CINXE.COM
Search results for: hydrolytic enzymes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrolytic enzymes</title> <meta name="description" content="Search results for: hydrolytic enzymes"> <meta name="keywords" content="hydrolytic enzymes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrolytic enzymes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrolytic enzymes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 695</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrolytic enzymes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Zimoch-Korzycka">Anna Zimoch-Korzycka</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Kulig"> Dominika Kulig</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Jarmoluk"> Andrzej Jarmoluk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosanase" title=" chitosanase"> chitosanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitooligosaccharides" title=" chitooligosaccharides"> chitooligosaccharides</a> </p> <a href="https://publications.waset.org/abstracts/7592/characterisation-of-chitooligomers-prepared-with-the-aid-of-cellulase-xylanase-and-chitosanase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Immobilization of Enzymes and Proteins on Epoxy-Activated Supports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khorshidian">Ehsan Khorshidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Aghili"> Sina Aghili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20enzymes" title="immobilization of enzymes">immobilization of enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20supports" title=" epoxy supports"> epoxy supports</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20multipoint%20covalent%20attachment" title=" enzyme multipoint covalent attachment"> enzyme multipoint covalent attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20lipases" title=" microbial lipases"> microbial lipases</a> </p> <a href="https://publications.waset.org/abstracts/9260/immobilization-of-enzymes-and-proteins-on-epoxy-activated-supports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Aidani">Rachid El Aidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20Nguyen-Tri"> Phuong Nguyen-Tri</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20ageing" title="hydrolytic ageing">hydrolytic ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20membrane" title=" moisture membrane"> moisture membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20permeability" title=" water vapor permeability"> water vapor permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/34137/influence-of-hydrolytic-degradation-on-properties-of-moisture-membranes-used-in-fire-protective-clothing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedita%20Sharma">Nivedita Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulose" title=" lignocellulose"> lignocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20enzymes" title=" microbial enzymes"> microbial enzymes</a> </p> <a href="https://publications.waset.org/abstracts/161810/second-generation-biofuels-a-futuristic-green-deal-for-lignocellulosic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Pinheiro%20Silva">Jessica Pinheiro Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Brenda%20Rabello%20De%20Camargo"> Brenda Rabello De Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Gusmao%20De%20Morais"> Daniel Gusmao De Morais</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliane%20%20Ferreira%20Noronha"> Eliane Ferreira Noronha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title="cellulosome">cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=CipA" title=" CipA"> CipA</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title=" Clostridium thermocellum"> Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesin" title=" cohesin"> cohesin</a>, <a href="https://publications.waset.org/abstracts/search?q=dockerin" title=" dockerin"> dockerin</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/79260/heterologous-expression-of-a-clostridium-thermocellum-proteins-and-assembly-of-cellulosomes-in-vitro-for-biotechnology-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Insight into the Physical Ageing of Poly(Butylene Succinate)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Georgousopoulou">I. Georgousopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vouyiouka"> S. Vouyiouka</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Papaspyrides"> C. Papaspyrides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20degradation" title="hydrolytic degradation">hydrolytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20ageing" title=" physical ageing"> physical ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28butylene%20succinate%29" title=" poly(butylene succinate)"> poly(butylene succinate)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a> </p> <a href="https://publications.waset.org/abstracts/18712/insight-into-the-physical-ageing-of-polybutylene-succinate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Molecular Docking of Marrubiin in Candida Rugosa Lipase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benarous%20Khedidja">Benarous Khedidja</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousfi%20Mohamed"> Yousfi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. These Candida species have been reported to have lipolytic activity by secretion of lipolytic enzymes such as esterases, lipases and phospholipases. These Extracellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin, which bind to a major component of the fungal cell membrane (ergosterol). This binding forms pores in the membrane that lead to death of the fungus. Due to their secondary effects, scientists have thought of another treatment basing on lipase inhibition but we haven’t found any lipase inhibitors used as candidiasis treatment. In this work, we are interested to lipases inhibitors such as alkaloids as another candidiasis treatment. In the first part, we have proceeded to optimize the alkaloid structures and protein 3D structure using Hyperchem software. Secondly, we have docked inhibitors using Genetic algorithm with GOLD software. The results have shown ten possibilities of binding inhibitor to Candida rugosa lipase (CRL) but only one possibility has been accepted depending on the weakest binding energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marrubiin" title="marrubiin">marrubiin</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20rugosa%20lipase" title=" candida rugosa lipase"> candida rugosa lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a> </p> <a href="https://publications.waset.org/abstracts/2333/molecular-docking-of-marrubiin-in-candida-rugosa-lipase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Enhanced Enzymes Production through Immobilization of Filamentous Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanara%20B.