chemical potentials. Extrapolating the fully connected contributions to vanishing pion sources is particularly challenging, which we overcome by using information from isospin ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12918v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12918v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12918v2-abstract-full" style="display: none;"> We extend our measurement of the equation of state of isospin asymmetric QCD to small baryon and strangeness chemical potentials, using the leading order Taylor expansion coefficients computed directly at non-zero isospin chemical potentials. Extrapolating the fully connected contributions to vanishing pion sources is particularly challenging, which we overcome by using information from isospin chemical potential derivatives evaluated numerically. Using the Taylor coefficients, we present, amongst others, first results for the equation of state along the electric charge chemical potential axis, which is potentially of relevance for the evolution of the early Universe at large lepton flavour asymmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12918v2-abstract-full').style.display = 'none'; document.getElementById('2411.12918v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, contribution to the 41st International Symposium on Lattice Field Theory (LATTICE2024), Liverpool, UK; v2: typos and the extraction of the equation of state at non-zero charge chemical potential corrected, conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17616">arXiv:2409.17616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17616">pdf</a>, <a href="https://arxiv.org/format/2409.17616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Localized Chiral Magnetic Effect in equilibrium QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">E. Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17616v1-abstract-short" style="display: inline;"> We study the impact of a non-uniform magnetic background field on the Chiral Magnetic Effect (CME) in equilibrium QCD using lattice simulations with 2+1 flavors of dynamical staggered quarks at the physical point. We show that in the presence of a non-uniform magnetic field the CME manifests itself via a localized electromagnetic current density along the direction of the field, which integrates t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17616v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17616v1-abstract-full" style="display: none;"> We study the impact of a non-uniform magnetic background field on the Chiral Magnetic Effect (CME) in equilibrium QCD using lattice simulations with 2+1 flavors of dynamical staggered quarks at the physical point. We show that in the presence of a non-uniform magnetic field the CME manifests itself via a localized electromagnetic current density along the direction of the field, which integrates to zero over the full volume. Our primary observable is the leading-order coefficient of the current in a chiral chemical potential expansion, which we compute for various lattice spacings and extrapolate to the continuum limit. Our findings demonstrate that, even though the global spatial average of the CME conductivity vanishes in equilibrium, steady currents still exist locally. Thus, spatially modulated magnetic fields provide a possible way of generating a non-trivial CME signal in equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17616v1-abstract-full').style.display = 'none'; document.getElementById('2409.17616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00796">arXiv:2409.00796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00796">pdf</a>, <a href="https://arxiv.org/format/2409.00796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Impact of extreme magnetic fields on the QCD topological susceptibility in the vicinity of the crossover region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J+J+H">J. J. Hern谩ndez Hern谩ndez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00796v3-abstract-short" style="display: inline;"> We present the first determination of the topological susceptibility from lattice QCD in the presence of strong background magnetic fields. Our simulations employ 2+1 flavours of stout improved staggered quarks with physical masses and cover a broad range of temperatures and magnetic field values. The results are extrapolated to the continuum limit using four different lattice spacings and an eige&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00796v3-abstract-full').style.display = 'inline'; document.getElementById('2409.00796v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00796v3-abstract-full" style="display: none;"> We present the first determination of the topological susceptibility from lattice QCD in the presence of strong background magnetic fields. Our simulations employ 2+1 flavours of stout improved staggered quarks with physical masses and cover a broad range of temperatures and magnetic field values. The results are extrapolated to the continuum limit using four different lattice spacings and an eigenvalue reweighting technique to reduce discretisation errors. For low temperatures, our calculations show an enhancement of the topological susceptibility due to the magnetic field, compatible with predictions from chiral perturbation theory. At high temperatures, we observe the impact of inverse magnetic catalysis on the susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00796v3-abstract-full').style.display = 'none'; document.getElementById('2409.00796v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09484">arXiv:2405.09484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09484">pdf</a>, <a href="https://arxiv.org/format/2405.09484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2024)092">10.1007/JHEP09(2024)092 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the absence of the Chiral Magnetic Effect in equilibrium QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">Eduardo Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09484v2-abstract-short" style="display: inline;"> In this paper we investigate the chiral magnetic effect (CME): the generation of an electric current due to a homogeneous background magnetic field and a homogeneous chiral imbalance in QCD. We demonstrate that the leading coefficient describing the CME vanishes in equilibrium, both for free fermions as well as in full QCD. Our full QCD results are based on continuum extrapolated lattice simulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09484v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09484v2-abstract-full" style="display: none;"> In this paper we investigate the chiral magnetic effect (CME): the generation of an electric current due to a homogeneous background magnetic field and a homogeneous chiral imbalance in QCD. We demonstrate that the leading coefficient describing the CME vanishes in equilibrium, both for free fermions as well as in full QCD. Our full QCD results are based on continuum extrapolated lattice simulations using dynamical staggered quarks with physical masses as well as quenched Wilson quarks. We show that it is crucial that a gauge invariant ultraviolet regularization is used to compute the CME and elaborate on why some of the existing in-equilibrium calculations of this effect gave a nonzero result. We stress that our findings imply the absence of a time-independent CME current flowing in equilibrium QCD, but do not concern the CME as an out-of-equilibrium, time-dependent effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09484v2-abstract-full').style.display = 'none'; document.getElementById('2405.09484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 09 (2024) 092 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06557">arXiv:2405.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06557">pdf</a>, <a href="https://arxiv.org/format/2405.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2024)027">10.1007/JHEP07(2024)027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Steady electric currents in magnetized QCD and their use for the equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06557v2-abstract-short" style="display: inline;"> In this paper we study the emergence of steady electric currents in QCD as a response to a non-uniform magnetic background using lattice simulations with 2 + 1 quark flavors at the physical point, as well as leading-order chiral perturbation theory. Using these currents, we develop a novel method to determine the leading-order coefficient of the equation of state in a magnetic field expansion: the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06557v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06557v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06557v2-abstract-full" style="display: none;"> In this paper we study the emergence of steady electric currents in QCD as a response to a non-uniform magnetic background using lattice simulations with 2 + 1 quark flavors at the physical point, as well as leading-order chiral perturbation theory. Using these currents, we develop a novel method to determine the leading-order coefficient of the equation of state in a magnetic field expansion: the magnetic susceptibility of the QCD medium. We decompose the current expectation value into valence- and sea-quark contributions and demonstrate that the dominant contribution to the electric current is captured by the valence term alone, allowing for a comparably cheap determination of the susceptibility. Our continuum extrapolated lattice results for the equation of state confirm the findings of some of the existing studies in the literature, namely that the QCD medium behaves diamagnetically at low and paramagnetically at high temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06557v2-abstract-full').style.display = 'none'; document.getElementById('2405.06557v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 07 (2024) 027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15118">arXiv:2312.15118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15118">pdf</a>, <a href="https://arxiv.org/format/2312.15118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD equation of state in the presence of magnetic fields at low density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">S. Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J">J. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15118v2-abstract-short" style="display: inline;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15118v2-abstract-full" style="display: none;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equation of state in that regime, we carry out lattice QCD simulations with 2+1+1 flavors of staggered quarks with physical masses at finite magnetic fields and employ a Taylor expansion scheme to circumvent the sign problem. We present the leading-order coefficient of the expansion calculated at non-zero magnetic fields and discuss the impact of the field on the strangeness neutrality condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'none'; document.getElementById('2312.15118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Lattice 2023 symposium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14660">arXiv:2312.14660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14660">pdf</a>, <a href="https://arxiv.org/format/2312.14660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic effects on topological observables in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J+J+H">Jos茅 Javier Hern谩ndez Hern谩ndez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pannullo%2C+L">Laurin Pannullo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14660v1-abstract-short" style="display: inline;"> In this proceedings article we present a selected set of our lattice results regarding the effect that background electromagnetic fields have on the topology of QCD. In particular, we report on the lattice spacing-dependence of the axion-photon coupling as well as on the response of the topological susceptibility to strong magnetic fields at nonzero temperatures. We demonstrate that the ratio of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14660v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14660v1-abstract-full" style="display: none;"> In this proceedings article we present a selected set of our lattice results regarding the effect that background electromagnetic fields have on the topology of QCD. In particular, we report on the lattice spacing-dependence of the axion-photon coupling as well as on the response of the topological susceptibility to strong magnetic fields at nonzero temperatures. We demonstrate that the ratio of topological susceptibilities at finite to zero magnetic field has a well behaved continuum limit at low temperatures using a reweighting technique. Moreover, we study the scaling of the axion-photon coupling towards the continuum limit and show that it is less severely affected by discretisation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14660v1-abstract-full').style.display = 'none'; document.getElementById('2312.14660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Proceedings of the 40th International Symposium on Lattice Field Theory, July 31st - August 4th 2023, Chicago, United States of America</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02945">arXiv:2312.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02945">pdf</a>, <a href="https://arxiv.org/format/2312.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2024)142">10.1007/JHEP02(2024)142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Chiral Separation Effect from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">Eduardo Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02945v2-abstract-short" style="display: inline;"> In this paper we study the Chiral Separation Effect by means of first-principles lattice QCD simulations. For the first time in the literature, we determine the continuum limit of the associated conductivity using 2+1 flavors of dynamical staggered quarks at physical masses. The results reveal a suppression of the conductivity in the confined phase and a gradual enhancement toward the perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02945v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02945v2-abstract-full" style="display: none;"> In this paper we study the Chiral Separation Effect by means of first-principles lattice QCD simulations. For the first time in the literature, we determine the continuum limit of the associated conductivity using 2+1 flavors of dynamical staggered quarks at physical masses. The results reveal a suppression of the conductivity in the confined phase and a gradual enhancement toward the perturbative value for high temperatures. In addition to our dynamical setup, we also investigate the impact of the quenched approximation on the conductivity, using both staggered and Wilson quarks. Finally, we highlight the relevance of employing conserved vector and anomalous axial currents in the lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02945v2-abstract-full').style.display = 'none'; document.getElementById('2312.02945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2024) 142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19029">arXiv:2305.19029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19029">pdf</a>, <a href="https://arxiv.org/format/2305.19029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2023)229">10.1007/JHEP11(2023)229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal QCD in a non-uniform magnetic background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sandbote%2C+L">L. Sandbote</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19029v3-abstract-short" style="display: inline;"> Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19029v3-abstract-full').style.display = 'inline'; document.getElementById('2305.19029v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19029v3-abstract-full" style="display: none;"> Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamical staggered quarks with physical masses at a range of magnetic fields and temperatures, and extrapolate the results to the continuum limit. Analyzing the impact of the field on the quark condensate and the Polyakov loop, we find non-trivial spatial features that render the QCD medium qualitatively different as in the homogeneous setup, especially at temperatures around the transition. In addition, we construct leading-order chiral perturbation theory for the inhomogeneous background and compare its prediction to our lattice results at low temperature. Our findings will be useful to benchmark effective theories and low-energy models of QCD for a better description of peripheral heavy-ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19029v3-abstract-full').style.display = 'none'; document.getElementById('2305.19029v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP11(2023)229 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08607">arXiv:2301.08607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08607">pdf</a>, <a href="https://arxiv.org/format/2301.08607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion condensation at lower than physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08607v1-abstract-short" style="display: inline;"> In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08607v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08607v1-abstract-full" style="display: none;"> In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory. The thermal chiral transition at zero density might then be affected, depending on the shape of the BEC boundary, by its proximity. As a first step towards the chiral limit, we perform simulations of 2+1 flavors QCD at half the physical quark masses. The position of the BEC transition is then extracted and compared with the results at physical masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08607v1-abstract-full').style.display = 'none'; document.getElementById('2301.08607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, proceedings of the 39th International Symposium on Lattice Field Theory, LATTICE2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14016">arXiv:2212.14016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14016">pdf</a>, <a href="https://arxiv.org/format/2212.14016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2023)055">10.1007/JHEP07(2023)055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state and speed of sound of isospin-asymmetric QCD on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14016v2-abstract-short" style="display: inline;"> We determine the QCD equation of state at nonzero temperature in the presence of an isospin asymmetry between the light quark chemical potentials on the lattice. Our simulations employ $N_f=2+1$ flavors of dynamical staggered quarks at physical masses, using three different lattice spacings. The main results are based on a two-dimensional spline interpolation of the isospin density, from which all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14016v2-abstract-full').style.display = 'inline'; document.getElementById('2212.14016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14016v2-abstract-full" style="display: none;"> We determine the QCD equation of state at nonzero temperature in the presence of an isospin asymmetry between the light quark chemical potentials on the lattice. Our simulations employ $N_f=2+1$ flavors of dynamical staggered quarks at physical