CINXE.COM
Search results for: bioactivity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bioactivity</title> <meta name="description" content="Search results for: bioactivity"> <meta name="keywords" content="bioactivity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bioactivity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bioactivity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 118</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bioactivity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andualem%20Workie">Andualem Workie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite%20wollastonite%20glass%20ceramics" title="apatite wollastonite glass ceramics">apatite wollastonite glass ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a> </p> <a href="https://publications.waset.org/abstracts/161946/assessing-the-bioactivity-and-cell-viability-of-apatite-wollastonite-glass-ceramics-prepared-via-spray-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Bioactivity Evaluation of Cucurbitin Derived Enzymatic Hydrolysates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%BD.%20Va%C5%A1tag">Ž. Vaštag</a>, <a href="https://publications.waset.org/abstracts/search?q=Lj.%20Popovi%C4%87"> Lj. Popović</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Popovi%C4%87"> S. Popović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After cold pressing of pumpkin oil, the defatted oil cake (PUOC) was utilized as raw material for processing of bio-functional hydrolysates. In this study, the in vitro bioactivity of an alcalase (AH) and a pepsin hydrolysate (PH) prepared from the major pumpkin 12S globulin (cucurbitin) are compared. The hydrolysates were produced at optimum reaction conditions (temperature, pH) for the enzymes, during 60min. The bioactivity testing included antioxidant and angiotensin I converting enzyme inhibitory activity assays. The hydrolysates showed high potential as natural antioxidants and possibly antihypertensive agents in functional food or nutraceuticals. Additionally, preliminary studies have shown that both hydrolysates could exhibit modest α-amylase inhibitory activity, which indicates on their hypoglycemic potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cucurbitin" title="cucurbitin">cucurbitin</a>, <a href="https://publications.waset.org/abstracts/search?q=alcalase" title=" alcalase"> alcalase</a>, <a href="https://publications.waset.org/abstracts/search?q=pepsin" title=" pepsin"> pepsin</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolysates" title=" protein hydrolysates"> protein hydrolysates</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20bioactivity" title=" in vitro bioactivity"> in vitro bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/5622/bioactivity-evaluation-of-cucurbitin-derived-enzymatic-hydrolysates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Cerium Salt Effect in 70s Bioactive Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20N.%20Santos">Alessandra N. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20P.%20Ferreira"> Max P. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20R.%20P.%20Silva"> Alexandra R. P. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Agda%20A.%20R.%20de%20Oliveira"> Agda A. R. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marivalda%20M.%20Pereira"> Marivalda M. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The literature describes experiments, in which ceria nanoparticles in the bioactive glass significantly improve differentiation of stem cells into osteoblasts and increase production of collagen. It is not known whether this effect observed due to the presence of nanoceria can be also observed in the presence of cerium in the bioactive glass network. The effect of cerium into bioactive glasses using the sol–gel route is the focus of this work, with the goal to develop a material for tissue engineering with the potential to enhance osteogenesis. A bioactive glass composition based on 70% SiO2–30% CaO is produced with the addition of cerium. The analyses XRD, FTIR, SEM/EDS, BET/BJH, in vitro bioactivity test and the Cell viability assay were performed. The results show that cerium remains in the bioactive glass structure. The obtained material present in vitro bioactivity and promote the cell viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glass" title="bioactive glass">bioactive glass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20salt" title=" cerium salt"> cerium salt</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a> </p> <a href="https://publications.waset.org/abstracts/102589/cerium-salt-effect-in-70s-bioactive-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Influence of Fluorine Concentration and Sintering Temperature on the Bioactivity of Apatite-Wollastonite Glass-Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andualem%20Belachew%20Workie">Andualem Belachew Workie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a spray pyrolysis process, apatite-Wollastonite glass-ceramics (AW GC) were fabricated with the composition 8.29MgO_50.09-x CaO_34.46SiO2_7.16P2O5_xCaF₂, where x = 0, 0.54, and 5.24 (wt. %). Based on the results, it appears that the CaF2 addition lowers the glass transition temperature (Tg) and crystallization temperature (Tc) of the glasscomposition. In addition, AW GC's bioactivity increases as the soaking time in simulated body fluid (SBF) increases. Adding CaF₂ and