%20Suleimenova">Zhanara B. Suleimenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhazira%20K.%20Saduyeva"> Zhazira K. Saduyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filamentous fungi are major producers of enzymes that have important applications in the food and beverage industries. The overall objective of this research is a strain improvement technology for efficient industrial enzymes production. The new way of filamentous fungi cultivation method has been developed. Such technology prolong producers’ cultivation period up to 60 days and create the opportunity to obtain enzymes repeatedly in every 2-3 days of fungal cultivation. This method is based on immobilizing enzymes producers with solid support in submerged conditions of growth. Immobilizing has a range of advantages: Decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, ability of various enzymes simultaneous production, etc. Design of proposed technology gives the opportunity to increase the activity of immobilized cells culture filtrate comparing to free cells, growing in periodic culture conditions. Thus, proposed research focuses on new, more versatile, microorganisms capable of squeezing more end-products as well as proposed cultivation technology led to increased enzymatic productivity by several times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filamentous%20fungi" title="filamentous fungi">filamentous fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20enzymes%20production" title=" industrial enzymes production"> industrial enzymes production</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20improvement" title=" strain improvement "> strain improvement </a> </p> <a href="https://publications.waset.org/abstracts/27195/enhanced-enzymes-production-through-immobilization-of-filamentous-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Isolation and Screening of Fungal Strains for β-Galactosidase Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar">Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur"> Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20S.%20Singh"> Ram S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are the biocatalysts which catalyze the biochemical processes and thus have a wide variety of applications in the industrial sector. <em>β</em>-Galactosidase (E.C. 3.2.1.23) also known as lactase, is one of the prime enzymes, which has significant potential in the dairy and food processing industries. It has the capability to catalyze both the hydrolytic reaction for the production of lactose hydrolyzed milk and transgalactosylation reaction for the synthesis of prebiotics such as lactulose and galactooligosaccharides. These prebiotics have various nutritional and technological benefits. Although, the enzyme is naturally present in almonds, peaches, apricots and other variety of fruits and animals, the extraction of enzyme from these sources increases the cost of enzyme. Therefore, focus has been shifted towards the production of low cost enzyme from the microorganisms such as bacteria, yeast and fungi. As compared to yeast and bacteria, fungal <em>β</em>-galactosidase is generally preferred as being extracellular and thermostable in nature. Keeping the above in view, the present study was carried out for the isolation of the <em>β</em>-galactosidase producing fungal strain from the food as well as the agricultural wastes. A total of more than 100 fungal cultures were examined for their potential in enzyme production. All the fungal strains were screened using X-gal and IPTG as inducers in the modified Czapek Dox Agar medium. Among the various isolated fungal strains, the strain exhibiting the highest enzyme activity was chosen for further phenotypic and genotypic characterization. The strain was identified as <em>Rhizomucor pusillus </em>on the basis of 5.8s RNA gene sequencing data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta-galactosidase" title="beta-galactosidase">beta-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal" title=" fungal"> fungal</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a> </p> <a href="https://publications.waset.org/abstracts/50588/isolation-and-screening-of-fungal-strains-for-v-galactosidase-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20S.%20Singh"> Ram S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-galactosidase" title="β-galactosidase">β-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fungus" title=" fungus"> fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/26112/utilization-of-whey-for-the-production-of-v-galactosidase-using-yeast-and-fungal-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbehery">Mohamed Elbehery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a> </p> <a href="https://publications.waset.org/abstracts/166234/restoration-and-conservation-of-historical-textiles-using-covalently-immobilized-enzymes-on-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activities" title="enzyme activities">enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a> </p> <a href="https://publications.waset.org/abstracts/2728/comparative-analysis-of-enzyme-activities-concerned-in-decomposition-of-toluene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20safensis%20LCX" title="Bacillus safensis LCX">Bacillus safensis LCX</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20enzymes" title=" lignocellulosic enzymes"> lignocellulosic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a> </p> <a