masses, using three different lattice spacings. The main results are based on a two-dimensional spline interpolation of the isospin density, from which all relevant quantities can be obtained analytically. In particular, we present results for the pressure, the interaction measure, the energy and entropy densities, as well as the speed of sound. Remarkably, the latter is found to exceed its ideal gas limit deep in the pion condensed phase, the first account of the violation of this limit in first principles QCD. Finally, we also compute the phase diagram in the temperature -- isospin density plane for the first time. The data for all observables will be useful for the benchmarking of effective theories and low-energy models of QCD and are provided in ancillary files for simple reuse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14016v2-abstract-full').style.display = 'none'; document.getElementById('2212.14016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 46 figures; v2: extended discussion of splines and data, conclusions unchanged, matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09916">arXiv:2212.09916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09916">pdf</a>, <a href="https://arxiv.org/format/2212.09916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics with stabilized Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basta%2C+R+F">Rocco Francesco Basta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09916v1-abstract-short" style="display: inline;"> Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the $N_f=3$ symmetric line on the Columbia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09916v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09916v1-abstract-full" style="display: none;"> Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the $N_f=3$ symmetric line on the Columbia plot, and to compare the results with those obtained with other fermion discretizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09916v1-abstract-full').style.display = 'none'; document.getElementById('2212.09916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02148">arXiv:2212.02148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02148">pdf</a>, <a href="https://arxiv.org/format/2212.02148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous transport phenomena on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Velasco%2C+E+G">Eduardo Garnacho Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02148v1-abstract-short" style="display: inline;"> The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02148v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02148v1-abstract-full" style="display: none;"> The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02148v1-abstract-full').style.display = 'none'; document.getElementById('2212.02148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution to the 39th International Symposium on Lattice Field Theory (Lattice 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01431">arXiv:2212.01431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01431">pdf</a>, <a href="https://arxiv.org/format/2212.01431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state and Taylor expansions at nonzero isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C3%B6di%2C+G">Gergely Endr枚di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01431v1-abstract-short" style="display: inline;"> We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01431v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01431v1-abstract-full" style="display: none;"> We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the extension of the EoS to small non-zero baryon chemical potentials via Taylor expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01431v1-abstract-full').style.display = 'none'; document.getElementById('2212.01431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10586">arXiv:2207.10586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10586">pdf</a>, <a href="https://arxiv.org/format/2207.10586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The light Roberge-Weiss tricritical endpoint at imaginary isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winterowd%2C+C">Christopher Winterowd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10586v1-abstract-short" style="display: inline;"> We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10586v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10586v1-abstract-full" style="display: none;"> We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10586v1-abstract-full').style.display = 'none'; document.getElementById('2207.10586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10117">arXiv:2207.10117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10117">pdf</a>, <a href="https://arxiv.org/format/2207.10117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The light Roberge-Weiss tricritical endpoint at imaginary isospin and baryon chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chabane%2C+A">Amine Chabane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winterowd%2C+C">Christopher Winterowd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10117v1-abstract-short" style="display: inline;"> Imaginary chemical potentials serve as a useful tool to constrain the QCD phase diagram and to gain insight into the thermodynamics of strongly interacting matter. In this study, we report on the first determination of the phase diagram for arbitrary imaginary baryon and isospin chemical potentials at high temperature using one-loop perturbation theory, revealing a nontrivial structure of Roberge-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10117v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10117v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10117v1-abstract-full" style="display: none;"> Imaginary chemical potentials serve as a useful tool to constrain the QCD phase diagram and to gain insight into the thermodynamics of strongly interacting matter. In this study, we report on the first determination of the phase diagram for arbitrary imaginary baryon and isospin chemical potentials at high temperature using one-loop perturbation theory, revealing a nontrivial structure of Roberge-Weiss (RW) phase transitions in this plane. Subsequently, this system is simulated numerically with $N_{\rm f}=2$ unimproved staggered quarks on $N_蟿=4$ lattices at a range of temperatures at one of the RW phase transitions. We establish a lower bound for the light quark mass, where the first-order transition line terminates in a tricritical point. It is found that this tricritical mass is increased as compared to the case of purely baryonic imaginary chemical potentials, indicating that our setup is more advantageous for identifying critical behavior towards the chiral limit. Finally, the dynamics of local Polyakov loop clusters is also studied in conjuction with the RW phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10117v1-abstract-full').style.display = 'none'; document.getElementById('2207.10117v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11113">arXiv:2112.11113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.11113">pdf</a>, <a href="https://arxiv.org/format/2112.11113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Searching for the BCS phase at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11113v1-abstract-short" style="display: inline;"> According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of $u$ and $\bar{d}$ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11113v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11113v1-abstract-full" style="display: none;"> According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of $u$ and $\bar{d}$ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC) of charged pions at $渭_\text{I}\geq m_蟺/2$. With lattice results, showing some indications that the deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify signatures of the superfluid BCS phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11113v1-abstract-full').style.display = 'none'; document.getElementById('2112.11113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13100">arXiv:2111.13100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13100">pdf</a>, <a href="https://arxiv.org/format/2111.13100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD with an inhomogeneous magnetic field background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13100v1-abstract-short" style="display: inline;"> The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13100v1-abstract-full').style.display = 'inline'; document.getElementById('2111.13100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13100v1-abstract-full" style="display: none;"> The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of quarks and gluons under such extreme conditions, we use lattice QCD simulations with $2+1$ staggered fermion flavors with physical quark masses and an inhomogeneous magnetic background for a range of temperatures covering the QCD phase transition. We assume a $1/\cosh^2$ function to model the field profile and vary its strength to analyze the impact on the computed observables and on the transition. We calculate local chiral condensates, local Polyakov loops and estimate the size of lattice artifacts. We find that both observables show non-trivial spatial features due to the interplay between the sea and the valence effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13100v1-abstract-full').style.display = 'none'; document.getElementById('2111.13100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, included in the Lattice21 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14750">arXiv:2110.14750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14750">pdf</a>, <a href="https://arxiv.org/format/2110.14750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics at non-zero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14750v2-abstract-short" style="display: inline;"> We study the thermodynamic properties of QCD at nonzero isospin chemical potential using improved staggered quarks at physical quark masses. In particular, we discuss the determination of the equation of state at zero and nonzero temperatures and show results. Using the results for the isospin density $n_I$, we also determine the phase diagram in the $(n_I,T)$-plane. