CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 86 results for author: <span class="mathjax">Boyle, P A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Boyle, P A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Boyle%2C+P+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Boyle, P A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20590">arXiv:2410.20590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20590">pdf</a>, <a href="https://arxiv.org/format/2410.20590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The long-distance window of the hadronic vacuum polarization for the muon g-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">B. Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">F. Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackl%2C+A">A. Hackl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hermansson-Truedsson%2C+N">N. Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McKeon%2C+J">J. McKeon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. T. Tsang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tuo%2C+X+-">X. -Y. Tuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20590v1-abstract-short" style="display: inline;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20590v1-abstract-full" style="display: none;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution, $a_渭^{\rm iso,conn,ud} = 666.2(4.3)(2.5) \times 10^{-10}$, which is more than 4$蟽$ larger compared to the data-driven estimates of Boito et al. 2022 and 1.7$蟽$ larger compared to the lattice QCD result of BMW20. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'none'; document.getElementById('2410.20590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03904">arXiv:2409.03904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03904">pdf</a>, <a href="https://arxiv.org/format/2409.03904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Multiple right hand side multigrid for domain wall fermions with a multigrid preconditioned block conjugate gradient algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03904v1-abstract-short" style="display: inline;"> We introduce a class of efficient multiple right-hand side multigrid algorithm for domain wall fermions. The simultaneous solution for a modest number of right hand sides concurrently allows for a significant reduction in the time spent solving the coarse grid operator in a multigrid preconditioner. We introduce a preconditioned block conjuate gradient with a multigrid preconditioner, giving addit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03904v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03904v1-abstract-full" style="display: none;"> We introduce a class of efficient multiple right-hand side multigrid algorithm for domain wall fermions. The simultaneous solution for a modest number of right hand sides concurrently allows for a significant reduction in the time spent solving the coarse grid operator in a multigrid preconditioner. We introduce a preconditioned block conjuate gradient with a multigrid preconditioner, giving additional algorithmic benefit from the multiple right hand sides. There is also a very significant additional to computation rate benefit to multiple right hand sides. This both increases the arithmetic intensity in the coarse space and increases the amount of work being performed in each subroutine call, leading to excellent performance on modern GPU architectures. Further, the software implementation makes use of vendor linear algebra routines (batched GEMM) that can make use of high throughput tensor hardware on recent Nvidia, AMD and Intel GPUs. The cost of the coarse space is made sub-dominant in this algorithm, and benchmarks from the Frontier supercomputer system show up to a factor of twenty speed up over the standard red-black preconditioned conjugate gradient algorithm on a large system with physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03904v1-abstract-full').style.display = 'none'; document.getElementById('2409.03904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02297">arXiv:2404.02297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02297">pdf</a>, <a href="https://arxiv.org/format/2404.02297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Kaon mixing beyond the standard model with physical masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kettle%2C+J">Julia Kettle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+R">Rajnandini Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02297v1-abstract-short" style="display: inline;"> We present non-perturbative results for beyond the standard model kaon mixing matrix elements in the isospin symmetric limit ($m_u=m_d$) of QCD, including a complete estimate of all dominant sources of systematic error. Our results are obtained from numerical simulations of lattice QCD with $N_f = 2+1$ flavours of dynamical domain wall fermions. For the first time, these quantities are simulated d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02297v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02297v1-abstract-full" style="display: none;"> We present non-perturbative results for beyond the standard model kaon mixing matrix elements in the isospin symmetric limit ($m_u=m_d$) of QCD, including a complete estimate of all dominant sources of systematic error. Our results are obtained from numerical simulations of lattice QCD with $N_f = 2+1$ flavours of dynamical domain wall fermions. For the first time, these quantities are simulated directly at the physical pion mass $m_蟺$~$\sim$~$139\,\mathrm{MeV}$ for two different lattice spacings. We include data at three lattice spacings in the range $a = 0.11 $ - $ 0.07\,\mathrm{fm}$ and with pion masses ranging from the physical value up to 450$\,\mathrm{MeV}$. Compared to our earlier work, we have added both direct calculations at physical quark masses and a third lattice spacing making the removal of discretisation effects significantly more precise and eliminating the need for any significant mass extrapolation beyond the range of simulated data. We renormalise the lattice operators non-perturbatively using RI-SMOM off-shell schemes. These schemes eliminate the need to model and subtract non-perturbative pion poles that arises in the RI-MOM scheme and, since the calculations are performed with domain wall fermions, the unphysical mixing between chirality sectors is suppressed. Our results for the bag parameters in the $\overline{\mathrm{MS}}$ scheme at $3\,\mathrm{GeV}$ are $B_K~\equiv~\mathcal{B}_1 = 0.5240(17)(54)$, $\mathcal{B}_2 = 0.4794(25)(35)$, $\mathcal{B}_3 = 0.746(13)(17)$, $\mathcal{B}_4 = 0.897(02)(10)$ and $\mathcal{B}_5 = 0.6882(78)(94)$, where the first error is from lattice uncertainties and the second is the uncertainty due to the perturbative matching to $\overline{\mathrm{MS}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02297v1-abstract-full').style.display = 'none'; document.getElementById('2404.02297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 18 figures, 21 tables, 2 ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-040, LTH 1366 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16620">arXiv:2401.16620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16620">pdf</a>, <a href="https://arxiv.org/format/2401.16620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Advances in algorithms for solvers and gauge generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16620v1-abstract-short" style="display: inline;"> I review recent research and advances in algorithms for solvers and gauge generation, with an emphasis on practical algorithms for four dimensional simulations. Particular consideration is given to advances in multigrid solvers, fourier acceleration and field transformation approaches to accelerating evolution dynamics, and to parallel tempering approaches to solving the topological tunneling prob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16620v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16620v1-abstract-full" style="display: none;"> I review recent research and advances in algorithms for solvers and gauge generation, with an emphasis on practical algorithms for four dimensional simulations. Particular consideration is given to advances in multigrid solvers, fourier acceleration and field transformation approaches to accelerating evolution dynamics, and to parallel tempering approaches to solving the topological tunneling problem. Particular consideration is given to the interaction between rapidly evolving computer architecture and optimal algorithms that exploit these. In this conference, nascent machine learning algorithms were separately reviewed <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16620v1-abstract-full').style.display = 'none'; document.getElementById('2401.16620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lattice 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11649">arXiv:2306.11649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11649">pdf</a>, <a href="https://arxiv.org/format/2306.11649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Symplectic lattice gauge theories on Grid: approaching the conformal window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11649v3-abstract-short" style="display: inline;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'inline'; document.getElementById('2306.11649v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11649v3-abstract-full" style="display: none;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compelling research aim is the determination of the extent of the conformal window in gauge theories with symplectic groups coupled to matter, for different groups and for field content consisting of fermions transforming in different representations. Such determination would have far-reaching implications, but requires overcoming huge technical challenges. Numerical studies based on lattice field theory can provide the quantitative information necessary to this endeavour. We developed new software to implement symplectic groups in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on the Sp(4) lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index antisymmetric representation, as a case study. We discuss an extensive catalogue of technical tests of the algorithms and present preliminary measurements to set the stage for future large-scale numerical investigations. We also include the scan of parameter space of all asymptotically free Sp(4) lattice gauge theories coupled to varying number of fermions transforming in the antisymmetric representation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'none'; document.getElementById('2306.11649v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 16 figures. Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06781">arXiv:2306.06781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06781">pdf</a>, <a href="https://arxiv.org/format/2306.06781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094517">10.1103/PhysRevD.108.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螖I = 3/2$ and $螖I = 1/2$ channels of $K\to蟺蟺$ decay at the physical point with periodic boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06781v3-abstract-short" style="display: inline;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon&#39;$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06781v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06781v3-abstract-full" style="display: none;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon&#39;$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our previous work \cite{Bai:2015nea,RBC:2020kdj} successfully employed G-parity boundary conditions, where pions are forced to have non-zero momentum enabling the $I=0$ two-pion ground state to express the on-shell kinematics of the $K\to蟺蟺$ decay. Here instead we overcome the problem using the variational method which allows us to resolve the two-pion spectrum and matrix elements up to the relevant energy where the decay amplitude is on-shell. In this paper we report an exploratory calculation of $K\to蟺蟺$ decay amplitudes and $\varepsilon&#39;$ using PBC on a coarser lattice size of $24^3\times64$ with inverse lattice spacing $a^{-1}=1.023$ GeV and the physical pion and kaon masses. The results are promising enough to motivate us to continue our measurements on finer lattice ensembles in order to improve the precision in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'none'; document.getElementById('2306.06781v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys,Rev,D.,108,094517 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09286">arXiv:2301.09286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09286">pdf</a>, <a href="https://arxiv.org/format/2301.09286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094512">10.1103/PhysRevD.107.