varying sintering temperatures altered the density and linear shrinkage percentage of the samples. The formation of fluorapatite with needle-like microstructure and the formation of the wollastonite phase was enhanced with higher CaF2 content, while the growth of the whitlockite phase took place at a higher heat treatment temperature. Adding high CaF₂ content with high sintering temperatures to apatite Wollastonite glass-ceramic composition facilitates the formation of fluorapatite, which is crucial for denture glass-ceramics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite-wollastonite%20glass%20ceramics" title="apatite-wollastonite glass ceramics">apatite-wollastonite glass ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20fluoride" title=" calcium fluoride"> calcium fluoride</a> </p> <a href="https://publications.waset.org/abstracts/150604/influence-of-fluorine-concentration-and-sintering-temperature-on-the-bioactivity-of-apatite-wollastonite-glass-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupita%20Ghosh">Rupita Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritwik%20Sarkar"> Ritwik Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20K.%20Pal"> Sumit K. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumitra%20Paul"> Soumitra Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bioactivity" title="Bioactivity">Bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Drilling" title=" Drilling"> Drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydroxyapatite" title=" Hydroxyapatite"> Hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=Yttrium%20Phosphate" title=" Yttrium Phosphate"> Yttrium Phosphate</a> </p> <a href="https://publications.waset.org/abstracts/39834/drilling-quantification-and-bioactivity-of-machinable-hydroxyapatite-yttrium-phosphate-bioceramic-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Hajifathali">Zeinab Hajifathali</a>, <a href="https://publications.waset.org/abstracts/search?q=Moghan%20Amirhosseinian"> Moghan Amirhosseinian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the <em>in vitro</em> bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)MgO and 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite" title="apatite">apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol-gel" title=" Sol-gel"> Sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/107769/the-effect-of-substitution-of-caomgo-and-caosro-on-in-vitro-bioactivity-of-sol-gel-derived-bioactive-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehieddine%20Bouatrous">Mehieddine Bouatrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous" title="porous">porous</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive" title=" bioactive"> bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=S.B.F" title=" S.B.F"> S.B.F</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclowollastonite" title=" cyclowollastonite"> cyclowollastonite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a> </p> <a href="https://publications.waset.org/abstracts/168006/synthesis-of-highly-porous-cyclowollastonite-bioactive-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer's Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Khojah">Hanan Khojah</a>, <a href="https://publications.waset.org/abstracts/search?q=RuAngelie%20Edrada-Ebel"> RuAngelie Edrada-Ebel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer" title="alzheimer">alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20carica" title=" Ficus carica"> Ficus carica</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-Sitosterol" title=" γ-Sitosterol"> γ-Sitosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/61797/identification-of-bioactive-metabolites-from-ficus-carica-and-their-neuroprotective-effects-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elhamalsadat%20Ghaffari">Elhamalsadat Ghaffari</a>, <a href="https://publications.waset.org/abstracts/search?q=Moghan%20Amirhosseinian"> Moghan Amirhosseinian</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Khaleghipour"> Amir Khaleghipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO<sub>2</sub>-4P<sub>2</sub>O<sub>5</sub>-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the <em>in vitro</em> formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant <em>Staphylococcus aureus</em> bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite" title="apatite">apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/107301/investigating-the-formation-of-nano-hydroxyapatite-on-a-biocompatible-and-antibacterial-cumg-substituted-bioglass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Jolly">Reshma Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shakir"> Mohammad Shakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shoeb%20Khan"> Mohammad Shoeb Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20E.%20Iram"> Noor E. Iram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive" title="bioactive">bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=hyroxyapatite" title=" hyroxyapatite"> hyroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/29631/starch-incorporated-hydroxyapatitechitin-nanocomposite-as-a-novel-bone-construct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ghamsari">Maryam Ghamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20Nye-Wood"> Mitchell Nye-Wood</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Wang"> Kelvin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Juhasz"> Angela Juhasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Colgrave"> Michelle Colgrave</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Otter"> Don Otter</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lu"> Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazimah%20Hamid"> Nazimah Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Thao%20T.