CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;48 of 48 results for author: <span class="mathjax">Guarcello, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Guarcello%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Guarcello, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Guarcello%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Guarcello, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18036">arXiv:2410.18036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18036">pdf</a>, <a href="https://arxiv.org/format/2410.18036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-linear anomalous Edelstein response at altermagnetic interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Trama%2C+M">Mattia Trama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaiardoni%2C+I">Irene Gaiardoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiellaro%2C+A">Alfonso Maiellaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romeo%2C+F">Francesco Romeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18036v2-abstract-short" style="display: inline;"> In altermagnets, time-reversal symmetry breaking spin-polarizes electronic states, while total magnetization remains zero. In addition, at altermagnetic surfaces Rashba-spin orbit coupling is activated due to broken inversion symmetry, introducing a competing spin-momentum locking interaction. Here we show that their interplay leads to the formation of complex, chiral spin textures that offer nove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18036v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18036v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18036v2-abstract-full" style="display: none;"> In altermagnets, time-reversal symmetry breaking spin-polarizes electronic states, while total magnetization remains zero. In addition, at altermagnetic surfaces Rashba-spin orbit coupling is activated due to broken inversion symmetry, introducing a competing spin-momentum locking interaction. Here we show that their interplay leads to the formation of complex, chiral spin textures that offer novel, non-linear spin-to-charge conversion properties. Whereas altermagnetic order suppresses the canonical linear in-plane Rashba-Edelstein response, we establish the presence of an anomalous transversal Edelstein effect for planar applied electric and magnetic field, or alternatively, an in-plane magnetization. Moreover the non-linear Edelstein response resulting purely from electric fields also triggers the anomalous out-of-plane magnetization. We determine the anomalous response with a model based on the ab-initio electronic structure of RuO$_2$ bilayers, ultimately opening experimental avenues to explore spin-charge conversion phenomena at altermagnetic interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18036v2-abstract-full').style.display = 'none'; document.getElementById('2410.18036v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09923">arXiv:2407.09923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09923">pdf</a>, <a href="https://arxiv.org/format/2407.09923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.115596">10.1016/j.chaos.2024.115596 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Topological Superconductivity of oxide nanojunctions using fractional Shapiro steps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiellaro%2C+A">Alfonso Maiellaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Settino%2C+J">Jacopo Settino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaiardoni%2C+I">Irene Gaiardoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trama%2C+M">Mattia Trama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romeo%2C+F">Francesco Romeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09923v2-abstract-short" style="display: inline;"> We theoretically discuss the emergence of fractional Shapiro steps in a Josephson junction created by confining a two-dimensional electron gas at an oxide interface. This phenomenon is induced by an alternating current of proper amplitude and frequency and can be tuned by a magnetic field applied perpendicular to the Rashba spin-orbit axis. The presence of fractional Shapiro steps can be associate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09923v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09923v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09923v2-abstract-full" style="display: none;"> We theoretically discuss the emergence of fractional Shapiro steps in a Josephson junction created by confining a two-dimensional electron gas at an oxide interface. This phenomenon is induced by an alternating current of proper amplitude and frequency and can be tuned by a magnetic field applied perpendicular to the Rashba spin-orbit axis. The presence of fractional Shapiro steps can be associated with the creation of Majorana bound states at the boundaries of the superconducting leads. Our findings represent a route for the identification of topological superconductivity in non-centrosymmetric materials and confined systems in the presence of spin--orbit interaction, offering also new insights into recently explored frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09923v2-abstract-full').style.display = 'none'; document.getElementById('2407.09923v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos, Solitons &amp; Fractals, 189, 115596 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01185">arXiv:2406.01185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01185">pdf</a>, <a href="https://arxiv.org/format/2406.01185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.115598">10.1016/j.chaos.2024.115598 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Driving a Josephson Traveling Wave Parametric Amplifier into chaos: effects of a non-sinusoidal current-phase relation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">Carlo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">Giovanni Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">Veronica Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">Andrea Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pagano%2C+S">Sergio Pagano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01185v2-abstract-short" style="display: inline;"> In this work, we develop a comprehensive numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, with a focus on the pathways leading to chaotic behavior. By tuning the working conditions, we capture the broad spectrum of dynamical regimes accessible to JTWPAs, delineating the settings under which transition to chaos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01185v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01185v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01185v2-abstract-full" style="display: none;"> In this work, we develop a comprehensive numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, with a focus on the pathways leading to chaotic behavior. By tuning the working conditions, we capture the broad spectrum of dynamical regimes accessible to JTWPAs, delineating the settings under which transition to chaos occurs. Furthermore, we extend our investigation to device formed by junctions characterized by a non--sinusoidal current phase relation (CPR) and exploring the impact of its shape on the amplifier&#39;s performance. Through the study of gain characteristics, Poincar茅 sections, and Fourier spectra, we provide an in-depth understanding of how non-linearity and CPR nonsinusoidality influence the JTWPAs&#39; operational effectiveness and stability. This investigation offers insights into optimizing the device designs for enhanced performance and robustness against chaotic disruptions, in order to establish a framework for predicting and controlling JTWPA behavior in practical applications. This effort will pave the way for the development of devices with tailored dynamic responses and for advancements in quantum computing and precision measurement technologies, where stability and high fidelity are of paramount importance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01185v2-abstract-full').style.display = 'none'; document.getElementById('2406.01185v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos, Solitons Fractals, 189, 115598 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20911">arXiv:2405.20911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20911">pdf</a>, <a href="https://arxiv.org/format/2405.20911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-55657-9">10.1007/978-3-031-55657-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson junctions, superconducting circuits, and qubit for quantum technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pagano%2C+S">Sergio Pagano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20911v2-abstract-short" style="display: inline;"> In the realm of physics, a pivotal moment occurred six decades ago when Brian Josephson made a groundbreaking prediction, setting in motion a series of events that would eventually earn him the prestigious Nobel Prize eleven years later. This prediction centered around what is now known as the Josephson effect, a phenomenon with far-reaching implications. At the heart of this effect lies the Josep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20911v2-abstract-full').style.display = 'inline'; document.getElementById('2405.20911v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20911v2-abstract-full" style="display: none;"> In the realm of physics, a pivotal moment occurred six decades ago when Brian Josephson made a groundbreaking prediction, setting in motion a series of events that would eventually earn him the prestigious Nobel Prize eleven years later. This prediction centered around what is now known as the Josephson effect, a phenomenon with far-reaching implications. At the heart of this effect lies the Josephson junction (JJ), a device that has become a linchpin in various scientific applications. This chapter delves into the foundational principles of the Josephson effect and the remarkable properties of JJs. From their role in metrology to their application in radiation detectors, these junctions have ushered in a new era of electronics. Exploiting the unique features of superconductive devices, such as high speed, low dissipation, and dispersion, JJs find today practical implementation in the development of superconductive qubits and nanotechnology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20911v2-abstract-full').style.display = 'none'; document.getElementById('2405.20911v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a preprint of a chapter to be published in New Trends and Platforms for Quantum Technologies edited by Ramon Aguado, Roberta Citro, Maciej Lewenstein and Michael Stern, 2024, Springer reproduced with permission of Springer Nature Switzerland AG. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-55657-9</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17269">arXiv:2405.17269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17269">pdf</a>, <a href="https://arxiv.org/format/2405.17269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.4.101">10.21468/SciPostPhys.17.4.101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineered Josephson diode effect in kinked Rashba nanochannels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maiellaro%2C+A">Alfonso Maiellaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trama%2C+M">Mattia Trama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Settino%2C+J">Jacopo Settino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romeo%2C+F">Francesco Romeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17269v2-abstract-short" style="display: inline;"> The superconducting diode effect, reminiscent of the unidirectional charge transport in semiconductor diodes, is characterized by a nonreciprocal, dissipationless flow of Cooper pairs. This remarkable phenomenon arises from the interplay between symmetry constraints and the inherent quantum behavior of superconductors. Here, we explore the geometric control of the diode effect in a kinked nanostri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17269v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17269v2-abstract-full" style="display: none;"> The superconducting diode effect, reminiscent of the unidirectional charge transport in semiconductor diodes, is characterized by a nonreciprocal, dissipationless flow of Cooper pairs. This remarkable phenomenon arises from the interplay between symmetry constraints and the inherent quantum behavior of superconductors. Here, we explore the geometric control of the diode effect in a kinked nanostrip Josephson junction based on a two-dimensional electron gas (2DEGs) with Rashba spin-orbit interaction. We provide a comprehensive analysis of the diode effect as a function of the kink angle and the out-of-plane magnetic field. Our analysis reveals a rich phase diagram, showcasing a geometry and field-controlled diode effect. The phase diagram also reveals the presence of an anomalous Josephson effect related to the emergence of trivial zero-energy Andreev bound states, which can evolve into Majorana bound states. Our findings indicate that the exceptional synergy between geometric control of the diode effect and topological phases can be effectively leveraged to design and optimize superconducting devices with tailored transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17269v2-abstract-full').style.display = 