href="https://publications.waset.org/abstracts/64985/production-of-lignocellulosic-enzymes-by-bacillus-safensis-lcx-using-agro-food-wastes-in-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Influence of Heliotropium Undulatum on Hepatic Glutathione Conjugating Enzymes System in Acetylhydrazide-Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ameddah">S. Ameddah</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Deffa"> O. Deffa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aissaoui"> H. Aissaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Menad"> A. Menad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mekkiou"> R. Mekkiou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Benayache"> F. Benayache</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benayache"> S. Benayache </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acetylhydrazide (ACHD) is a metabolite of the anti-tubercular drug isoniazid (INH) that has been implicated in liver damage. This study was designed to evaluate hapatoprotective of n-BuOH extract of Heliotrpium undulatum (HUBE) in ACHD hepatotoxicity in rats. Hepatic damage was induced by administration of ACHD (300 mg/Kg op). The protection was affected by the administration of HUBE (200 mg/Kg op) for 14 days before ACHD administration, caused a decrease in LPO levels and in the transaminase and ALP levels and restored the GSH and its related enzymes (GPx, GST, GR) (50-62 %). Simultaneous administration of HUBE afforded a partial protection in statue of hepatic GSH conjugating enzymes upon administration of ACHD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heliotrpium%20undulatum" title="heliotrpium undulatum">heliotrpium undulatum</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylhydrazide" title=" acetylhydrazide"> acetylhydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20conjugating%20enzymes" title=" glutathione conjugating enzymes"> glutathione conjugating enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxydatif%20stress" title=" oxydatif stress"> oxydatif stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heaptoprotectif%20effect" title=" heaptoprotectif effect"> heaptoprotectif effect</a> </p> <a href="https://publications.waset.org/abstracts/40515/influence-of-heliotropium-undulatum-on-hepatic-glutathione-conjugating-enzymes-system-in-acetylhydrazide-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Extracellular Hydrolase-Producing Bacteria Isolated from Chilca Salterns in Peru</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carol%20N.%20Flores-Fern%C3%A1ndez">Carol N. Flores-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Espilco"> Guadalupe Espilco</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Esquerre"> Cynthia Esquerre</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20I.%20Zavaleta"> Amparo I. Zavaleta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saline environments represent a valuable source of enzymes with novel properties and particular features for application in food, pharmaceutical and chemical industry. This study focuses on the isolation and screening of hydrolase-producing bacteria from Chilca salterns and the evaluation of their biotechnological potential. Soil samples were collected from Chilca salterns in Peru. For the isolation, medium containing 0.2 % of yeast extract, 5 % of NaCl and 10 % of the soil sample was used. After 72 h of incubation at 37 °C, serial dilutions were made up to 10−12 dilutions, spread on agar plates with 0.5 % of yeast extract and 5 % of NaCl, and incubated at 37 °C for 48 h. Screening of hydrolase-producing bacteria was carried out for cellulases, amylases, lipases, DNase, and proteases on specific media. Moreover, protease-producing bacteria were tested using protein extracted from the following legumes as substrate: Glycine max, Lupinus mutabilis, Pisum sativum, Erythrina edulis, Cicer arietinum, Phaseolus vulgaris and Vicia faba. A total of 16 strains were isolated from soil samples. On the screening media; 75, 44, 81 and 50 % were cellulase, amylase, DNase and protease producers, respectively. Also, 19 % of the isolates produced all the hydrolytic enzymes above mentioned. Lipase producers were not found. The 37 % and 12 % of the strains grew at 20 % and 30 % of salt concentration, respectively. In addition, 75 % of the strains grew at pH range between 5 and 10. From the total of protease-producing bacteria, 100 % hydrolyzed Glycine max, Lupinus mutabilis, and Pisum sativum protein, while 87 % hydrolyzed Erythrina edulis and Cicer arietinum protein. Finally, 75 % and 50 % of the strains hydrolyzed Phaseolus vulgaris and Vicia faba protein, respectively. Hydrolase-producing bacteria isolated from Chilca salterns in Peru grew at high salt concentrations and wide range of pH. In addition, protease-producing bacteria hydrolyzed protein from different sources such as leguminous. These enzymes have great biotechnological potential and could be used for different industrial processes and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular" title=" extracellular"> extracellular</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolases" title=" hydrolases"> hydrolases</a>, <a href="https://publications.waset.org/abstracts/search?q=Peru" title=" Peru"> Peru</a>, <a href="https://publications.waset.org/abstracts/search?q=salterns" title=" salterns"> salterns</a> </p> <a href="https://publications.waset.org/abstracts/72791/extracellular-hydrolase-producing-bacteria-isolated-from-chilca-salterns-in-peru" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kumar">Alok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Ram"> Hari Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebin%20Thomas"> Lebin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ved%20Pal%20Singh"> Ved Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent%20tolerant" title=" organic solvent tolerant"> organic solvent tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=protease" title=" protease"> protease</a> </p> <a href="https://publications.waset.org/abstracts/4042/production-of-organic-solvent-tolerant-hydrolytic-enzymes-amylase-and-protease-by-bacteria-isolated-from-soil-of-a-dairy-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu">A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Abdu"> Hamisu Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Saidu"> A. A. Saidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betulinic%20acid" title="betulinic acid">betulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosidation" title=" glycosidation"> glycosidation</a>, <a href="https://publications.waset.org/abstracts/search?q=novozyme-435" title=" novozyme-435"> novozyme-435</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/22008/study-of-individual-parameters-on-the-enzymatic-glycosidation-of-betulinic-acid-by-novozyme-435" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jwan%20J.