%20Le"> Thao T. Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee%20venom" title="honeybee venom">honeybee venom</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=swath-ms" title=" swath-ms"> swath-ms</a>, <a href="https://publications.waset.org/abstracts/search?q=melittin" title=" melittin"> melittin</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20a2" title=" phospholipase a2"> phospholipase a2</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20zealand" title=" new zealand"> new zealand</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/187480/quantitative-proteome-analysis-and-bioactivity-testing-of-new-zealand-honeybee-venom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Bioactivity of Peptides from Two Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farzaneh">Parisa Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Harati"> Azade Harati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-peptide" title="bio-peptide">bio-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20enzymes" title=" gastrointestinal enzymes"> gastrointestinal enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/183239/bioactivity-of-peptides-from-two-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa">Morteza Elsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major aim of this study was to evaluate the effect of CaO content on <em>in vitro</em> hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO<sub>2</sub>–CaO–P<sub>2</sub>O<sub>5</sub> ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO<sub>2</sub>–36%CaO–4%P<sub>2</sub>O<sub>5</sub>) and BG-68s (mol%: 70%SiO<sub>2</sub>–26%CaO–4%P<sub>2</sub>O<sub>5</sub>)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on <em>in vitro</em> bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher <em>in vitro</em> bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glass" title=" bioactive glass"> bioactive glass</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/105544/comparative-study-of-calcium-content-on-in-vitro-biological-and-antibacterial-properties-of-silicon-based-bioglass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Characterization of Onion Peels Extracts and Its Utilization in a Deep Fried Snack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabia%20Siddiqui">Nabia Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Mohsin%20Ali"> Tahira Mohsin Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Abbas"> Tanveer Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Hasnain"> Abid Hasnain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study proposed the use of different onion peel extracts in a South Asian snacks called ‘sew’. The polyphenols extracted from peels were initially analyzed for their antimicrobial potential and bioactive components following three different extraction systems. A relatively higher level of total phenolic content (TP), total flavonoid (TF) and antioxidant activity was observed for EWE (ethanol and water based) extracts followed by EAAE (ethanol and acetic acid) and WE (water extract) sample. Onion extracts showed ability to inhibit gram-positive as well as gram-negative bacteria. The incorporation of onion peel extracts in sew showed a marked increase in bioactive components. Besides bioactivity, sensory attributes, textural characteristics and storage stability of these snacks containing onion peel extract also significantly improved during the shelf study at ambient temperature for up to two months. Thus, these results justify the utilization of these plant polyphenols in fried snacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onion%20peels%20extract" title="onion peels extract">onion peels extract</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Asian%20snacks" title=" South Asian snacks"> South Asian snacks</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title=" antioxidant capacity"> antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/83970/characterization-of-onion-peels-extracts-and-its-utilization-in-a-deep-fried-snack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian">Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Aminitabar"> Mehrnaz Aminitabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/105546/comparative-evaluation-on-in-vitro-bioactivity-proliferation-and-antibacterial-efficiency-of-sol-gel-derived-bioactive-glass-substituted-by-li-and-mg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Khaleghipour">Amir Khaleghipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhamalsadat%20Ghaffari"> Elhamalsadat Ghaffari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/104924/sol-gel-derived-58s-bioglass-substituted-by-li-and-mg-a-comparative-evaluation-on-in-vitro-bioactivity-mc3t3-proliferation-and-antibacterial-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Antibiotic Potential of Bioactive Compounds from a Marine Streptomyces Isolated from South Pacific Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilaisa%20Kacivakanadina">Ilaisa Kacivakanadina</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20Viulu"> Samson Viulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Carte"> Brad Carte</a>, <a href="https://publications.waset.org/abstracts/search?q=Katy%20Soapi"> Katy Soapi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two bioactive compounds namely Vulgamycin (also known as enterocin A) and 5-deoxyenterocin were purified from a marine bacterial strain 1903. Strain 1903 was isolated from marine sediments collected from the Solomon Islands. Morphological features of strain 1903 showed that it belongs to the genus Streptomyces. The two secondary metabolites were extracted using EtOAc and purified by chromatographic methods using EtOAc and hexane solvents. Mass spectrum and NMR data of pure compounds were used to elucidate the chemical structures. In this study, results showed that both compounds were strongly active against Wild Type Staphylococcus aureus (WTSA) (MIC < 1 µg/mL) and in Brine shrimp assays (BSA) (MIC < 1 µg/mL). 5-deoxyenterocin was also active against Rifamycin resistant Staphylococcus aureus (RRSA) (MIC, 250 µg/mL) while vulgamycin showed bioactivity against Methicillin resistant Staphylococcus aureus (MRSA) (MIC 250 µg/mL). To the best of our knowledge, this is the first study that showed the bio-activity of 5-deoxyenterocin. This is also the first time that Vulgamycin has been reported to be active in a BSA. There has not been any mechanism of action studies for these two compounds against pathogens. This warrants further studies on their mechanism of action against microbial pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5-deoxyenterocin" title="5-deoxyenterocin">5-deoxyenterocin</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=brine%20shrimp%20assay%20%28BSA%29" title=" brine shrimp assay (BSA)"> brine shrimp assay (BSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=vulgamycin" title=" vulgamycin"> vulgamycin</a> </p> <a href="https://publications.waset.org/abstracts/79050/antibiotic-potential-of-bioactive-compounds-from-a-marine-streptomyces-isolated-from-south-pacific-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Bioactivity Profiling of Botswana’s Medicinal Ethnobotany With Potential to Mitigate Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Motlhanka">Daniel Motlhanka</a>, <a href="https://publications.waset.org/abstracts/search?q=Neo%20Kerebotswe"> Neo Kerebotswe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strong and long history of use of medicinal plants in Botswana to address existing and emerging health threats provides undebatable evidence for their potential as innovative therapeutic tools. The prevalence of emerging health threats, such as COVID-19 and hard-to-treat non-communicable diseases, warrants the scientific community to revisit and exploit ethnopharmacology for its potential as a source of therapeutic tools. Many studies conducted on bioactivity-guided bioassays of ethnobotanical resources have proved a number of health beneficial properties of these plants, such as free radical scavenging, anti-inflammatory, antimicrobial and, most importantly, the capability of medicinal plants to alleviate oxidative stress. In this work, a number of medicinal plants used in Botswana traditional medicine were investigated for both their free radical scavenging capability and total phenolic contents using the Free Radical Scavenging Power (FRSP) and Folin Ciocalteau (FC) method. At 100 micrograms/ml all the studied plants expressed above 90% Scavenging power and expressed total phenolic contents between 5000- 8890 mg/L.GAE. These plants are promising tools for engineering active therapeutic tools against life-threatening diseases of oxidative stress origin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title="oxidative stress">oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=non-communicable%20diseases" title=" non-communicable diseases"> non-communicable diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanicals" title=" ethnobotanicals"> ethnobotanicals</a> </p> <a href="https://publications.waset.org/abstracts/186011/bioactivity-profiling-of-botswanas-medicinal-ethnobotany-with-potential-to-mitigate-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Apatite-Forming Ability of Doped-Ceria Coatings for Orthopedic Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayda%20Khosravanihaghighi">Ayda Khosravanihaghighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20%20Koshy"> Pramod Koshy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bill%20Walsh"> Bill Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedran%20Lovric"> Vedran Lovric</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Christopher%20Sorrell"> Charles Christopher Sorrell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing demand for orthopedic implants owing to the increasing numbers of the aging population. Titanium alloy (Ti6Al4V) is a common material used for orthopedic implants owing to its advantageous properties in terms of good corrosion resistance, minimal elastic modulus mismatch with bone, bio-inertness, and high mechanical strength. However, it is important to improve the bioactivity and osseointegration of the titanium alloy and this can be achieved by coating the implant surface with suitable ceramic materials. In the present work, pure and doped-ceria (CeO₂) coatings were deposited by spin coating on the titanium alloy surface in order to enhance the biological interactions between the surface of the