CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–24 of 24 results for author: <span class="mathjax">Carollo, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Carollo%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Carollo, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Carollo%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Carollo, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13667">arXiv:2411.13667</a> <span> [<a href="https://arxiv.org/pdf/2411.13667">pdf</a>, <a href="https://arxiv.org/format/2411.13667">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Entanglement growth in the dark intervals of a locally monitored free-fermion chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Di+Fresco%2C+G">Giovanni Di Fresco</a>, <a href="/search/cond-mat?searchtype=author&query=Gal%2C+Y+L">Youenn Le Gal</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Schir%C3%B2%2C+M">Marco Schir貌</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13667v1-abstract-short" style="display: inline;"> We consider a free fermionic chain with monitoring of the particle density on a single site of the chain and study the entanglement dynamics of quantum jump trajectories. We show that the entanglement entropy grows in time towards a stationary state which display volume law scaling of the entropy, in stark contrast with both the unitary dynamics after a local quench and the no-click limit correspo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13667v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13667v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13667v1-abstract-full" style="display: none;"> We consider a free fermionic chain with monitoring of the particle density on a single site of the chain and study the entanglement dynamics of quantum jump trajectories. We show that the entanglement entropy grows in time towards a stationary state which display volume law scaling of the entropy, in stark contrast with both the unitary dynamics after a local quench and the no-click limit corresponding to full post-selection. We explain the extensive entanglement growth as a consequence of the peculiar distribution of quantum jumps in time, which display superpoissonian waiting time distribution characterised by a bunching of quantum jumps followed by long dark intervals where no-clicks are detected, akin to the distribution of fluorescence light in a driven atom. We show that the presence of dark intervals is the key feature to explain the effect and that by increasing the number of sites which are monitored the volume law scaling gives away to the Zeno effect and its associated area law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13667v1-abstract-full').style.display = 'none'; document.getElementById('2411.13667v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13837">arXiv:2407.13837</a> <span> [<a href="https://arxiv.org/pdf/2407.13837">pdf</a>, <a href="https://arxiv.org/format/2407.13837">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Breakdown of Measurement-Induced Phase Transitions Under Information Loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Paviglianiti%2C+A">Alessio Paviglianiti</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Fresco%2C+G">Giovanni Di Fresco</a>, <a href="/search/cond-mat?searchtype=author&query=Silva%2C+A">Alessandro Silva</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13837v1-abstract-short" style="display: inline;"> The dynamics of a quantum-many body system subject to measurements is naturally described by an ensemble of quantum trajectories, which can feature measurement-induced phase transitions (MIPTs). This phenomenon cannot be revealed through ensemble-averaged observables, but it requires the ability to discriminate each trajectory separately, making its experimental observation extremely challenging.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13837v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13837v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13837v1-abstract-full" style="display: none;"> The dynamics of a quantum-many body system subject to measurements is naturally described by an ensemble of quantum trajectories, which can feature measurement-induced phase transitions (MIPTs). This phenomenon cannot be revealed through ensemble-averaged observables, but it requires the ability to discriminate each trajectory separately, making its experimental observation extremely challenging. We explore the fate of MIPTs under an observer's reduced ability to discriminate each measurement outcome. This introduces uncertainty in the state of the system, causing observables to probe a restricted subset of trajectories rather than a single one. By introducing an exactly-solvable Liouvillian model, we examine how long-time spatial correlations are influenced by varying degrees of trajectory averaging. We compute exactly the correlation matrix, Liouvillian gap, and entanglement negativity to demonstrate that averaging over multiple realizations introduces an effective finite lengthscale, beyond which long-range correlations are suppressed. This suggests that partial averaging over trajectories conceals the critical features of individual realizations, thereby blurring away the signatures of distinct measurement-induced phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13837v1-abstract-full').style.display = 'none'; document.getElementById('2407.13837v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10382">arXiv:2404.10382</a> <span> [<a href="https://arxiv.org/pdf/2404.10382">pdf</a>, <a href="https://arxiv.org/format/2404.10382">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonlinearity-enhanced quantum sensing in Stark probes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yousefjani%2C+R">Rozhin Yousefjani</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+X">Xingjian He</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Bayat%2C+A">Abolfazl Bayat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10382v1-abstract-short" style="display: inline;"> Stark systems in which a linear gradient field is applied across a many-body system have recently been harnessed for quantum sensing. Here, we