CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 200 results for author: <span class="mathjax">Zanotti, J M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Zanotti%2C+J+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zanotti, J M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zanotti%2C+J+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zanotti, J M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03621">arXiv:2408.03621</a> <span> [<a href="https://arxiv.org/pdf/2408.03621">pdf</a>, <a href="https://arxiv.org/format/2408.03621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Transverse force distributions in the proton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Crawford%2C+J+A">J. A. Crawford</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03621v1-abstract-short" style="display: inline;"> Single-spin asymmetries observed in polarised deep-inelastic scattering are important probes of hadron structure. The Sivers asymmetry has been the focus of much attention in QCD phenomenology and is yet to be understood at the quark level. In this Letter, we present a lattice QCD calculation of the spatial distribution of a colour-Lorentz force acting on the struck quark in a proton. We determine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03621v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03621v1-abstract-full" style="display: none;"> Single-spin asymmetries observed in polarised deep-inelastic scattering are important probes of hadron structure. The Sivers asymmetry has been the focus of much attention in QCD phenomenology and is yet to be understood at the quark level. In this Letter, we present a lattice QCD calculation of the spatial distribution of a colour-Lorentz force acting on the struck quark in a proton. We determine a spin-independent confining force, as well as spin-dependent force distributions with local forces on the order of 3 GeV/fm. These distributions offer a complementary picture of the Sivers asymmetry in transversely polarised deep-inelastic scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03621v1-abstract-full').style.display = 'none'; document.getElementById('2408.03621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-24-12/T1251, DESY-24-120, LTH 1380 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06256">arXiv:2405.06256</a> <span> [<a href="https://arxiv.org/pdf/2405.06256">pdf</a>, <a href="https://arxiv.org/format/2405.06256">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Reconstructing generalised parton distributions from the lattice off-forward Compton amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Crawford%2C+J+A">J. A. Crawford</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06256v2-abstract-short" style="display: inline;"> We present a determination of the structure functions of the off-forward Compton amplitude $\mathcal{H}_1$ and $\mathcal{E}_1$ from the Feynman-Hellmann method in lattice QCD. At leading twist, these structure functions give access to the generalised parton distributions (GPDs) $H$ and $E$, respectively. This calculation is performed for an unphysical pion mass of $m_蟺=412\;\text{MeV}$ and four va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06256v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06256v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06256v2-abstract-full" style="display: none;"> We present a determination of the structure functions of the off-forward Compton amplitude $\mathcal{H}_1$ and $\mathcal{E}_1$ from the Feynman-Hellmann method in lattice QCD. At leading twist, these structure functions give access to the generalised parton distributions (GPDs) $H$ and $E$, respectively. This calculation is performed for an unphysical pion mass of $m_蟺=412\;\text{MeV}$ and four values of the soft momentum transfer, $t\approx 0, -0.3, -0.6, -1.1\;\text{GeV}^2$, all at a hard momentum scale of $\bar{Q}^2\approx 5\;\text{GeV}^2$. Using these results, we test various methods to determine properties of the real-time scattering amplitudes and GPDs: (1) we fit their Mellin moments, and (2) we use a simple GPD ansatz to reconstruct the entire distribution. Our final results show promising agreement with phenomenology and other lattice results, and highlight specific systematics in need of control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06256v2-abstract-full').style.display = 'none'; document.getElementById('2405.06256v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures. Minor updates to text. Version to appear in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-24-08/T1247, DESY-24-065, Liverpool LTH 1370 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00255">arXiv:2402.00255</a> <span> [<a href="https://arxiv.org/pdf/2402.00255">pdf</a>, <a href="https://arxiv.org/format/2402.00255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The parity-odd structure function of nucleon from the Compton amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00255v1-abstract-short" style="display: inline;"> The dominant contribution to the theoretical uncertainty in the extracted weak parameters of the Standard Model comes from the hadronic uncertainties in the electroweak boxes, i.e. $纬-W^\pm/Z$ exchange diagrams. A dispersive analysis relates the box diagrams to the parity-odd structure function, $F_3$, for which the experimental data either do not exist or belong to a separate isospin channel. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00255v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00255v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00255v1-abstract-full" style="display: none;"> The dominant contribution to the theoretical uncertainty in the extracted weak parameters of the Standard Model comes from the hadronic uncertainties in the electroweak boxes, i.e. $纬-W^\pm/Z$ exchange diagrams. A dispersive analysis relates the box diagrams to the parity-odd structure function, $F_3$, for which the experimental data either do not exist or belong to a separate isospin channel. Therefore a first-principles calculation of $F_3$ is highly desirable. In this contribution, we report on the QCDSF/UKQCD Collaboration's progress in calculating the moments of the $F_3^{纬Z}$ structure function from the forward Compton amplitude at the SU(3) symmetric point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00255v1-abstract-full').style.display = 'none'; document.getElementById('2402.00255v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Contribution to the 40th International Symposium on Lattice Field Theory (Lattice 2023) July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, Batavia IL, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-24-02/T1241, DESY-24-013, LTH 1363 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07904">arXiv:2307.07904</a> <span> [<a href="https://arxiv.org/pdf/2307.07904">pdf</a>, <a href="https://arxiv.org/format/2307.07904">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The Compton amplitude and nucleon structure functions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07904v1-abstract-short" style="display: inline;"> The structure of hadrons relevant for deep-inelastic scattering are completely characterised by the Compton amplitude. A direct calculation of the Compton amplitude in a lattice QCD setup provides a way to accessing the structure functions, circumventing the operator mixing and renormalisation issues of the standard operator product expansion approach. In this contribution, we focus on the QCDSF/U… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07904v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07904v1-abstract-full" style="display: none;"> The structure of hadrons relevant for deep-inelastic scattering are completely characterised by the Compton amplitude. A direct calculation of the Compton amplitude in a lattice QCD setup provides a way to accessing the structure functions, circumventing the operator mixing and renormalisation issues of the standard operator product expansion approach. In this contribution, we focus on the QCDSF/UKQCD Collaboration's advances in calculating the forward Compton amplitude via an implementation of the second-order Feynman-Hellmann theorem. We highlight our progress in investigating the moments of nucleon structure functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07904v1-abstract-full').style.display = 'none'; document.getElementById('2307.07904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan State University, USA, 27-31 March 2023. arXiv admin note: substantial text overlap with arXiv:2212.09197, arXiv:2110.01310</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05491">arXiv:2305.05491</a> <span> [<a href="https://arxiv.org/pdf/2305.05491">pdf</a>, <a href="https://arxiv.org/format/2305.05491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.034507">10.1103/PhysRevD.108.034507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feynman--Hellmann approach to transition matrix elements and quasi-degenerate energy states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05491v2-abstract-short" style="display: inline;"> The Feynman--Hellmann approach to computing matrix elements in lattice QCD by first adding a perturbing operator to the action is described using the transition matrix and the Dyson expansion formalism. This perturbs the energies in the two-point baryon correlation function, from which the matrix element can be obtained. In particular at leading order in the perturbation we need to diagonalise a m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05491v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05491v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05491v2-abstract-full" style="display: none;"> The Feynman--Hellmann approach to computing matrix elements in lattice QCD by first adding a perturbing operator to the action is described using the transition matrix and the Dyson expansion formalism. This perturbs the energies in the two-point baryon correlation function, from which the matrix element can be obtained. In particular at leading order in the perturbation we need to diagonalise a matrix of near-degenerate energies. While the method is general for all hadrons, we apply it here to a study of a Sigma to Nucleon baryon transition vector matrix element. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05491v2-abstract-full').style.display = 'none'; document.getElementById('2305.05491v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages. Minor typos fixed. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev D 108, 034507 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06095">arXiv:2304.06095</a> <span> [<a href="https://arxiv.org/pdf/2304.06095">pdf</a>, <a href="https://arxiv.org/format/2304.06095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Weak decay constants of the neutral pseudoscalar mesons from lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kordov%2C+Z+R">Z. R. Kordov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">W. Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06095v3-abstract-short" style="display: inline;"> With increasing requirements for greater precision, it becomes essential to describe the effects of isospin breaking induced by both quark masses and electro-magnetic effects. In this work we perform a lattice analysis of the weak decay constants of the neutral pseudoscalar mesons including such isospin breaking effects, with particular consideration being given to the state mixing of the $蟺^0$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06095v3-abstract-full').style.display = 'inline'; document.getElementById('2304.06095v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06095v3-abstract-full" style="display: none;"> With increasing requirements for greater precision, it becomes essential to describe the effects of isospin breaking induced by both quark masses and electro-magnetic effects. In this work we perform a lattice analysis of the weak decay constants of the neutral pseudoscalar mesons including such isospin breaking effects, with particular consideration being given to the state mixing of the $蟺^0$, $畏$ and $畏^\prime$. We also detail extensions to the non-perturbative RI$^\prime$-MOM renormalization scheme for application to non-degenerate flavour-neutral operators which are permitted to mix, and present initial results. Using flavour-breaking expansions in terms of quark masses and charges we determine the leptonic decay constants for the $蟺^0$ and $畏$ mesons, demonstrating in principle how precision determinations of all neutral pseudoscalar decay constants could be reached in lattice QCD with QED and strong isospin-breaking accounted for. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06095v3-abstract-full').style.display = 'none'; document.getElementById('2304.06095v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, analysis of charged mesons has been removed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-23-11/11220, DESY-23-049, LTH 1337 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02866">arXiv:2304.02866</a> <span> [<a href="https://arxiv.org/pdf/2304.02866">pdf</a>, <a href="https://arxiv.org/format/2304.02866">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094511">10.1103/PhysRevD.108.094511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining beyond the Standard Model nucleon isovector charges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Smail%2C+R+E">R. E. Smail</a>, <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02866v2-abstract-short" style="display: inline;"> At the TeV scale, low-energy precision observations of neutron characteristics provide unique probes of novel physics. Precision studies of neutron decay observables are susceptible to beyond the Standard Model (BSM) tensor and scalar interactions, while the neutron electric dipole moment, $d_n$, also has high sensitivity to new BSM CP-violating interactions. To fully utilise the potential of futu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02866v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02866v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02866v2-abstract-full" style="display: none;"> At the TeV scale, low-energy precision observations of neutron characteristics provide unique probes of novel physics. Precision studies of neutron decay observables are susceptible to beyond the Standard Model (BSM) tensor and scalar interactions, while the neutron electric dipole moment, $d_n$, also has high sensitivity to new BSM CP-violating interactions. To fully utilise the potential of future experimental neutron physics programs, matrix elements of appropriate low-energy effective operators within neutron states must be precisely calculated. We present results from the QCDSF/UKQCD/CSSM collaboration for the isovector charges $g_T,~g_A$ and $g_S$ of the nucleon, $危$ and $螢$ baryons using lattice QCD methods and the Feynman-Hellmann theorem. We use a flavour symmetry breaking method to systematically approach the physical quark mass using ensembles that span five lattice spacings and multiple volumes. We extend this existing flavour breaking expansion to also account for lattice spacing and finite volume effects in order to quantify all systematic uncertainties. Our final estimates of the nucleon isovector charges are $g_T~=~1.010(21)_{\text{stat}}(12)_{\text{sys}},~g_A=1.253(63)_{\text{stat}}(41)_{\text{sys}}$ and $g_S~=~1.08(21)_{\text{stat}}(03)_{\text{sys}}$ renormalised, where appropriate, at $渭=2~\text{GeV}$ in the $\overline{\text{MS}}$ scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02866v2-abstract-full').style.display = 'none'; document.getElementById('2304.02866v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-23-10/T1219, DESY-23-047, LTH 1336, MIT-CTP/5581 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04911">arXiv:2302.04911</a> <span> [<a href="https://arxiv.org/pdf/2302.04911">pdf</a>, <a href="https://arxiv.org/format/2302.04911">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quasi-degenerate baryon energy states, the Feynman--Hellmann theorem and transition matrix elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04911v1-abstract-short" style="display: inline;"> The standard method for determining matrix elements in lattice QCD requires the computation of three-point correlation functions. This has the disadvantage of requiring two large time separations: one between the hadron source and operator and the other from the operator to the hadron sink. Here we consider an alternative formalism, based on the Dyson expansion leading to the Feynman-Hellmann theo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04911v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04911v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04911v1-abstract-full" style="display: none;"> The standard method for determining matrix elements in lattice QCD requires the computation of three-point correlation functions. This has the disadvantage of requiring two large time separations: one between the hadron source and operator and the other from the operator to the hadron sink. Here we consider an alternative formalism, based on the Dyson expansion leading to the Feynman-Hellmann theorem, which only requires the computation of two-point correlation functions. Both the cases of degenerate energy levels and quasi-degenerate energy levels which correspond to diagonal and transition matrix elements respectively can be considered in this formalism. As an example numerical results for the Sigma to Nucleon vector transition matrix element are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04911v1-abstract-full').style.display = 'none'; document.getElementById('2302.04911v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 39th International Symposium on Lattice Field Theory, 8-13 August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)412 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04141">arXiv:2209.04141</a> <span> [<a href="https://arxiv.org/pdf/2209.04141">pdf</a>, <a href="https://arxiv.org/format/2209.04141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054503">10.1103/PhysRevD.107.054503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moments and power corrections of longitudinal and transverse proton structure functions from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04141v3-abstract-short" style="display: inline;"> We present a simultaneous extraction of the moments of $F_2$ and $F_L$ structure functions of the proton for a range of photon virtuality, $Q^2$. This is achieved by computing the forward Compton amplitude on the lattice utilizing the second-order Feynman-Hellmann theorem. Our calculations are performed on configurations with two different lattice spacings and volumes, all at the $SU(3)$ symmetric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04141v3-abstract-full').style.display = 'inline'; document.getElementById('2209.04141v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04141v3-abstract-full" style="display: none;"> We present a simultaneous extraction of the moments of $F_2$ and $F_L$ structure functions of the proton for a range of photon virtuality, $Q^2$. This is achieved by computing the forward Compton amplitude on the lattice utilizing the second-order Feynman-Hellmann theorem. Our calculations are performed on configurations with two different lattice spacings and volumes, all at the $SU(3)$ symmetric point. We find the moments of $F_{2}$ and $F_{L}$ in good agreement with experiment. Power corrections turn out to be significant. This is the first time the $Q^2$ dependence of the lowest moment of $F_2$ has been quantified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04141v3-abstract-full').style.display = 'none'; document.getElementById('2209.04141v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, 2 tables. Version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-22-27/T1198, DESY-22-145, LTH 1307 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03040">arXiv:2207.03040</a> <span> [<a href="https://arxiv.org/pdf/2207.03040">pdf</a>, <a href="https://arxiv.org/format/2207.03040">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Investigating the Compton amplitude subtraction function in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">Alec Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Sankey%2C+E">Edward Sankey</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">Kadir Utku Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">Holger Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Somfleth%2C+K">Kim Somfleth</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">Hinnerk St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03040v2-abstract-short" style="display: inline;"> Theoretical predictions of the proton--neutron mass difference and measurements of the proton's charge radius require inputs from the Compton amplitude subtraction function. Model-dependent and non-relativistic calculations of this subtraction function vary significantly, and hence it contributes sizeable uncertainties to the aforementioned physical quantities. We report on the use of Feynman-Hell… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03040v2-abstract-full').style.display = 'inline'; document.getElementById('2207.03040v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03040v2-abstract-full" style="display: none;"> Theoretical predictions of the proton--neutron mass difference and measurements of the proton's charge radius require inputs from the Compton amplitude subtraction function. Model-dependent and non-relativistic calculations of this subtraction function vary significantly, and hence it contributes sizeable uncertainties to the aforementioned physical quantities. We report on the use of Feynman-Hellmann methods in lattice QCD to calculate the subtraction function from first principles. In particular, our initial results show anomalous high-energy behaviour that is at odds with the prediction from the operator product expansion (OPE). Therefore, we investigate the possibility that this unexpected behaviour is due to lattice artifacts, by varying the lattice spacing and volume, and comparing different discretisations of the vector current. Finally, we explore a Feynman-Hellmann implementation that is less sensitive to short-distance contributions and show that the subtraction function's anomalous behaviour can be attributed to these short-distance contributions. As such, this work represents the first steps in achieving a complete understanding of the Compton amplitude subtraction function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03040v2-abstract-full').style.display = 'none'; document.getElementById('2207.03040v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures. Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-22-24/T1195, DESY-22-108, LTH 1308 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01366">arXiv:2202.01366</a> <span> [<a href="https://arxiv.org/pdf/2202.01366">pdf</a>, <a href="https://arxiv.org/format/2202.01366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Form Factors from the Feynman-Hellmann Method in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Batelaan%2C+M">M. Batelaan</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01366v1-abstract-short" style="display: inline;"> Lattice QCD calculations of the nucleon electromagnetic form factors are of interest at both the high and low momentum transfer regions. For high momentum transfers especially there are open questions which require more intense study, such as the potential zero crossing in the proton's electric form factor. We will present recent progress from the QCDSF/UKQCD/CSSM collaboration on the calculation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01366v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01366v1-abstract-full" style="display: none;"> Lattice QCD calculations of the nucleon electromagnetic form factors are of interest at both the high and low momentum transfer regions. For high momentum transfers especially there are open questions which require more intense study, such as the potential zero crossing in the proton's electric form factor. We will present recent progress from the QCDSF/UKQCD/CSSM collaboration on the calculation of these form factors using the Feynman-Hellmann method in lattice QCD. The Feynman-Hellmann method allows for greater control over excited states which we take advantage of by going to high values of the momentum transfer. In this proceeding we present results of the form factors up to $6 \textrm{GeV}^{2}$, using $N_{f}=2+1$ flavour fermions for three different pion masses in the range 310-470 $\textrm{MeV}$. The results are extrapolated to the physical pion mass through the use of a flavour breaking expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01366v1-abstract-full').style.display = 'none'; document.getElementById('2202.01366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, proceeding for the 38th International Symposium on Lattice Field Theory (Lattice 2021), 26-30 Jul 2021, Zoom/Gather@MIT, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-22-7/T1178, DESY-22-010, LTH 1297 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10779">arXiv:2201.10779</a> <span> [<a href="https://arxiv.org/pdf/2201.10779">pdf</a>, <a href="https://arxiv.org/format/2201.10779">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Measurements of $SU(3)_f$ symmetry breaking in $B$ meson decay constants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=De+La+Motte%2C+S+A">S. A. De La Motte</a>, <a href="/search/hep-lat?searchtype=author&query=Hollitt%2C+S+E">S. E. Hollitt</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Jackson%2C+P+D">P. D. Jackson</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10779v1-abstract-short" style="display: inline;"> We present updates from QCDSF/UKQCD/CSSM on the $SU(3)_f$ breaking in $B$ meson decay constants. The $b$-quarks are generated with an anisotropic clover-improved action, and are tuned to match properties of the physical $B$ and $B^*$ mesons. Configurations are generated with $\overline{m}=(1/3)(2m_l+m_s)$ kept constant to control symmetry breaking effects. Various sources of systematic uncertainty… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10779v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10779v1-abstract-full" style="display: none;"> We present updates from QCDSF/UKQCD/CSSM on the $SU(3)_f$ breaking in $B$ meson decay constants. The $b$-quarks are generated with an anisotropic clover-improved action, and are tuned to match properties of the physical $B$ and $B^*$ mesons. Configurations are generated with $\overline{m}=(1/3)(2m_l+m_s)$ kept constant to control symmetry breaking effects. Various sources of systematic uncertainty will be discussed, including those from continuum extrapolations and extrapolations to the physical point. We also present new efforts to calculate $f_B$ and $f_{B_s}$ using weighted averages across multiple time fitting regions. The use of an automated weighted averaging technique over multiple fitting ranges allows for timely tuning of the $b$-quark and reduces the impact of systematic errors from fitting range biases in calculations of $f_B$ and $f_{B_s}$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10779v1-abstract-full').style.display = 'none'; document.getElementById('2201.10779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, proceedings for The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-22-3/T1174, DESY-22-011, LTH 1293 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.08367">arXiv:2201.08367</a> <span> [<a href="https://arxiv.org/pdf/2201.08367">pdf</a>, <a href="https://arxiv.org/format/2201.08367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The Compton Amplitude, lattice QCD and the Feynman-Hellmann approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Sankey%2C+E">E. Sankey</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.08367v1-abstract-short" style="display: inline;"> A major objective of lattice QCD is the computation of hadronic matrix elements. The standard method is to use three-point and four-point correlation functions. An alternative approach, requiring only the computation of two-point correlation functions is to use the Feynman-Hellmann theorem. In this talk we develop this method up to second order in perturbation theory, in a context appropriate for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08367v1-abstract-full').style.display = 'inline'; document.getElementById('2201.08367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.08367v1-abstract-full" style="display: none;"> A major objective of lattice QCD is the computation of hadronic matrix elements. The standard method is to use three-point and four-point correlation functions. An alternative approach, requiring only the computation of two-point correlation functions is to use the Feynman-Hellmann theorem. In this talk we develop this method up to second order in perturbation theory, in a context appropriate for lattice QCD. This encompasses the Compton Amplitude (which forms the basis for deep inelastic scattering) and hadron scattering. Some numerical results are presented showing results indicating what this approach might achieve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08367v1-abstract-full').style.display = 'none'; document.getElementById('2201.08367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings contribution to the XXXIII International (Online) Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests", November 8-12, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04269">arXiv:2201.04269</a> <span> [<a href="https://arxiv.org/pdf/2201.04269">pdf</a>, <a href="https://arxiv.org/format/2201.04269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Novel Algorithms for Computing Correlation Functions of Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Humphrey%2C+N">Nabil Humphrey</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04269v1-abstract-short" style="display: inline;"> The computational cost required to calculate nuclear correlation functions grows factorially in the number of quarks, making the study of large nuclei inaccessible to ab initio study using lattice QCD at the present time. However, the tensor expressions corresponding to many of these correlation functions exhibit a high degree of permutation symmetry that can be exploited to reduce computational w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04269v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04269v1-abstract-full" style="display: none;"> The computational cost required to calculate nuclear correlation functions grows factorially in the number of quarks, making the study of large nuclei inaccessible to ab initio study using lattice QCD at the present time. However, the tensor expressions corresponding to many of these correlation functions exhibit a high degree of permutation symmetry that can be exploited to reduce computational work. We present promising speed-ups for certain choices of interpolating operators using two new algorithms for computing nuclear correlation functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04269v1-abstract-full').style.display = 'none'; document.getElementById('2201.04269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory (Lattice 2021), July 26-30, 2021, Zoom/Gather@MIT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5381, ADP-21-24/T1171 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06355">arXiv:2112.06355</a> <span> [<a href="https://arxiv.org/pdf/2112.06355">pdf</a>, <a href="https://arxiv.org/format/2112.06355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Advances in lattice hadron physics calculations using the gradient flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06355v1-abstract-short" style="display: inline;"> Lattice calculations of hadronic observables are aggravated by short-distance fluctuations. The gradient flow, which can be viewed as a particular realisation of the coarse-graining step of momentum space RG transformations, proves a powerful tool for evolving the lattice gauge field to successively longer length scales for any initial coupling. Already at small flow times we find the signal-to-no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06355v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06355v1-abstract-full" style="display: none;"> Lattice calculations of hadronic observables are aggravated by short-distance fluctuations. The gradient flow, which can be viewed as a particular realisation of the coarse-graining step of momentum space RG transformations, proves a powerful tool for evolving the lattice gauge field to successively longer length scales for any initial coupling. Already at small flow times we find the signal-to-noise ratio of two- and three-point functions significantly enhanced and the projection onto the ground state largely improved, while the effect on the hadronic observables considered here to be negligible. A further benefit is that far fewer conjugate gradient iterations are needed for the Wilson-Dirac inverter to converge. Additionally, we find the renormalisation constants of quark bilinears to be significantly closer to unity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06355v1-abstract-full').style.display = 'none'; document.getElementById('2112.06355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures. Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-23/T1170, DESY21-204, LTH 1281 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05330">arXiv:2112.05330</a> <span> [<a href="https://arxiv.org/pdf/2112.05330">pdf</a>, <a href="https://arxiv.org/format/2112.05330">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Tensor Charges and their Impact on Physics Beyond the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Smail%2C+R+E">R. E. Smail</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05330v1-abstract-short" style="display: inline;"> The nucleon tensor charge, $g_T$, is an important quantity in the search for beyond the Standard Model tensor interactions in neutron and nuclear $尾$-decays as well as the contribution of the quark electric dipole moment (EDM) to the neutron EDM. We present results from the QCDSF/UKQCD/CSSM collaboration for the tensor charge, $g_T$, using lattice QCD methods and the Feynman-Hellmann theorem. We u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05330v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05330v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05330v1-abstract-full" style="display: none;"> The nucleon tensor charge, $g_T$, is an important quantity in the search for beyond the Standard Model tensor interactions in neutron and nuclear $尾$-decays as well as the contribution of the quark electric dipole moment (EDM) to the neutron EDM. We present results from the QCDSF/UKQCD/CSSM collaboration for the tensor charge, $g_T$, using lattice QCD methods and the Feynman-Hellmann theorem. We use a flavour symmetry breaking method to systematically approach the physical quark mass using ensembles that span three lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05330v1-abstract-full').style.display = 'none'; document.getElementById('2112.05330v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, proceeding for the 38th International Symposium on Lattice Field Theory (Lattice 2021), 26-30 Jul 2021, Zoom/Gather@MIT, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-22/T1169, DESY-21-214, LTH 