implant and the surrounding tissue. In order to examine the bone-binding ability of an implant, simulated body fluid (SBF) tests were conducted in order to assess the capability of apatite layer formation on the surface and thus predict in vivo bone bioactivity. Characterization was done using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses to determine the extent of apatite formation. Preliminary tests showed that the CeO₂ coatings were biocompatible and that the extent of apatite formation and its characteristics can be enhanced by doping with suitable metal ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite%20layer" title="apatite layer">apatite layer</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria" title=" ceria"> ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopaedic%20implant" title=" orthopaedic implant"> orthopaedic implant</a>, <a href="https://publications.waset.org/abstracts/search?q=SBF" title=" SBF"> SBF</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coater" title=" spin coater"> spin coater</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-implant" title=" Ti-implant"> Ti-implant</a> </p> <a href="https://publications.waset.org/abstracts/106523/apatite-forming-ability-of-doped-ceria-coatings-for-orthopedic-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiah%20Rachmatiah">Tiah Rachmatiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Subaryanti"> Subaryanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinodaphne%20macrophylla" title="actinodaphne macrophylla">actinodaphne macrophylla</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaloid" title=" alkaloid"> alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=antiplasmodial" title=" antiplasmodial"> antiplasmodial</a>, <a href="https://publications.waset.org/abstracts/search?q=lauraceae" title=" lauraceae"> lauraceae</a>, <a href="https://publications.waset.org/abstracts/search?q=lignan" title=" lignan"> lignan</a>, <a href="https://publications.waset.org/abstracts/search?q=nectandra%20angustifolia" title=" nectandra angustifolia"> nectandra angustifolia</a> </p> <a href="https://publications.waset.org/abstracts/31364/two-antiplasmodial-compounds-from-lauraceae-actinodaphne-macrophylla-and-nectandra-angustifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Aminitabar">Mehrnaz Aminitabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moghan%20Amirhosseinian"> Moghan Amirhosseinian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO<sub>2</sub>-CaO-P<sub>2</sub>O<sub>5</sub> glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glass" title=" bioactive glass"> bioactive glass</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a> </p> <a href="https://publications.waset.org/abstracts/106166/synthesis-and-in-vitro-characterization-of-a-gel-derived-sio2-cao-p2o5-sro-li2o-bioactive-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christiana%20Ene%20Ogwuche">Christiana Ene Ogwuche</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Amupitan"> Joseph Amupitan</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ndukwe"> George Ndukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachael%20Ayo"> Rachael Ayo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maesobotrya%20barteri" title="Maesobotrya barteri">Maesobotrya barteri</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20spirit%20extract" title=" petroleum spirit extract"> petroleum spirit extract</a>, <a href="https://publications.waset.org/abstracts/search?q=butellinic%20acid" title=" butellinic acid"> butellinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanilic%20acid" title=" oleanilic acid"> oleanilic acid</a> </p> <a href="https://publications.waset.org/abstracts/79031/isolation-and-biological-activity-of-betulinic-and-oleanolic-acids-from-the-aerial-plant-parts-of-maesobotrya-barteri-baill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tannaz%20Alimardani">Tannaz Alimardani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioglass" title=" bioglass"> bioglass</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20release" title=" ion release"> ion release</a> </p> <a href="https://publications.waset.org/abstracts/108131/the-effect-of-simultaneous-doping-of-silicate-bioglass-with-alkaline-and-alkaline-earth-elements-on-biological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Technologies of Isolation and Separation of Anthraquinone Derivatives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Korulkin">Dmitry Yu. Korulkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raissa%20A.%20Muzychkina"> Raissa A. Muzychkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthraquinones%3B%20isolation%3B%20extraction%3B%20polarity%3B%20chromatography%3B%20precipitation%3B%20bioactivity%3B%20phytopreparation%3B%20chrysophanol%3B%20aloe-emodin%3B%20emodin%3B%20physcion." title="anthraquinones; isolation; extraction; polarity; chromatography; precipitation; bioactivity; phytopreparation; chrysophanol; aloe-emodin; emodin; physcion.">anthraquinones; isolation; extraction; polarity; chromatography; precipitation; bioactivity; phytopreparation; chrysophanol; aloe-emodin; emodin; physcion.