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all propagators with periodic boundary conditions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09286v2-abstract-short" style="display: inline;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, invers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09286v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09286v2-abstract-full" style="display: none;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, inverse lattice spacings of 1.023 and 1.378 GeV, and spatial extents of $L=4.63$ and 4.58 fm, respectively. The all-to-all propagator method is employed to compute a matrix of correlation functions of two-pion operators. The generalized eigenvalue problem (GEVP) is solved for a matrix of correlation functions to extract phase shifts with multiple states, two pions with a non-zero relative momentum as well as two pions at rest. Our results for phase shifts for both $I=0$ and $I=2$ channels are consistent with and the Roy Equation and chiral perturbation theory, though at this preliminary stage our errors for $I=0$ are large. An important outcome of this work is that we are successful in extracting two-pion excited states, which are useful for studying $K\to蟺蟺$ decay, on physical-mass ensembles using GEVP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'none'; document.getElementById('2301.09286v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08696">arXiv:2301.08696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08696">pdf</a>, <a href="https://arxiv.org/format/2301.08696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> An update of Euclidean windows of the hadronic vacuum polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y+-">Y. -C. Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Matsumoto%2C+N">N. Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. T. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08696v1-abstract-short" style="display: inline;"> We compute the standard Euclidean window of the hadronic vacuum polarization using multiple independent blinded analyses. We improve the continuum and infinite-volume extrapolations of the dominant quark-connected light-quark isospin-symmetric contribution and address additional sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking from first principles. We fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08696v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08696v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08696v1-abstract-full" style="display: none;"> We compute the standard Euclidean window of the hadronic vacuum polarization using multiple independent blinded analyses. We improve the continuum and infinite-volume extrapolations of the dominant quark-connected light-quark isospin-symmetric contribution and address additional sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking from first principles. We find $a_渭^{\rm W} = 235.56(65)(50) \times 10^{-10}$, which is in $3.8蟽$ tension with the recently published dispersive result of Colangelo et al., $a_渭^{\rm W} = 229.4(1.4) \times 10^{-10}$, and in agreement with other recent lattice determinations. We also provide a result for the standard short-distance window. The results reported here are unchanged compared to our presentation at the Edinburgh workshop of the g-2 Theory Initiative in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08696v1-abstract-full').style.display = 'none'; document.getElementById('2301.08696v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15373">arXiv:2205.15373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15373">pdf</a>, <a href="https://arxiv.org/format/2205.15373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A lattice QCD perspective on weak decays of b and c quarks Snowmass 2022 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">Bipasha Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">Christine T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeGrand%2C+T">Thomas DeGrand</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giusti%2C+D">Davide Giusti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R">Ryan Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koponen%2C+J">Jonna Koponen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">Guido Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15373v2-abstract-short" style="display: inline;"> Lattice quantum chromodynamics has proven to be an indispensable method to determine nonperturbative strong contributions to weak decay processes. In this white paper for the Snowmass community planning process we highlight achievements and future avenues of research for lattice calculations of weak $b$ and $c$ quark decays, and point out how these calculations will help to address the anomalies c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15373v2-abstract-full').style.display = 'inline'; document.getElementById('2205.15373v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15373v2-abstract-full" style="display: none;"> Lattice quantum chromodynamics has proven to be an indispensable method to determine nonperturbative strong contributions to weak decay processes. In this white paper for the Snowmass community planning process we highlight achievements and future avenues of research for lattice calculations of weak $b$ and $c$ quark decays, and point out how these calculations will help to address the anomalies currently in the spotlight of the particle physics community. With future increases in computational resources and algorithmic improvements, percent level (and below) lattice determinations will play a central role in constraining the standard model or identifying new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15373v2-abstract-full').style.display = 'none'; document.getElementById('2205.15373v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021; 19 pages; v2 corrected typo and added references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2022-036, FERMILAB-CONF-22-433-SCD-T, JLAB-THY-22-3582, MITP-22-020, MIT-CTP/5413, MS-TP-22-07, SI-HEP-2022-11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17119">arXiv:2203.17119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17119">pdf</a>, <a href="https://arxiv.org/format/2203.17119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Algorithms for Domain Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17119v1-abstract-short" style="display: inline;"> We discuss algorithms for domain wall fermions focussing on accelerating Hybrid Monte Carlo sampling of gauge configurations. Firstly a new multigrid algorithm for domain wall solvers and secondly a domain decomposed hybrid monte carlo approach applied to large subvolumes and optimised for GPU accelerated nodes. We propose a formulation of DD-RHMC that is suitable for the simulation of odd numbers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17119v1-abstract-full').style.display = 'inline'; document.getElementById('2203.17119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17119v1-abstract-full" style="display: none;"> We discuss algorithms for domain wall fermions focussing on accelerating Hybrid Monte Carlo sampling of gauge configurations. Firstly a new multigrid algorithm for domain wall solvers and secondly a domain decomposed hybrid monte carlo approach applied to large subvolumes and optimised for GPU accelerated nodes. We propose a formulation of DD-RHMC that is suitable for the simulation of odd numbers of fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17119v1-abstract-full').style.display = 'none'; document.getElementById('2203.17119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08795">arXiv:2202.08795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08795">pdf</a>, <a href="https://arxiv.org/format/2202.08795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L011503">10.1103/PhysRevD.107.L011503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating rare kaon decays $K^{+}\to蟺^{+}\ell^{+}\ell^{-}$ using domain wall lattice QCD with physical light quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">F. Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">J. M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hodgson%2C+R">R. Hodgson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=h%C3%93g%C3%A1in%2C+F+%C3%93">F. 脫 h脫g谩in</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08795v4-abstract-short" style="display: inline;"> We report the first calculation using physical light-quark masses of the electromagnetic form factor $V(z)$ describing the long-distance contributions to the $K^+\to蟺^+\ell^+\ell^-$ decay amplitude. The calculation is performed on a 2+1 flavor domain wall fermion ensemble with inverse lattice spacing $a^{-1}=1.730(4)$GeV. We implement a Glashow-Iliopoulos-Maiani cancellation by extrapolating to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08795v4-abstract-full').style.display = 'inline'; document.getElementById('2202.08795v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08795v4-abstract-full" style="display: none;"> We report the first calculation using physical light-quark masses of the electromagnetic form factor $V(z)$ describing the long-distance contributions to the $K^+\to蟺^+\ell^+\ell^-$ decay amplitude. The calculation is performed on a 2+1 flavor domain wall fermion ensemble with inverse lattice spacing $a^{-1}=1.730(4)$GeV. We implement a Glashow-Iliopoulos-Maiani cancellation by extrapolating to the physical charm-quark mass from three below-charm masses. We obtain $V(z=0.013(2))=-0.87(4.44)$, achieving a bound for the value. The large statistical error arises from stochastically estimated quark loops. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08795v4-abstract-full').style.display = 'none'; document.getElementById('2202.08795v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, L011503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15131">arXiv:2103.15131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15131">pdf</a>, <a href="https://arxiv.org/format/2103.15131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.114506">10.1103/PhysRevD.104.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice determination of $I= 0$ and 2 $蟺蟺$ scattering phase shifts with a physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">D. Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+T">T. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15131v3-abstract-short" style="display: inline;"> Phase shifts for $s$-wave $蟺蟺$ scattering in both the $I=0$ and $I=2$ channels are determined from a lattice QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a physical pion mass and lattice size of $32^3\times 64$. These results support our recent study of direct CP violation in $K\to蟺蟺$ decay \cite{Abbott:2020hxn}, improving our earlier 2015 calcula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15131v3-abstract-full').style.display = 'inline'; document.getElementById('2103.15131v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15131v3-abstract-full" style="display: none;"> Phase shifts for $s$-wave $蟺蟺$ scattering in both the $I=0$ and $I=2$ channels are determined from a lattice QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a physical pion mass and lattice size of $32^3\times 64$. These results support our recent study of direct CP violation in $K\to蟺蟺$ decay \cite{Abbott:2020hxn}, improving our earlier 2015 calculation \cite{Bai:2015nea}. The phase shifts are determined for both stationary and moving $蟺蟺$ systems, at three ($I=0$) and four ($I=2$) different total momenta. We implement several $蟺蟺$ interpolating operators including a scalar bilinear &#34;$蟽$&#34; operator and paired single-pion bilinear operators with the constituent pions carrying various relative momenta. Several techniques, including correlated fitting and a bootstrap determination of p-values have been used to refine the results and a comparison with the generalized eigenvalue problem (GEVP) method is given. A detailed systematic error analysis is performed which allows phase shift results to be presented at a fixed energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15131v3-abstract-full').style.display = 'none'; document.getElementById('2103.15131v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: Add a subsection &#34;Higher partial wave correction&#34;, and correct the unit of scattering length. 88 pages and 14 figures v2: 1). Add reference 29 as an example of pipi scattering calculation above 4mpi threshold. 2). Modify the wording on page 3 for the footage. 3). Correct the 蟽operator on page 17</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09440">arXiv:2004.09440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09440">pdf</a>, <a href="https://arxiv.org/format/2004.09440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054509">10.1103/PhysRevD.102.