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14750v2-abstract-full" style="display: none;"> We study the thermodynamic properties of QCD at nonzero isospin chemical potential using improved staggered quarks at physical quark masses. In particular, we discuss the determination of the equation of state at zero and nonzero temperatures and show results. Using the results for the isospin density $n_I$, we also determine the phase diagram in the $(n_I,T)$-plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14750v2-abstract-full').style.display = 'none'; document.getElementById('2110.14750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21); v2: corrected references, added ancillary data files and plotting scripts</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06413">arXiv:2102.06413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06413">pdf</a>, <a href="https://arxiv.org/format/2102.06413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12648-021-02127-9">10.1007/s12648-021-02127-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the flux tube spectrum of 3d SU(2) lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06413v2-abstract-short" style="display: inline;"> We perform a high precision measurement of the spectrum of the QCD flux tube in three-dimensional $\SU(2)$ gauge theory at multiple lattice spacings. We compare the results at large $q\bar{q}$ separations $R$ to the spectrum predicted by the effective string theory, including the leading order boundary term with a non-universal coefficient. We find qualitative agreement with the predictions from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06413v2-abstract-full').style.display = 'inline'; document.getElementById('2102.06413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06413v2-abstract-full" style="display: none;"> We perform a high precision measurement of the spectrum of the QCD flux tube in three-dimensional $\SU(2)$ gauge theory at multiple lattice spacings. We compare the results at large $q\bar{q}$ separations $R$ to the spectrum predicted by the effective string theory, including the leading order boundary term with a non-universal coefficient. We find qualitative agreement with the predictions from the leading order Nambu-Goto string theory down to small values of $R$, while, at the same time, observing the predicted splitting of the second excited state due to the boundary term. On fine lattices and at large $R$ we observe slight deviations from the EST predictions for the first excited state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06413v2-abstract-full').style.display = 'none'; document.getElementById('2102.06413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Indian Journal of Physics memorial issue for Pushan Majumdar. 16 pages, 5 figures; v2: enhanced discussion, conclusions unchanged, new version to match published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.02309">arXiv:2009.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.02309">pdf</a>, <a href="https://arxiv.org/format/2009.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.012701">10.1103/PhysRevLett.126.012701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion condensation in the early Universe at nonvanishing lepton flavor asymmetry and its gravitational wave signatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vovchenko%2C+V">Volodymyr Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hajkarim%2C+F">Fazlollah Hajkarim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaffner-Bielich%2C+J">J眉rgen Schaffner-Bielich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.02309v2-abstract-short" style="display: inline;"> We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD simulations at nonzero isospin density, is used to evaluate cosmic trajectories at various values of electron, muon, and tau lepton asymmetries that sati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02309v2-abstract-full').style.display = 'inline'; document.getElementById('2009.02309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.02309v2-abstract-full" style="display: none;"> We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD simulations at nonzero isospin density, is used to evaluate cosmic trajectories at various values of electron, muon, and tau lepton asymmetries that satisfy the available constraints on the total lepton asymmetry. The cosmic trajectory can pass through the pion condensed phase if the combined electron and muon asymmetry is sufficiently large: $|l_e + l_渭| \gtrsim 0.1$, with little sensitivity to the difference $l_e - l_渭$ between the individual flavor asymmetries. Future constraints on the values of the individual lepton flavor asymmetries will thus be able to either confirm or rule out the condensation of pions during the cosmic QCD epoch. We demonstrate that the pion condensed phase leaves an imprint both on the spectrum of primordial gravitational waves and on the mass distribution of primordial black holes at the QCD scale e.g. the black hole binary of recent LIGO event GW190521 can be formed in that phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02309v2-abstract-full').style.display = 'none'; document.getElementById('2009.02309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text + 5 pages supplementary material, contains ancillary files with figure data, to appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 012701 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07451">arXiv:1912.07451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07451">pdf</a>, <a href="https://arxiv.org/format/1912.07451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">S. Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07451v1-abstract-short" style="display: inline;"> For large isospin asymmetries, perturbation theory predicts the QCD ground state to be a superfluid phase of $u$ and $\bar{d}$ Cooper pairs. This phase, which is denoted as the BCS phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at $渭_I\ge m_蟺/2$ by an analytic crossover. A first hint for the existence of the BCS phase, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07451v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07451v1-abstract-full" style="display: none;"> For large isospin asymmetries, perturbation theory predicts the QCD ground state to be a superfluid phase of $u$ and $\bar{d}$ Cooper pairs. This phase, which is denoted as the BCS phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at $渭_I\ge m_蟺/2$ by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both, deconfinement and charged pion condensation, is coming from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this proceedings article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07451v1-abstract-full').style.display = 'none'; document.getElementById('1912.07451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, Proceedings of &#34;The II International Workshop on Theory of Hadronic Matter under Extreme Conditions&#34; - Dubna, JINR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00292">arXiv:1912.00292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.00292">pdf</a>, <a href="https://arxiv.org/format/1912.00292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD estimate of the quark-gluon plasma photon emission rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinberg%2C+A">Aman Steinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toniato%2C+A">Arianna Toniato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00292v1-abstract-short" style="display: inline;"> We present a computation of the photon emission rate of the quark-gluon plasma from two-flavor lattice QCD at a temperature of 254 MeV, which follows up on the work presented in [1]. We perform a continuum extrapolation of the vector-current correlator, and consider a linear combination of the Lorentz indices corresponding to a UV-finite spectral function. To extract the spectral function from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00292v1-abstract-full').style.display = 'inline'; document.getElementById('1912.00292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00292v1-abstract-full" style="display: none;"> We present a computation of the photon emission rate of the quark-gluon plasma from two-flavor lattice QCD at a temperature of 254 MeV, which follows up on the work presented in [1]. We perform a continuum extrapolation of the vector-current correlator, and consider a linear combination of the Lorentz indices corresponding to a UV-finite spectral function. To extract the spectral function from the lattice correlators, an ill-posed inverse problem, we model the spectral function with a Pad茅 ansatz. We further constrain our analysis by simultaneously fitting data with different momenta. We present results for a multi-momentum fit including the three smallest momenta available from our lattice analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00292v1-abstract-full').style.display = 'none'; document.getElementById('1912.00292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Contribution to the 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-082 