</a> </p> <a href="https://publications.waset.org/abstracts/11437/technologies-of-isolation-and-separation-of-anthraquinone-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Arab">Alireza Arab</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on <em>in vitro</em> bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)Li<sub>2</sub>O and 60SiO<sub>2</sub>–(36-x)CaO–4P<sub>2</sub>O<sub>5</sub>–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant <em>Staphylococcus aureus</em> bacteria. To do so, CaO was substituted with Li<sub>2</sub>O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on <em>in vitro</em> hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li<sub>2</sub>O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li<sub>2</sub>O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/130883/comparative-study-on-the-effect-of-substitution-of-li-and-mg-instead-of-ca-on-structural-and-biological-behaviors-of-silicate-bioactive-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Enhanced Anti-Inflammatory and Antioxidant Activities of Perna canaliculus Oil Extract and Low Molecular Weight Fucoidan from Undaria pinnatifida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgheis%20Ebrahimi">Belgheis Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lu"> Jun Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combination" title="combination">combination</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20effect" title=" enhancement effect"> enhancement effect</a>, <a href="https://publications.waset.org/abstracts/search?q=perna%20canaliculus" title=" perna canaliculus"> perna canaliculus</a>, <a href="https://publications.waset.org/abstracts/search?q=undaria%20pinnatifida" title=" undaria pinnatifida"> undaria pinnatifida</a> </p> <a href="https://publications.waset.org/abstracts/174546/enhanced-anti-inflammatory-and-antioxidant-activities-of-perna-canaliculus-oil-extract-and-low-molecular-weight-fucoidan-from-undaria-pinnatifida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Devotional Informant and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstone’ Reservoir Quality, Sarir Formation, Sirt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ellafi"> Hana Ellafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title="formation damage">formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20loses" title=" porosity loses"> porosity loses</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20throat" title=" pore throat"> pore throat</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz%20cement" title=" quartz cement"> quartz cement</a> </p> <a href="https://publications.waset.org/abstracts/174594/devotional-informant-and-diagenetic-alterations-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstone-reservoir-quality-sarir-formation-sirt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> The Effects of in vitro Digestion on Cheese Bioactivity; Comparing Adult and Elderly Simulated in vitro Gastrointestinal Digestion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Plante">A. M. Plante</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20O%E2%80%99Halloran"> F. O’Halloran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20McCarthy"> A. L. McCarthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By 2050 it is projected that 2 billion of the global population will be more than 60 years old. Older adults have unique dietary requirements and aging is associated with physiological changes that affect appetite, sensory perception, metabolism, and digestion. Therefore, it is essential that foods recommended and designed for older adults promote healthy aging. To assess cheese as a functional food for the elderly, a range of commercial cheese products were selected and compared for their antioxidant properties. Cheese from various milk sources (bovine, goats, sheep) with different textures and fat content, including cheddar, feta, goats, brie, roquefort, halloumi, wensleydale and gouda, were initially digested with two different simulated in vitro gastrointestinal digestion (SGID) models. One SGID model represented a validated in vitro adult digestion system and the second model, an elderly SGID, was designed to consider the physiological changes associated with aging. The antioxidant potential of all cheese digestates was investigated using in vitro chemical-based antioxidant assays, (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP) and total phenolic content (TPC)). All adult model digestates had high antioxidant activity across both DPPH ( > 70%) and FRAP ( > 700 µM Fe²⁺/kg.fw) assays. Following in vitro digestion using the elderly SGID model, full-fat red cheddar, low-fat white cheddar, roquefort, halloumi, wensleydale, and gouda digestates had significantly lower (p ≤ 0.05) DPPH radical scavenging properties compared to the adult model digestates. Full-fat white cheddar had higher DPPH radical scavenging activity following elderly SGID digestion compared to the adult model digestate, but the difference was not significant. All other cheese digestates from the elderly model were comparable to the digestates from the adult model in terms of radical scavenging activity. The FRAP of all elderly digestates were significantly lower (p ≤ 0.05) compared to the adult digestates. Goats cheese was significantly higher (p ≤ 0.05) in FRAP (718 µM Fe²/kg.fw) compared to all other digestates in the elderly model. TPC levels in the soft cheeses (feta, goats) and low-fat cheeses (red cheddar, white cheddar) were significantly lower (p ≤ 0.05) in the elderly digestates compared to the adult digestates. There was no significant difference in TPC levels, between the elderly and adult model for full-fat cheddar (red, white), roquefort, wensleydale, gouda, and brie digestates. Halloumi cheese was the only cheese that was significantly higher in TPC levels following elderly digestion compared to adult digestates. Low fat red cheddar had significantly higher (p ≤ 0.05) TPC levels compared to all other digestates for both adult and elderly digestive systems. Findings from this study demonstrate that aging has an impact on the bioactivity of cheese, as antioxidant activity and TPC levels were lower, following in vitro elderly digestion compared to the adult model. For older adults, soft cheese, particularly goats cheese, was associated with high radical scavenging and reducing power, while roquefort cheese had low antioxidant activity. Also, elderly digestates of halloumi and low-fat red cheddar were associated with high TPC levels. Cheese has potential as a functional food for the elderly, however, bioactivity can vary depending on the cheese matrix. Funding for this research was provided by the RISAM Scholarship Scheme, Cork Institute of Technology, Ireland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese" title=" cheese"> cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20digestion" title=" in-vitro digestion"> in-vitro digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20adults" title=" older adults"> older adults</a> </p> <a href="https://publications.waset.org/abstracts/81497/the-effects-of-in-vitro-digestion-on-cheese-bioactivity-comparing-adult-and-elderly-simulated-in-vitro-gastrointestinal-digestion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> NMR-Based Metabolomic Study of Antimalarial Plant Species Used Traditionally by Vha-Venda People in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Bapela">Johanna Bapela</a>, <a href="https://publications.waset.org/abstracts/search?q=Heino%20Heyman"> Heino Heyman</a>, <a href="https://publications.waset.org/abstracts/search?q=Marion%20Meyer"> Marion Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regardless of the significant advances accomplished in reducing the burden of malaria and other tropical diseases in recent years, malaria remains a major cause of mortality in endemic countries. This is especially the case in sub-Saharan Africa where 99% of the estimated global malaria deaths occurs on an annual basis. The emergence of resistant Plasmodium species and the lack of diversified chemotherapeutic agents provide the rationale for bioprospecting for antiplasmodial scaffolds. Crude extracts from twenty indigenous antimalarial plant species were screened for antimalarial activity and then subjected to 1H NMR-based metabolomic analysis. Ten plant extracts exhibited significant in vitro antiplasmodial activity (IC50 ≤ 5 µg/ml). The Principal Component Analysis (PCA) of the acquired 1H NMR spectra could not separate the analyzed plant extracts according to the detected antiplasmodial bioactivity. Application of supervised Orthogonal Projections to Latent Structures–Discriminant Analysis (OPLS-DA) to the 1H NMR profiles resulted in a discrimination pattern that could be correlated to bioactivity. A contribution plot generated from the OPLS-DA scoring plot illustrated the classes of compounds responsible for the observed grouping. Given the preliminary in vitro results, Tabernaemontana elegans Stapf. (Apocynaceae) and Vangueria infausta Burch. subsp. infausta (Rubiaceae) were subjected to further phytochemical investigations. Two indole alkaloids, dregamine and tabernaemontanine possessing antiplasmodial activity were isolated from T. elegans. Two compounds were isolated from V. infausta subsp. infausta and identified as friedelin (IC50 = 3.01 µg/ml) and morindolide (IC50 = 18.5 µg/ml). While these compounds have been previously identified, this is the first account of their occurrence in the genus Vangueria and their antiplasmodial activity. Based on the results of the study, metabolomics can be used to globally identify classes of plant secondary metabolites that are responsible for antiplasmodial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnopharmacology" title="ethnopharmacology">ethnopharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/55170/nmr-based-metabolomic-study-of-antimalarial-plant-species-used-traditionally-by-vha-venda-people-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20B.%20Ganorkar">Saurabh B. Ganorkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20A.%20Shirkhedkar"> Atul A. Shirkhedkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UFLC" title="UFLC">UFLC</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS-TOF" title=" LC-MS-TOF"> LC-MS-TOF</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=Zileuton" title=" Zileuton"> Zileuton</a>, <a href="https://publications.waset.org/abstracts/search?q=impurities" title=" impurities"> impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-activity" title=" bio-activity"> bio-activity</a> </p> <a href="https://publications.waset.org/abstracts/95105/abridging-pharmaceutical-analysis-and-drug-discovery-via-lc-ms-tof-nmr-in-silico-toxicity-bioactivity-profiling-for-therapeutic-purposing-zileuton-impurities-need-of-hour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactivity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactivity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactivity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactivity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>