explore sensing capacity of Stark models, in both single-particle and many-body interacting systems, for estimating the strength of both linear and nonlinear Stark fields. The problem naturally lies in the context of multi-parameter estimation. We determine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10382v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10382v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10382v1-abstract-full" style="display: none;"> Stark systems in which a linear gradient field is applied across a many-body system have recently been harnessed for quantum sensing. Here, we explore sensing capacity of Stark models, in both single-particle and many-body interacting systems, for estimating the strength of both linear and nonlinear Stark fields. The problem naturally lies in the context of multi-parameter estimation. We determine the phase diagram of the system in terms of both linear and nonlinear gradient fields showing how the extended phase turns into a localized one as the Stark fields increase. We also characterize the properties of the phase transition, including critical exponents, through a comprehesive finite-size scaling analysis. Interestingly, our results show that the estimation of both the linear and the nonlinear fields can achieve super-Heisenberg scaling. In fact, the scaling exponent of the sensing precision is directly proportional to the nonlinearity exponent which shows that nonlinearity enhances the estimation precision. Finally, we show that even after considering the cost of the preparation time the sensing precision still reveals super-Heisenberg scaling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10382v1-abstract-full').style.display = 'none'; document.getElementById('2404.10382v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04275">arXiv:2404.04275</a> <span> [<a href="https://arxiv.org/pdf/2404.04275">pdf</a>, <a href="https://arxiv.org/ps/2404.04275">ps</a>, <a href="https://arxiv.org/format/2404.04275">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Comment on "Non-reciprocal topological solitons in active metamaterials" </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04275v1-abstract-short" style="display: inline;"> In the recent work "Non-reciprocal topological solitons in active metamaterials" (see arXiv:2312.03544v1), for an analytical understanding of the system under consideration, the authors derive an ordinary differential equation for the sine-Gordon (anti)soliton velocity, with the perturbation theory in the adiabatic approximation, via the inverse scattering transform formalism, see Eq. (3) in their… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04275v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04275v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04275v1-abstract-full" style="display: none;"> In the recent work "Non-reciprocal topological solitons in active metamaterials" (see arXiv:2312.03544v1), for an analytical understanding of the system under consideration, the authors derive an ordinary differential equation for the sine-Gordon (anti)soliton velocity, with the perturbation theory in the adiabatic approximation, via the inverse scattering transform formalism, see Eq. (3) in their work. Here we note that the latter equation for the (anti)soliton velocity also follows from an energy balance approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04275v1-abstract-full').style.display = 'none'; document.getElementById('2404.04275v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 page; comment on arXiv:2312.03544</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13338">arXiv:2306.13338</a> <span> [<a href="https://arxiv.org/pdf/2306.13338">pdf</a>, <a href="https://arxiv.org/format/2306.13338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2023.107796">10.1016/j.cnsns.2023.107796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-induced, ac-stabilized sine-Gordon breathers: Emergence and statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13338v1-abstract-short" style="display: inline;"> Noisy and ac forcing can cooperatively lead to the emergence of sine-Gordon breathers robust to dissipation. This phenomenon is studied, for both Neumann and periodic boundary conditions (NBC and PBC, respectively), at different values of the main system parameters, such as the noise intensity and the ac frequency-amplitude pair. In all the considered cases, nonmonotonicities of the probability of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13338v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13338v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13338v1-abstract-full" style="display: none;"> Noisy and ac forcing can cooperatively lead to the emergence of sine-Gordon breathers robust to dissipation. This phenomenon is studied, for both Neumann and periodic boundary conditions (NBC and PBC, respectively), at different values of the main system parameters, such as the noise intensity and the ac frequency-amplitude pair. In all the considered cases, nonmonotonicities of the probability of generating only breathers versus the noise strength are observed, implying that optimal noise ranges for the breather formation process exist. Within the latter scenarios, the statistics of the breathers' number, position, and amplitude are analyzed. The number of breathers is found to grow, on average, with the noise amplitude. The breathers' spatial distribution is sharply peaked at the system's edges for NBC, whereas it is essentially uniform for PBC. The average breather amplitude is dictated by the ac frequency-amplitude pair. Finally, a size analysis shows that the minimum system length for the generation mechanism is given by the typical breather half-width (width) in NBC (PBC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13338v1-abstract-full').style.display = 'none'; document.getElementById('2306.13338v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00683">arXiv:2306.00683</a> <span> [<a href="https://arxiv.org/pdf/2306.00683">pdf</a>, <a href="https://arxiv.org/format/2306.00683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.115088">10.1016/j.chaos.2024.115088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat-transfer