'none'; document.getElementById('2405.17269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 101 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04275">arXiv:2404.04275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04275">pdf</a>, <a href="https://arxiv.org/ps/2404.04275">ps</a>, <a href="https://arxiv.org/format/2404.04275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Non-reciprocal topological solitons in active metamaterials&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04275v1-abstract-short" style="display: inline;"> In the recent work &#34;Non-reciprocal topological solitons in active metamaterials&#34; (see arXiv:2312.03544v1), for an analytical understanding of the system under consideration, the authors derive an ordinary differential equation for the sine-Gordon (anti)soliton velocity, with the perturbation theory in the adiabatic approximation, via the inverse scattering transform formalism, see Eq. (3) in their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04275v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04275v1-abstract-full" style="display: none;"> In the recent work &#34;Non-reciprocal topological solitons in active metamaterials&#34; (see arXiv:2312.03544v1), for an analytical understanding of the system under consideration, the authors derive an ordinary differential equation for the sine-Gordon (anti)soliton velocity, with the perturbation theory in the adiabatic approximation, via the inverse scattering transform formalism, see Eq. (3) in their work. Here we note that the latter equation for the (anti)soliton velocity also follows from an energy balance approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04275v1-abstract-full').style.display = 'none'; document.getElementById('2404.04275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 page; comment on arXiv:2312.03544</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01597">arXiv:2403.01597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01597">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2024.3367615">10.1109/TASC.2024.3367615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear Behavior of Josephson Traveling Wave Parametric Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahrens%2C+F">Felix Ahrens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avallone%2C+G">Guerino Avallone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">Carlo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">Matteo Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Callegaro%2C+L">Luca Callegaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">Giovanni Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">Anna Paola Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">Alessandro Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Elia%2C+A">Alessandro D&#39;Elia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">Daniele Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">Paolo Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">Marco Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">Elena Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">Claudio Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">Andrea Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">Damiano Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">Veronica Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">Angelo Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Labranca%2C+D">Danilo Labranca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">Carlo Ligi</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01597v1-abstract-short" style="display: inline;"> Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01597v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01597v1-abstract-full" style="display: none;"> Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providing a relevant bandwidth. This research is centered on a comprehensive numerical investigation of the JTWPA, without resorting to simplifications regarding the nonlinearity of the essential components. Specifically, this study focuses on a thorough examination of the system, characterized by coupled nonlinear differential equations representing all components of the device. Proper input and output signals at the device&#39;s boundaries are considered. The analysis of the output signals undergoing the parametric amplification process involves a detailed exploration of phase-space dynamics and Fourier spectral analysis of the output voltage. This study is conducted while considering the parameters ruling the response of the device under pump and signal excitations. In addition to the expected signal amplification, the findings reveal that the nonlinear nature of the system can give rise to unforeseen phenomena, depending on the system&#39;s operational conditions, which include: the generation of pump tone harmonics, modulation of the signal gain, and incommensurate frequency generation-effects that are not easily accommodated by simplistic linearized approaches <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01597v1-abstract-full').style.display = 'none'; document.getElementById('2403.01597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, DARTWARS project - INFN (Italy)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE TAS, 34 (3), 1, 1701105 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13464">arXiv:2311.13464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13464">pdf</a>, <a href="https://arxiv.org/format/2311.13464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of stability of metastable states in the presence of L茅vy noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dubkov%2C+A+A">A. A. Dubkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">B. Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13464v1-abstract-short" style="display: inline;"> The barrier crossing event for superdiffusion in the form of symmetric L茅vy flights is investigated. We derive from the fractional Fokker-Planck equation a general differential equation with the corresponding conditions useful to calculate the mean residence time of a particle in a fixed interval for an arbitrary smooth potential profile, in particular metastable, with a sink and a L茅vy noise with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13464v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13464v1-abstract-full" style="display: none;"> The barrier crossing event for superdiffusion in the form of symmetric L茅vy flights is investigated. We derive from the fractional Fokker-Planck equation a general differential equation with the corresponding conditions useful to calculate the mean residence time of a particle in a fixed interval for an arbitrary smooth potential profile, in particular metastable, with a sink and a L茅vy noise with an arbitrary index $伪$. A closed expression in quadrature of the nonlinear relaxation time for L茅vy flights with the index $伪=1$ in cubic metastable potential is obtained. Enhancement of the mean residence time in the metastable state, analytically derived, due to L茅vy noise is found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13464v1-abstract-full').style.display = 'none'; document.getElementById('2311.13464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15219">arXiv:2307.15219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15219">pdf</a>, <a href="https://arxiv.org/format/2307.15219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma16175972">10.3390/ma16175972 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion field influence on Josephson junction quasipotential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grimaudo%2C+R">Roberto Grimaudo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troisi%2C+A">Antonio Troisi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15219v2-abstract-short" style="display: inline;"> The direct effect of an axion field on Josephson junctions is analyzed through the consequences on the effective potential barrier that prevents the junction from switching from the superconducting to the finite-voltage state. We describe a method to reliably compute the quasipotential with stochastic simulations, which allows to span the coupling parameter from weakly interacting axion to tight i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15219v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15219v2-abstract-full" style="display: none;"> The direct effect of an axion field on Josephson junctions is analyzed through the consequences on the effective potential barrier that prevents the junction from switching from the superconducting to the finite-voltage state. We describe a method to reliably compute the quasipotential with stochastic simulations, which allows to span the coupling parameter from weakly interacting axion to tight interactions. As a result, we obtain that the axion field induces a change in the potential barrier, therefore determining a significant detectable effect for such a kind of elusive particle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15219v2-abstract-full').style.display = 'none'; document.getElementById('2307.15219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures. This article belongs to the Special Issue &#34;Physics and Application of Superconductivity&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials 2023, 16(17), 5972 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13053">arXiv:2307.13053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13053">pdf</a>, <a href="https://arxiv.org/format/2307.13053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0169267">10.1063/5.0169267 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bipolar thermoelectrical SQUIPT (BTSQUIPT) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13053v2-abstract-short" style="display: inline;"> We theoretically study the quasiparticle current behaviour of a thermally-biased bipolar thermoelectrical superconducting quantum interference proximity transistor, formed by a normal metal wire embedded in a superconducting ring and tunnel-coupled to a superconducting probe. In this configuration, the superconducting gap of the wire can be modified through an applied magnetic flux. We analyse the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13053v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13053v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13053v2-abstract-full" style="display: none;"> We theoretically study the quasiparticle current behaviour of a thermally-biased bipolar thermoelectrical superconducting quantum interference proximity transistor, formed by a normal metal wire embedded in a superconducting ring and tunnel-coupled to a superconducting probe. In this configuration, the superconducting gap of the wire can be modified through an applied magnetic flux. We analyse the thermoelectric response as a function of magnetic flux, at fixed temperatures, in the case of a device made of the same superconductor. We demonstrate magnetically controllable, bipolar thermoelectric behaviour and discuss optimal working conditions by looking at the thermoelectric power and other figures of merit of the device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13053v2-abstract-full').style.display = 'none'; document.getElementById('2307.13053v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 123, 152601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07751">arXiv:2307.07751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07751">pdf</a>, <a href="https://arxiv.org/format/2307.07751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0167769">10.1063/5.0167769 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switching current distributions in ferromagnetic anomalous Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F+S">F. Sebasti谩n Bergeret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07751v2-abstract-short" style="display: inline;"> We investigate the switching current distributions of ferromagnetic anomalous Josephson junctions subjected to a linearly increasing bias current. Our study uncovers a significant correlation between the position of the switching current distributions and crucial system parameters, such as the strength of the spin-orbit coupling and the Gilbert damping parameter. This indicates that these paramete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07751v2-abstract-full').style.display = 'inline'; document.getElementById('2307.07751v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07751v2-abstract-full" style="display: none;"> We investigate the switching current distributions of ferromagnetic anomalous Josephson junctions subjected to a linearly increasing bias current. Our study uncovers a significant correlation between the position of the switching current distributions and crucial system parameters, such as the strength of the spin-orbit coupling and the Gilbert damping parameter. This indicates that these parameters can be directly determined through experimental measurements. By conducting a comprehensive analysis of the interplay among noise, magnetization, phase dynamics, and the statistical properties of the switching current distribution, we deepen our understanding of these intriguing cryogenic spintronics devices. These findings hold potential for applications in the field of quantum computing architectures and information processing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07751v2-abstract-full').style.display = 