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct CP violation and the $螖I=1/2$ rule in $K\to蟺蟺$ decay from the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">Robert D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">Christopher T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09440v2-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon&#39;$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09440v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09440v2-abstract-full" style="display: none;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon&#39;$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the $蟺蟺$ ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find ${\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7}$ GeV and ${\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11}$ GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result ${\rm Re}(A_0)=3.3201(18)\times 10^{-7}$ GeV. These results for $A_0$ can be combined with our earlier lattice calculation of $A_2$ to obtain ${\rm Re}(\varepsilon&#39;/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}$, where the third error represents omitted isospin breaking effects, and Re$(A_0)$/Re$(A_2) = 19.9(2.3)(4.4)$. The first agrees well with the experimental result of ${\rm Re}(\varepsilon&#39;/\varepsilon)=16.6(2.3)\times 10^{-4}$. A comparison of the second with the observed ratio Re$(A_0)/$Re$(A_2) = 22.45(6)$, demonstrates the Standard Model origin of this &#34;$螖I = 1/2$ rule&#34; enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'none'; document.getElementById('2004.09440v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to published version. 95 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2020-058, MIT-CTP/5197 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08678">arXiv:1904.08678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.08678">pdf</a>, <a href="https://arxiv.org/format/1904.08678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multigrid for Wilson Clover Fermions in Grid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Richtmann%2C+D">Daniel Richtmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wettig%2C+T">Tilo Wettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08678v1-abstract-short" style="display: inline;"> With the ever-growing number of computing architectures, performance portability is an important aspect of (Lattice QCD) software. The Grid library provides a good framework for writing such code, as it thoroughly separates hardware-specific code from algorithmic functionality and already supports many modern architectures. We describe the implementation of a multigrid solver for Wilson clover fer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08678v1-abstract-full').style.display = 'inline'; document.getElementById('1904.08678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08678v1-abstract-full" style="display: none;"> With the ever-growing number of computing architectures, performance portability is an important aspect of (Lattice QCD) software. The Grid library provides a good framework for writing such code, as it thoroughly separates hardware-specific code from algorithmic functionality and already supports many modern architectures. We describe the implementation of a multigrid solver for Wilson clover fermions in Grid by the RQCD group. We present the features included in our implementation, discuss initial optimization efforts, and compare the performance with another multigrid implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08678v1-abstract-full').style.display = 'none'; document.getElementById('1904.08678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Proceedings of Lattice 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00295">arXiv:1902.00295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00295">pdf</a>, <a href="https://arxiv.org/format/1902.00295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QED corrections to leptonic decay rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guelpers%2C+V">V. Guelpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juettner%2C+A">A. Juettner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=hOgain%2C+F+O">F. O hOgain</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richings%2C+J+P">J. P. Richings</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00295v2-abstract-short" style="display: inline;"> RBC/UKQCD is preparing a calculation of leptonic decay rates including isospin breaking corrections using a perturbative approach to include NLO contributions from QED effects. We present preliminary numerical results for a contribution to the leptonic pion decay rate and report on exploratory studies of computational techniques based on all-to-all propagators. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00295v2-abstract-full" style="display: none;"> RBC/UKQCD is preparing a calculation of leptonic decay rates including isospin breaking corrections using a perturbative approach to include NLO contributions from QED effects. We present preliminary numerical results for a contribution to the leptonic pion decay rate and report on exploratory studies of computational techniques based on all-to-all propagators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00295v2-abstract-full').style.display = 'none'; document.getElementById('1902.00295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08791">arXiv:1812.08791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08791">pdf</a>, <a href="https://arxiv.org/format/1812.08791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> SU(3)-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">Justus Tobias Tsang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08791v2-abstract-short" style="display: inline;"> We present results for the $SU(3)$ breaking ratios of decay constants $f_{D_s}/f_D$ and $f_{B_s}/f_B$ and - for the first time with physical pion masses - the ratio of bag parameters $B_{B_s}/B_{B_d}$, as well as the ratio $尉$, forming the ratio of the nonpeturbative contributions to neutral $B_{(s)}$ meson mixing. Our results are based on Lattice QCD simulations with chirally symmetric 2+1 dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08791v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08791v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08791v2-abstract-full" style="display: none;"> We present results for the $SU(3)$ breaking ratios of decay constants $f_{D_s}/f_D$ and $f_{B_s}/f_B$ and - for the first time with physical pion masses - the ratio of bag parameters $B_{B_s}/B_{B_d}$, as well as the ratio $尉$, forming the ratio of the nonpeturbative contributions to neutral $B_{(s)}$ meson mixing. Our results are based on Lattice QCD simulations with chirally symmetric 2+1 dynamical flavors of domain wall fermions. Eight ensembles at three different lattice spacing in the range $a = 0.11 - 0.07\,\mathrm{fm}$ enter the analysis two of which feature physical light quark masses. Multiple heavy quark masses are simulated ranging from below the charm quark mass to half the bottom quark mass. The $SU(3)$ breaking ratios display a very benign heavy mass behaviour allowing for extrapolation to the physical bottom quark mass. The results in the continuum limit including all sources of systematic errors are $f_{D_s}/f_D = 1.1740(51)_\mathrm{stat}(^{+68}_{-68})_\mathrm{sys}$, $f_{B_s}/f_B = 1.1949(60)_\mathrm{stat}(^{+\hphantom{0}95}_{-175})_\mathrm{sys}$, $B_{B_s}/B_{B_d} = 0.9984(45)_\mathrm{stat}(^{+80}_{-63})_\mathrm{sys}$ and $尉= 1.1939(67)_\mathrm{stat}(^{+\hphantom{0}95}_{-177})_\mathrm{sys}$. Combining these with experimentally measured values we extract the ratios of CKM matrix elements $|V_{cd}/V_{cs}| = 0.2164(57)_\mathrm{exp}(^{+12}_{-12})_\mathrm{lat}$ and $|V_{td}/V_{ts}| = 0.20329(41)_\mathrm{exp}(^{+162}_{-301})_\mathrm{lat}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08791v2-abstract-full').style.display = 'none'; document.getElementById('1812.08791v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">*temporary entry* 42 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07224">arXiv:1801.07224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.07224">pdf</a>, <a href="https://arxiv.org/format/1801.07224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.022003">10.1103/PhysRevLett.121.022003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. T. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07224v1-abstract-short" style="display: inline;"> We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is found to be $a_渭^{\rm HVP~LO}=715.4(16.3)(9.2) \times 10^{-10}$, where the first error is statistical a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07224v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07224v1-abstract-full" style="display: none;"> We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is found to be $a_渭^{\rm HVP~LO}=715.4(16.3)(9.2) \times 10^{-10}$, where the first error is statistical and the second is systematic. By supplementing lattice data for very short and long distances with experimental R-ratio data using the compilation of Ref. [1], we significantly improve the precision of our calculation and find $a_渭^{\rm HVP~LO} = 692.5(1.4)(0.5)(0.7)(2.1) \times 10^{-10}$ with lattice statistical, lattice systematic, R-ratio statistical, and R-ratio systematic errors given separately. This is the currently most precise determination of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. In addition, we present the first lattice calculation of the light-quark QED correction at physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07224v1-abstract-full').style.display = 'none'; document.getElementById('1801.07224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 022003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00862">arXiv:1712.00862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00862">pdf</a>, <a href="https://arxiv.org/format/1712.00862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513013">10.1051/epjconf/201817513013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy Domain Wall Fermions: The RBC and UKQCD charm physics program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">A. Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Khamseh%2C+A">A. Khamseh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. T. Tsang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00862v1-abstract-short" style="display: inline;"> We review the domain wall charm physics program of the RBC and UKQCD collaborations based on simulations including ensembles with physical pion mass. We summarise our current set-up and present a status update on the decay constants $f_D$, $f_{D_s}$, the charm quark mass, heavy-light and heavy-strange bag parameters and the ratio $尉$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00862v1-abstract-full" style="display: none;"> We review the domain wall charm physics program of the RBC and UKQCD collaborations based on simulations including ensembles with physical pion mass. We summarise our current set-up and present a status update on the decay constants $f_D$, $f_{D_s}$, the charm quark mass, heavy-light and heavy-strange bag parameters and the ratio $尉$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00862v1-abstract-full').style.display = 'none'; document.getElementById('1712.00862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pagers, 4 figures, conference proceedings for Lattice2017 submitted to EPJ Web of Conferences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09409">arXiv:1710.09409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09409">pdf</a>, <a href="https://arxiv.org/format/1710.09409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817509006">10.1051/epjconf/201817509006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance Portability Strategies for Grid C++ Expression Templates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rana%2C+V">Verinder Rana</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09409v1-abstract-short" style="display: inline;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Ju&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09409v1-abstract-full" style="display: none;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Just-In-Time compilation. Experimentation and performance on GPUs with a SU(3)$\times$SU(3) streaming test will be reported. We will also report on the challenges of using current OpenMP 4.x for GPU offloading in the same code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'none'; document.getElementById('1710.09409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03552">arXiv:1708.03552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03552">pdf</a>, <a