fingerprint of Josephson breathers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00683v1-abstract-short" style="display: inline;"> A sine-Gordon breather enhances the heat transfer in a thermally biased long Josephson junction. This solitonic channel allows for the tailoring of the local temperature throughout the system. Furthermore, the phenomenon implies a clear thermal fingerprint for the breather, and thus a 'non-destructive' breather detection strategy is proposed here. Distinct breathing frequencies result in morpholog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00683v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00683v1-abstract-full" style="display: none;"> A sine-Gordon breather enhances the heat transfer in a thermally biased long Josephson junction. This solitonic channel allows for the tailoring of the local temperature throughout the system. Furthermore, the phenomenon implies a clear thermal fingerprint for the breather, and thus a 'non-destructive' breather detection strategy is proposed here. Distinct breathing frequencies result in morphologically different local temperature peaks, which can be identified in an experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00683v1-abstract-full').style.display = 'none'; document.getElementById('2306.00683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00762">arXiv:2303.00762</a> <span> [<a href="https://arxiv.org/pdf/2303.00762">pdf</a>, <a href="https://arxiv.org/format/2303.00762">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46471-w">10.1038/s41467-024-46471-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hermitian and Non-Hermitian Topology from Photon-Mediated Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roccati%2C+F">Federico Roccati</a>, <a href="/search/cond-mat?searchtype=author&query=Bello%2C+M">Miguel Bello</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+Z">Zongping Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Ueda%2C+M">Masahito Ueda</a>, <a href="/search/cond-mat?searchtype=author&query=Ciccarello%2C+F">Francesco Ciccarello</a>, <a href="/search/cond-mat?searchtype=author&query=Chenu%2C+A">Aur茅lia Chenu</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00762v1-abstract-short" style="display: inline;"> Light can mediate effective dipole-dipole interactions between atoms or quantum emitters coupled to a common environment. Exploiting them to tailor a desired effective Hamiltonian can have major applications and advance the search for many-body phases. Quantum technologies are mature enough to engineer large photonic lattices with sophisticated structures coupled to quantum emitters. In this conte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00762v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00762v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00762v1-abstract-full" style="display: none;"> Light can mediate effective dipole-dipole interactions between atoms or quantum emitters coupled to a common environment. Exploiting them to tailor a desired effective Hamiltonian can have major applications and advance the search for many-body phases. Quantum technologies are mature enough to engineer large photonic lattices with sophisticated structures coupled to quantum emitters. In this context, a fundamental problem is to find general criteria to tailor a photonic environment that mediates a desired effective Hamiltonian of the atoms. Among these criteria, topological properties are of utmost importance since an effective atomic Hamiltonian endowed with a non-trivial topology can be protected against disorder and imperfections. Here, we find general theorems that govern the topological properties (if any) of photon-mediated Hamiltonians in terms of both Hermitian and non-Hermitian topological invariants, thus unveiling a system-bath topological correspondence. The results depend on the number of emitters relative to the number of resonators. For a photonic lattice where each mode is coupled to a single quantum emitter, the Altland-Zirnbauer classification of topological insulators allows us to link the topology of the atoms to that of the photonic bath: we unveil the phenomena of topological preservation and reversal to the effect that the atomic topology can be the same or opposite to the photonic one, depending on Hermiticity of the photonic system and on the parity of the spatial dimension. As a consequence, the bulk-edge correspondence implies the existence of atomic boundary modes with the group velocity opposite to the photonic ones in a 2D Hermitian topological system. If there are fewer emitters than photonic modes, the atomic system is less constrained and no general photon-atom topological correspondence can be found. We show this with two counterexamples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00762v1-abstract-full').style.display = 'none'; document.getElementById('2303.00762v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, 2 tables. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 2400 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05164">arXiv:2301.05164</a> <span> [<a href="https://arxiv.org/pdf/2301.05164">pdf</a>, <a href="https://arxiv.org/format/2301.05164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2023.113382">10.1016/j.chaos.2023.113382 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ac-locking of thermally-induced sine-Gordon breathers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05164v1-abstract-short" style="display: inline;"> A complete framework for exciting and detecting thermally-induced, stabilized sine-Gordon breathers in ac-driven long Josephson junctions is developed. The formation of long-time stable breathers locked to the ac source occurs for a sufficiently high temperature. The latter emerges as a powerful control parameter, allowing for the remarkably stable localized modes to appear. Nonmonotonic behaviors… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05164v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05164v1-abstract-full" style="display: none;"> A complete framework for exciting and detecting thermally-induced, stabilized sine-Gordon breathers in ac-driven long Josephson junctions is developed. The formation of long-time stable breathers locked to the ac source occurs for a sufficiently high temperature. The latter emerges as a powerful control parameter, allowing for the remarkably stable localized modes to appear. Nonmonotonic behaviors of both the breather generation probability and the energy spatial correlations versus the thermal noise strength are found. The junction's resistive switching characteristics provides a clear experimental signature of the breather. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05164v1-abstract-full').style.display = 'none'; document.getElementById('2301.05164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; Supp Mat: 4 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03938">arXiv:2205.03938</a> <span> [<a href="https://arxiv.org/pdf/2205.03938">pdf</a>, <a href="https://arxiv.org/format/2205.03938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2023.113115">10.1016/j.chaos.2023.113115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Breather dynamics in a stochastic sine-Gordon equation: evidence of noise-enhanced stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03938v1-abstract-short" style="display: inline;"> The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the performed simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03938v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03938v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03938v1-abstract-full" style="display: none;"> The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the performed simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-free scenario. Both the frequency domain and the localization of energy are examined to document the effectiveness of the noise-enhanced stability phenomenon, which emerges as a nonmonotonic behavior of an average characteristic time for the breather as a function of the noise intensity. The influence of the mode's starting frequency on the results and their robustness against an additional thermal background are also addressed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03938v1-abstract-full').style.display = 'none'; document.getElementById('2205.03938v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos Solitons Fractals 168 113115 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01990">arXiv:2205.01990</a> <span> [<a href="https://arxiv.org/pdf/2205.01990">pdf</a>, <a href="https://arxiv.org/format/2205.01990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2022.106736">10.1016/j.cnsns.2022.106736 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supratransmission-induced travelling breathers in long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01990v1-abstract-short" style="display: inline;"> The emergence of travelling sine-Gordon breathers due to the nonlinear supratransmission effect is theoretically studied in a long Josephson junction driven by suitable magnetic pulses, taking into account the presence of dissipation, a current bias, and a thermal noise source. The simulations clearly indicate that, depending on the pulse's shape and the values of the main system parameters, such… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01990v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01990v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01990v1-abstract-full" style="display: none;"> The emergence of travelling sine-Gordon breathers due to the nonlinear supratransmission effect is theoretically studied in a long Josephson junction driven by suitable magnetic pulses, taking into account the presence of dissipation, a current bias, and a thermal noise source. The simulations clearly indicate that, depending on the pulse's shape and the values of the main system parameters, such a configuration can effectively yield breather excitations only. Furthermore, a nonmonotonic behavior of the breather-only generation probability is observed as a function of the noise intensity. Finally, the dynamics of the supratransmission-induced breathers is characterized by looking at quantities such as their radiative decay lifetime and the medium's energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01990v1-abstract-full').style.display = 'none'; document.getElementById('2205.01990v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Nonlinear Sci. Numer. Simul. 106736 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10277">arXiv:2201.10277</a> <span> [<a href="https://arxiv.org/pdf/2201.10277">pdf</a>, <a href="https://arxiv.org/format/2201.10277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2022.112039">10.1016/j.chaos.2022.112039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of travelling sine-Gordon breathers in noisy long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=De+Santis%2C+D">Duilio De Santis</a>, <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10277v1-abstract-short" style="display: inline;"> The generation of travelling sine-Gordon breathers is achieved through the nonlinear supratransmission effect in a magnetically driven long Josephson junction, in the presence of losses, a current bias, and a thermal noise source. We demonstrate how to exclusively induce breather modes by means of controlled magnetic pulses. A nonmonotonic behavior of the breather-only generation probability is ob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10277v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10277v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10277v1-abstract-full" style="display: none;"> The generation of travelling sine-Gordon breathers is achieved through the nonlinear supratransmission effect in a magnetically driven long Josephson junction, in the presence of losses, a current bias, and a thermal noise source. We demonstrate how to exclusively induce breather modes by means of controlled magnetic pulses. A nonmonotonic behavior of the breather-only generation probability is observed as a function of the noise intensity. An experimental protocol providing evidence of the Josephson breather's existence is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10277v1-abstract-full').style.display = 'none'; document.getElementById('2201.10277v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos Solitons Fractals 158 112039 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05880">arXiv:2108.05880</a> <span> [<a href="https://arxiv.org/pdf/2108.05880">pdf</a>, <a href="https://arxiv.org/format/2108.05880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04639-8">10.1038/s41586-022-04639-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of ultracold atomic bubbles in orbital microgravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+R+A">Ryan A. Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Aveline%2C+D+C">David C. Aveline</a>, <a href="/search/cond-mat?searchtype=author&query=Rhyno%2C+B">Brendan Rhyno</a>, <a href="/search/cond-mat?searchtype=author&query=Vishveshwara%2C+S">Smitha Vishveshwara</a>, <a href="/search/cond-mat?searchtype=author&query=Lannert%2C+C">Courtney Lannert</a>, <a href="/search/cond-mat?searchtype=author&query=Murphree%2C+J+D">Joseph D. Murphree</a>, <a href="/search/cond-mat?searchtype=author&query=Elliott%2C+E+R">Ethan R. Elliott</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+J+R">Jason R. Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+R+J">Robert J. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Lundblad%2C+N">Nathan Lundblad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05880v1-abstract-short" style="display: inline;"> Significant leaps in the understanding of quantum systems have been driven by the exploration of geometry, topology, dimensionality, and interactions with ultracold atomic ensembles. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing such an ultracold bubble system (potentially Bose-Einstein condensed) has areas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05880v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05880v1-abstract-full" style="display: none;"> Significant leaps in the understanding of quantum systems have been driven by the exploration of geometry, topology, dimensionality, and interactions with ultracold atomic ensembles. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing such an ultracold bubble system (potentially Bose-Einstein condensed) has areas of interest including quantized-vortex flow respecting topological constraints imposed by closed surfaces, new collective modes, and self-interference via free bubble expansion. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analog expansion physics. Here, we report observations from the NASA Cold Atom Lab facility aboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe a variety of bubble configurations of differing sizes and initial temperature, and explore bubble thermodynamics, demonstrating significant cooling associated with inflation. Additionally, we achieve partial coverings of bubble traps greater than 1 mm in size with ultracold films of inferred few-$渭$m thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are part of the first generation of scientific measurements made with ultracold atoms in space, exploiting the benefits of perpetual free-fall to explore gravity-free evolution of quantum systems that are prohibitively difficult to create on Earth. This work points the way to experiments focused on the nature of the Bose-Einstein condensed bubble, the character of its excitations, and the role of topology in its evolution; it also ushers in an era of orbital microgravity quantum-gas physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05880v1-abstract-full').style.display = 'none'; document.getElementById('2108.05880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11621">arXiv:1911.11621</a> <span> [<a href="https://arxiv.org/pdf/1911.11621">pdf</a>, <a href="https://arxiv.org/format/1911.11621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ab3ccb">10.1088/1742-5468/ab3ccb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On quantumness in multi-parameter quantum estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Dubkov%2C+A+A">Alexander A. Dubkov</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11621v2-abstract-short" style="display: inline;"> In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11621v2-abstract-full').style.display = 'inline'; document.getElementById('1911.11621v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11621v2-abstract-full" style="display: none;"> In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cram茅r-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11621v2-abstract-full').style.display = 'none'; document.getElementById('1911.11621v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 2 Figures. arXiv admin note: text overlap with arXiv:1911.10196</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Stat. Mech. Theory Exp. 2019, 094010 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10196">arXiv:1911.10196</a> <span> [<a href="https://arxiv.org/pdf/1911.10196">pdf</a>, <a href="https://arxiv.org/format/1911.10196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2019.11.002">10.1016/j.physrep.2019.11.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry of quantum phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10196v1-abstract-short" style="display: inline;"> In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10196v1-abstract-full').style.display = 'inline'; document.getElementById('1911.10196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10196v1-abstract-full" style="display: none;"> In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas in NESS-QPTs this distinction may fade off. The approach described in this review, among other things, can quantitatively assess the quantum character of such critical phenomena. This framework is applied to a paradigmatic class of lattice Fermion systems with local reservoirs, characterised by Gaussian non-equilibrium steady states. The relations between the behaviour of the geometric phase curvature, the divergence of the correlation length, the character of the criticality and the gap - either Hamiltonian or dissipative - are reviewed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10196v1-abstract-full').style.display = 'none'; document.getElementById('1911.10196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">94 pages, 15 figures, 399 references, To appear in: Physics Reports (2019). arXiv admin note: text overlap with arXiv:1305.4527, arXiv:quant-ph/0701061 by other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05885">arXiv:1906.05885</a> <span> [<a href="https://arxiv.org/pdf/1906.05885">pdf</a>, <a href="https://arxiv.org/format/1906.05885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41526-019-0087-y">10.1038/s41526-019-0087-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shell potentials for microgravity Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lundblad%2C+N">N. Lundblad</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+R+A">R. A. Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Lannert%2C+C">C. Lannert</a>, <a href="/search/cond-mat?searchtype=author&query=Gold%2C+M+J">M. J. Gold</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">X. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Paseltiner%2C+D">D. Paseltiner</a>, <a href="/search/cond-mat?searchtype=author&query=Sergay%2C+N">N. Sergay</a>, <a href="/search/cond-mat?searchtype=author&query=Aveline%2C+D+C">D. C. Aveline</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05885v1-abstract-short" style="display: inline;"> Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05885v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05885v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05885v1-abstract-full" style="display: none;"> Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05885v1-abstract-full').style.display = 'none'; document.getElementById('1906.05885v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Microgravity 5, 30 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04125">arXiv:1905.04125</a> <span> [<a href="https://arxiv.org/pdf/1905.04125">pdf</a>, <a href="https://arxiv.org/format/1905.04125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ab33f8">10.1088/1742-5468/ab33f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Haldane Model at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Leonforte%2C+L">Luca Leonforte</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Dubkov%2C+A+A">Alexander A. Dubkov</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04125v1-abstract-short" style="display: inline;"> We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04125v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04125v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04125v1-abstract-full" style="display: none;"> We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topological properties at finite temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04125v1-abstract-full').style.display = 'none'; document.getElementById('1905.04125v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04118">arXiv:1905.04118</a> <span> [<a href="https://arxiv.org/pdf/1905.04118">pdf</a>, <a href="https://arxiv.org/format/1905.04118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ab35e9">10.1088/1742-5468/ab35e9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On critical properties of Berry curvature in Kitaev honeycomb model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bascone%2C+F">Francesco Bascone</a>, <a href="/search/cond-mat?searchtype=author&query=Leonforte%2C+L">Luca Leonforte</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04118v1-abstract-short" style="display: inline;"> We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04118v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04118v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04118v1-abstract-full" style="display: none;"> We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. A non-critical behaviour is found in the Berry curvature itself, which shows a distinctive behaviour in the different phases. The analysis of the first derivative shows a critical behaviour around the transition point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04118v1-abstract-full').style.display = 'none'; document.getElementById('1905.04118v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:1810.04149</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04149">arXiv:1810.04149</a> <span> [<a href="https://arxiv.org/pdf/1810.04149">pdf</a>, <a href="https://arxiv.org/format/1810.04149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.205155">10.1103/PhysRevB.99.205155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite temperature geometric properties of the Kitaev honeycomb model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bascone%2C+F">Francesco Bascone</a>, <a href="/search/cond-mat?searchtype=author&query=Leonforte%2C+L">Luca Leonforte</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04149v2-abstract-short" style="display: inline;"> We study finite temperature topological phase transitions of the Kitaev's spin honeycomb model in the vortex-free sector with the use of the recently introduced mean Uhlmann curvature. We employ an appropriate Fermionisation procedure to study the system as a two-band p-wave superconductor described by a BdG Hamiltonian. This allows to study relevant quantities such as Berry and mean Uhlmann curva… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04149v2-abstract-full').style.display = 'inline'; document.getElementById('1810.04149v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04149v2-abstract-full" style="display: none;"> We study finite temperature topological phase transitions of the Kitaev's spin honeycomb model in the vortex-free sector with the use of the recently introduced mean Uhlmann curvature. We employ an appropriate Fermionisation procedure to study the system as a two-band p-wave superconductor described by a BdG Hamiltonian. This allows to study relevant quantities such as Berry and mean Uhlmann curvatures in a simple setting. More specifically, we consider the spin honeycomb in the presence of an external magnetic field breaking time reversal symmetry. The introduction of such an external perturbation opens a gap in the phase of the system characterised by non-Abelian statistics, and makes the model to belong to a symmetry protected class, so that the Uhmann number can be analysed. We first consider the Berry