'none'; document.getElementById('2307.07751v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures. Editor&#39;s Pick</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 123, 152602 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13338">arXiv:2306.13338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13338">pdf</a>, <a href="https://arxiv.org/format/2306.13338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2023.107796">10.1016/j.cnsns.2023.107796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-induced, ac-stabilized sine-Gordon breathers: Emergence and statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13338v1-abstract-short" style="display: inline;"> Noisy and ac forcing can cooperatively lead to the emergence of sine-Gordon breathers robust to dissipation. This phenomenon is studied, for both Neumann and periodic boundary conditions (NBC and PBC, respectively), at different values of the main system parameters, such as the noise intensity and the ac frequency-amplitude pair. In all the considered cases, nonmonotonicities of the probability of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13338v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13338v1-abstract-full" style="display: none;"> Noisy and ac forcing can cooperatively lead to the emergence of sine-Gordon breathers robust to dissipation. This phenomenon is studied, for both Neumann and periodic boundary conditions (NBC and PBC, respectively), at different values of the main system parameters, such as the noise intensity and the ac frequency-amplitude pair. In all the considered cases, nonmonotonicities of the probability of generating only breathers versus the noise strength are observed, implying that optimal noise ranges for the breather formation process exist. Within the latter scenarios, the statistics of the breathers&#39; number, position, and amplitude are analyzed. The number of breathers is found to grow, on average, with the noise amplitude. The breathers&#39; spatial distribution is sharply peaked at the system&#39;s edges for NBC, whereas it is essentially uniform for PBC. The average breather amplitude is dictated by the ac frequency-amplitude pair. Finally, a size analysis shows that the minimum system length for the generation mechanism is given by the typical breather half-width (width) in NBC (PBC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13338v1-abstract-full').style.display = 'none'; document.getElementById('2306.13338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00683">arXiv:2306.00683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00683">pdf</a>, <a href="https://arxiv.org/format/2306.00683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.115088">10.1016/j.chaos.2024.115088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat-transfer fingerprint of Josephson breathers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00683v1-abstract-short" style="display: inline;"> A sine-Gordon breather enhances the heat transfer in a thermally biased long Josephson junction. This solitonic channel allows for the tailoring of the local temperature throughout the system. Furthermore, the phenomenon implies a clear thermal fingerprint for the breather, and thus a &#39;non-destructive&#39; breather detection strategy is proposed here. Distinct breathing frequencies result in morpholog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00683v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00683v1-abstract-full" style="display: none;"> A sine-Gordon breather enhances the heat transfer in a thermally biased long Josephson junction. This solitonic channel allows for the tailoring of the local temperature throughout the system. Furthermore, the phenomenon implies a clear thermal fingerprint for the breather, and thus a &#39;non-destructive&#39; breather detection strategy is proposed here. Distinct breathing frequencies result in morphologically different local temperature peaks, which can be identified in an experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00683v1-abstract-full').style.display = 'none'; document.getElementById('2306.00683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07173">arXiv:2303.07173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07173">pdf</a>, <a href="https://arxiv.org/format/2303.07173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L100511">10.1103/PhysRevB.108.L100511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermoelectric signatures of order-parameter symmetries in iron-based superconducting tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07173v2-abstract-short" style="display: inline;"> Thermoelectrical properties are frequently used to characterize the materials and endow the free energy from wasted heat for useful purposes. Here, we show that linear thermoelectric effects in tunnel junctions with Fe-based superconductors, not only address the dominance between particle and hole states, but even provide information about the superconducting order parameter symmetry. In particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07173v2-abstract-full').style.display = 'inline'; document.getElementById('2303.07173v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07173v2-abstract-full" style="display: none;"> Thermoelectrical properties are frequently used to characterize the materials and endow the free energy from wasted heat for useful purposes. Here, we show that linear thermoelectric effects in tunnel junctions with Fe-based superconductors, not only address the dominance between particle and hole states, but even provide information about the superconducting order parameter symmetry. In particular, we observe that nodal order parameters present a maximal thermoelectric effect at lower temperatures than for nodeless cases. Furthermore, we show also that superconducting tunnel junctions between Fe-based and BCS superconductors could provide a thermoelectric efficiency ZT exceeding 6 with a linear Seebeck coefficient around $S\approx 800\;渭\text{V/K}$ at a few Kelvin. These results pave the way to novel thermoelectric machines based on multi-band superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07173v2-abstract-full').style.display = 'none'; document.getElementById('2303.07173v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Editors&#39; Suggestion. Letter. Main Text 7 pages, 3 figures. Supplemental Material 8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L100511 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05164">arXiv:2301.05164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05164">pdf</a>, <a href="https://arxiv.org/format/2301.05164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2023.113382">10.1016/j.chaos.2023.113382 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ac-locking of thermally-induced sine-Gordon breathers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05164v1-abstract-short" style="display: inline;"> A complete framework for exciting and detecting thermally-induced, stabilized sine-Gordon breathers in ac-driven long Josephson junctions is developed. The formation of long-time stable breathers locked to the ac source occurs for a sufficiently high temperature. The latter emerges as a powerful control parameter, allowing for the remarkably stable localized modes to appear. Nonmonotonic behaviors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05164v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05164v1-abstract-full" style="display: none;"> A complete framework for exciting and detecting thermally-induced, stabilized sine-Gordon breathers in ac-driven long Josephson junctions is developed. The formation of long-time stable breathers locked to the ac source occurs for a sufficiently high temperature. The latter emerges as a powerful control parameter, allowing for the remarkably stable localized modes to appear. Nonmonotonic behaviors of both the breather generation probability and the energy spatial correlations versus the thermal noise strength are found. The junction&#39;s resistive switching characteristics provides a clear experimental signature of the breather. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05164v1-abstract-full').style.display = 'none'; document.getElementById('2301.05164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; Supp Mat: 4 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15433">arXiv:2211.15433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15433">pdf</a>, <a href="https://arxiv.org/format/2211.15433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L201405">10.1103/PhysRevB.107.L201405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hallmarks of non-trivial topology in Josephson junctions based on oxide nanochannels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maiellaro%2C+A">Alfonso Maiellaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Settino%2C+J">Jacopo Settino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romeo%2C+F">Francesco Romeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15433v1-abstract-short" style="display: inline;"> We investigate the topological properties of a Josephson junction obtained by constraining a two-dimensional electron gas at oxide interface to form a quasi-1D conductor. We reveal an anomalous critical current behaviour with a magnetic field applied perpendicular to the Rashba spin-orbit one. We relate the observed critical current enhancement at small magnetic fields with a non-trivial topology,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15433v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15433v1-abstract-full" style="display: none;"> We investigate the topological properties of a Josephson junction obtained by constraining a two-dimensional electron gas at oxide interface to form a quasi-1D conductor. We reveal an anomalous critical current behaviour with a magnetic field applied perpendicular to the Rashba spin-orbit one. We relate the observed critical current enhancement at small magnetic fields with a non-trivial topology, accompanied by Majorana bound states (MBSs) pinned at the edges of the superconducting leads. Signatures of MBSs also include a sawtooth profile in the current-phase relation. Our findings allow to recognize fingerprints of topological superconductivity in non-centrosymmetric materials and confined systems with Rashba spin-orbit interaction, and to explain recent experimental observations for which a microscopic description is still lacking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15433v1-abstract-full').style.display = 'none'; document.getElementById('2211.15433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, L201405, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10101">arXiv:2208.10101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10101">pdf</a>, <a href="https://arxiv.org/format/2208.10101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167745">10.1016/j.nima.2022.167745 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress in the development of a KITWPA for the DARTWARS project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">V. Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Labranca%2C+D">D. Labranca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mantegazzini%2C+F">F. Mantegazzini</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10101v2-abstract-short" style="display: inline;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic induc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10101v2-abstract-full" style="display: none;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic inductance of a high-resistivity superconductor (KITWPA). This paper presents the advancements made by the DARTWARS collaboration to produce a first working prototype of a KITWPA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'none'; document.getElementById('2208.10101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures. Proceeding of Pisa15th Meeting conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03938">arXiv:2205.03938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03938">pdf</a>, <a href="https://arxiv.org/format/2205.03938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2023.113115">10.1016/j.chaos.2023.113115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Breather dynamics in a stochastic sine-Gordon equation: evidence of noise-enhanced stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03938v1-abstract-short" style="display: inline;"> The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the performed simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03938v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03938v1-abstract-full" style="display: none;"> The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the performed simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-free scenario. Both the frequency domain and the localization of energy are examined to document the effectiveness of the noise-enhanced stability phenomenon, which emerges as a nonmonotonic behavior of an average characteristic time for the breather as a function of the noise intensity. The influence of the mode&#39;s starting frequency on the results and their robustness against an additional thermal background are also addressed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03938v1-abstract-full').style.display = 'none'; document.getElementById('2205.03938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos Solitons Fractals 168 113115 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01990">arXiv:2205.01990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01990">pdf</a>, <a href="https://arxiv.org/format/2205.01990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2022.106736">10.1016/j.cnsns.2022.106736 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supratransmission-induced travelling breathers in long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01990v1-abstract-short" style="display: inline;"> The emergence of travelling sine-Gordon breathers due to the nonlinear supratransmission effect is theoretically studied in a long Josephson junction driven by suitable magnetic pulses, taking into account the presence of dissipation, a current bias, and a thermal noise source. The simulations clearly indicate that, depending on the pulse&#39;s shape and the values of the main system parameters, such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01990v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01990v1-abstract-full" style="display: none;"> The emergence of travelling sine-Gordon breathers due to the nonlinear supratransmission effect is theoretically studied in a long Josephson junction driven by suitable magnetic pulses, taking into account the presence of dissipation, a current bias, and a thermal noise source. The simulations clearly indicate that, depending on the pulse&#39;s shape and the values of the main system parameters, such a configuration can effectively yield breather excitations only. Furthermore, a nonmonotonic behavior of the breather-only generation probability is observed as a function of the noise intensity. Finally, the dynamics of the supratransmission-induced breathers is characterized by looking at quantities such as their radiative decay lifetime and the medium&#39;s energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01990v1-abstract-full').style.display = 'none'; document.getElementById('2205.01990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Nonlinear Sci. Numer. Simul. 