%20Abdullah">Jwan J. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Greetham%20Darren"> Greetham Darren</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20A"> Gregory A</a>, <a href="https://publications.waset.org/abstracts/search?q=Tucker"> Tucker</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenyu%20Du"> Chenyu Du </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSF" title="SSF">SSF</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis"> enzyme hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20%28MSW%29" title=" municipal solid waste (MSW)"> municipal solid waste (MSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20conditions" title=" optimizing conditions"> optimizing conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis "> enzyme hydrolysis </a> </p> <a href="https://publications.waset.org/abstracts/26580/optimizing-cellulase-production-from-municipal-solid-wastes-msw-following-a-solid-state-fermentation-ssf-by-trichoderma-reesei-and-aspergillus-niger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong">Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Essien%20U.%20Essien"> Essien U. Essien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20enzymes" title="diagnostic enzymes">diagnostic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=tissues%20investigations" title=" tissues investigations"> tissues investigations</a> </p> <a href="https://publications.waset.org/abstracts/31272/assessment-of-diagnostic-enzymes-as-indices-of-heavy-metal-pollution-in-tilapia-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Gregorim%20Fernandes">Amanda Gregorim Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorena%20Cardoso%20Cintra"> Lorena Cardoso Cintra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalia%20Santos%20Amorim%20Jesuino"> Rosalia Santos Amorim Jesuino</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabricia%20Paula%20De%20Faria"> Fabricia Paula De Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcio%20Jos%C3%A9%20Po%C3%A7as%20Fonseca"> Marcio José Poças Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-glucosidase" title=" beta-glucosidase"> beta-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=penicillium%20echinulatum" title=" penicillium echinulatum"> penicillium echinulatum</a> </p> <a href="https://publications.waset.org/abstracts/61890/cloning-and-expression-a-gene-of-v-glucosidase-from-penicillium-echinulatum-in-pichia-pastoris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> New Biobased(Furanic-Sulfonated) Poly(esteramide)s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhir%20Abid">Souhir Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furan" title="furan">furan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20degradation" title=" hydrolytic degradation"> hydrolytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycondensation" title=" polycondensation"> polycondensation</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ester%20amide%29" title=" poly(ester amide)"> poly(ester amide)</a> </p> <a href="https://publications.waset.org/abstracts/38209/new-biobasedfuranic-sulfonated-polyesteramides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Bioactivity of Peptides from Two Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farzaneh">Parisa Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Harati"> Azade Harati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-peptide" title="bio-peptide">bio-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20enzymes" title=" gastrointestinal enzymes"> gastrointestinal enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/183239/bioactivity-of-peptides-from-two-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Extracellular Enzymes as Promising Soil Health Indicators: Assessing Response to Different Land Uses Using Long-Term Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munisath%20Khandoker">Munisath Khandoker</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Haefele"> Stephan Haefele</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Gregory"> Andy Gregory</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracellular enzymes play a key role in soil organic carbon (SOC) decomposition and nutrient cycling and are known indicators for soil health; however, it is not understood how these enzymes respond to different land uses and their relationships to other soil properties have not been extensively reviewed. The relationships among the activities of three soil enzymes: β-glucosaminidase (NAG), phosphomonoesterase (PHO) and β-glucosidase (GLU), were examined. The impact of soil organic amendments, soil types and land management on soil enzyme activities were reviewed, and it was hypothesized that soils with increased SOC have increased enzyme activity. Long-term experiments at Rothamsted Research Woburn and Harpenden sites in the UK were used to evaluate how different management practices affect enzyme activity involved in carbon (C) and nitrogen (N) cycling in the soil. Samples were collected from soils with different organic treatments such as straw, farmyard manure (FYM), compost additions, cover crops and permanent grass cover to assess whether SOC can be linked with increased levels of enzymatic activity and what influence, if any, enzymatic activity has on total C and N in the soil. Investigating the interactions of important enzymes with soil