1286 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04445">arXiv:2112.04445</a> <span> [<a href="https://arxiv.org/pdf/2112.04445">pdf</a>, <a href="https://arxiv.org/format/2112.04445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Patterns of flavour symmetry breaking in hadron matrix elements involving u, d and s quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bickerton%2C+J+M">J. M. Bickerton</a>, <a href="/search/hep-lat?searchtype=author&query=Cooke%2C+A+N">A. N. Cooke</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04445v1-abstract-short" style="display: inline;"> Using an SU(3)-flavour symmetry breaking expansion between the strange and light quark masses, we determine how this constrains the extrapolation of baryon octet matrix elements and form factors. In particular we can construct certain combinations, which fan out from the symmetric point (when all the quark masses are degenerate) to the point where the light and strange quarks take their physical v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04445v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04445v1-abstract-full" style="display: none;"> Using an SU(3)-flavour symmetry breaking expansion between the strange and light quark masses, we determine how this constrains the extrapolation of baryon octet matrix elements and form factors. In particular we can construct certain combinations, which fan out from the symmetric point (when all the quark masses are degenerate) to the point where the light and strange quarks take their physical values. As a further example we consider the vector amplitude at zero momentum transfer for flavour changing currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04445v1-abstract-full').style.display = 'none'; document.getElementById('2112.04445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, proceedings for The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11533">arXiv:2110.11533</a> <span> [<a href="https://arxiv.org/pdf/2110.11533">pdf</a>, <a href="https://arxiv.org/format/2110.11533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.114514">10.1103/PhysRevD.104.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State mixing and masses of the $蟺^0$, $畏$ and $畏^\prime$ mesons from $n_f=1+1+1$ lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kordov%2C+Z+R">Z. R. Kordov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">W. Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Koumi%2C+Z">Z. Koumi</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11533v2-abstract-short" style="display: inline;"> We present a lattice analysis of the light pseudoscalar mesons with consideration for the mixing between the flavour-neutral states $蟺^0$, $畏$ and $畏^\prime$. We extract the masses and flavour compositions of the pseudoscalar meson nonet in $n_f=1+1+1$ lattice QCD+QED around an SU(3)-flavour symmetric point, and observe flavour-symmetry features of the extracted data, along with preliminary extrap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11533v2-abstract-full').style.display = 'inline'; document.getElementById('2110.11533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11533v2-abstract-full" style="display: none;"> We present a lattice analysis of the light pseudoscalar mesons with consideration for the mixing between the flavour-neutral states $蟺^0$, $畏$ and $畏^\prime$. We extract the masses and flavour compositions of the pseudoscalar meson nonet in $n_f=1+1+1$ lattice QCD+QED around an SU(3)-flavour symmetric point, and observe flavour-symmetry features of the extracted data, along with preliminary extrapolation results for the flavour compositions at the physical point. A key result of this work is the observed mass splitting between the $蟺^0$ and $畏$ on our ensembles, which is found to exhibit behaviour that is simply related to the corresponding flavour compositions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11533v2-abstract-full').style.display = 'none'; document.getElementById('2110.11533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures. Some small changes and added discussion. Version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-16/T1163, DESY 21-166, LTH 1270 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11532">arXiv:2110.11532</a> <span> [<a href="https://arxiv.org/pdf/2110.11532">pdf</a>, <a href="https://arxiv.org/format/2110.11532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.014502">10.1103/PhysRevD.105.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalised parton distributions from the off-forward Compton amplitude in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">Alec Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">Kadir Utku Can</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">Holger Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">Hinnerk St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11532v2-abstract-short" style="display: inline;"> We determine the properties of generalised parton distributions (GPDs) from a lattice QCD calculation of the off-forward Compton amplitude (OFCA). By extending the Feynman-Hellmann relation to second-order matrix elements at off-forward kinematics, this amplitude can be calculated from lattice propagators computed in the presence of a background field. Using an operator product expansion, we show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11532v2-abstract-full').style.display = 'inline'; document.getElementById('2110.11532v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11532v2-abstract-full" style="display: none;"> We determine the properties of generalised parton distributions (GPDs) from a lattice QCD calculation of the off-forward Compton amplitude (OFCA). By extending the Feynman-Hellmann relation to second-order matrix elements at off-forward kinematics, this amplitude can be calculated from lattice propagators computed in the presence of a background field. Using an operator product expansion, we show that the deeply-virtual part of the OFCA can be parameterised in terms of the low-order Mellin moments of the GPDs. We apply this formalism to a numerical investigation for zero-skewness kinematics at two values of the soft momentum transfer, $t = -1.1, -2.2 \;\text{GeV}^2$, and a pion mass of $m_蟺\approx 470\;\text{MeV}$. The form factors of the lowest two moments of the nucleon GPDs are determined, including the first lattice QCD determination of the $n=4$ moments. Hence we demonstrate the viability of this method to calculate the OFCA from first principles, and thereby provide novel constraint on the $x$- and $t$-dependence of GPDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11532v2-abstract-full').style.display = 'none'; document.getElementById('2110.11532v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-15/T1162, DESY-21-167, Liverpool LTH 1271 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01310">arXiv:2110.01310</a> <span> [<a href="https://arxiv.org/pdf/2110.01310">pdf</a>, <a href="https://arxiv.org/format/2110.01310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Investigating the low moments of the nucleon structure functions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Sankey%2C+E">E. Sankey</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Stuben%2C+H">H. Stuben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01310v1-abstract-short" style="display: inline;"> We highlight QCDSF/UKQCD Collaboration's recent developments on computing the Compton amplitude directly via an implementation of the second order Feynman-Hellmann theorem. As an application, we compute the nucleon Compton tensor across a range of photon virtuality at an unphysical quark mass. This enables us to study the $Q^2$ dependence of the low moments of the nucleon structure functions in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01310v1-abstract-full').style.display = 'inline'; document.getElementById('2110.01310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01310v1-abstract-full" style="display: none;"> We highlight QCDSF/UKQCD Collaboration's recent developments on computing the Compton amplitude directly via an implementation of the second order Feynman-Hellmann theorem. As an application, we compute the nucleon Compton tensor across a range of photon virtuality at an unphysical quark mass. This enables us to study the $Q^2$ dependence of the low moments of the nucleon structure functions in a lattice calculation for the first time. We present some selected results for the moments of the $F_1$, $F_2$ and $F_L$ structure functions and discuss their implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01310v1-abstract-full').style.display = 'none'; document.getElementById('2110.01310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-14/T1161 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01557">arXiv:2109.01557</a> <span> [<a href="https://arxiv.org/pdf/2109.01557">pdf</a>, <a href="https://arxiv.org/format/2109.01557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.074506">10.1103/PhysRevD.105.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards high partial waves in lattice QCD with a dumbbell-like operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-Jun Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01557v1-abstract-short" style="display: inline;"> An extended two-hadron operator is developed to extract the spectra of irreducible representations (irreps) in the finite volume. The irreps of the group for the finite volume system are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra of the specific irrep. In particular, this new formulation only requir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01557v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01557v1-abstract-full" style="display: none;"> An extended two-hadron operator is developed to extract the spectra of irreducible representations (irreps) in the finite volume. The irreps of the group for the finite volume system are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra of the specific irrep. In particular, this new formulation only requires propagators to be computed from two distinct source locations, at fixed spatial separation. We perform a proof-of-principle study on a $24^3 \times 48$ lattice volume with $m_蟺\approx 900$ MeV by isolating various spectra of the $蟺蟺$ system with isospin-2 including a range of total momenta and irreps. By applying the L眉scher formalism, the phase shifts of $S$-, $D$- and $G$-wave $蟺蟺$ scattering with isospin-2 are extracted from the spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01557v1-abstract-full').style.display = 'none'; document.getElementById('2109.01557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 Pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-21-21/T1159, DESY-21-136 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01523">arXiv:2007.01523</a> <span> [<a href="https://arxiv.org/pdf/2007.01523">pdf</a>, <a href="https://arxiv.org/format/2007.01523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.114505">10.1103/PhysRevD.102.114505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD evaluation of the Compton amplitude employing the Feynman-Hellmann theorem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Can%2C+K+U">K. U. Can</a>, <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Somfleth%2C+K+Y">K. Y. Somfleth</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01523v2-abstract-short" style="display: inline;"> The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target mass corrections and higher twist effects at a fixed virtuality, $Q^2$. By making use of the second-order Feynman-Hellmann theorem, the nucleon Compton… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01523v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01523v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01523v2-abstract-full" style="display: none;"> The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target mass corrections and higher twist effects at a fixed virtuality, $Q^2$. By making use of the second-order Feynman-Hellmann theorem, the nucleon Compton tensor is calculated in lattice QCD at an unphysical quark mass across a range of photon momenta $3 \lesssim Q^2 \lesssim 7$ GeV$^2$. This allows for the $Q^2$ dependence of the low moments of the nucleon structure functions to be studied in a lattice calculation for the first time. The results demonstrate that a systematic investigation of power corrections and the approach to parton asymptotics is now within reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01523v2-abstract-full').style.display = 'none'; document.getElementById('2007.01523v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures. Title has been changed due to the Editor's request. Version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-20-16/T1126, DESY 20-111, Liverpool LTH 1238 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 114505 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12130">arXiv:2003.12130</a> <span> [<a href="https://arxiv.org/pdf/2003.12130">pdf</a>, <a href="https://arxiv.org/format/2003.