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12197">arXiv:1911.12197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12197">pdf</a>, <a href="https://arxiv.org/format/1911.12197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Exploring the QCD phase diagram via reweighting from isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12197v1-abstract-short" style="display: inline;"> We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12197v1-abstract-full').style.display = 'inline'; document.getElementById('1911.12197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12197v1-abstract-full" style="display: none;"> We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and strange chemical potentials via reweighting in quark chemical potentials and discuss our results. Furthermore, we propose and implement an alternative method to approach nonzero baryon (and strange quark) chemical potentials. This method involves simulations where physical quarks are paired with auxiliary quarks in unphysical &#34;isospin&#34; doublets and a decoupling of the auxiliary quarks by mass reweighting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12197v1-abstract-full').style.display = 'none'; document.getElementById('1911.12197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, Proceedings of the 37th International Symposium on Lattice Field Theory, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04351">arXiv:1904.04351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.04351">pdf</a>, <a href="https://arxiv.org/format/1904.04351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2019)043">10.1007/JHEP07(2019)043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Induced QCD II: Numerical results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lohmayer%2C+R">Robert Lohmayer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wettig%2C+T">Tilo Wettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04351v1-abstract-short" style="display: inline;"> We numerically explore an alternative discretization of continuum $\text{SU}(N_c)$ Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer for gauge group $\text{U}(N_c)$. This discretization can be reformulated such that the self-interactions of the gauge field are induced by a path integral over $N_b$ auxiliary bosonic fields, which couple linearly to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04351v1-abstract-full').style.display = 'inline'; document.getElementById('1904.04351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04351v1-abstract-full" style="display: none;"> We numerically explore an alternative discretization of continuum $\text{SU}(N_c)$ Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer for gauge group $\text{U}(N_c)$. This discretization can be reformulated such that the self-interactions of the gauge field are induced by a path integral over $N_b$ auxiliary bosonic fields, which couple linearly to the gauge field. In the first paper of the series we have shown that the theory reproduces continuum $\text{SU}(N_c)$ Yang-Mills theory in $d=2$ dimensions if $N_b$ is larger than $N_c-\frac{3}{4}$ and conjectured, following the argument of Budzcies and Zirnbauer, that this remains true for $d&gt;2$. In the present paper, we test this conjecture by performing lattice simulations of the simplest nontrivial case, i.e., gauge group $\text{SU}(2)$ in three dimensions. We show that observables computed in the induced theory, such as the static $q\bar q$ potential and the deconfinement transition temperature, agree with the same observables computed from the ordinary plaquette action up to lattice artifacts. We also find that the bound for $N_b$ can be relaxed to $N_c-\frac{5}{4}$ as conjectured in our earlier paper. Studies of how the new discretization can be used to change the order of integration in the path integral to arrive at dual formulations of QCD are left for future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04351v1-abstract-full').style.display = 'none'; document.getElementById('1904.04351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 15 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02384">arXiv:1904.02384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.02384">pdf</a>, <a href="https://arxiv.org/format/1904.02384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Testing the strength of the $\text{U}_A(1)$ anomaly at the chiral phase transition in two-flavour QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Philipsen%2C+O">Owe Philipsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02384v1-abstract-short" style="display: inline;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'inline'; document.getElementById('1904.02384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02384v1-abstract-full" style="display: none;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to matrix elements and iso-singlet correlation functions. Furthermore, we present results on larger volumes, including first results at the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'none'; document.getElementById('1904.02384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, invited contribution to the 9th International Workshop on Chiral Dynamics, Sept. 17-21, 2018, Duke University, Durham, NC, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11779">arXiv:1811.11779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11779">pdf</a>, <a href="https://arxiv.org/format/1811.11779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Spectrum of the open QCD flux tube and its effective string description </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11779v1-abstract-short" style="display: inline;"> I perform a high precision measurement of the static quark-antiquark potential in three-dimensional ${\rm SU}(N)$ gauge theory with $N=2$ to 6. The results are compared to the effective string theory for the QCD flux tube and I obtain continuum limit results for the string tension and the non-universal leading order boundary coefficient, including an extensive analysis of all types of systematic u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11779v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11779v1-abstract-full" style="display: none;"> I perform a high precision measurement of the static quark-antiquark potential in three-dimensional ${\rm SU}(N)$ gauge theory with $N=2$ to 6. The results are compared to the effective string theory for the QCD flux tube and I obtain continuum limit results for the string tension and the non-universal leading order boundary coefficient, including an extensive analysis of all types of systematic uncertainties. The magnitude of the boundary coefficient decreases with increasing $N$, but remains non-vanishing in the large-$N$ limit. I also test for the presence of possible contributions from rigidity or massive modes and compare the results for the string theory parameters to data for the excited states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11779v1-abstract-full').style.display = 'none'; document.getElementById('1811.11779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, invited parallel talk at the XIII Quark Confinement and the Hadron Spectrum (Confinement 2018) conference, 31 July - 6 August 2018, Maynooth University, Ireland</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.06004">arXiv:1811.06004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.06004">pdf</a>, <a href="https://arxiv.org/format/1811.06004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.06004v1-abstract-short" style="display: inline;"> We study the phase diagram and the thermodynamic properties of QCD at nonzero isospin asymmetry at physical quark masses with staggered quarks. In particular, continuum results for the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition are presented. Our findings indicate that the pion condensation phase is restricted to $T\lesssim170$~MeV fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06004v1-abstract-full').style.display = 'inline'; document.getElementById('1811.06004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.06004v1-abstract-full" style="display: none;"> We study the phase diagram and the thermodynamic properties of QCD at nonzero isospin asymmetry at physical quark masses with staggered quarks. In particular, continuum results for the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition are presented. Our findings indicate that the pion condensation phase is restricted to $T\lesssim170$~MeV for isospin chemical potentials up to 325~MeV. We also use the data to test the range of validity of the Taylor expansion method and show first results for the equation of state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06004v1-abstract-full').style.display = 'none'; document.getElementById('1811.06004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, poster contribution to the XIII Quark Confinement and the Hadron Spectrum (Confinement 2018) conference, 31 July - 6 August 2018, Maynooth University, Ireland</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11045">arXiv:1810.11045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11045">pdf</a>, <a href="https://arxiv.org/format/1810.11045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014518">10.1103/PhysRevD.99.014518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reliability of Taylor expansions in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11045v2-abstract-short" style="display: inline;"> We investigate the reliability of the Taylor expansion method in QCD with isospin chemical potentials using lattice simulations. By comparing the expansion of the number density to direct results, the range of validity of the leading- and next-to-leading order expansions is determined. We