characteristics and SOC can help to better understand the health of soils. Studies on long-term experiments with known histories and large datasets can better help with this. SOC tends to decrease during land use changes from natural ecosystems to agricultural systems; therefore, it is imperative that agricultural lands find ways to increase and/or maintain SOC in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20soil%20health%20indicators" title="biological soil health indicators">biological soil health indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes" title=" extracellular enzymes"> extracellular enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/172000/extracellular-enzymes-as-promising-soil-health-indicators-assessing-response-to-different-land-uses-using-long-term-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Reusability of Coimmobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20%C5%81ochowicz">Aleksandra Łochowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20%C5%9Awi%C4%99tochowska"> Daria Świętochowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Loredano%20Pollegioni"> Loredano Pollegioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazim%20Ocal"> Nazim Ocal</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Charmantray"> Franck Charmantray</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Hecquet"> Laurence Hecquet</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Szyma%C5%84ska"> Katarzyna Szymańska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multienzymatic cascade reactions are nowadays widely used in pharmaceutical, chemical and cosmetics industries to produce high valuable compounds. They can be carried out in two ways, step by step and one-pot. If two or more enzymes are in the same reaction vessel is necessary to work out the compromise to run the reaction in optimal conditions for each enzyme. So far most of the reports of multienzymatic cascades concern on usage of free enzymes. Unfortunately using free enzymes as catalysts of reactions accomplish high cost. What is more, free enzymes are soluble in solvents which makes reuse impossible. To overcome this obstacle enzymes can be immobilized what provides heterogeneity of biocatalyst that enables reuse and easy separation of the enzyme from solvents and reaction products. Usually, immobilization increase also the thermal and operational stability of enzyme. The advantages of using immobilized multienzymes are enhanced enzyme stability, improved cascade enzymatic activity via substrate channeling, and ease of recovery for reuse. The one-pot immobilized multienzymatic cascade can be carried out in mixed or coimmobilized type. When biocatalysts are coimmobilized on the same carrier the are in close contact to each other which increase the reaction rate and catalytic efficiency, and eliminate the lag time. However, in this type providing the optimal conditions both in the process of immobilization and cascade reaction for each enzyme is complicated. Herein, we examined immobilization of 3 enzymes: D-amino acid oxidase from Rhodotorula gracilis, commercially available catalase and transketolase from Geobacillus stearothermophilus. As a support we used silica monoliths with hierarchical structure of pores. Then we checked their stability and reusability in one-pot cascade of L-erythrulose and hydroxypuryvate acid synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysts" title="biocatalysts">biocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20immobilization" title=" enzyme immobilization"> enzyme immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=multienzymatic%20reaction" title=" multienzymatic reaction"> multienzymatic reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20carriers" title=" silica carriers"> silica carriers</a> </p> <a href="https://publications.waset.org/abstracts/152282/reusability-of-coimmobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> The Application of Enzymes on Pharmaceutical Products and Process Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reginald%20%20Anyanwu">Reginald Anyanwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are biological molecules that significantly regulate the rate of almost all of the chemical reactions that take place within cells, and have been widely used for products’ innovations. They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. The present study was aimed at finding out the extent to which biological molecules have been utilized by pharmaceutical, food and beverage, and biofuel industries in commercial and scale up applications. Taking into account the escalating business opportunities in this vertical, biotech firms have also been penetrating enzymes industry especially that of food. The aim of the study therefore was to find out how biocatalysis can be successfully deployed; how enzyme application can improve industrial processes. To achieve the purpose of the study, the researcher focused on the analytical tools that are critical for the scale up implementation of enzyme immobilization to ascertain the extent of increased product yield at minimum logistical burden and maximum market profitability on the environment and user. The researcher collected data from four pharmaceutical companies located at Anambra state and Imo state of Nigeria. Questionnaire items were distributed to these companies. The researcher equally made a personal observation on the applicability of these biological molecules on innovative Products since there is now shifting trends toward the consumption of healthy and quality food. In conclusion, it was discovered that enzymes have been widely used for products’ innovations but there are however variations on their applications. It was also found out that pivotal contenders of enzymes market have lately been making heavy investments in the development of innovative product solutions. It was recommended that the applications of enzymes on innovative products should be widely practiced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymes" title="enzymes">enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20development" title=" process development"> process development</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20food%20consumption" title=" quality food consumption"> quality food consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up%20applications" title=" scale-up applications"> scale-up applications</a> </p> <a href="https://publications.waset.org/abstracts/126613/the-application-of-enzymes-on-pharmaceutical-products-and-process-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Hassan">Mohamed E. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate%2Ftea%20waste" title="alginate/tea waste">alginate/tea waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title=" immobilized enzymes"> immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20textiles" title=" historical textiles"> historical textiles</a> </p> <a href="https://publications.waset.org/abstracts/166235/a-novel-alginatetea-waste-complex-for-restoration-and-conservation-of-historical-textiles-using-immobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based on 16S rDNA Gene Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Norashirene">M. J. Norashirene</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zakiah"> Y. Zakiah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nurdiana"> S. Nurdiana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nur%20Hilwani"> I. Nur Hilwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Siti%20Khairiyah"> M. H. Siti Khairiyah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Muhamad%20Arif"> M. J. Muhamad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulolytic" title=" cellulolytic"> cellulolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20gene" title=" 16S rDNA gene"> 16S rDNA gene</a> </p> <a href="https://publications.waset.org/abstracts/13039/identification-of-cellulose-hydrolytic-thermophiles-isolated-from-sg-klah-hot-spring-based-on-16s-rdna-gene-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20O.%20Olubodun">Stella O. Olubodun</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20E.%20Eriyamremu"> George E. Eriyamremu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme, and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14, and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml, and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5, and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bonny%20light%20crude%20oil" title=" bonny light crude oil"> bonny light crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=radicle" title=" radicle"> radicle</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria%20ATPases" title=" mitochondria ATPases"> mitochondria ATPases</a> </p> <a href="https://publications.waset.org/abstracts/17845/antioxidant-enzymes-and-crude-mitochondria-atpases-in-the-radicle-of-germinating-bean-vigna-unguiculata-exposed-to-different-concentrations-of-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> In-House Enzyme Blends from Polyporus ciliatus CBS 366.74 for Enzymatic Saccharification of Pretreated Corn Stover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20A.%20Bentil">Joseph A. Bentil</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Thygesen"> Anders Thygesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lene%20Langea"> Lene Langea</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Mensah"> Moses Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Meyer"> Anne Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the saccharification potential of in-house enzymes produced from a white-rot basidiomycete strain, Polyporus ciliatus CBS 366.74. The in-house enzymes were produced by growing the fungus on mono and composite substrates of cocoa pod husk (CPH) and green seaweed (GS) (Ulva lactuca sp.) with and without the addition of 25mM ammonium nitrate at 4%w/v substrate concentration in submerged condition for 144 hours. The crude enzyme extracts preparations (CEE 1-5 and CEE 1-5+AN) obtained from the fungal cultivation process were sterile-filtered and used as enzyme sources for enzymatic hydrolysis of hydrothermally pretreated corn stover using a commercial cocktail enzyme, Cellic Ctec3, as benchmark. The hydrolysis was conducted at 50ᵒC with 50mM sodium acetate buffer, pH 5 based on enzyme dosages of 5 and 10 CMCase Units/g biomass at 1%w/v dry weight substrate concentration at time points of 6, 24, and 72 hours. The enzyme activity profile of the in-house enzymes varied among the growth substrates with the composite substrates (50-75% GS and AN inclusion), yielding better enzyme activities, especially endoglucanases (0.4-0.5U/mL), β-glucosidases (0.1-0.2 U/mL), and xylanases (3-10 U/mL). However, nitrogen supplementation had no significant effect on enzyme activities of crude extracts from 100% GS substituted substrates. From the enzymatic hydrolysis, it was observed that the in-house enzymes were capable of hydrolysing the pretreated corn stover at varying degrees; however, the saccharification yield was less than 10%. Consequently, theoretical glucose yield was ten times lower than Cellic Ctec3 at both dosage levels. There was no linear correlation between glucose yield and enzyme dosage for the in-house enzymes, unlike the benchmark enzyme. It is therefore recommended that the in-house enzymes are used to complement the dosage of commercial enzymes to reduce the cost of biomass saccharification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20production" title="enzyme production">enzyme production</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis%20yield" title=" hydrolysis yield"> hydrolysis yield</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock" title=" feedstock"> feedstock</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20blend" title=" enzyme blend"> enzyme blend</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyporus%20ciliatus" title=" Polyporus ciliatus"> Polyporus ciliatus</a> </p> <a href="https://publications.waset.org/abstracts/138804/in-house-enzyme-blends-from-polyporus-ciliatus-cbs-36674-for-enzymatic-saccharification-of-pretreated-corn-stover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrolytic%20enzymes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>