curvature on a particular evolution line over the phase diagram. The mean Uhlmann curvature and the Uhlmann number are then analysed considering the system to be in a Gibbs state at finite temperature. Then, we show that the mean Uhlmann curvature describes a cross-over effect of the phases at high temperature. We also find an interesting nonmonotonic behaviour of the Uhlmann number as a function of the temperature in the trivial phase, which is due to the partial filling of the conduction band around Dirac points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04149v2-abstract-full').style.display = 'none'; document.getElementById('1810.04149v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 205155 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08592">arXiv:1806.08592</a> <span> [<a href="https://arxiv.org/pdf/1806.08592">pdf</a>, <a href="https://arxiv.org/format/1806.08592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-45546-9">10.1038/s41598-019-45546-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uhlmann number in translational invariant systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Leonforte%2C+L">Luca Leonforte</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08592v3-abstract-short" style="display: inline;"> We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08592v3-abstract-full').style.display = 'inline'; document.getElementById('1806.08592v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08592v3-abstract-full" style="display: none;"> We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08592v3-abstract-full').style.display = 'none'; document.getElementById('1806.08592v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 9, 9106 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07560">arXiv:1710.07560</a> <span> [<a href="https://arxiv.org/pdf/1710.07560">pdf</a>, <a href="https://arxiv.org/ps/1710.07560">ps</a>, <a href="https://arxiv.org/format/1710.07560">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Uhlmann curvature in dissipative phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07560v3-abstract-short" style="display: inline;"> We study the mean Uhlmann curvature in fermionic systems undergoing a dissipative driven phase transition. We consider a paradigmatic class of lattice fermion systems in non-equilibrium steady-state of an open system with local reservoirs, which are characterised by a Gaussian fermionic steady state. In the thermodynamical limit, in systems with translational invariance we show that a singular beh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07560v3-abstract-full').style.display = 'inline'; document.getElementById('1710.07560v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07560v3-abstract-full" style="display: none;"> We study the mean Uhlmann curvature in fermionic systems undergoing a dissipative driven phase transition. We consider a paradigmatic class of lattice fermion systems in non-equilibrium steady-state of an open system with local reservoirs, which are characterised by a Gaussian fermionic steady state. In the thermodynamical limit, in systems with translational invariance we show that a singular behaviour of the Uhlmann curvature represents a sufficient criterion for criticalities, in the sense of diverging correlation length, and it is not otherwise sensitive to the closure of the Liouvillian dissipative gap. In finite size systems, we show that the scaling behaviour of the mean Uhlmann curvature maps faithfully the phase diagram, and a relation to the dissipative gap is put forward. We argue that the mean Uhlmann phase can shade light upon the nature of non equilibrium steady state criticality in particular with regard to the role played by quantum vs classical fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07560v3-abstract-full').style.display = 'none'; document.getElementById('1710.07560v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures with appendix of 10 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04899">arXiv:1511.04899</a> <span> [<a href="https://arxiv.org/pdf/1511.04899">pdf</a>, <a href="https://arxiv.org/format/1511.04899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/2016/05/054012">10.1088/1742-5468/2016/05/054012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of L茅vy noise on the dynamics of sine-Gordon solitons in long Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04899v1-abstract-short" style="display: inline;"> We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $伪$-stable L茅vy distributions is considered as noise sou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04899v1-abstract-full').style.display = 'inline'; document.getElementById('1511.04899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04899v1-abstract-full" style="display: none;"> We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $伪$-stable L茅vy distributions is considered as noise source, with varying stability index $伪$ and asymmetry parameter $尾$. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is directly related to the mean density of solitons which move into or from the washboard potential minimum corresponding to the initial superconductive state. Moreover, we observe: (i) a connection between the total mean soliton density and the mean potential difference across the junction; (ii) an inverse behavior of the mean voltage in comparison with the MST, with varying the junction length; (iii) evidences of non-monotonic behaviors, such as stochastic resonant activation and noise enhanced stability, of MST versus the driving frequency and noise intensity for different values of $伪$ and $尾$; (iv) finally, these non-monotonic behaviors are found to be related to the mean density of solitons formed along the junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04899v1-abstract-full').style.display = 'none'; document.getElementById('1511.04899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, submitted to J. Stat. Mech.: Theory Exp. arXiv admin note: text overlap with arXiv:1406.4813</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Statistical Mechanics: Theory and Experiment, Volume 2016, May 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.05624">arXiv:1510.05624</a> <span> [<a