106736 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10971">arXiv:2201.10971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10971">pdf</a>, <a href="https://arxiv.org/format/2201.10971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.033007">10.1103/PhysRevD.105.033007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson junction-based axion detection through resonant activation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grimaudo%2C+R">Roberto Grimaudo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10971v2-abstract-short" style="display: inline;"> We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of the Josephson system with axions. We show how such an effect can be exploited for axion detection. A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found. We demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10971v2-abstract-full').style.display = 'inline'; document.getElementById('2201.10971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10971v2-abstract-full" style="display: none;"> We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of the Josephson system with axions. We show how such an effect can be exploited for axion detection. A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found. We demonstrate how variations in switching times make it possible to detect the presence of the axion field. An experimental protocol for observing axions through their coupling with a Josephson system is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10971v2-abstract-full').style.display = 'none'; document.getElementById('2201.10971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 033007 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10277">arXiv:2201.10277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10277">pdf</a>, <a href="https://arxiv.org/format/2201.10277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2022.112039">10.1016/j.chaos.2022.112039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of travelling sine-Gordon breathers in noisy long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10277v1-abstract-short" style="display: inline;"> The generation of travelling sine-Gordon breathers is achieved through the nonlinear supratransmission effect in a magnetically driven long Josephson junction, in the presence of losses, a current bias, and a thermal noise source. We demonstrate how to exclusively induce breather modes by means of controlled magnetic pulses. A nonmonotonic behavior of the breather-only generation probability is ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10277v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10277v1-abstract-full" style="display: none;"> The generation of travelling sine-Gordon breathers is achieved through the nonlinear supratransmission effect in a magnetically driven long Josephson junction, in the presence of losses, a current bias, and a thermal noise source. We demonstrate how to exclusively induce breather modes by means of controlled magnetic pulses. A nonmonotonic behavior of the breather-only generation probability is observed as a function of the noise intensity. An experimental protocol providing evidence of the Josephson breather&#39;s existence is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10277v1-abstract-full').style.display = 'none'; document.getElementById('2201.10277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos Solitons Fractals 158 112039 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07697">arXiv:2201.07697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07697">pdf</a>, <a href="https://arxiv.org/format/2201.07697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.134503">10.1103/PhysRevB.105.134503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frustration driven Josephson phase dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chirolli%2C+L">Luca Chirolli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercaldo%2C+M+T">Maria Teresa Mercaldo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">Mario Cuoco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07697v2-abstract-short" style="display: inline;"> The Josephson equations predict remarkable effects concerning the phase state of a superconducting junction with an oscillating current induced by a static voltage. Whether the paradigm can be twisted by yielding an oscillating voltage without making use of harmonic drives is a fundamentally relevant problem yet not fully settled. Here, we demonstrate that a dynamical regime with an oscillating ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07697v2-abstract-full').style.display = 'inline'; document.getElementById('2201.07697v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07697v2-abstract-full" style="display: none;"> The Josephson equations predict remarkable effects concerning the phase state of a superconducting junction with an oscillating current induced by a static voltage. Whether the paradigm can be twisted by yielding an oscillating voltage without making use of harmonic drives is a fundamentally relevant problem yet not fully settled. Here, we demonstrate that a dynamical regime with an oscillating phase evolution is a general hallmark of driven Josephson systems exhibiting sign competition in the Josephson couplings. We show that in frustrated Josephson systems an oscillating phase dynamics gets switched on by driving the changeover among different ground states, which can be induced by varying the parameters that set the phase state. Remarkably, the character of the transitions in the Josephson phase space allows different types of dynamics, with few or several harmonics. This result sets out a characteristic mark of any superconducting system with frustrated Josephson couplings and can be exploited to disentangle the complexity of the underlying phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07697v2-abstract-full').style.display = 'none'; document.getElementById('2201.07697v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 134503 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10585">arXiv:2110.10585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10585">pdf</a>, <a href="https://arxiv.org/format/2110.10585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.014037">10.1103/PhysRevApplied.18.014037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-biased double-loop Josephson flux transducer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10585v3-abstract-short" style="display: inline;"> We theoretically study the behavior of the critical current of a thermally-biased tunnel Josephson junction with a particular design, in which the electrodes of the junction are enclosed in two different superconducting loops pierced by independent magnetic fluxes. In this setup, the superconducting gaps can be modified independently through the magnetic fluxes threading the loops. We investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10585v3-abstract-full').style.display = 'inline'; document.getElementById('2110.10585v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10585v3-abstract-full" style="display: none;"> We theoretically study the behavior of the critical current of a thermally-biased tunnel Josephson junction with a particular design, in which the electrodes of the junction are enclosed in two different superconducting loops pierced by independent magnetic fluxes. In this setup, the superconducting gaps can be modified independently through the magnetic fluxes threading the loops. We investigate the response of the device as a function of the magnetic fluxes, by changing the asymmetry parameter, i.e., the ratio between the zero-temperature superconducting gaps $未=螖_{10}/螖_{20}$, and the temperatures of the two rings. We demonstrate a magnetically controllable step-like response of the critical current, which emerges even in a symmetric junction, $未=1$. Finally, we discuss the optimal working conditions and the high response of the critical current to small changes in the magnetic flux, reporting good performances of the transducer, with a high transfer function that depends on the operating point and the quality of the junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10585v3-abstract-full').style.display = 'none'; document.getElementById('2110.10585v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 014037, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.00976">arXiv:2108.00976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.00976">pdf</a>, <a href="https://arxiv.org/format/2108.00976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.054015">10.1103/PhysRevApplied.16.054015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson-based scheme for the detection of microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komnang%2C+A+S+P">Alex Stephane Piedjou Komnang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">Carlo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettaroli%2C+A">Alessio Rettaroli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">Claudio Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pagano%2C+S">Sergio Pagano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.00976v2-abstract-short" style="display: inline;"> We propose a scheme for the detection of microwave induced photons through current-biased Josephson junction, from the point of view of the statistical decision theory. Our analysis is based on the numerical study of the zero voltage lifetime distribution in response to a periodic train of pulses, that mimics the absorption of photons. The statistical properties of the detection are retrieved comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00976v2-abstract-full').style.display = 'inline'; document.getElementById('2108.00976v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.00976v2-abstract-full" style="display: none;"> We propose a scheme for the detection of microwave induced photons through current-biased Josephson junction, from the point of view of the statistical decision theory. Our analysis is based on the numerical study of the zero voltage lifetime distribution in response to a periodic train of pulses, that mimics the absorption of photons. The statistical properties of the detection are retrieved comparing the thermally induced transitions with the distribution of the switchings to the finite voltage state due to the joint action of thermal noise and of the incident pulses. The capability to discriminate the photon arrival can be quantified through the Kumar-Caroll index, which is a good indicator of the Signal-to-Noise-Ratio. The index can be exploited to identify the system parameters best suited for the detection of weak microwave photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00976v2-abstract-full').style.display = 'none'; document.getElementById('2108.00976v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 054015 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07476">arXiv:2107.07476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.07476">pdf</a>, <a href="https://arxiv.org/format/2107.07476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.217703">10.1103/PhysRevLett.128.217703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal orbital-Edelstein effect in non-centrosymmetric superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chirolli%2C+L">Luca Chirolli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercaldo%2C+M+T">Maria Teresa Mercaldo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">Mario