also elaborate on the convergence properties of the Taylor series by comparing the leading estimate for the ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11045v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11045v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11045v2-abstract-full" style="display: none;"> We investigate the reliability of the Taylor expansion method in QCD with isospin chemical potentials using lattice simulations. By comparing the expansion of the number density to direct results, the range of validity of the leading- and next-to-leading order expansions is determined. We also elaborate on the convergence properties of the Taylor series by comparing the leading estimate for the radius of convergence to the position of the nearest singularity, i.e. the onset of pion condensation. Our results provide a handle for quantifying the uncertainties of Taylor expansions in baryon chemical potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11045v2-abstract-full').style.display = 'none'; document.getElementById('1810.11045v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures; v2: typos corrected, reference list updated, discussion on finite size effects clarified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014518 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10971">arXiv:1805.10971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.10971">pdf</a>, <a href="https://arxiv.org/format/1805.10971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.072001">10.1103/PhysRevLett.121.072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak decay of magnetized pions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10971v3-abstract-short" style="display: inline;"> The leptonic decay of charged pions is investigated in the presence of background magnetic fields. In this situation Lorentz symmetry is broken and new fundamental decay constants need to be introduced, associated with the decay via the vector part of the electroweak current. We calculate the magnetic field-dependence of both the usual and a new decay constant non-perturbatively on the lattice. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10971v3-abstract-full').style.display = 'inline'; document.getElementById('1805.10971v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10971v3-abstract-full" style="display: none;"> The leptonic decay of charged pions is investigated in the presence of background magnetic fields. In this situation Lorentz symmetry is broken and new fundamental decay constants need to be introduced, associated with the decay via the vector part of the electroweak current. We calculate the magnetic field-dependence of both the usual and a new decay constant non-perturbatively on the lattice. We employ both Wilson and staggered quarks and extrapolate the results to the continuum limit. With this non-perturbative input we calculate the tree-level electroweak amplitude for the full decay rate in strong magnetic fields. We find that the muonic decay of the charged pion is enhanced drastically by the magnetic field. We comment on possible astrophysical implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10971v3-abstract-full').style.display = 'none'; document.getElementById('1805.10971v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+3 pages, 4 figures. v3: discussion on systematic errors extended, version accepted for publication in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 072001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06685">arXiv:1802.06685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06685">pdf</a>, <a href="https://arxiv.org/format/1802.06685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.094510">10.1103/PhysRevD.98.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New class of compact stars: Pion stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fraga%2C+E+S">Eduardo S. Fraga</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hippert%2C+M">Mauricio Hippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaffner-Bielich%2C+J">Jurgen Schaffner-Bielich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06685v3-abstract-short" style="display: inline;"> We investigate the viability of a new type of compact star whose main constituent is a Bose-Einstein condensate of charged pions. Several different setups are considered, where a gas of charged leptons and neutrinos is also present. The pionic equation of state is obtained from lattice QCD simulations in the presence of an isospin chemical potential, and requires no modeling of the nuclear force.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06685v3-abstract-full').style.display = 'inline'; document.getElementById('1802.06685v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06685v3-abstract-full" style="display: none;"> We investigate the viability of a new type of compact star whose main constituent is a Bose-Einstein condensate of charged pions. Several different setups are considered, where a gas of charged leptons and neutrinos is also present. The pionic equation of state is obtained from lattice QCD simulations in the presence of an isospin chemical potential, and requires no modeling of the nuclear force. The gravitationally bound configurations of these systems are found by solving the Tolman-Oppenheimer-Volkov equations. We discuss weak decays within the pion condensed phase and elaborate on the generation mechanism of such objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06685v3-abstract-full').style.display = 'none'; document.getElementById('1802.06685v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2 includes discussion of weak processes in the condensed phase and effects of neutrinos. v3 fixed typos, minor changes, matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 094510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00298">arXiv:1801.00298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.00298">pdf</a>, <a href="https://arxiv.org/format/1801.00298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507045">10.1051/epjconf/201817507045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The pion quasiparticle in the low-temperature phase of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Robaina%2C+D">Daniel Robaina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zapp%2C+K">Kai Zapp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00298v1-abstract-short" style="display: inline;"> We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size $20\times 64^3$ at $T\approx 151$MeV and a lighter zero-temperature pion mass $m_蟺 \approx 185$ MeV. Furthermore, we investigate the G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00298v1-abstract-full').style.display = 'inline'; document.getElementById('1801.00298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00298v1-abstract-full" style="display: none;"> We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size $20\times 64^3$ at $T\approx 151$MeV and a lighter zero-temperature pion mass $m_蟺 \approx 185$ MeV. Furthermore, we investigate the Gell-Mann--Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00298v1-abstract-full').style.display = 'none'; document.getElementById('1801.00298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, talk presented at 35th annual International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/17-071 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08190">arXiv:1712.08190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08190">pdf</a>, <a href="https://arxiv.org/format/1712.08190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.054514">10.1103/PhysRevD.97.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD phase diagram for nonzero isospin-asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">S. Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08190v2-abstract-short" style="display: inline;"> The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08190v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08190v2-abstract-full" style="display: none;"> The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero modes and thereby stabilize the algorithm. The limit of vanishing explicit breaking is obtained by means of an extrapolation, which is facilitated by a novel improvement program employing the singular value representation of the Dirac operator. Our findings indicate that no pion condensation takes place above $T\approx 160$ MeV and also suggest that the deconfinement crossover continuously connects to the BEC-BCS crossover at high isospin asymmetries. The results may be directly compared to effective theories and model approaches to QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08190v2-abstract-full').style.display = 'none'; document.getElementById('1712.08190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures; v2: to match published version, corrected typos and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 054514 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07050">arXiv:1710.07050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.07050">pdf</a>, <a href="https://arxiv.org/format/1710.07050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507044">10.1051/epjconf/201817507044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An estimate for the thermal photon rate from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinberg%2C+A">Aman Steinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07050v1-abstract-short" style="display: inline;"> We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range 蟺T/2 to 2蟺T. The relevant Euclidean vector current correlation functions are computed with $N_{\mathrm f}$ = 2 Wilson clover fermions in the ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07050v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07050v1-abstract-full" style="display: none;"> We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range 蟺T/2 to 2蟺T. The relevant Euclidean vector current correlation functions are computed with $N_{\mathrm f}$ = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a model-independent estimate from the Backus-Gilbert method to give an estimate for the photon rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07050v1-abstract-full').style.display = 'none'; document.getElementById('1710.07050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, talk presented at 35th annual International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01502">arXiv:1710.01502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01502">pdf</a>, <a href="https://arxiv.org/format/1710.01502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513005">10.1051/epjconf/201817513005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion decay in magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01502v1-abstract-short" style="display: inline;"> The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01502v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01502v1-abstract-full" style="display: none;"> The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbatively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01502v1-abstract-full').style.display = 'none'; document.getElementById('1710.01502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10487">arXiv:1709.10487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10487">pdf</a>, <a href="https://arxiv.org/format/1709.10487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507020">10.1051/epjconf/201817507020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD at finite isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10487v1-abstract-short" style="display: inline;"> We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10487v1-abstract-full').style.display = 'inline'; document.getElementById('1709.10487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10487v1-abstract-full" style="display: none;"> We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10487v1-abstract-full').style.display = 'none'; document.getElementById('1709.10487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, Proceedings of the 35th International Symposium on Lattice Field Theory, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05600">arXiv:1707.05600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05600">pdf</a>, <a href="https://arxiv.org/format/1707.05600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.034505">10.1103/PhysRevD.97.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson masses in electromagnetic fields with Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05600v3-abstract-short" style="display: inline;"> We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured $蟻$-meson condensation at strong magnetic fields. The con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05600v3-abstract-full').style.display = 'inline'; document.getElementById('1707.05600v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05600v3-abstract-full" style="display: none;"> We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured $蟻$-meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between $蟻$-mesons and pions. We also derive Ward-Takashi identities for QCD+QED both in the continuum formulation and for (order $a$-improved) Wilson fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05600v3-abstract-full').style.display = 'none'; document.getElementById('1707.05600v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures; v2: revtex4 format, updated references, extended discussions, included study of finite size effects, conclusions unchanged; v3: improved discussions on crucial points, conclusions unchanged, new version to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 034505 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.03828">arXiv:1705.03828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.03828">pdf</a>, <a href="https://arxiv.org/format/1705.03828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2017)008">10.1007/JHEP07(2017)008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum of the open QCD flux tube and its effective string description I: 3d static potential in SU(N=2,3) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.03828v1-abstract-short" style="display: inline;"> We perform a high precision measurement of the static $q\bar{q}$ potential in three-dimensional SU($N$) gauge theory with $N=2,3$ and compare the results to the potential obtained from the effective string theory. In particular, we show that the exponent of the leading order correction in $1/R$ is 4, as predicted, and obtain accurate results for the continuum limits of the string tension and the n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03828v1-abstract-full').style.display = 'inline'; document.getElementById('1705.03828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.03828v1-abstract-full" style="display: none;"> We perform a high precision measurement of the static $q\bar{q}$ potential in three-dimensional SU($N$) gauge theory with $N=2,3$ and compare the results to the potential obtained from the effective string theory. In particular, we show that the exponent of the leading order correction in $1/R$ is 4, as predicted, and obtain accurate results for the continuum limits of the string tension and the non-universal boundary coefficient $\bar{b}_2$, including an extensive analysis of all types of systematic uncertainties. We find that the magnitude of $\bar{b}_2$ decreases with increasing $N$, leading to the possibility of a vanishing $\bar{b}_2$ in the large $N$ limit. In the standard form of the effective string theory possible massive modes and the presence of a rigidity term are usually not considered, even though they might give a contribution to the energy levels. To investigate the effect of these terms, we perform a second analysis, including these contributions. We find that the associated expression for the potential also provides a good description of the data. The resulting continuum values for $\bar{b}_2$ are about a factor of 2 smaller than in the standard analysis, due to contaminations from an additional $1/R^4$ term. However, $\bar{b}_2$ shows a similar decrease in magnitude with increasing $N$. In the course of this extended analysis we also obtain continuum results for the masses appearing in the additional terms and we find that they are around twice as large as the square root of the string tension in the continuum and compatible between SU(2) and SU(3) gauge theory. In the follow up papers we will extend our investigations to the large $N$ limit and excited states of the open flux tube. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03828v1-abstract-full').style.display = 'none'; document.getElementById('1705.03828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 10 figures, 11 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09689">arXiv:1611.09689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.09689">pdf</a>, <a href="https://arxiv.org/format/1611.09689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Static and non-static vector screening masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinberg%2C+A">Aman Steinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zapp%2C+K">Kai Zapp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09689v1-abstract-short" style="display: inline;"> Thermal screening masses of the conserved vector current are calculated both in a weak-coupling approach and in lattice QCD. The inverse of a screening mass can be understood as the length scale over which an external electric field is screened in a QCD medium. The comparison of screening masses both in the zero and non-zero Matsubara frequency sectors shows good agreement of the perturbative and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09689v1-abstract-full').style.display = 'inline'; document.getElementById('1611.09689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09689v1-abstract-full" style="display: none;"> Thermal screening masses of the conserved vector current are calculated both in a weak-coupling approach and in lattice QCD. The inverse of a screening mass can be understood as the length scale over which an external electric field is screened in a QCD medium. The comparison of screening masses both in the zero and non-zero Matsubara frequency sectors shows good agreement of the perturbative and the lattice results. Moreover, at $T\approx 508\mathrm{MeV}$ the lightest screening mass lies above the free result ($2蟺T$), in agreement with the $\mathcal{O}(g^2)$ weak-coupling prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09689v1-abstract-full').style.display = 'none'; document.getElementById('1611.09689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, talk presented at 34th annual International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06758">arXiv:1611.06758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.06758">pdf</a>, <a href="https://arxiv.org/format/1611.06758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD phase diagram with isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06758v1-abstract-short" style="display: inline;"> In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06758v1-abstract-full').style.display = 'inline'; document.getElementById('1611.06758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06758v1-abstract-full" style="display: none;"> In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06758v1-abstract-full').style.display = 'none'; document.getElementById('1611.06758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, Combined proceedings of the authors contributions to the 34th International Symposium on Lattice Field Theory (Lattice 2016)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06466">arXiv:1609.06466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06466">pdf</a>, <a href="https://arxiv.org/format/1609.06466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2016)087">10.1007/JHEP11(2016)087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Induced QCD I: Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lohmayer%2C+R">Robert Lohmayer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wettig%2C+T">Tilo Wettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06466v1-abstract-short" style="display: inline;"> We explore an alternative discretization of continuum SU(N_c) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N_b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N_b c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06466v1-abstract-full').style.display = 'inline'; document.getElementById('1609.06466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06466v1-abstract-full" style="display: none;"> We explore an alternative discretization of continuum SU(N_c) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N_b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N_b can be as small as N_c. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N_c) to SU(N_c), (ii) derive refined bounds on N_b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06466v1-abstract-full').style.display = 'none'; document.getElementById('1609.06466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06882">arXiv:1608.06882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06882">pdf</a>, <a href="https://arxiv.org/format/1608.06882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2016)158">10.1007/JHEP12(2016)158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Philipsen%2C+O">Owe Philipsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Robaina%2C+D">Daniel Robaina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06882v2-abstract-short" style="display: inline;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06882v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06882v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06882v2-abstract-full" style="display: none;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06882v2-abstract-full').style.display = 'none'; document.getElementById('1608.06882v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 16 figure, 12 tables; v2: typos corrected; enhanced explanations and discussions; included study of systematic effects for the extraction of screening masses; conclusions unchanged; new version to match published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06969">arXiv:1603.06969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.06969">pdf</a>, <a href="https://arxiv.org/format/1603.06969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X16430016">10.1142/S0217751X16430016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective string description of confining flux tubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meineri%2C+M">Marco Meineri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06969v1-abstract-short" style="display: inline;"> We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06969v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06969v1-abstract-full" style="display: none;"> We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06969v1-abstract-full').style.display = 'none'; document.getElementById('1603.06969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures, Contribution to IJMPA special issue &#34;Lattice gauge theory beyond QCD&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.07249">arXiv:1512.07249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.07249">pdf</a>, <a href="https://arxiv.org/format/1512.07249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.054510">10.1103/PhysRevD.93.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jaeger%2C+B">Benjamin Jaeger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.07249v1-abstract-short" style="display: inline;"> We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures $T/T_c=0.156, 0.8, 1.0, 1.25$ and $1.67$ with $T_c\simeq203$MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of $\simeq270$MeV. Exploiting exact sum rules a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07249v1-abstract-full').style.display = 'inline'; document.getElementById('1512.07249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.07249v1-abstract-full" style="display: none;"> We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures $T/T_c=0.156, 0.8, 1.0, 1.25$ and $1.67$ with $T_c\simeq203$MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of $\simeq270$MeV. Exploiting exact sum rules and applying a phenomenologically motivated ansatz allows us to determine the spectral function $蟻(蠅,T)$ via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the $蟻$ meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07249v1-abstract-full').style.display = 'none'; document.getElementById('1512.07249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/15-019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 054510 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.08374">arXiv:1511.08374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.08374">pdf</a>, <a href="https://arxiv.org/format/1511.08374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Induced YM theory with auxiliary bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lohmayer%2C+R">Robert Lohmayer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wettig%2C+T">Tilo Wettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.08374v1-abstract-short" style="display: inline;"> We study pure SU(N) lattice gauge theory with a plaquette weight factor given by an inverse determinant which can be written as an integral over auxiliary bosonic fields (modifying a proposal of Budczies and Zirnbauer). We derive conditions for the existence of a continuum limit and its equivalence to Yang-Mills theory. Furthermore, we perturbatively compute the relation between the coupling const&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08374v1-abstract-full').style.display = 'inline'; document.getElementById('1511.08374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.08374v1-abstract-full" style="display: none;"> We study pure SU(N) lattice gauge theory with a plaquette weight factor given by an inverse determinant which can be written as an integral over auxiliary bosonic fields (modifying a proposal of Budczies and Zirnbauer). We derive conditions for the existence of a continuum limit and its equivalence to Yang-Mills theory. Furthermore, we perturbatively compute the relation between the coupling constants of the `induced&#39; gauge action and the familiar Wilson gauge action using the background-field technique. The perturbative relation agrees well with numerical results for N=2 in three dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08374v1-abstract-full').style.display = 'none'; document.getElementById('1511.08374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure; contribution at the 33rd International Symposium on Lattice Field Theory, 14 -18 July 2015, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.03899">arXiv:1510.03899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.03899">pdf</a>, <a href="https://arxiv.org/format/1510.03899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G">Gunnar Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.03899v1-abstract-short" style="display: inline;"> We study the change of the QCD spectrum of low-lying mesons in the presence of an external magnetic field using Wilson fermions in the quenched approximation. Motivated by qualitative differences observed in the spectra of overlap and Wilson fermions for large magnetic fields, we investigate the dependence of the additive quark mass renormalisation on the magnetic field. We provide evidence that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03899v1-abstract-full').style.display = 'inline'; document.getElementById('1510.03899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.03899v1-abstract-full" style="display: none;"> We study the change of the QCD spectrum of low-lying mesons in the presence of an external magnetic field using Wilson fermions in the quenched approximation. Motivated by qualitative differences observed in the spectra of overlap and Wilson fermions for large magnetic fields, we investigate the dependence of the additive quark mass renormalisation on the magnetic field. We provide evidence that the magnetic field changes the critical quark mass both in the free case and on our quenched ensemble. The associated change of the bare quark mass with the magnetic field affects the spectrum and is relevant for the magnetic field dependence of a number of related quantities. We derive Ward identities for lattice and continuum QCD+QED from which we can extract the current quark masses. We also report on a first test of the tuning of the quark masses with the magnetic field using the current quark masses, and show that this tuning resolves the qualitative discrepancy between the Wilson and overlap spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03899v1-abstract-full').style.display = 'none'; document.getElementById('1510.03899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 5 figures, talk presented at the 33rd International Symposium on Lattice Field Theory (Lattice 2015), 14-18 July 2015, Kobe International Conference Center, Kobe, Japan</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brandt%2C+B+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10