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054504">10.1103/PhysRevD.103.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged multi-hadron systems in lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">M. Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Jafry%2C+M">M. Jafry</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">M. L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12130v3-abstract-short" style="display: inline;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'inline'; document.getElementById('2003.12130v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12130v3-abstract-full" style="display: none;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'none'; document.getElementById('2003.12130v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 29 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 20-28, FERMILAB-PUB-20-123-T, ICCUB-20-007, MIT-CTP/5183, NT@UW-20-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07639">arXiv:2001.07639</a> <span> [<a href="https://arxiv.org/pdf/2001.07639">pdf</a>, <a href="https://arxiv.org/format/2001.07639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Determining the glue component of the nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Howson%2C+T">T. Howson</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">W. Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07639v1-abstract-short" style="display: inline;"> Computing the gluon component of momentum in the nucleon is a difficult and computationally expensive problem, as the matrix element involves a quark-line-disconnected gluon operator which suffers from ultra-violet fluctuations. But also necessary for a successful determination is the non-perturbative renormalisation of this operator. As a first step we investigate here this renormalisation in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07639v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07639v1-abstract-full" style="display: none;"> Computing the gluon component of momentum in the nucleon is a difficult and computationally expensive problem, as the matrix element involves a quark-line-disconnected gluon operator which suffers from ultra-violet fluctuations. But also necessary for a successful determination is the non-perturbative renormalisation of this operator. As a first step we investigate here this renormalisation in the RI-MOM scheme. Using quenched QCD as an example, a statistical signal is obtained in a direct calculation using an adaption of the Feynman-Hellmann technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07639v1-abstract-full').style.display = 'none'; document.getElementById('2001.07639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, Proceedings of the 37th Annual International Symposium on Lattice Field Theory (Lattice 2019), 16-22 June 2019, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05366">arXiv:2001.05366</a> <span> [<a href="https://arxiv.org/pdf/2001.05366">pdf</a>, <a href="https://arxiv.org/ps/2001.05366">ps</a>, <a href="https://arxiv.org/format/2001.05366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Structure functions from the Compton amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=collaboration%2C+Q">QCDSF-UKQCD-CSSM collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">Holger Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Somfleth%2C+K">Kim Somfleth</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05366v1-abstract-short" style="display: inline;"> We have initiated a program to compute the Compton amplitude from lattice QCD with the Feynman-Hellman method. This amplitude is related to the structure function via a Fredholm integral equation of the first kind. It is known that these types of equations are inherently ill--posed - they are, e.g., extremely sensitive to perturbations of the system. We discuss two methods which are candidates to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05366v1-abstract-full').style.display = 'inline'; document.getElementById('2001.05366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05366v1-abstract-full" style="display: none;"> We have initiated a program to compute the Compton amplitude from lattice QCD with the Feynman-Hellman method. This amplitude is related to the structure function via a Fredholm integral equation of the first kind. It is known that these types of equations are inherently ill--posed - they are, e.g., extremely sensitive to perturbations of the system. We discuss two methods which are candidates to handle these problems: the model free inversion based on singular value decomposition and one Bayesian type approach. We apply the Bayesian method to currently available lattice data for the Compton amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05366v1-abstract-full').style.display = 'none'; document.getElementById('2001.05366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, poster presented at the 37th International Symposium on Lattice Field Theory (Lattice 2019), 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 20-005, ADP-20-3/T1113, LTH-1222 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05090">arXiv:2001.05090</a> <span> [<a href="https://arxiv.org/pdf/2001.05090">pdf</a>, <a href="https://arxiv.org/format/2001.05090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Scaling and higher twist in the nucleon Compton amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hannaford-Gunn%2C+A">A. Hannaford-Gunn</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Somfleth%2C+K">K. Somfleth</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05090v1-abstract-short" style="display: inline;"> The partonic structure of hadrons plays an important role in a vast array of high-energy and nuclear physics experiments. It also underpins the theoretical understanding of hadron structure. Recent developments in lattice QCD offer new opportunities for reliably studying partonic structure from first principles. Here we report on the use of the Feynman-Hellmann theorem to study the forward Compton… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05090v1-abstract-full').style.display = 'inline'; document.getElementById('2001.05090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05090v1-abstract-full" style="display: none;"> The partonic structure of hadrons plays an important role in a vast array of high-energy and nuclear physics experiments. It also underpins the theoretical understanding of hadron structure. Recent developments in lattice QCD offer new opportunities for reliably studying partonic structure from first principles. Here we report on the use of the Feynman-Hellmann theorem to study the forward Compton amplitude in the unphysical region. We demonstrate how this amplitude provides direct constraint on hadronic inelastic structure functions. The use of external momentum transfer allows us to study the $Q^2$ evolution to explore the onset of asymptotic scaling and reveal higher-twist effects in partonic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05090v1-abstract-full').style.display = 'none'; document.getElementById('2001.05090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures; presented at the 37th International Symposium on Lattice Field Theory (Lattice2019), 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-20-2/T1112, DESY 20-004, Liverpool LTH 1223 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02186">arXiv:1911.02186</a> <span> [<a href="https://arxiv.org/pdf/1911.02186">pdf</a>, <a href="https://arxiv.org/format/1911.02186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034517">10.1103/PhysRevD.101.034517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic contribution to $危$-$螞$ mixing using lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kordov%2C+Z+R">Z. R. Kordov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02186v2-abstract-short" style="display: inline;"> Mixing in the $危^0$-$螞^0$ system is a direct consequence of broken isospin symmetry and is a measure of both isospin-symmetry breaking as well as general SU(3)-flavour symmetry breaking. In this work we present a new scheme for calculating the extent of $危^0$-$螞^0$ mixing using simulations in lattice QCD+QED and perform several extrapolations that compare well with various past determinations. Our… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02186v2-abstract-full').style.display = 'inline'; document.getElementById('1911.02186v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02186v2-abstract-full" style="display: none;"> Mixing in the $危^0$-$螞^0$ system is a direct consequence of broken isospin symmetry and is a measure of both isospin-symmetry breaking as well as general SU(3)-flavour symmetry breaking. In this work we present a new scheme for calculating the extent of $危^0$-$螞^0$ mixing using simulations in lattice QCD+QED and perform several extrapolations that compare well with various past determinations. Our scheme allows us to easily contrast the QCD-only mixing case with the full QCD+QED mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02186v2-abstract-full').style.display = 'none'; document.getElementById('1911.02186v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-19-24/T1104, DESY 19-190, Liverpool LTH 1217 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034517 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02521">arXiv:1909.02521</a> <span> [<a href="https://arxiv.org/pdf/1909.02521">pdf</a>, <a href="https://arxiv.org/format/1909.02521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.114516">10.1103/PhysRevD.100.114516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Patterns of flavour symmetry breaking in hadron matrix elements involving u, d and s quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bickerton%2C+J+M">J. M. Bickerton</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02521v2-abstract-short" style="display: inline;"> By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between quarks. Similarly to hadron masses we find the expansions to be constrained along a mass trajectory where the singlet quark mass is held constant, which provides invaluable insight into the mech… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02521v2-abstract-full').style.display = 'inline'; document.getElementById('1909.02521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02521v2-abstract-full" style="display: none;"> By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between quarks. Similarly to hadron masses we find the expansions to be constrained along a mass trajectory where the singlet quark mass is held constant, which provides invaluable insight into the mechanism of flavour symmetry breaking and proves beneficial for extrapolations to the physical point. Expansions are given up to third order in the expansion parameters. Considering higher orders would give no further constraints on the expansion parameters. The relation of the expansion coefficients to the quark-line-connected and quark-line disconnected terms in the 3-point correlation functions is also given. As we consider Wilson clover-like fermions, the addition of improvement coefficients is also discussed and shown to be included in the formalism developed here. As an example of the method we investigate this numerically via a lattice calculation of the flavour-conserving matrix elements of the vector first class form factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02521v2-abstract-full').style.display = 'none'; document.getElementById('1909.02521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">70 pages. Small additions and corrections. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-19-19/T1099, DESY 19-149, Liverpool LTH 1211 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 114516 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02304">arXiv:1904.02304</a> <span> [<a href="https://arxiv.org/pdf/1904.02304">pdf</a>, <a href="https://arxiv.org/format/1904.02304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ab32c1">10.1088/1361-6471/ab32c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin splittings in the decuplet baryon spectrum from dynamical QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Koumi%2C+Z">Z. Koumi</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02304v2-abstract-short" style="display: inline;"> We report a new analysis of the isospin splittings within the decuplet baryon spectrum. Our numerical results are based upon five ensembles of dynamical QCD+QED lattices. The analysis is carried out within a flavour-breaking expansion which encodes the effects of breaking the quark masses and electromagnetic charges away from an approximate SU(3) symmetric point. The results display total isospin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02304v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02304v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02304v2-abstract-full" style="display: none;"> We report a new analysis of the isospin splittings within the decuplet baryon spectrum. Our numerical results are based upon five ensembles of dynamical QCD+QED lattices. The analysis is carried out within a flavour-breaking expansion which encodes the effects of breaking the quark masses and electromagnetic charges away from an approximate SU(3) symmetric point. The results display total isospin splittings within the approximate SU(2) multiplets that are compatible with phenomenological estimates. Further, new insight is gained into these splittings by separating the contributions arising from strong and electromagnetic effects. We also present an update of earlier results on the octet baryon spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02304v2-abstract-full').style.display = 'none'; document.getElementById('1904.02304v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 tables, 5 figures. Version accepted for publication in J.Phys.G</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-19-6/T1086, LTH 1200, DESY 19-053 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01518">arXiv:1902.01518</a> <span> [<a href="https://arxiv.org/pdf/1902.01518">pdf</a>, <a href="https://arxiv.org/format/1902.01518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.334.0136">10.22323/1.334.0136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous magnetic moment of the muon with dynamical QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Westin%2C+A">A. Westin</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">W. Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01518v1-abstract-short" style="display: inline;"> The current $3.5蟽$ discrepancy between experimental and Standard Model determinations of the anomalous magnetic moment of the muon $a_渭=(g-2)/2$ can only be extended to the discovery $5蟽$ regime through a reduction of both experimental and theoretical uncertainties. On the theory side, this means a determination of the hadronic vacuum polarisation (HVP) contribution to better than 0.5%, a level of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01518v1-abstract-full').style.display = 'inline'; document.getElementById('1902.01518v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01518v1-abstract-full" style="display: none;"> The current $3.5蟽$ discrepancy between experimental and Standard Model determinations of the anomalous magnetic moment of the muon $a_渭=(g-2)/2$ can only be extended to the discovery $5蟽$ regime through a reduction of both experimental and theoretical uncertainties. On the theory side, this means a determination of the hadronic vacuum polarisation (HVP) contribution to better than 0.5%, a level of precision that demands the inclusion of QCD + QED effects to properly understand how the behaviour of quarks are modified when their electric charges are turned on. The QCDSF collaboration has generated an ensemble of configurations with dynamical QCD and QED fields with the specific aim of studying flavour breaking effects arising from differences in the quark masses and charges in physical quantities. Here we study these effects in a calculation of HVP around the SU(3) symmetric point. Furthermore, by performing partially-quenched simulations we are able to cover a larger range of quark masses and charges on these configurations and then fit the results to an SU(3) flavour breaking expansion. Subsequently, this allows for an extrapolation to the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01518v1-abstract-full').style.display = 'none'; document.getElementById('1902.01518v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, conference proceedings for talk presented at the 36th Annual International Symposium on Lattice Field Theory, 22-28 July 2018, Michigan State University, East Lansing, Michigan, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-19-2/T1082, DESY 19-017, LTH 1196 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04792">arXiv:1901.04792</a> <span> [<a href="https://arxiv.org/pdf/1901.04792">pdf</a>, <a href="https://arxiv.org/format/1901.04792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The strange quark contribution to the spin of the nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04792v1-abstract-short" style="display: inline;"> Quark line disconnected matrix elements of an operator, such as the axial current, are difficult to compute on the lattice. The standard method uses a stochastic estimator of the operator, which is generally very noisy. We discuss and develop further our alternative approach using the Feynman-Hellmann theorem which involves only evaluating two-point correlation functions. This is applied to comput… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04792v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04792v1-abstract-full" style="display: none;"> Quark line disconnected matrix elements of an operator, such as the axial current, are difficult to compute on the lattice. The standard method uses a stochastic estimator of the operator, which is generally very noisy. We discuss and develop further our alternative approach using the Feynman-Hellmann theorem which involves only evaluating two-point correlation functions. This is applied to computing the contribution of the quark spin to the nucleon and in particular for the strange quark. In this process we also pay particular attention to the development of an SU(3) flavour breaking expansion for singlet operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04792v1-abstract-full').style.display = 'none'; document.getElementById('1901.04792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, Proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), July 22-28, 2018, East Lancing, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-18-32/T1080, DESY 18-220, Liverpool LTH 1190 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.06677">arXiv:1811.06677</a> <span> [<a href="https://arxiv.org/pdf/1811.06677">pdf</a>, <a href="https://arxiv.org/format/1811.06677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Control of SU(3) symmetry breaking effects in calculations of B meson decay constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hollitt%2C+S">Sophie Hollitt</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Jackson%2C+P+D">Paul D. Jackson</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">Holger Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">Hinnerk St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.06677v1-abstract-short" style="display: inline;"> Early B-physics experiments have left us with a number of puzzles in heavy flavour physics. New lattice calculations (with a greater understanding of QCD effects in the Standard Model) will be needed to support the increase in experimental precision to be achieved by upcoming experiments such as Belle II. We extend the CSSM/UKQCD/QCDSF studies of SU(3) flavour breaking effects by presenting new re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06677v1-abstract-full').style.display = 'inline'; document.getElementById('1811.06677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.06677v1-abstract-full" style="display: none;"> Early B-physics experiments have left us with a number of puzzles in heavy flavour physics. New lattice calculations (with a greater understanding of QCD effects in the Standard Model) will be needed to support the increase in experimental precision to be achieved by upcoming experiments such as Belle II. We extend the CSSM/UKQCD/QCDSF studies of SU(3) flavour breaking effects by presenting new results for the decay constants $f_B$ and $f_{B_s}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06677v1-abstract-full').style.display = 'none'; document.getElementById('1811.06677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, conference proceedings for talk presented at the 36th Annual International Symposium on Lattice Field Theory, 22-28 July 2018, Michigan State University, East Lansing, Michigan, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-18-29/T1077, DESY 18-201, LTH 1177 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09429">arXiv:1807.09429</a> <span> [<a href="https://arxiv.org/pdf/1807.09429">pdf</a>, <a href="https://arxiv.org/format/1807.09429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/aaeb9e">10.1088/1361-6471/aaeb9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accessing high-momentum nucleons with dilute stochastic sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J+-">J. -J. Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">W. Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+~">D. ~B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09429v1-abstract-short" style="display: inline;"> A novel stochastic technique combining a dilute source grid of $\mathbb{Z}_3$ noise with iterative momentum-smearing is used to study the proton correlation function at rest and in boosted frames on two lattice volumes. The technique makes use of the baryonic version of the so-called one-end trick, and the decomposition into signal and noise terms of the resulting stochastic proton correlation fun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09429v1-abstract-full').style.display = 'inline'; document.getElementById('1807.09429v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09429v1-abstract-full" style="display: none;"> A novel stochastic technique combining a dilute source grid of $\mathbb{Z}_3$ noise with iterative momentum-smearing is used to study the proton correlation function at rest and in boosted frames on two lattice volumes. The technique makes use of the baryonic version of the so-called one-end trick, and the decomposition into signal and noise terms of the resulting stochastic proton correlation function is made explicit. The number and location of the source points in the dilute grid should be chosen so that the benefits of averaging over many locations overcomes the additional statistical error introduced by the noise terms in the desired fitting region. At all nontrivial momentum values considered we find that the choice of $N=4$--$8$ maximally separated source locations is shown to be optimal, providing a reduced statistical error when compared with a single point source. This enables us to successfully fit the proton energy at momentum values as high as $|\vec{p}| \simeq 3.75$ GeV and $|\vec{p}| \simeq 2.82$ GeV on the small and large volume respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09429v1-abstract-full').style.display = 'none'; document.getElementById('1807.09429v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-18-20/T1068 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07167">arXiv:1711.07167</a> <span> [<a href="https://arxiv.org/pdf/1711.07167">pdf</a>, <a href="https://arxiv.org/format/1711.07167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817509004">10.1051/epjconf/201817509004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single flavour filtering for RHMC in BQCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Haar%2C+T">Taylor Haar</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07167v1-abstract-short" style="display: inline;"> Filtering algorithms for two degenerate quark flavours have advanced to the point that, in 2+1 flavour simulations, the cost of the strange quark is significant compared with the light quarks. This makes efficient filtering algorithms for single flavour actions highly desirable, in particular when considering 1+1+1 flavour simulations for QED+QCD. Here we discuss methods for filtering the RHMC alg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07167v1-abstract-full').style.display = 'inline'; document.getElementById('1711.07167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07167v1-abstract-full" style="display: none;"> Filtering algorithms for two degenerate quark flavours have advanced to the point that, in 2+1 flavour simulations, the cost of the strange quark is significant compared with the light quarks. This makes efficient filtering algorithms for single flavour actions highly desirable, in particular when considering 1+1+1 flavour simulations for QED+QCD. Here we discuss methods for filtering the RHMC algorithm that are implemented within BQCD, an open-source Fortran program for Hybrid Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07167v1-abstract-full').style.display = 'none'; document.getElementById('1711.07167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-39/T1045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.02485">arXiv:1711.02485</a> <span> [<a href="https://arxiv.org/pdf/1711.02485">pdf</a>, <a href="https://arxiv.org/ps/1711.02485">ps</a>, <a href="https://arxiv.org/format/1711.02485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506017">10.1051/epjconf/201817506017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmed states and flavour symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Koumi%2C+Z">Z. Koumi</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Stuben%2C+H">H. Stuben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.02485v1-abstract-short" style="display: inline;"> Extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses allows an extrapolation to the charm quark mass. This approach leads to a determination of charmed quark hadron masses and decay constants. We describe our recent progress and give preliminary results in particular with regard to the recently discovered doub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02485v1-abstract-full').style.display = 'inline'; document.getElementById('1711.02485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.02485v1-abstract-full" style="display: none;"> Extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses allows an extrapolation to the charm quark mass. This approach leads to a determination of charmed quark hadron masses and decay constants. We describe our recent progress and give preliminary results in particular with regard to the recently discovered doubly charmed baryon by the LHCb Collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02485v1-abstract-full').style.display = 'none'; document.getElementById('1711.02485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-35/T1041, DESY 17-181, Edinburgh 2017/23, Liverpool LTH 1144 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.01409">arXiv:1711.01409</a> <span> [<a href="https://arxiv.org/pdf/1711.01409">pdf</a>, <a href="https://arxiv.org/format/1711.01409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505024">10.1051/epjconf/201817505024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient operators for studying higher partial waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-jun Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.01409v1-abstract-short" style="display: inline;"> An extended multi-hadron operator is developed to extract the spectra of irreducible representations in the finite volume. The irreducible representations of the cubic group are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra. In particular, this new formulation only requires propagator inversions from t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01409v1-abstract-full').style.display = 'inline'; document.getElementById('1711.01409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.01409v1-abstract-full" style="display: none;"> An extended multi-hadron operator is developed to extract the spectra of irreducible representations in the finite volume. The irreducible representations of the cubic group are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra. In particular, this new formulation only requires propagator inversions from two distinct locations, at fixed physical separation. We perform a proof-of-principle study on a $24^3 \times 48$ lattice volume with $m_蟺\approx 900$~MeV by isolating the spectra of $A^+_1$, $E^+$ and $T^+_2$ of the $蟺蟺$ system with isospin-2 in the rest frame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01409v1-abstract-full').style.display = 'none'; document.getElementById('1711.01409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, Contribution to the conference Lattice2017</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-36/T1042; DESY 17-182 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01153">arXiv:1703.01153</a> <span> [<a href="https://arxiv.org/pdf/1703.01153">pdf</a>, <a href="https://arxiv.org/ps/1703.01153">ps</a>, <a href="https://arxiv.org/format/1703.01153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.242001">10.1103/PhysRevLett.118.242001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon structure functions from lattice operator product expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chambers%2C+A+J">A. J. Chambers</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Somfleth%2C+K">K. Somfleth</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01153v2-abstract-short" style="display: inline;"> Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01153v2-abstract-full').style.display = 'inline'; document.getElementById('1703.01153v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01153v2-abstract-full" style="display: none;"> Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01153v2-abstract-full').style.display = 'none'; document.getElementById('1703.01153v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, meets published version (Phys. Rev. Letters)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-09/T1015, DESY 17-027, Edinburgh 2017/04, Liverpool LTH 1122 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 242001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04992">arXiv:1612.04992</a> <span> [<a href="https://arxiv.org/pdf/1612.04992">pdf</a>, <a href="https://arxiv.org/format/1612.04992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Partially conserved axial vector current and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kazmin%2C+S">S. Kazmin</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04992v1-abstract-short" style="display: inline;"> We investigate implications of the use of the point-split axial vector current derived from a Wilson like fermionic action. We compute the corresponding renormalization factor nonperturbatively for one beta value. The axial charge gA calculated from this nonlocal current is found to be nearer to the physical value than computed with the local axial vector current -- computed both on the same latti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04992v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04992v1-abstract-full" style="display: none;"> We investigate implications of the use of the point-split axial vector current derived from a Wilson like fermionic action. We compute the corresponding renormalization factor nonperturbatively for one beta value. The axial charge gA calculated from this nonlocal current is found to be nearer to the physical value than computed with the local axial vector current -- computed both on the same lattice with the same action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04992v1-abstract-full').style.display = 'none'; document.getElementById('1612.04992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04798">arXiv:1612.04798</a> <span> [<a href="https://arxiv.org/pdf/1612.04798">pdf</a>, <a href="https://arxiv.org/ps/1612.04798">ps</a>, <a href="https://arxiv.org/format/1612.04798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.02.018">10.1016/j.physletb.2017.02.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flavour breaking effects in the pseudoscalar meson decay constants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bornyakov%2C+V+G">V. G. Bornyakov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04798v1-abstract-short" style="display: inline;"> The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04798v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04798v1-abstract-full" style="display: none;"> The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3) flavour symmetry breaking expansion (or Gell-Mann-Okubo expansion) works very well. Simulations are performed for 2+1 flavours of clover fermions at four lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04798v1-abstract-full').style.display = 'none'; document.getElementById('1612.04798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-16-46/T1002, DESY 16-241, Edinburgh 2016/19, Liverpool LTH 1116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03195">arXiv:1606.03195</a> <span> [<a href="https://arxiv.org/pdf/1606.03195">pdf</a>, <a href="https://arxiv.org/format/1606.03195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.074505">10.1103/PhysRevD.94.