href="https://arxiv.org/format/1708.03552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2017)054">10.1007/JHEP10(2017)054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral kaon mixing beyond the Standard Model with nf=2+1 chiral fermions part II: Non Perturbative Renormalisation of the $螖F=2$ four-quark operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03552v1-abstract-short" style="display: inline;"> We compute the renormalisation factors (Z-matrices) of the $螖F=2$ four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf=2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03552v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03552v1-abstract-full" style="display: none;"> We compute the renormalisation factors (Z-matrices) of the $螖F=2$ four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf=2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used corresponding RI-MOM one. We find that, once converted to MS, the Z-factors computed through these RI-SMOM schemes are in good agreement but differ significantly from the ones computed through the RI-MOM scheme. The RI-SMOM Z-factors presented here have been used to compute the BSM neutral kaon mixing matrix elements in the companion paper [1]. We argue that the renormalisation procedure is responsible for the discrepancies observed by different collaborations, we will investigate and elucidate the origin of these differences throughout this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03552v1-abstract-full').style.display = 'none'; document.getElementById('1708.03552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.00208">arXiv:1702.00208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.00208">pdf</a>, <a href="https://arxiv.org/format/1702.00208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Machines and Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.00208v1-abstract-short" style="display: inline;"> I discuss the evolution of computer architectures with a focus on QCD and with reference to the interplay between architecture, engineering, data motion and algorithms. New architectures are discussed and recent performance results are displayed. I also review recent progress in multilevel solver and integation algorithms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.00208v1-abstract-full" style="display: none;"> I discuss the evolution of computer architectures with a focus on QCD and with reference to the interplay between architecture, engineering, data motion and algorithms. New architectures are discussed and recent performance results are displayed. I also review recent progress in multilevel solver and integation algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00208v1-abstract-full').style.display = 'none'; document.getElementById('1702.00208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.02644">arXiv:1701.02644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.02644">pdf</a>, <a href="https://arxiv.org/format/1701.02644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2017)008">10.1007/JHEP12(2017)008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The decay constants ${\mathbf{f_D}}$ and ${\mathbf{f_{D_{s}}}}$ in the continuum limit of ${\mathbf{N_f=2+1}}$ domain wall lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Khamseh%2C+A">Ava Khamseh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">Justus Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.02644v1-abstract-short" style="display: inline;"> We present results for the decay constants of the $D$ and $D_s$ mesons computed in lattice QCD with $N_f=2+1$ dynamical flavours. The simulations are based on RBC/UKQCD&#39;s domain wall ensembles with both physical and unphysical light-quark masses and lattice spacings in the range 0.11--0.07$\,$fm. We employ the domain wall discretisation for all valence quarks. The results in the continuum limit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02644v1-abstract-full').style.display = 'inline'; document.getElementById('1701.02644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.02644v1-abstract-full" style="display: none;"> We present results for the decay constants of the $D$ and $D_s$ mesons computed in lattice QCD with $N_f=2+1$ dynamical flavours. The simulations are based on RBC/UKQCD&#39;s domain wall ensembles with both physical and unphysical light-quark masses and lattice spacings in the range 0.11--0.07$\,$fm. We employ the domain wall discretisation for all valence quarks. The results in the continuum limit are $f_D=208.7(2.8)_\mathrm{stat}\left(^{+2.1}_{-1.8}\right)_\mathrm{sys}\,\mathrm{MeV}$ and $f_{D_{s}}=246.4(1.3)_\mathrm{stat}\left(^{+1.3}_{-1.9}\right)_\mathrm{sys}\,\mathrm{MeV}$ and $f_{D_s}/f_D=1.1667(77)_\mathrm{stat}\left(^{+57}_{-43}\right)_\mathrm{sys}$. Using these results in a Standard Model analysis we compute the predictions $|V_{cd}|=0.2185(50)_\mathrm{exp}\left(^{+35}_{-37}\right)_\mathrm{lat}$ and $|V_{cs}|=1.011(16)_\mathrm{exp}\left(^{+4}_{-9}\right)_\mathrm{lat}$ for the CKM matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02644v1-abstract-full').style.display = 'none'; document.getElementById('1701.02644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03065">arXiv:1603.03065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03065">pdf</a>, <a href="https://arxiv.org/ps/1603.03065">ps</a>, <a href="https://arxiv.org/format/1603.03065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Erratum: Standard-model prediction for direct CP violation in $K\to蟺蟺$ decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Z">Z. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frison%2C+J">J. Frison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03065v1-abstract-short" style="display: inline;"> In this document we address an error discovered in the ensemble generation for our calculation of the $I=0$ $K\to蟺蟺$ amplitude (Phys. Rev. Lett. 115, 212001 (2015), arXiv:1505.07863) whereby the same random numbers were used for the two independent quark flavors, resulting in small but measurable correlations between gauge observables separated by 12 units in the y-direction. We conclude that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03065v1-abstract-full').style.display = 'inline'; document.getElementById('1603.03065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03065v1-abstract-full" style="display: none;"> In this document we address an error discovered in the ensemble generation for our calculation of the $I=0$ $K\to蟺蟺$ amplitude (Phys. Rev. Lett. 115, 212001 (2015), arXiv:1505.07863) whereby the same random numbers were used for the two independent quark flavors, resulting in small but measurable correlations between gauge observables separated by 12 units in the y-direction. We conclude that the effects of this error are negligible compared to the overall errors on our calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03065v1-abstract-full').style.display = 'none'; document.getElementById('1603.03065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01767">arXiv:1602.01767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01767">pdf</a>, <a href="https://arxiv.org/format/1602.01767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2016)063">10.1007/JHEP04(2016)063 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the leading strange quark-connected contribution to the muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lewis%2C+R">R. Lewis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marinkovi%C4%87%2C+M+K">M. Krsti膰 Marinkovi膰</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spraggs%2C+M">M. Spraggs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01767v3-abstract-short" style="display: inline;"> We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCD&#39;s $N_f=2+1$ domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01767v3-abstract-full').style.display = 'inline'; document.getElementById('1602.01767v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01767v3-abstract-full" style="display: none;"> We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCD&#39;s $N_f=2+1$ domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is $a_渭^{(2)\,{\rm had},\,s}=53.1(9)\left(^{+1}_{-3}\right)\times10^{-10}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01767v3-abstract-full').style.display = 'none'; document.getElementById('1602.01767v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1604 (2016) 063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.09054">arXiv:1512.09054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.09054">pdf</a>, <a href="https://arxiv.org/format/1512.09054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.232002">10.1103/PhysRevLett.116.232002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marinkovic%2C+M">M. Marinkovic</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spraggs%2C+M">M. Spraggs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.09054v1-abstract-short" style="display: inline;"> We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \times 96$ physical-pion-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.09054v1-abstract-full').style.display = 'inline'; document.getElementById('1512.09054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.09054v1-abstract-full" style="display: none;"> We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_渭^{\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\times 10^{-10}$, where the first error is statistical and the second systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.09054v1-abstract-full').style.display = 'none'; document.getElementById('1512.09054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 232002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.01950">arXiv:1511.01950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.01950">pdf</a>, <a href="https://arxiv.org/format/1511.01950">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.054502">10.1103/PhysRevD.93.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Low Energy Constants of $SU(2)$ Partially Quenched Chiral Perturbation Theory from $N_{f}=2+1$ Domain Wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McGlynn%2C+G">G. McGlynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.01950v1-abstract-short" style="display: inline;"> We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low energy constants, which we compare to othe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01950v1-abstract-full').style.display = 'inline'; document.getElementById('1511.01950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.01950v1-abstract-full" style="display: none;"> We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low energy constants to make predictions for mass splittings due to QCD isospin breaking effects and the S-wave $蟺蟺$ scattering lengths. We conclude that, for the range of pseudoscalar masses explored in this work, $115~\mathrm{MeV} \lesssim m_{\rm PS} \lesssim 430~\mathrm{MeV}$, the NNLO $SU(2)$ expansion is quite robust and can fit lattice data with percent-scale accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01950v1-abstract-full').style.display = 'none'; document.getElementById('1511.01950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 054502 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.07863">arXiv:1505.07863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.07863">pdf</a>, <a href="https://arxiv.org/ps/1505.07863">ps</a>, <a href="https://arxiv.org/format/1505.07863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.212001">10.1103/PhysRevLett.115.212001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Standard-model prediction for direct CP violation in $K\to蟺蟺$ decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Z">Z. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frison%2C+J">J. Frison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.07863v4-abstract-short" style="display: inline;"> We report the first lattice QCD calculation of the complex kaon decay amplitude $A_0$ with physical kinematics, using a $32^3\times 64$ lattice volume and a single lattice spacing $a$, with $1/a= 1.3784(68)$ GeV. We find Re$(A_0) = 4.66(1.00)(1.26) \times 10^{-7}$ GeV and Im$(A_0) = -1.90(1.23)(1.08) \times 10^{-11}$ GeV, where the first error is statistical and the second systematic. The first va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07863v4-abstract-full').style.display = 'inline'; document.getElementById('1505.07863v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.07863v4-abstract-full" style="display: none;"> We report the first lattice QCD calculation of the complex kaon decay amplitude $A_0$ with physical kinematics, using a $32^3\times 64$ lattice volume and a single lattice spacing $a$, with $1/a= 1.3784(68)$ GeV. We find Re$(A_0) = 4.66(1.00)(1.26) \times 10^{-7}$ GeV and Im$(A_0) = -1.90(1.23)(1.08) \times 10^{-11}$ GeV, where the first error is statistical and the second systematic. The first value is in approximate agreement with the experimental result: Re$(A_0) = 3.3201(18) \times 10^{-7}$ GeV while the second can be used to compute the direct CP violating ratio Re$(\varepsilon&#39;/\varepsilon)=1.38(5.15)(4.59)\times 10^{-4}$, which is $2.1蟽$ below the experimental value $16.6(2.3)\times 10^{-4}$. The real part of $A_0$ is CP conserving and serves as a test of our method while the result for Re$(\varepsilon&#39;/\varepsilon)$ provides a new test of the standard-model theory of CP violation, one which can be made more accurate with increasing computer capability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07863v4-abstract-full').style.display = 'none'; document.getElementById('1505.07863v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC 1141 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 212001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01692">arXiv:1504.01692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01692">pdf</a>, <a href="https://arxiv.org/format/1504.01692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">Robert D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D">David Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">Christopher T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yin%2C+H">Hantao Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01692v1-abstract-short" style="display: inline;"> We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our pred&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01692v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01692v1-abstract-full" style="display: none;"> We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K-&gt;pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01692v1-abstract-full').style.display = 'none'; document.getElementById('1504.01692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00845">arXiv:1502.00845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00845">pdf</a>, <a href="https://arxiv.org/format/1502.00845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charm physics with physical light and strange quarks using domain wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Khamseh%2C+A">Ava Khamseh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marinkovic%2C+M">Marina Marinkovic</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">Justus T. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00845v1-abstract-short" style="display: inline;"> We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discretisation we will show first results for masses and matrix elements. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00845v1-abstract-full" style="display: none;"> We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discretisation we will show first results for masses and matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00845v1-abstract-full').style.display = 'none'; document.getElementById('1502.00845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), June 23-28 2014, New York, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2014)380 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00263">arXiv:1502.00263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00263">pdf</a>, <a href="https://arxiv.org/ps/1502.00263">ps</a>, <a href="https://arxiv.org/format/1502.00263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.074502">10.1103/PhysRevD.91.074502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $K \rightarrow 蟺蟺$ $螖I=3/2$ decay amplitude in the continuum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frison%2C+J">J. Frison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Janowski%2C+T">T. Janowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A">A. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yin%2C+H">H. Yin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00263v2-abstract-short" style="display: inline;"> We present new results for the amplitude $A_2$ for a kaon to decay into two pions with isospin $I=2$: Re$A_2 = 1.50(4)_\mathrm{stat}(14)_\mathrm{syst}\times 10^{-8}$ GeV; Im$A_2 = -6.99(20)_\mathrm{stat}(84)_\mathrm{syst}\times 10^{-13}$ GeV. These results were obtained from two ensembles generated at physical quark masses (in the isospin limit) with inverse lattice spacings $a^{-1}=1.728(4)$ GeV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00263v2-abstract-full').style.display = 'inline'; document.getElementById('1502.00263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00263v2-abstract-full" style="display: none;"> We present new results for the amplitude $A_2$ for a kaon to decay into two pions with isospin $I=2$: Re$A_2 = 1.50(4)_\mathrm{stat}(14)_\mathrm{syst}\times 10^{-8}$ GeV; Im$A_2 = -6.99(20)_\mathrm{stat}(84)_\mathrm{syst}\times 10^{-13}$ GeV. These results were obtained from two ensembles generated at physical quark masses (in the isospin limit) with inverse lattice spacings $a^{-1}=1.728(4)$ GeV and $2.358(7)$ GeV. We are therefore able to perform a continuum extrapolation and hence largely to remove the dominant systematic uncertainty from our earlier results, that due to lattice artefacts. The only previous lattice computation of $K\to蟺蟺$ decays at physical kinematics was performed using an ensemble at a single, rather coarse, value of the lattice spacing ($a^{-1}\simeq 1.37(1)$ GeV). We confirm the observation that there is a significant cancellation between the two dominant contributions to Re$A_2$ which we suggest is an important ingredient in understanding the $螖I=1/2$ rule, Re$A_0$/Re$A_2\simeq 22.5$, where the subscript denotes the total isospin of the two-pion final state. Our result for $A_2$ implies that the electroweak penguin contribution to $蔚^\prime/蔚$ is Re($蔚^\prime/蔚)_\textrm{EWP}=-(6.6\pm 1.0)\times 10^{-4}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00263v2-abstract-full').style.display = 'none'; document.getElementById('1502.00263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 074502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.7017">arXiv:1411.7017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.7017">pdf</a>, <a href="https://arxiv.org/ps/1411.7017">ps</a>, <a href="https://arxiv.org/format/1411.7017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.074505">10.1103/PhysRevD.93.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain wall QCD with physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=RBC"> RBC</a>, <a href="/search/hep-lat?searchtype=author&amp;query=collaborations%2C+U">UKQCD collaborations</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frison%2C+J">J. Frison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Janowski%2C+T">T. Janowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juettner%2C+A">A. Juettner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marinkovic%2C+M">M. Marinkovic</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McGlynn%2C+G">G. McGlynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.7017v2-abstract-short" style="display: inline;"> We present results for several light hadronic quantities ($f_蟺$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7017v2-abstract-full').style.display = 'inline'; document.getElementById('1411.7017v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.7017v2-abstract-full" style="display: none;"> We present results for several light hadronic quantities ($f_蟺$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit&#39; with a number of other ensembles with heavier pion masses. We use the physical values of $m_蟺$, $m_K$ and $m_惟$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_蟺$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $\bar {\rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$, in the RGI scheme, 0.750(15) and the $\bar{\rm MS}$ scheme at 3 GeV, 0.530(11). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7017v2-abstract-full').style.display = 'none'; document.getElementById('1411.7017v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">131 pages, 30 figures. Updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 074505 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.5728">arXiv:1411.5728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.5728">pdf</a>, <a href="https://arxiv.org/format/1411.5728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Conserved currents for Mobius Domain Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.5728v1-abstract-short" style="display: inline;"> We derive the exactly conserved vector, and almost conserved axial currents for rational approximations to the overlap operator with a general Mobius kernel. The approach maintains manifest Hermiticity, and allows matrix elements of the currents to be constructed at no extra cost after solution of the usual 5d system of equations, similar to the original approach of Furman and Shamir for domain wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5728v1-abstract-full').style.display = 'inline'; document.getElementById('1411.5728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.5728v1-abstract-full" style="display: none;"> We derive the exactly conserved vector, and almost conserved axial currents for rational approximations to the overlap operator with a general Mobius kernel. The approach maintains manifest Hermiticity, and allows matrix elements of the currents to be constructed at no extra cost after solution of the usual 5d system of equations, similar to the original approach of Furman and Shamir for domain wall Fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5728v1-abstract-full').style.display = 'none'; document.getElementById('1411.5728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.6729">arXiv:1403.6729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.6729">pdf</a>, <a href="https://arxiv.org/ps/1403.6729">ps</a>, <a href="https://arxiv.org/format/1403.6729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094510">10.1103/PhysRevD.89.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Combined NNLO Lattice-Continuum Determination of $L_{10}^r$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kerrane%2C+E">E. Kerrane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.6729v2-abstract-short" style="display: inline;"> The renormalized next-to-leading-order (NLO) chiral low-energy constant, $L_{10}^r$, is determined in a complete next-to-next-to-leading-order (NNLO) analysis, using a combination of lattice and continuum data for the flavor $ud$ $V-A$ correlator and results from a recent chiral sum-rule analysis of the flavor-breaking combination of $ud$ and $us$ $V-A$ correlator differences. The analysis also fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.6729v2-abstract-full').style.display = 'inline'; document.getElementById('1403.6729v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.6729v2-abstract-full" style="display: none;"> The renormalized next-to-leading-order (NLO) chiral low-energy constant, $L_{10}^r$, is determined in a complete next-to-next-to-leading-order (NNLO) analysis, using a combination of lattice and continuum data for the flavor $ud$ $V-A$ correlator and results from a recent chiral sum-rule analysis of the flavor-breaking combination of $ud$ and $us$ $V-A$ correlator differences. The analysis also fixes two combinations of NNLO low-energy constants, the determination of which is crucial to the precision achieved for $L_{10}^r$. Using the results of the flavor-breaking chiral $V-A$ sum rule obtained with current versions of the strange hadronic $蟿$ branching fractions as input, we find $L_{10}^r(m_蟻)\, =\, -0.00346(32)$. This result represents the first NNLO determination of $L_{10}^r$ having all inputs under full theoretical and/or experimental control, and the best current precision for this quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.6729v2-abstract-full').style.display = 'none'; document.getElementById('1403.6729v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, 1 table. Updated references, one additional clarifying footnote in discussion section</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Trinity College Dublin preprint TCDMATH14--02, University of Adelaide preprint ADP-14-6/T864 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094510 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.2585">arXiv:1402.2585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.2585">pdf</a>, <a href="https://arxiv.org/format/1402.2585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hierarchically deflated conjugate gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.2585v1-abstract-short" style="display: inline;"> We present a multi-level algorithm for the solution of five dimensional chiral fermion formulations, including domain wall and Mobius Fermions. The algorithm operates on the red-black preconditioned Hermitian operator, and directly accelerates conjugate gradients on the normal equations. The coarse grid representation of this matrix is next-to-next-to-next-to-nearest neighbour and multiple algorit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2585v1-abstract-full').style.display = 'inline'; document.getElementById('1402.2585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.2585v1-abstract-full" style="display: none;"> We present a multi-level algorithm for the solution of five dimensional chiral fermion formulations, including domain wall and Mobius Fermions. The algorithm operates on the red-black preconditioned Hermitian operator, and directly accelerates conjugate gradients on the normal equations. The coarse grid representation of this matrix is next-to-next-to-next-to-nearest neighbour and multiple algorithmic advances are introduced, which help minimise the overhead of the coarse grid. The treatment of the coarse grids is purely four dimensional, and the bulk of the coarse grid operations are nearest neighbour. The intrinsic cost of most of the coarse grid operations is therefore comparable to those for the Wilson case. We also document the implementation of this algorithm in the BAGEL/Bfm software package and report on the measured performance gains the algorithm brings to simulations at the physical point on IBM BlueGene/Q hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2585v1-abstract-full').style.display = 'none'; document.getElementById('1402.2585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2014/03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.1716">arXiv:1312.1716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.1716">pdf</a>, <a href="https://arxiv.org/ps/1312.1716">ps</a>, <a href="https://arxiv.org/format/1312.1716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2010194514604414">10.1142/S2010194514604414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Input on the Inclusive $蟿$ Decay $V_{us}$ Puzzle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kerrane%2C+E">E. Kerrane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.1716v1-abstract-short" style="display: inline;"> Recent analyses of flavor-breaking hadronic-$蟿$-decay-based sum rules produce values of $\vert V_{us}\vert$ $\sim 3蟽$ low compared to 3-family unitarity expectations. An unresolved systematic issue is the significant variation in $\vert V_{us}\vert$ produced by different prescriptions for treating the slowly converging $D=2$ OPE series. We investigate the reliability of these prescriptions using l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.1716v1-abstract-full').style.display = 'inline'; document.getElementById('1312.1716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.1716v1-abstract-full" style="display: none;"> Recent analyses of flavor-breaking hadronic-$蟿$-decay-based sum rules produce values of $\vert V_{us}\vert$ $\sim 3蟽$ low compared to 3-family unitarity expectations. An unresolved systematic issue is the significant variation in $\vert V_{us}\vert$ produced by different prescriptions for treating the slowly converging $D=2$ OPE series. We investigate the reliability of these prescriptions using lattice data for various flavor-breaking correlators and show the fixed-scale prescription is clearly preferred. Preliminary updates of the conventional $蟿$-based, and related mixed $蟿$-electroproduction-data-based, sum rule analyses incorporating B-factory results for low-multiplicity strange $蟿$ decay mode distributions are then performed. Use of the preferred FOPT $D=2$ OPE prescription is shown to significantly reduce the discrepancy between 3-family unitarity expectations and the sum rule results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.1716v1-abstract-full').style.display = 'none'; document.getElementById('1312.1716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Contribution to the proceedings of the International Workshop on e^+ e^- Collisions from Phi to Psi, 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.3844">arXiv:1311.3844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.3844">pdf</a>, <a href="https://arxiv.org/ps/1311.3844">ps</a>, <a href="https://arxiv.org/format/1311.3844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Determination of the $A_2$ amplitude of $K \rightarrow 蟺蟺$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Janowski%2C+T">T. Janowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yin%2C+H">H. Yin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.3844v1-abstract-short" style="display: inline;"> We review the status of recent calculations by the RBC-UKQCD collaboration of the complex amplitude $A_2$, corresponding to the decay of a kaon to a two pion state with total isospin 2. In particular, we present preliminary results from two new ensembles: $48^3 \times 96$ with $a^{-1}=1.73$ GeV and $64^3 \times 128$ with $a^{-1}=2.3$ GeV, both at physical kinematics. Both ensembles were generated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3844v1-abstract-full').style.display = 'inline'; document.getElementById('1311.3844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.3844v1-abstract-full" style="display: none;"> We review the status of recent calculations by the RBC-UKQCD collaboration of the complex amplitude $A_2$, corresponding to the decay of a kaon to a two pion state with total isospin 2. In particular, we present preliminary results from two new ensembles: $48^3 \times 96$ with $a^{-1}=1.73$ GeV and $64^3 \times 128$ with $a^{-1}=2.3$ GeV, both at physical kinematics. Both ensembles were generated Iwasaki gauge action and domain wall fermion action with 2+1 flavours. These results, in comparison to our earlier ones on a $32^3$ DSDR lattice with $a^{-1}=1.36$ GeV, enable us to significantly reduce the discretization errors. The partial cancellation between the two dominant contractions contributing to Re($A_2$) has been confirmed and we believe that this cancellation is a major contribution to the $螖I=1/2$ rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3844v1-abstract-full').style.display = 'none'; document.getElementById('1311.3844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0397">arXiv:1311.0397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0397">pdf</a>, <a href="https://arxiv.org/ps/1311.0397">ps</a>, <a href="https://arxiv.org/format/1311.0397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $L_{10}^r$ From a Combined NNLO Lattice, Continuum Analysis of the Light Quark V-A Correlator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kerrane%2C+E">E. Kerrane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0397v1-abstract-short" style="display: inline;"> A combination of lattice and continuum data for the light-quark V-A correlator, supplemented by results from a chiral sum-rule analysis of the flavor-breaking flavor $ud$-$us$ V-A correlator difference, is shown to make possible a high-precision NNLO determination of the renormalized NLO chiral low-energy constant $L_{10}^r$. Key to this determination is the ability to simultaneously fix the two c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0397v1-abstract-full').style.display = 'inline'; document.getElementById('1311.0397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0397v1-abstract-full" style="display: none;"> A combination of lattice and continuum data for the light-quark V-A correlator, supplemented by results from a chiral sum-rule analysis of the flavor-breaking flavor $ud$-$us$ V-A correlator difference, is shown to make possible a high-precision NNLO determination of the renormalized NLO chiral low-energy constant $L_{10}^r$. Key to this determination is the ability to simultaneously fix the two combinations of NNLO low-energy constants also entering the analysis. With current versions of the strange hadronic $蟿$ branching fractions required as input to the flavor-breaking V-A sum rule, we find $L_{10}^r(m_蟻) = -0.00346(29)$. This represents both the best current precision for $L_{10}^r$, and the first NNLO determination having all errors under full control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0397v1-abstract-full').style.display = 'none'; document.getElementById('1311.0397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures. Prepared for the proceedings of the 31st International Symposium on Lattice Field Theory, July 29-August 3, 2013, Mainz, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0322">arXiv:1311.0322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0322">pdf</a>, <a href="https://arxiv.org/format/1311.0322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Kaon Mixing Beyond the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0322v1-abstract-short" style="display: inline;"> We report on an ongoing calculation of hadronic matrix elements needed to parameterize K-Kbar mixing in generic BSM scenarios, using domain wall fermions (DWF) at two lattice spacings. Recent work by the SWME collaboration shows a significant disagreement with our previous results for two of these quantities. Since the origin of this disagreement is unknown, it is important to reduce the various u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0322v1-abstract-full').style.display = 'inline'; document.getElementById('1311.0322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0322v1-abstract-full" style="display: none;"> We report on an ongoing calculation of hadronic matrix elements needed to parameterize K-Kbar mixing in generic BSM scenarios, using domain wall fermions (DWF) at two lattice spacings. Recent work by the SWME collaboration shows a significant disagreement with our previous results for two of these quantities. Since the origin of this disagreement is unknown, it is important to reduce the various uncertainties. In this work, we are using N_f=2+1 DWF with Iwasaki gauge action at inverse lattice spacings of 2.31 and 1.75 GeV, with multiple unitary pions on each ensemble, the lightest being 290 and 330 MeV on the finer and coarser of the two ensembles respectively. This extends previous work by the addition of a second lattice spacing (a^{-1}\approx 1.75 GeV). Renormalization is carried out non-perturbatively in the RI/MOM scheme and converted perturbatively to MSbar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0322v1-abstract-full').style.display = 'none'; document.getElementById('1311.0322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0084">arXiv:1311.0084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0084">pdf</a>, <a href="https://arxiv.org/format/1311.0084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> JLQCD IroIro++ lattice code on BG/Q </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">Guido Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">Jun Noaki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">Shoji Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">Takashi Kaneko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">Hidenori Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+J">Jun Doi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0084v1-abstract-short" style="display: inline;"> We describe our experience on the multipurpose C++ code IroIro++ designed for JLQCD to run on the BG/Q installation at KEK. We discuss some details on the performance improvements specific for the IBM Blue Gene Q. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0084v1-abstract-full" style="display: none;"> We describe our experience on the multipurpose C++ code IroIro++ designed for JLQCD to run on the BG/Q installation at KEK. We discuss some details on the performance improvements specific for the IBM Blue Gene Q. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0084v1-abstract-full').style.display = 'none'; document.getElementById('1311.0084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 2 tables, prepared for the 31st International Symposium on Lattice Field Theory - LATTICE 2013</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-299, OU-HET-797 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0835">arXiv:1306.0835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.0835">pdf</a>, <a href="https://arxiv.org/ps/1306.0835">ps</a>, <a href="https://arxiv.org/format/1306.0835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.114506">10.1103/PhysRevD.88.