Cuoco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07476v1-abstract-short" style="display: inline;"> In superconductors that lack inversion symmetry, the flow of supercurrent can induce a non-vanishing magnetization, a phenomenon which is at the heart of non-dissipative magneto-electric effects, also known as Edelstein effects. For electrons carrying spin and orbital moments a question of fundamental relevance deals with the orbital nature of magneto-electric effects in conventional spin-singlet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07476v1-abstract-full').style.display = 'inline'; document.getElementById('2107.07476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07476v1-abstract-full" style="display: none;"> In superconductors that lack inversion symmetry, the flow of supercurrent can induce a non-vanishing magnetization, a phenomenon which is at the heart of non-dissipative magneto-electric effects, also known as Edelstein effects. For electrons carrying spin and orbital moments a question of fundamental relevance deals with the orbital nature of magneto-electric effects in conventional spin-singlet superconductors with Rashba coupling. Remarkably, we find that the supercurrent-induced orbital magnetization is more than one order of magnitude greater than that due to the spin, giving rise to a colossal magneto-electric effect. The induced orbital magnetization is shown to be sign tunable, with the sign change occurring for the Fermi level lying in proximity of avoiding crossing points in the Brillouin zone and in the presence of superconducting phase inhomogeneities, yielding domains with opposite orbital moment orientation. The orbital-dominated magneto-electric phenomena, hence, have clear-cut marks for detection both in the bulk and at the edge of the system and are expected to be a general feature of multi-orbital superconductors without inversion symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07476v1-abstract-full').style.display = 'none'; document.getElementById('2107.07476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00445">arXiv:2104.00445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00445">pdf</a>, <a href="https://arxiv.org/format/2104.00445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00406-6">10.1038/s41535-021-00406-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable hallmarks of unconventional superconductivity in non-centrosymmetric nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+G">Gyanendra Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lesne%2C+E">Edouard Lesne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+D">Dag Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claeson%2C+T">Tord Claeson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauch%2C+T">Thilo Bauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lombardi%2C+F">Floriana Lombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caviglia%2C+A+D">Andrea D. Caviglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">Mario Cuoco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalaboukhov%2C+A">Alexei Kalaboukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00445v1-abstract-short" style="display: inline;"> Two dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. However, a convincing demonstration by phase sensitive measurements has been elusive so far. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00445v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00445v1-abstract-full" style="display: none;"> Two dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. However, a convincing demonstration by phase sensitive measurements has been elusive so far. Here, by employing superconducting transport measurements in nano-devices we present clear-cut experimental evidences of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features have a unique trend in intensity and sign upon electrostatic gating that, together with their dependence on temperature and nanowire dimensions, cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We theoretically demonstrate that the hall-marks of the experimental observations unambiguously indicate a coexistence of Josephson channels with sign difference and intrinsic phase shift. The character of these findings establishes the occurrence of independent components of unconventional pairing in the superconducting state due to inversion symmetry breaking. The outcomes open new venues for the investigation of multi-orbital non-centrosymmetric superconductivity and Josephson-based devices for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00445v1-abstract-full').style.display = 'none'; document.getElementById('2104.00445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 7, 2 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08414">arXiv:2007.08414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08414">pdf</a>, <a href="https://arxiv.org/format/2007.08414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2020.110384">10.1016/j.chaos.2020.110384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal noise effects on the magnetization switching of a ferromagnetic anomalous Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F">FS Bergeret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08414v3-abstract-short" style="display: inline;"> We discuss the effects of thermal noise on the magnetic response of a lateral ferromagnetic Josephson junction with spin-orbit coupling and out-of-plane magnetization. The direction of the magnetic moment in the ferromagnetic layer can be inverted by using controlled current pulses. This phenomenon is due to the magnetoelectric effect that couples the flowing charge current and the magnetization o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08414v3-abstract-full').style.display = 'inline'; document.getElementById('2007.08414v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08414v3-abstract-full" style="display: none;"> We discuss the effects of thermal noise on the magnetic response of a lateral ferromagnetic Josephson junction with spin-orbit coupling and out-of-plane magnetization. The direction of the magnetic moment in the ferromagnetic layer can be inverted by using controlled current pulses. This phenomenon is due to the magnetoelectric effect that couples the flowing charge current and the magnetization of the ferromagnet. We investigate the magnetization reversal effect versus intrinsic parameters of the ferromagnet, such as the Gilbert damping and strength of the spin-orbit coupling. We estimate the magnetization reversing time and find the optimal values of the parameters for fast switching. With the aim of increasing the operation temperature we study the effects induced by thermal fluctuations on the averaged stationary magnetization, and find the conditions that make the system more robust against noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08414v3-abstract-full').style.display = 'none'; document.getElementById('2007.08414v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14299">arXiv:2006.14299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.14299">pdf</a>, <a href="https://arxiv.org/format/2006.14299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043332">10.1103/PhysRevResearch.2.043332 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Voltage drop across Josephson junctions for L茅vy noise detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierro%2C+V">Vincenzo Pierro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14299v3-abstract-short" style="display: inline;"> We propose to characterize L茅vy-distributed stochastic fluctuations through the measurement of the average voltage drop across a current-biased Josephson junction. We show that the noise induced switching process in the Josephson washboard potential can be exploited to reveal and characterize L茅vy fluctuations, also if embedded in a thermal noisy background. The measurement of the average voltage&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14299v3-abstract-full').style.display = 'inline'; document.getElementById('2006.14299v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14299v3-abstract-full" style="display: none;"> We propose to characterize L茅vy-distributed stochastic fluctuations through the measurement of the average voltage drop across a current-biased Josephson junction. We show that the noise induced switching process in the Josephson washboard potential can be exploited to reveal and characterize L茅vy fluctuations, also if embedded in a thermal noisy background. The measurement of the average voltage drop as a function of the noise intensity allows to infer the value of the stability index that characterizes L茅vy-distributed fluctuations. An analytical estimate of the average velocity in the case of a L茅vy-driven escape process from a metastable state well agrees with the numerical calculation of the average voltage drop across the junction. The best performances are reached at small bias currents and low temperatures, \emph{i.e.}, when both thermally activated and quantum tunneling switching processes can be neglected. The effects discussed in this work pave the way toward an effective and reliable method to characterize L茅vy components eventually present in an unknown noisy signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14299v3-abstract-full').style.display = 'none'; document.getElementById('2006.14299v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043332 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07621">arXiv:2001.07621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07621">pdf</a>, <a href="https://arxiv.org/format/2001.07621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.023165">10.1103/PhysRevResearch.2.023165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> rf-SQUID measurements of anomalous Josephson effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">Roberta Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Durante%2C+O">Ofelia Durante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F+S">F. Sebasti谩n Bergeret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iorio%2C+A">Andrea Iorio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanz-Fern%C3%A1ndez%2C+C">Cristina Sanz-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strambini%2C+E">Elia Strambini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07621v2-abstract-short" style="display: inline;"> We discuss the response of an rf-SQUID formed by anomalous Josephson junctions embedded in a superconducting ring with a non-negligible inductance. We demonstrate that a properly sweeping in-plane magnetic field can cause both the total flux and the current circulating in the device to modulate and to behave hysteretically. The bistable response of the system is analyzed as a function of the anoma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07621v2-abstract-full').style.display = 'inline'; document.getElementById('2001.07621v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07621v2-abstract-full" style="display: none;"> We discuss the response of an rf-SQUID formed by anomalous Josephson junctions embedded in a superconducting ring with a non-negligible inductance. We demonstrate that a properly sweeping in-plane magnetic field can cause both the total flux and the current circulating in the device to modulate and to behave hysteretically. The bistable response of the system is analyzed as a function of the anomalous phase shift at different values of the screening parameter, in order to highlight the parameter range within which a hysteretic behavior can be observed. The magnetic flux piercing the SQUID ring is demonstrated to further modulate the hysteretical response of the system. Moreover, we show that the anomalous phase shift can be conveniently determined through the measurement of the out-of-plane magnetic field at which the device switches to the voltage state and the number of trapped flux quanta changes. Finally, we compare the response of two different device configurations, namely, a SQUID including only one or two anomalous junctions. In view of these results, the proposed device can be effectively used to detect and measure the anomalous Josephson effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07621v2-abstract-full').style.display = 'none'; document.getElementById('2001.07621v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 023165 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.03393">arXiv:2001.03393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.03393">pdf</a>, <a href="https://arxiv.org/format/2001.03393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-020-0712-7">10.1038/s41565-020-0712-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Josephson phase battery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Strambini%2C+E">E. Strambini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iorio%2C+A">A. Iorio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Durante%2C+O">O. Durante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Citro%2C+R">R. Citro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanz-Fern%C3%A1ndez%2C+C">C. Sanz-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokatly%2C+I+V">I. V. Tokatly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">A. Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rocci%2C+M">M. Rocci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligato%2C+N">N. Ligato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zannier%2C+V">V. Zannier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sorba%2C+L">L. Sorba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F+S">F. S. Bergeret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">F. Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.03393v2-abstract-short" style="display: inline;"> A battery is a classical apparatus which converts a chemical reaction into a persistent voltage bias able to power electronic circuits. Similarly, a phase battery is a quantum equipment which provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on quantum coherence. Unlike the voltage batteries, a phase battery has n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03393v2-abstract-full').style.display = 'inline'; document.getElementById('2001.03393v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.03393v2-abstract-full" style="display: none;"> A battery is a classical apparatus which converts a chemical reaction into a persistent voltage bias able to power electronic circuits. Similarly, a phase battery is a quantum equipment which provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on quantum coherence. Unlike the voltage batteries, a phase battery has not been implemented so far, mainly because of the natural rigidity of the quantum phase that, in typical quantum circuits, is imposed by the parity and time-reversal symmetry constrains. Here we report on the first experimental realization of a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states and proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias $\varphi_0$ across the wire, leading to the anomalous Josephson effect. By applying an external in-plane magnetic field a continuous tuning of $\varphi_0$ is achieved. This allows the charging and discharging of the quantum phase battery and reveals the symmetries of the anomalous Josephson effect predicted by our theoretical model. Our results demonstrate how the combined action of spin-orbit coupling and exchange interaction breaks the phase rigidity of the system inducing a strong coupling between charge, spin and superconducting phase. This interplay opens avenues for topological quantum technologies, superconducting circuitry and advanced schemes of circuit quantum electrodynamics.} <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03393v2-abstract-full').style.display = 'none'; document.getElementById('2001.03393v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures and Supplementary Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08454">arXiv:1907.08454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08454">pdf</a>, <a href="https://arxiv.org/format/1907.08454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.034012">10.1103/PhysRevApplied.13.034012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A cryogenic memory element based on an anomalous Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeret%2C+F+S">F. S. Bergeret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08454v2-abstract-short" style="display: inline;"> We propose a non-volatile memory element based on a lateral ferromagnetic Josephson junction with spin-orbit coupling and out-of-plane magnetization. The interplay between the latter and the intrinsic exchange field of the ferromagnet leads to a magnetoelectric effect that couples the charge current through the junction and its magnetization, such that by applying a current pulse the direction of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08454v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08454v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08454v2-abstract-full" style="display: none;"> We propose a non-volatile memory element based on a lateral ferromagnetic Josephson junction with spin-orbit coupling and out-of-plane magnetization. The interplay between the latter and the intrinsic exchange field of the ferromagnet leads to a magnetoelectric effect that couples the charge current through the junction and its magnetization, such that by applying a current pulse the direction of the magnetic moment in F can be switched. The two memory states are encoded in the direction of the out-of-plane magnetization. With the aim to determine the optimal working temperature for the memory element, we explore the noise-induced effects on the averaged stationary magnetization by taking into account thermal fluctuations affecting both the Josephson phase and the magnetic moment dynamics. We investigate the switching process as a function of intrinsic parameters of the ferromagnet, such as the Gilbert damping and strength of the spin-orbit coupling, and proposed a non-destructive readout scheme based on a dc-SQUID. Additionally, we analyze a way to protect the memory state from external perturbations by voltage gating in systems with a both linear-in-momentum Rashba and Dresselhaus spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08454v2-abstract-full').style.display = 'none'; document.getElementById('1907.08454v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 034012 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.13172">arXiv:1904.13172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.13172">pdf</a>, <a href="https://arxiv.org/format/1904.13172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ab3194">10.1088/1742-5468/ab3194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal flux-flow regime in long Josephson tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.13172v2-abstract-short" style="display: inline;"> We study thermal transport induced by soliton dynamics in a long Josephson tunnel junction operating in the flux-flow regime. A thermal bias across the junction is established by imposing the superconducting electrodes to reside at different temperatures, when solitons flow along the junction. Here, we consider the effect of both a bias current and an external magnetic field on the thermal evoluti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13172v2-abstract-full').style.display = 'inline'; document.getElementById('1904.13172v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.13172v2-abstract-full" style="display: none;"> We study thermal transport induced by soliton dynamics in a long Josephson tunnel junction operating in the flux-flow regime. A thermal bias across the junction is established by imposing the superconducting electrodes to reside at different temperatures, when solitons flow along the junction. Here, we consider the effect of both a bias current and an external magnetic field on the thermal evolution of the device. In the flux-flow regime, a chain of magnetically-excited solitons rapidly moves along the junction driven by the bias current. We explore the range of bias current triggering the flux-flow regime at fixed values of magnetic field, and the stationary temperature distribution in this operation mode. We evidence a steady multi-peaked temperature profile which reflects on the average soliton distribution along the junction. Finally, we analyse also how the friction affecting the soliton dynamics influences the thermal evolution of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13172v2-abstract-full').style.display = 'none'; document.getElementById('1904.13172v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Stat. Mech. (2019) 084006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08349">arXiv:1904.08349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.08349">pdf</a>, <a href="https://arxiv.org/format/1904.08349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b02369">10.1021/acs.nanolett.9b02369 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-Effect Controllable Metallic Josephson Interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paolucci%2C+F">Federico Paolucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vischi%2C+F">Francesco Vischi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Simoni%2C+G">Giorgio De Simoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08349v2-abstract-short" style="display: inline;"> Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low charge concentration materials, and present technological diffculties limiting their scalability. Surprisingly, electric field modulation of supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08349v2-abstract-full').style.display = 'inline'; document.getElementById('1904.08349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08349v2-abstract-full" style="display: none;"> Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low charge concentration materials, and present technological diffculties limiting their scalability. Surprisingly, electric field modulation of supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively-coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (IS) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction the maximum achievable total IS suppresses down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry and single-photon detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08349v2-abstract-full').style.display = 'none'; document.getElementById('1904.08349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 19, 96263-6269 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01456">arXiv:1901.01456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01456">pdf</a>, <a href="https://arxiv.org/format/1901.01456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.054074">10.1103/PhysRevApplied.11.054074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson-Threshold Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepe%2C+G+P">Giovanni Piero Pepe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01456v3-abstract-short" style="display: inline;"> We suggest a single-photon thermal detector based on the abrupt jump of the critical current of a temperature-biased tunnel Josephson junction formed by different superconductors, working in the dissipationless regime. The electrode with the lower critical temperature is used as radiation sensing element, so it is kept thermally floating and is connected to an antenna. The warming up resulting fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01456v3-abstract-full').style.display = 'inline'; document.getElementById('1901.01456v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01456v3-abstract-full" style="display: none;"> We suggest a single-photon thermal detector based on the abrupt jump of the critical current of a temperature-biased tunnel Josephson junction formed by different superconductors, working in the dissipationless regime. The electrode with the lower critical temperature is used as radiation sensing element, so it is kept thermally floating and is connected to an antenna. The warming up resulting from the absorption of a photon can induce a drastic measurable enhancement of the critical current of the junction. We propose a detection scheme based on a threshold mechanism for single- or multi-photon detection. This Josephson threshold detector has indeed calorimetric capabilities being able to discriminate the energy of the incident photon. So, for the realistic setup that we discuss, our detector can efficiently work as a calorimeter for photons from the mid infrared, through the optical, into the ultraviolet, specifically, for photons with frequencies in the range $[30-9\times10^4]\;\text{THz}$. In the whole range of detectable frequencies a resolving power significantly larger than one results. In order to reveal the signal, we suggest the fast measurement of the Josephson kinetic inductance. Indeed, the photon-induced change in the critical current affects the Josephson kinetic inductance of the junction, which can be non-invasively read through a LC tank circuit, inductively coupled to the junction. Finally, this readout scheme shows remarkable multiplexing capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01456v3-abstract-full').style.display = 'none'; document.getElementById('1901.01456v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 054074 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03186">arXiv:1807.03186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.03186">pdf</a>, <a href="https://arxiv.org/format/1807.03186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.024002">10.1103/PhysRevApplied.11.024002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-linear critical current thermal response of an asymmetric Josephson tunnel junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03186v3-abstract-short" style="display: inline;"> We theoretically investigate the critical current of a thermally-biased SIS Josephson junction formed by electrodes made by different BCS superconductors. The response of the device is analyzed as a function of the asymmetry parameter, $r=T_{c_1} /T_{c_2}$. We highlight the appearance of jumps in the critical current of an asymmetric junction, namely, when $r\neq1$. In fact, in such case at temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03186v3-abstract-full').style.display = 'inline'; document.getElementById('1807.03186v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03186v3-abstract-full" style="display: none;"> We theoretically investigate the critical current of a thermally-biased SIS Josephson junction formed by electrodes made by different BCS superconductors. The response of the device is analyzed as a function of the asymmetry parameter, $r=T_{c_1} /T_{c_2}$. We highlight the appearance of jumps in the critical current of an asymmetric junction, namely, when $r\neq1$. In fact, in such case at temperatures at which the BCS superconducting gaps coincide, the critical current suddenly increases or decreases. In particular, we thoroughly discuss the counterintuitively behaviour of the critical current, which increases by enhancing the temperature of one lead, instead of monotonically reducing. In this case, we found that the largest jump of the critical current is obtained for moderate asymmetries, $r\simeq3$. In view of these results, the discussed behavior can be speculatively proposed as a temperature-based threshold single-photon detector with photon-counting capabilities, which operates non-linearly in the non-dissipative channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03186v3-abstract-full').style.display = 'none'; document.getElementById('1807.03186v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 024002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05685">arXiv:1805.05685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05685">pdf</a>, <a href="https://arxiv.org/format/1805.05685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.104501">10.1103/PhysRevB.98.104501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solitonic thermal transport in a current biased long Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05685v3-abstract-short" style="display: inline;"> We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport through the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05685v3-abstract-full').style.display = 'inline'; document.getElementById('1805.05685v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05685v3-abstract-full" style="display: none;"> We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport through the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause the variation of the temperature of the device. When the soliton speed increases approaching its limiting value, i.e., the Swihart velocity, we demonstrate that the soliton-induces thermal effects significantly modify. Finally, we discuss how the appropriate material selection of the superconductors forming the junction is essential, since short quasiparticle relaxation times are required to observe fast thermal effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05685v3-abstract-full').style.display = 'none'; document.getElementById('1805.05685v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 104501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.02588">arXiv:1803.02588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.02588">pdf</a>, <a href="https://arxiv.org/format/1803.02588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-30268-1">10.1038/s41598-018-30268-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-coherent solitonic Josephson heat oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.02588v3-abstract-short" style="display: inline;"> Since its recent foundation, phase-coherent caloritronics has sparkled continuous interest giving rise to numerous concrete applications. This research field deals with the coherent manipulation of heat currents in mesoscopic superconducting devices by mastering the Josephson phase difference. Here, we introduce a new generation of devices for fast caloritronics able to control local heat power an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02588v3-abstract-full').style.display = 'inline'; document.getElementById('1803.02588v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.02588v3-abstract-full" style="display: none;"> Since its recent foundation, phase-coherent caloritronics has sparkled continuous interest giving rise to numerous concrete applications. This research field deals with the coherent manipulation of heat currents in mesoscopic superconducting devices by mastering the Josephson phase difference. Here, we introduce a new generation of devices for fast caloritronics able to control local heat power and temperature through manipulation of Josephson vortices, i.e., solitons. Although most salient features concerning Josephson vortices in long Josephson junctions were comprehensively hitherto explored, little is known about soliton-sustained coherent thermal transport. We demonstrate that the soliton configuration determines the temperature profile in the junction, so that, in correspondence of each magnetically induced soliton, both the flowing thermal power and the temperature significantly enhance. Finally, we thoroughly discuss a fast solitonic Josephson heat oscillator, whose frequency is in tune with the oscillation frequency of the magnetic drive. Notably, the proposed heat oscillator can effectively find application as a tunable thermal source for nanoscale heat engines and coherent thermal machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02588v3-abstract-full').style.display = 'none'; document.getElementById('1803.02588v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 8, 12287 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.01095">arXiv:1802.01095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.01095">pdf</a>, <a href="https://arxiv.org/format/1802.01095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.044078">10.1103/PhysRevApplied.11.044078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson-based threshold detector for L茅vy distributed fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierro%2C+V">Vincenzo Pierro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.01095v3-abstract-short" style="display: inline;"> We propose a threshold detector for L茅vy distributed fluctuations based on a Josephson junction. The L茅vy noise current added to a linearly ramped bias current results in clear changes in the distribution of switching currents out of the zero-voltage state of the junction. We observe that the analysis of the cumulative distribution function of the switching currents supplies information on both th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.01095v3-abstract-full').style.display = 'inline'; document.getElementById('1802.01095v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.01095v3-abstract-full" style="display: none;"> We propose a threshold detector for L茅vy distributed fluctuations based on a Josephson junction. The L茅vy noise current added to a linearly ramped bias current results in clear changes in the distribution of switching currents out of the zero-voltage state of the junction. We observe that the analysis of the cumulative distribution function of the switching currents supplies information on both the characteristics shape parameter $伪$ of the L茅vy statistics and the intensity of the fluctuations. Moreover, we discuss a theoretical model which allows to extract characteristic features of the L茅vy fluctuations from a measured distribution of switching currents. In view of this results, this system can effectively find an application as a detector for a L茅vy signal embedded in a noisy background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.01095v3-abstract-full').style.display = 'none'; document.getElementById('1802.01095v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 044078 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00259">arXiv:1712.00259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00259">pdf</a>, <a href="https://arxiv.org/format/1712.00259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.9.034014">10.1103/PhysRevApplied.9.034014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solitonic Josephson thermal transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00259v3-abstract-short" style="display: inline;"> We explore the coherent thermal transport sustained by solitons through a long Josephson junction, as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Correspondingly, the junction warms up in correspondence of the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00259v3-abstract-full').style.display = 'inline'; document.getElementById('1712.00259v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00259v3-abstract-full" style="display: none;"> We explore the coherent thermal transport sustained by solitons through a long Josephson junction, as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Correspondingly, the junction warms up in correspondence of the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath temperature Tbath = 4.2 K. The thermal effects on the dynamics of the soliton are also discussed. Markedly, this system inherits the topological robustness of the solitons. In view of these results, the proposed device can effectively find an application as a superconducting thermal router in which the thermal transport can be locally mastered through solitonic excitations, which positions can be externally controlled through a magnetic field and a bias current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00259v3-abstract-full').style.display = 'none'; document.getElementById('1712.00259v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 9, 034014 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05323">arXiv:1706.05323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.05323">pdf</a>, <a href="https://arxiv.org/format/1706.05323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.9.014021">10.1103/PhysRevApplied.9.014021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson thermal memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braggio%2C+A">Alessandro Braggio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Ventra%2C+M">Massimiliano Di Ventra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05323v4-abstract-short" style="display: inline;"> We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled, temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05323v4-abstract-full').style.display = 'inline'; document.getElementById('1706.05323v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05323v4-abstract-full" style="display: none;"> We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled, temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of ~0.2 ns, for a Nb-based SQUID in thermal contact with a phonon bath at 4:2 K. We suggest a non-invasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05323v4-abstract-full').style.display = 'none'; document.getElementById('1706.05323v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 9, 014021 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01641">arXiv:1702.01641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.01641">pdf</a>, <a href="https://arxiv.org/format/1702.01641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6528/aa5e75">10.1088/1361-6528/aa5e75 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous transport effects on switching currents of graphene-based Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierro%2C+V">Vincenzo Pierro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01641v1-abstract-short" style="display: inline;"> We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, give the switching c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01641v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01641v1-abstract-full" style="display: none;"> We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, give the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of processes: a Gaussian contribution to simulate an uncorrelated ordinary thermal bath, and non-Gaussian, $伪$-stable (or L茅vy) term, generally associated to non-equilibrium transport phenomena. We find that the analysis of the switching current distribution makes it possible to efficiently detect a non-Gaussian noise component in a Gaussian background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01641v1-abstract-full').style.display = 'none'; document.getElementById('1702.01641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.06602">arXiv:1701.06602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.06602">pdf</a>, <a href="https://arxiv.org/format/1701.06602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.7.044021">10.1103/PhysRevApplied.7.044021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hysteretic superconducting heat-flux quantum modulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Ventra%2C+M">Massimiliano Di Ventra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.06602v3-abstract-short" style="display: inline;"> We discuss heat transport in a thermally-biased SQUID in the presence of an external magnetic flux, when a non-negligible inductance of the SQUID ring is taken into account. A properly sweeping driving flux causes the thermal current to modulate and behave hysteretically. The response of this device is analysed as a function of both the hysteresis parameter and degree of asymmetry of the SQUID, hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06602v3-abstract-full').style.display = 'inline'; document.getElementById('1701.06602v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.06602v3-abstract-full" style="display: none;"> We discuss heat transport in a thermally-biased SQUID in the presence of an external magnetic flux, when a non-negligible inductance of the SQUID ring is taken into account. A properly sweeping driving flux causes the thermal current to modulate and behave hysteretically. The response of this device is analysed as a function of both the hysteresis parameter and degree of asymmetry of the SQUID, highlighting the parameter range over which hysteretic behavior is observable. Markedly, also the temperature of the SQUID shows hysteretic evolution, with sharp transitions characterized by temperature jumps up to, e.g., ~ 38mK for a realistic Al-based setup. In view of these results, the proposed device can effectively find application as a temperature-based superconducting memory element, working even at GHz frequencies by suitably choosing the superconductor on which the device is based. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06602v3-abstract-full').style.display = 'none'; document.getElementById('1701.06602v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 7, 044021 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.06807">arXiv:1610.06807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.06807">pdf</a>, <a href="https://arxiv.org/format/1610.06807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep46736">10.1038/srep46736 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solitonic Josephson-based meminductive systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Ventra%2C+M">Massimiliano Di Ventra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.06807v1-abstract-short" style="display: inline;"> Memristors, memcapacitors, and meminductors, collectively called memelements, represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, under the effect of an external time-dependent perturbation, is their distinctive fingerprint. In turn, this feature endows them with the ab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06807v1-abstract-full').style.display = 'inline'; document.getElementById('1610.06807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.06807v1-abstract-full" style="display: none;"> Memristors, memcapacitors, and meminductors, collectively called memelements, represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, under the effect of an external time-dependent perturbation, is their distinctive fingerprint. In turn, this feature endows them with the ability to both store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics, to name just a few. For all these types of applications, it is important to find appropriate memelements that combine a wide range of memory states (multi-state memory), long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine all of these important physical features in a single component. Her we demonstrate theoretically a superconducting memory structure based on solitonic long Josephson junctions (LJJs). We show that the Josephson critical current of the junction behaves hysteretically as an external magnetic field is properly swept. According to the hysteretic path displayed by the critical current, a LJJ can be used as a multi-state memory, with a controllable number of available states. In addition, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. Solitonic Josephson-based memelements may find applications as memories, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06807v1-abstract-full').style.display = 'none'; document.getElementById('1610.06807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 46736 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01070">arXiv:1606.01070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.01070">pdf</a>, <a href="https://arxiv.org/format/1606.01070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.054522">10.1103/PhysRevB.94.054522 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent diffraction of thermal currents in long Josephson tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giazotto%2C+F">Francesco Giazotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solinas%2C+P">Paolo Solinas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01070v2-abstract-short" style="display: inline;"> We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01070v2-abstract-full').style.display = 'inline'; document.getElementById('1606.01070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01070v2-abstract-full" style="display: none;"> We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations from the standard Fraunhofer pattern characteristic of short junctions. The heat current diffraction patterns show features strongly related to the formation and penetration of Josephson vortices, i.e. solitons. We show that a dynamical treatment of the system is crucial for the realistic description of the Josephson junction and it leads to peculiar results. In fact, hysteretic behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the trapping of vortices in the junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01070v2-abstract-full').style.display = 'none'; document.getElementById('1606.01070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 054522 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04899">arXiv:1511.04899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04899">pdf</a>, <a href="https://arxiv.org/format/1511.04899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/2016/05/054012">10.1088/1742-5468/2016/05/054012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of L茅vy noise on the dynamics of sine-Gordon solitons in long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04899v1-abstract-short" style="display: inline;"> We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $伪$-stable L茅vy distributions is considered as noise sou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04899v1-abstract-full').style.display = 'inline'; document.getElementById('1511.04899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04899v1-abstract-full" style="display: none;"> We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $伪$-stable L茅vy distributions is considered as noise source, with varying stability index $伪$ and asymmetry parameter $尾$. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is directly related to the mean density of solitons which move into or from the washboard potential minimum corresponding to the initial superconductive state. Moreover, we observe: (i) a connection between the total mean soliton density and the mean potential difference across the junction; (ii) an inverse behavior of the mean voltage in comparison with the MST, with varying the junction length; (iii) evidences of non-monotonic behaviors, such as stochastic resonant activation and noise enhanced stability, of MST versus the driving frequency and noise intensity for different values of $伪$ and $尾$; (iv) finally, these non-monotonic behaviors are found to be related to the mean density of solitons formed along the junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04899v1-abstract-full').style.display = 'none'; document.getElementById('1511.04899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, submitted to J. Stat. Mech.: Theory Exp. arXiv admin note: text overlap with arXiv:1406.4813</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Statistical Mechanics: Theory and Experiment, Volume 2016, May 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.04037">arXiv:1501.04037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.04037">pdf</a>, <a href="https://arxiv.org/format/1501.04037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sine-Gordon breathers generation in driven long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.04037v4-abstract-short" style="display: inline;"> We consider a long Josephson junction excited by a suitable external ac-signal, in order to generate control and detect breathers. Studying the nonlinear supratransmission phenomenon in a nonlinear sine-Gordon chain sinusoidally driven, Geniet and Leon explored the bifurcation of the energy transmitted into the chain and calculated a threshold $A (蠅)$ for the external driving signal amplitude, at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04037v4-abstract-full').style.display = 'inline'; document.getElementById('1501.04037v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.04037v4-abstract-full" style="display: none;"> We consider a long Josephson junction excited by a suitable external ac-signal, in order to generate control and detect breathers. Studying the nonlinear supratransmission phenomenon in a nonlinear sine-Gordon chain sinusoidally driven, Geniet and Leon explored the bifurcation of the energy transmitted into the chain and calculated a threshold $A (蠅)$ for the external driving signal amplitude, at which the energy flows into the system by breathers modes. I numerically study the continuous sine-Gordon model, describing the dynamics of the phase difference in a long Josephson junction, in order to deeply investigate the &#34;continuous limit&#34; modifications to this threshold. Wherever the energy flows into the system due to the nonlinear supratransmission, a peculiar breather localization areas appear in a $(A, 蠅)$ parameters space. The emergence of these areas depends on the damping parameter value, the bias current, and the waveform of driving external signal. The robustness of generated breathers is checked by introducing into the model a thermal noise source to mimic the environmental fluctuations. Presented results allows one to consider a cryogenic experiment for creation and detection of Josephson breathers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04037v4-abstract-full').style.display = 'none'; document.getElementById('1501.04037v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. The updated version of this work can be found in arXiv:2201.10277 and arXiv:2205.01990</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0094">arXiv:1412.0094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0094">pdf</a>, <a href="https://arxiv.org/ps/1412.0094">ps</a>, <a href="https://arxiv.org/format/1412.0094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.174519">10.1103/PhysRevB.92.174519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0094v1-abstract-short" style="display: inline;"> In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the well-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0094v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0094v1-abstract-full" style="display: none;"> In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the well-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those present in normal current-biased JJs. We explore the effects of thermal and correlated fluctuations on the escape time from these metastable states, when the system is stimulated by an oscillating bias current. As a first step, the analysis is carried out in the presence of an external Gaussian white noise source, which mimics the random fluctuations of the bias current. Varying the noise intensity, it is possible to analyze the behavior of the escape time from a superconductive metastable state in different temperature regimes. Noise induced phenomena, such as resonant activation and noise induced stability, are observed. The study is extended to the case of a coloured Gaussian noise source, analyzing how the escape time from the metastable state is affected by correlated random fluctuations for different values of the noise correlation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0094v1-abstract-full').style.display = 'none'; document.getElementById('1412.0094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.4813">arXiv:1406.4813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.4813">pdf</a>, <a href="https://arxiv.org/format/1406.4813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.214510">10.1103/PhysRevB.89.214510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.4813v2-abstract-short" style="display: inline;"> We investigate the superconducting lifetime of long current-biased Josephson junctions, in the presence of Gaussian and non-Gaussian noise sources. In particular, we analyze the dynamics of a Josephson junction as a function of the noise signal intensity, for different values of the parameters of the system and external driving currents. We find that the mean lifetime of the superconductive state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.4813v2-abstract-full').style.display = 'inline'; document.getElementById('1406.4813v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.4813v2-abstract-full" style="display: none;"> We investigate the superconducting lifetime of long current-biased Josephson junctions, in the presence of Gaussian and non-Gaussian noise sources. In particular, we analyze the dynamics of a Josephson junction as a function of the noise signal intensity, for different values of the parameters of the system and external driving currents. We find that the mean lifetime of the superconductive state is characterized by nonmonotonic behavior as a function of noise intensity, driving frequency and junction length. We observe that these nonmonotonic behaviours are connected with the dynamics of the junction phase string during the switching towards the resistive state. An important role is played by the formation and propagation of solitons, with two different dynamical regimes characterizing the dynamics of the phase string. Our analysis allows to evidence the effects of different bias current densities, that is a simple spatially homogeneous distribution and a more realistic inhomogeneous distribution with high current values at the junction edges. Stochastic resonant activation, noise enhanced stability and temporary trapping phenomena are observed in the system investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.4813v2-abstract-full').style.display = 'none'; document.getElementById('1406.4813v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, Physical Review B, in press</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10