href="https://arxiv.org/pdf/1510.05624">pdf</a>, <a href="https://arxiv.org/format/1510.05624">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/2016/05/054016">10.1088/1742-5468/2016/05/054016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Magazz%C3%B9%2C+L">Luca Magazz霉</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Spagnolo%2C+B">Bernardo Spagnolo</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+D">Davide Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.05624v1-abstract-short" style="display: inline;"> We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05624v1-abstract-full').style.display = 'inline'; document.getElementById('1510.05624v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.05624v1-abstract-full" style="display: none;"> We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped \emph{intrawell} oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05624v1-abstract-full').style.display = 'none'; document.getElementById('1510.05624v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Stat. Mech. (2016) 054016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0712.1164">arXiv:0712.1164</a> <span> [<a href="https://arxiv.org/pdf/0712.1164">pdf</a>, <a href="https://arxiv.org/ps/0712.1164">ps</a>, <a href="https://arxiv.org/format/0712.1164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2007.12.009">10.1016/j.aop.2007.12.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum of the non-abelian phase in Kitaev's honeycomb lattice model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lahtinen%2C+V">Ville Lahtinen</a>, <a href="/search/cond-mat?searchtype=author&query=Kells%2C+G">Graham Kells</a>, <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A">Angelo Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Stitt%2C+T">Tim Stitt</a>, <a href="/search/cond-mat?searchtype=author&query=Vala%2C+J">Jiri Vala</a>, <a href="/search/cond-mat?searchtype=author&query=Pachos%2C+J+K">Jiannis K. Pachos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0712.1164v3-abstract-short" style="display: inline;"> The spectral properties of Kitaev's honeycomb lattice model are investigated both analytically and numerically with the focus on the non-abelian phase of the model. After summarizing the fermionization technique which maps spins into free Majorana fermions, we evaluate the spectrum of sparse vortex configurations and derive the interaction between two vortices as a function of their separation.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.1164v3-abstract-full').style.display = 'inline'; document.getElementById('0712.1164v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0712.1164v3-abstract-full" style="display: none;"> The spectral properties of Kitaev's honeycomb lattice model are investigated both analytically and numerically with the focus on the non-abelian phase of the model. After summarizing the fermionization technique which maps spins into free Majorana fermions, we evaluate the spectrum of sparse vortex configurations and derive the interaction between two vortices as a function of their separation. We consider the effect vortices can have on the fermionic spectrum as well as on the phase transition between the abelian and non-abelian phases. We explicitly demonstrate the $2^n$-fold ground state degeneracy in the presence of $2n$ well separated vortices and the lifting of the degeneracy due to their short-range interactions. The calculations are performed on an infinite lattice. In addition to the analytic treatment, a numerical study of finite size systems is performed which is in exact agreement with the theoretical considerations. The general spectral properties of the non-abelian phase are considered for various finite toroidal systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.1164v3-abstract-full').style.display = 'none'; document.getElementById('0712.1164v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures; corrected typos and changed SU(2)_2 to Ising</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ann. Phys. 323, 2286 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502272">arXiv:cond-mat/0502272</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0502272">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502272">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.157203">10.1103/PhysRevLett.95.157203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric phases and criticality in spin chain systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carollo%2C+A+C+M">Angelo C. M. Carollo</a>, <a href="/search/cond-mat?searchtype=author&query=Pachos%2C+J+K">Jiannis K. Pachos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502272v2-abstract-short" style="display: inline;"> A relation between geometric phases and criticality of spin chains is established. As a result, we show how geometric phases can be exploited as a tool to detect regions of criticality without having to undergo a quantum phase transition. We analytically evaluate the geometric phase that correspond to the ground and excited states of the anisotropic XY model in the presence of a transverse magne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502272v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502272v2-abstract-full" style="display: none;"> A relation between geometric phases and criticality of spin chains is established. As a result, we show how geometric phases can be exploited as a tool to detect regions of criticality without having to undergo a quantum phase transition. We analytically evaluate the geometric phase that correspond to the ground and excited states of the anisotropic XY model in the presence of a transverse magnetic field when the direction of the anisotropy is adiabatically rotated. Ultra-cold atoms in optical lattices are presented as a possible physical realization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502272v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figures, RevTeX Analysis of resilience against errors and generalizations added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 95, 157203 (2005); </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>