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A note on Rome-Southampton Renormalization with Smeared Gauge Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Arthur%2C+R">R. Arthur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R">R. Hudspith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0835v1-abstract-short" style="display: inline;"> We have calculated continuum limit step scaling functions of bilinear and four-fermion operators renormalized in a Rome-Southampton scheme using various smearing prescriptions for the gauge field. Also, for the first time, we have calculated non-perturbative anomalous dimensions of operators renormalized in a Rome-Southampton scheme. The effect of such smearing first enters connected fermionic cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0835v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0835v1-abstract-full" style="display: none;"> We have calculated continuum limit step scaling functions of bilinear and four-fermion operators renormalized in a Rome-Southampton scheme using various smearing prescriptions for the gauge field. Also, for the first time, we have calculated non-perturbative anomalous dimensions of operators renormalized in a Rome-Southampton scheme. The effect of such smearing first enters connected fermionic correlation functions via radiative corrections. We use off-shell renormalisation as a probe, and observe that the upper edge of the Rome-Southampton window is reduced by link smearing. This can be interpreted as arising due to the fermions decoupling from the high momentum gluons and we observe that the running of operators with the scale at large lattice momenta shows enhanced lattice artefacts. We find that the effect is greater for HEX smearing than for Stout smearing, but that in both cases additional care must be taken when using off-shell renormalisation with smeared gauge fields compared to thin link simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0835v1-abstract-full').style.display = 'none'; document.getElementById('1306.0835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2013-018 DNRF90 &amp; DIAS-2013-18 Edinburgh 2013/14 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 114506 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.7217">arXiv:1305.7217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.7217">pdf</a>, <a href="https://arxiv.org/format/1305.7217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2013)132">10.1007/JHEP08(2013)132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The kaon semileptonic form factor with near physical domain wall quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">Chris T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sivalingam%2C+K">Karthee Sivalingam</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.7217v1-abstract-short" style="display: inline;"> We present a new calculation of the K-&gt;pi semileptonic form factor at zero momentum transfer in domain wall lattice QCD with Nf=2+1 dynamical quark flavours. By using partially twisted boundary conditions we simulate directly at the phenomenologically relevant point of zero momentum transfer. We perform a joint analysis for all available ensembles which include three different lattice spacings (a=&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7217v1-abstract-full').style.display = 'inline'; document.getElementById('1305.7217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.7217v1-abstract-full" style="display: none;"> We present a new calculation of the K-&gt;pi semileptonic form factor at zero momentum transfer in domain wall lattice QCD with Nf=2+1 dynamical quark flavours. By using partially twisted boundary conditions we simulate directly at the phenomenologically relevant point of zero momentum transfer. We perform a joint analysis for all available ensembles which include three different lattice spacings (a=0.09-0.14fm), large physical volumes (m_pi*L&gt;3.9) and pion masses as low as 171 MeV. The comprehensive set of simulation points allows for a detailed study of systematic effects leading to the prediction f+(0)=0.9670(20)(+18/-46), where the first error is statistical and the second error systematic. The result allows us to extract the CKM-matrix element |Vus|=0.2237(+13/-8) and confirm first-row CKM-unitarity in the Standard Model at the sub per mille level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7217v1-abstract-full').style.display = 'none'; document.getElementById('1305.7217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 apges, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-13-13/T833, Edinburgh 2013/13, SHEP, TCD MATH 13-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4930">arXiv:1301.4930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4930">pdf</a>, <a href="https://arxiv.org/ps/1301.4930">ps</a>, <a href="https://arxiv.org/format/1301.4930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> New results from the lattice on the theoretical inputs to the hadronic tau determination of V_us </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kerrane%2C+E">E. Kerrane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4930v1-abstract-short" style="display: inline;"> Recent sum rule determinations of |V_us|, employing flavor-breaking combinations of hadronic tau decay data, are significantly lower than either expectations based on 3-family unitarity or determinations from K_ell3 and Gamma[K_mu2]/Gamma[pi_mu2]. We use lattice data to investigate the accuracy/reliability of the OPE representation of the flavor-breaking correlator combination entering the tau dec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4930v1-abstract-full').style.display = 'inline'; document.getElementById('1301.4930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4930v1-abstract-full" style="display: none;"> Recent sum rule determinations of |V_us|, employing flavor-breaking combinations of hadronic tau decay data, are significantly lower than either expectations based on 3-family unitarity or determinations from K_ell3 and Gamma[K_mu2]/Gamma[pi_mu2]. We use lattice data to investigate the accuracy/reliability of the OPE representation of the flavor-breaking correlator combination entering the tau decay analyses. The behavior of an alternate correlator combination, constructed to reduce problems associated with the slow convergence of the D = 2 OPE series, and entering an alternate sum rule requiring both electroproduction cross-section and hadronic tau decay data, is also investigated. Preliminary updates of both analyses, with the lessons learned from the lattice data in mind, are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4930v1-abstract-full').style.display = 'none'; document.getElementById('1301.4930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. Prepared for the proceedings of the 12th International Workshop on Tau Lepton Physics, Sep. 17-21, 2012, Nagoya, Japan and the 10th International Conference on Confinement and the Hadron Spectrum, Oct. 6-13, 2012, Garching/Munich, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Adelaide preprint number ADP-13-03/T823 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.2565">arXiv:1301.2565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.2565">pdf</a>, <a href="https://arxiv.org/ps/1301.2565">ps</a>, <a href="https://arxiv.org/format/1301.2565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Some continuum physics results from the lattice V-A correlator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kerrane%2C+E">E. Kerrane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maltman%2C+K">K. Maltman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.2565v2-abstract-short" style="display: inline;"> We present preliminary results on extractions of the chiral LECs L_10 and C_87 and constraints on the excited pseudoscalar state pi(1300) and pi(1800) decay constants obtained from an analysis of lattice data for the flavor ud light quark V-A correlator. A comparison of the results for the correlator to the corresponding mildly-model-dependent continuum results (based primarily on experimental had&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.2565v2-abstract-full').style.display = 'inline'; document.getElementById('1301.2565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.2565v2-abstract-full" style="display: none;"> We present preliminary results on extractions of the chiral LECs L_10 and C_87 and constraints on the excited pseudoscalar state pi(1300) and pi(1800) decay constants obtained from an analysis of lattice data for the flavor ud light quark V-A correlator. A comparison of the results for the correlator to the corresponding mildly-model-dependent continuum results (based primarily on experimental hadronic tau decay data) is also given <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.2565v2-abstract-full').style.display = 'none'; document.getElementById('1301.2565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Prepared for the Proceedings of the 30th International Symposium on Lattice Field Theory, Cairns, Australia, June 24-29, 2012; expanded version of Reference 14</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Adelaide preprint ADP-12-45/T812 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.3188">arXiv:1212.3188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.3188">pdf</a>, <a href="https://arxiv.org/format/1212.3188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Kaon semileptonic decays near the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C">Christopher Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sivalingam%2C+K">Karthee Sivalingam</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.3188v1-abstract-short" style="display: inline;"> The CKM matrix element $|V_{us}|$ can be extracted from the experimental measurement of semileptonic $K\to蟺$ decays. The determination depends on theory input for the corresponding vector form factor in QCD. We present a preliminary update on our efforts to compute it in $N_f=2+1$ lattice QCD using domain wall fermions for several lattice spacings and with a lightest pion mass of about&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3188v1-abstract-full').style.display = 'inline'; document.getElementById('1212.3188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.3188v1-abstract-full" style="display: none;"> The CKM matrix element $|V_{us}|$ can be extracted from the experimental measurement of semileptonic $K\to蟺$ decays. The determination depends on theory input for the corresponding vector form factor in QCD. We present a preliminary update on our efforts to compute it in $N_f=2+1$ lattice QCD using domain wall fermions for several lattice spacings and with a lightest pion mass of about $170\,\mathrm{MeV}$. By using partially twisted boundary conditions we avoid systematic errors associated with an interpolation of the form factor in momentum-transfer, while simulated pion masses near the physical point reduce the systematic error due to the chiral extrapolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3188v1-abstract-full').style.display = 'none'; document.getElementById('1212.3188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, Lattice 2012 PoS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.2871">arXiv:1212.2871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.2871">pdf</a>, <a href="https://arxiv.org/format/1212.2871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Weak Matrix Elements of Beyond the Standard Model $螖s=2$ four-quark operators from nf=2+1 Domain-Wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">Renwick J Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T Lytle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.2871v1-abstract-short" style="display: inline;"> We report on our computation of the hadronic matrix elements of the four-quark operators needed for the study of $K^0-{\bar K^0}$ mixing beyond the Standard Model (SM). We consider nf=2+1 Domain-Wall fermions on Iwasaki gauge action with lightest unitary pion of 290 MeV and a single lattice spacing a=0.086 fm. The renormalization is performed non-perturbatively through the RI-MOM scheme and our re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2871v1-abstract-full').style.display = 'inline'; document.getElementById('1212.2871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.2871v1-abstract-full" style="display: none;"> We report on our computation of the hadronic matrix elements of the four-quark operators needed for the study of $K^0-{\bar K^0}$ mixing beyond the Standard Model (SM). We consider nf=2+1 Domain-Wall fermions on Iwasaki gauge action with lightest unitary pion of 290 MeV and a single lattice spacing a=0.086 fm. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. We have estimated the various systematic errors. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2871v1-abstract-full').style.display = 'none'; document.getElementById('1212.2871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Contribution to the 30th International Symposium on Lattice Field Theory, June 24-29, 2012, Cairns, Australia</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(Lattice 2012)108 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1474">arXiv:1212.1474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1474">pdf</a>, <a href="https://arxiv.org/format/1212.1474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.152001">10.1103/PhysRevLett.110.152001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emerging understanding of the 螖I = 1/2 Rule from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goode%2C+E+J">E. J. Goode</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Janowski%2C+T">T. Janowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Q">Q. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1474v2-abstract-short" style="display: inline;"> There has been much speculation as to the origin of the 螖I = 1/2 rule (Re A_0/Re A_2 \simeq 22.5). We find that the two dominant contributions to the 螖I=3/2, K \to 蟺蟺 correlation functions have opposite signs leading to a significant cancellation. This partial cancellation occurs in our computation of Re A_2 with physical quark masses and kinematics (where we reproduce the experimental value of A_&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1474v2-abstract-full').style.display = 'inline'; document.getElementById('1212.1474v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1474v2-abstract-full" style="display: none;"> There has been much speculation as to the origin of the 螖I = 1/2 rule (Re A_0/Re A_2 \simeq 22.5). We find that the two dominant contributions to the 螖I=3/2, K \to 蟺蟺 correlation functions have opposite signs leading to a significant cancellation. This partial cancellation occurs in our computation of Re A_2 with physical quark masses and kinematics (where we reproduce the experimental value of A_2) and also for heavier pions at threshold. For Re A_0, although we do not have results at physical kinematics, we do have results for pions at zero-momentum with m_蟺 \simeq 420 MeV (Re A_0/Re A_2=9.1(2.1)) and m_蟺 \simeq 330 MeV (Re A_0/Re A_2=12.0(1.7)). The contributions which partially cancel in Re A_2 are also the largest ones in Re A_0, but now they have the same sign and so enhance this amplitude. The emerging explanation of the 螖I=1/2 rule is a combination of the perturbative running to scales of O(2 GeV), a relative suppression of Re A_2 through the cancellation of the two dominant contributions and the corresponding enhancement of Re A_0. QCD and EWP penguin operators make only very small contributions at such scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1474v2-abstract-full').style.display = 'none'; document.getElementById('1212.1474v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. v2 minor revisions to coincide w/ published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4412">arXiv:1208.4412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.4412">pdf</a>, <a href="https://arxiv.org/ps/1208.4412">ps</a>, <a href="https://arxiv.org/format/1208.4412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.094514">10.1103/PhysRevD.87.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain Wall QCD with Near-Physical Pions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=RBC+Collaboration"> RBC Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=UKQCD+Collaboration"> UKQCD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Arthur%2C+R">R. Arthur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D">D. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yu%2C+J">J. Yu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4412v3-abstract-short" style="display: inline;"> We present physical results for a variety of light hadronic quantities obtained via a combined analysis of three 2+1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we used the Iwasaki gauge action with beta=2.13 (a^-1=1.75(4) GeV) and beta=2.25 (a^-1=2.31(4) GeV) and lattice sizes of 24^3 x 64 and 32^3 x 64 respectively, with unitary pion masses in the range 293(5)-417(10)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4412v3-abstract-full').style.display = 'inline'; document.getElementById('1208.4412v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4412v3-abstract-full" style="display: none;"> We present physical results for a variety of light hadronic quantities obtained via a combined analysis of three 2+1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we used the Iwasaki gauge action with beta=2.13 (a^-1=1.75(4) GeV) and beta=2.25 (a^-1=2.31(4) GeV) and lattice sizes of 24^3 x 64 and 32^3 x 64 respectively, with unitary pion masses in the range 293(5)-417(10) MeV. The extent L_s for the 5^th dimension of the domain wall fermion formulation is L_s=16 in these ensembles. In this analysis we include a third ensemble set that makes use of the novel Iwasaki+DSDR (Dislocation Suppressing Determinant Ratio) gauge action at beta = 1.75 (a^-1=1.37(1) GeV) with a lattice size of 32^3 x 64 and L_s=32 to reach down to partially-quenched pion masses as low as 143(1) MeV and a unitary pion mass of 171(1) MeV, while retaining good chiral symmetry and topological tunneling. We demonstrate a significant improvement in our control over the chiral extrapolation, resulting in much improved continuum predictions for the above quantities. The main results of this analysis include the pion and kaon decay constants, f_蟺=127(3)_{stat}(3)_{sys} MeV and f_K = 152(3)_{stat}(2)_{sys} MeV respectively (f_K/f_蟺= 1.199(12)_{stat}(14)_{sys}); the average up/down quark mass and the strange-quark mass in the MSbar-scheme at 3 GeV, m_{ud}(MSbar, 3 GeV) = 3.05(8)_{stat}(6)_{sys} MeV and m_s(MSbar, 3 GeV) = 83.5(1.7)_{stat}(1.1)_{sys}; the neutral kaon mixing parameter in the MSbar-scheme at 3 GeV, B_K(MSbar,3 GeV) = 0.535(8)_{stat}(13)_{sys}, and in the RGI scheme, \hat B_K = 0.758(11)_{stat}(19)_{sys}; and the Sommer scales r_1 = 0.323(8)_{stat}(4)_{sys} fm and r_0 = 0.480(10)_{stat}(4)_{sys} (r_1/r_0 = 0.673(11)_{stat}(3)_{sys}). We also obtain values for the SU(2) ChPT effective couplings, \bar{l_3} = 2.91(23)_{stat}(7)_{sys}$ and \bar{l_4} = 3.99(16)_{stat}(9)_{sys}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4412v3-abstract-full').style.display = 'none'; document.getElementById('1208.4412v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">95 pages, 23 figures. Added missing author to metadata</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D87 (2013) 094514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5737">arXiv:1206.5737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.5737">pdf</a>, <a href="https://arxiv.org/format/1206.5737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.054028">10.1103/PhysRevD.86.054028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral kaon mixing beyond the standard model with nf=2+1 chiral fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hudspith%2C+R+J">R. J. Hudspith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5737v2-abstract-short" style="display: inline;"> We compute the hadronic matrix elements of the four-quark operators needed for the study of neutral kaon mixing beyond the Standard Model (SM). We use nf=2+1 flavours of domain-wall fermions (DWF) which exhibit good chiral-flavour symmetry. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. The computation is perform&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5737v2-abstract-full').style.display = 'inline'; document.getElementById('1206.5737v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5737v2-abstract-full" style="display: none;"> We compute the hadronic matrix elements of the four-quark operators needed for the study of neutral kaon mixing beyond the Standard Model (SM). We use nf=2+1 flavours of domain-wall fermions (DWF) which exhibit good chiral-flavour symmetry. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. The computation is performed on a single lattice spacing a=0.086 fm with a lightest unitary pion mass of 290 MeV. The various systematic errors, including the discretisation effects, are estimated and discussed. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5737v2-abstract-full').style.display = 'none'; document.getElementById('1206.5737v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table. v2 paper version, R3 and B3 corrected, conversion to 2GeV added, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5142">arXiv:1206.5142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.5142">pdf</a>, <a href="https://arxiv.org/format/1206.5142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.074513">10.1103/PhysRevD.86.074513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice determination of the $K \to (蟺蟺)_{I=2}$ Decay Amplitude $A_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goode%2C+E">E. Goode</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lightman%2C+M">M. Lightman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Q">Q. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sturm%2C+C">C. Sturm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5142v1-abstract-short" style="display: inline;"> We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving Re$A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8}$ GeV and Im$A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13}$ GeV. Re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5142v1-abstract-full').style.display = 'inline'; document.getElementById('1206.5142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5142v1-abstract-full" style="display: none;"> We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving Re$A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8}$ GeV and Im$A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13}$ GeV. Re$A_2$ is in good agreement with the experimental result, whereas the value of Im$A_2$ was hitherto unknown. We are also working towards a direct computation of the $K\to(蟺蟺)_{I=0}$ amplitude $A_0$ but, within the standard model, our result for Im$A_2$ can be combined with the experimental results for Re$A_0$, Re$A_2$ and $蔚^\prime/蔚$ to give Im$A_0/$Re$A_0= -1.61(28)\times 10^{-4}$ . Our result for Im\,$A_2$ implies that the electroweak penguin (EWP) contribution to $蔚^\prime/蔚$ is Re$(蔚^\prime/蔚)_{\mathrm{EWP}} = -(6.25 \pm 0.44_{\textrm{stat}} \pm 1.19_{\textrm{syst}}) \times 10^{-4}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5142v1-abstract-full').style.display = 'none'; document.getElementById('1206.5142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CU-TP-1202, Edinburgh 2012/10, MPP-2012-101, SHEP-1217 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.0537">arXiv:1112.0537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.0537">pdf</a>, <a href="https://arxiv.org/format/1112.0537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-perturbative running and renormalization of kaon four-quark operators with nf=2+1 domain-wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.0537v1-abstract-short" style="display: inline;"> We compute the renormalization factors of four-quark operators needed for the study of $K\to蟺蟺$ decay in the $螖I=3/2$ channel. We evaluate the Z-factors at a low energy scale ($渭_0=1.145 \GeV$) using four different non-exceptional RI-SMOM schemes on a large, coarse lattice ($a\sim 0.14\fm$) on which the bare matrix elements are also computed. Then we compute the universal, non-perturbative, scale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0537v1-abstract-full').style.display = 'inline'; document.getElementById('1112.0537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.0537v1-abstract-full" style="display: none;"> We compute the renormalization factors of four-quark operators needed for the study of $K\to蟺蟺$ decay in the $螖I=3/2$ channel. We evaluate the Z-factors at a low energy scale ($渭_0=1.145 \GeV$) using four different non-exceptional RI-SMOM schemes on a large, coarse lattice ($a\sim 0.14\fm$) on which the bare matrix elements are also computed. Then we compute the universal, non-perturbative, scale evolution matrix of these renormalization factors between $渭_0$ and $3\GeV$. We give the numerical results for the different steps of the computation in two different non-exceptional lattice schemes, and the connection to $\msbar$ at $3\GeV$ is made using one-loop perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0537v1-abstract-full').style.display = 'none'; document.getElementById('1112.0537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, XXIX International Symposium on Lattice Field Theory, July 10 -16 2011, Squaw Valley, Lake Tahoe, California</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Boyle%2C+P+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10