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon matrix elements using the variational method in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dragos%2C+J">Jack Dragos</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03195v1-abstract-short" style="display: inline;"> The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current $g_{A}$, the scalar current $g_{S}$ and the quark momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03195v1-abstract-full').style.display = 'inline'; document.getElementById('1606.03195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03195v1-abstract-full" style="display: none;"> The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current $g_{A}$, the scalar current $g_{S}$ and the quark momentum fraction $\left<x\right>$ of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03195v1-abstract-full').style.display = 'none'; document.getElementById('1606.03195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-16-23/T978, Edinburgh 2016/07, DESY 16-099, LTH 1087 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 074505 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05745">arXiv:1512.05745</a> <span> [<a href="https://arxiv.org/pdf/1512.05745">pdf</a>, <a href="https://arxiv.org/ps/1512.05745">ps</a>, <a href="https://arxiv.org/format/1512.05745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Determining the scale in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bornyakov%2C+V+G">V. G. Bornyakov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R">R. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05745v1-abstract-short" style="display: inline;"> We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach the physical point in the quark mass plane keeping the average quark mass constant. We have simulations at four beta values, and after determining the paths and lattice spacings, we give an estimation of the phenomenological values of various Wilson flow scales. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05745v1-abstract-full" style="display: none;"> We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach the physical point in the quark mass plane keeping the average quark mass constant. We have simulations at four beta values, and after determining the paths and lattice spacings, we give an estimation of the phenomenological values of various Wilson flow scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05745v1-abstract-full').style.display = 'none'; document.getElementById('1512.05745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; talk presented at Lattice 2015, the 33rd International Symposium on Lattice Field Theory 4 -18 July 2015 at Kobe International Conference Center, Kobe, Japan; PoS(LATTICE2015)264</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-51/T953, DESY 15-224, Edinburgh 2015/32, Liverpool LTH 1071 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.07090">arXiv:1511.07090</a> <span> [<a href="https://arxiv.org/pdf/1511.07090">pdf</a>, <a href="https://arxiv.org/format/1511.07090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Applications of the Feynman-Hellmann theorem in hadron structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chambers%2C+A+J">A. J. Chambers</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.07090v1-abstract-short" style="display: inline;"> The Feynman-Hellmann (FH) relation offers an alternative way of accessing hadronic matrix elements through artificial modifications to the QCD Lagrangian. In particular, a FH-motivated method provides a new approach to calculations of disconnected contributions to matrix elements and high-momentum nucleon and pion form factors. Here we present results for the total nucleon axial charge, including… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07090v1-abstract-full').style.display = 'inline'; document.getElementById('1511.07090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.07090v1-abstract-full" style="display: none;"> The Feynman-Hellmann (FH) relation offers an alternative way of accessing hadronic matrix elements through artificial modifications to the QCD Lagrangian. In particular, a FH-motivated method provides a new approach to calculations of disconnected contributions to matrix elements and high-momentum nucleon and pion form factors. Here we present results for the total nucleon axial charge, including a statistically significant non-negative total disconnected quark contribution of around $-5\%$ at an unphysically heavy pion mass. Extending the FH relation to finite-momentum transfers, we also present calculations of the pion and nucleon electromagnetic form factors up to momentum transfers of around 7-8 GeV$^2$. Results for the nucleon are not able to confirm the existence of a sign change for the ratio $\frac{G_E}{G_M}$, but suggest that future calculations at lighter pion masses will provide fascinating insight into this behaviour at large momentum transfers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07090v1-abstract-full').style.display = 'none'; document.getElementById('1511.07090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05591">arXiv:1511.05591</a> <span> [<a href="https://arxiv.org/pdf/1511.05591">pdf</a>, <a href="https://arxiv.org/format/1511.05591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Improved determination of hadron matrix elements using the variational method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dragos%2C+J">Jack Dragos</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Yoshifumi Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">Paul E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">Gerrit Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05591v1-abstract-short" style="display: inline;"> The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current gA and com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05591v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05591v1-abstract-full" style="display: none;"> The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current gA and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05591v1-abstract-full').style.display = 'none'; document.getElementById('1511.05591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, talk presented at Lattice 2015, PoS (LATTICE2015)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-41/T943, Edinburgh 2015/27, DESY 15-212, LTH 1065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05304">arXiv:1511.05304</a> <span> [<a href="https://arxiv.org/pdf/1511.05304">pdf</a>, <a href="https://arxiv.org/format/1511.05304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Improving the lattice axial vector current </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05304v1-abstract-short" style="display: inline;"> For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operato… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05304v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05304v1-abstract-full" style="display: none;"> For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05304v1-abstract-full').style.display = 'none'; document.getElementById('1511.05304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, Proceedings of the 33rd International Symposium on Lattice Field Theory, 14-18 July 2015, Kobe, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-15-213, Edinburgh 2015/24, Liverpool LTH 1064, Adelaide ADP-15-44 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.00799">arXiv:1509.00799</a> <span> [<a href="https://arxiv.org/pdf/1509.00799">pdf</a>, <a href="https://arxiv.org/ps/1509.00799">ps</a>, <a href="https://arxiv.org/format/1509.00799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2016)093">10.1007/JHEP04(2016)093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QED effects in the pseudoscalar meson sector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+R">R. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.00799v2-abstract-short" style="display: inline;"> We present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED. We concentrate particularly on violations of isospin symmetry. We calculate the $蟺^+$-$蟺^0$ splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in arXiv:1508.06401 [hep-lat]. In this paper we give more details of the techniques em… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.00799v2-abstract-full').style.display = 'inline'; document.getElementById('1509.00799v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.00799v2-abstract-full" style="display: none;"> We present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED. We concentrate particularly on violations of isospin symmetry. We calculate the $蟺^+$-$蟺^0$ splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in arXiv:1508.06401 [hep-lat]. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the $u$ and $d$ quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen's theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as $\bar{MS}$, in which Dashen's theorem for neutral mesons is violated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.00799v2-abstract-full').style.display = 'none'; document.getElementById('1509.00799v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures. Replaced by version accepted for publication. One figure added, some discussions expanded. Conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-30/T932, DESY 15-158, Edinburgh 2015/20, Liverpool LTH 1055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06923">arXiv:1508.06923</a> <span> [<a href="https://arxiv.org/pdf/1508.06923">pdf</a>, <a href="https://arxiv.org/format/1508.06923">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.074029">10.1103/PhysRevD.92.074029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SU(3) breaking in hyperon transition vector form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Cooke%2C+A+N">A. N. Cooke</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">A. W. Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06923v1-abstract-short" style="display: inline;"> We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to $\mathcal{O}(p^4)$ in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point $Q^2=-(M_{B_1}-M_{B_2})^2$, which can be conveniently accessed in lattice QCD. The t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06923v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06923v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06923v1-abstract-full" style="display: none;"> We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to $\mathcal{O}(p^4)$ in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point $Q^2=-(M_{B_1}-M_{B_2})^2$, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the $危^-\rightarrow n$ and $螢^0\rightarrow 危^+$ transition form factors. Hence we determine lattice-informed values of $f_1$ at the physical point. This work constitutes progress towards the precise determination of $|V_{us}|$ from hyperon semileptonic decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06923v1-abstract-full').style.display = 'none'; document.getElementById('1508.06923v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-27/T929, Edinburgh 2015/17, DESY 15-150 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 074029 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06856">arXiv:1508.06856</a> <span> [<a href="https://arxiv.org/pdf/1508.06856">pdf</a>, <a href="https://arxiv.org/format/1508.06856">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114517">10.1103/PhysRevD.92.114517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disconnected contributions to the spin of the nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chambers%2C+A+J">A. J. Chambers</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06856v1-abstract-short" style="display: inline;"> The spin decomposition of the proton is a long-standing topic of much interest in hadronic physics. Lattice QCD has had much success in calculating the connected contributions to the quark spin. However, complete calculations, which necessarily involve gluonic and strange-quark contributions, still present some challenges. These "disconnected" contributions typically involve small signals hidden a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06856v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06856v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06856v1-abstract-full" style="display: none;"> The spin decomposition of the proton is a long-standing topic of much interest in hadronic physics. Lattice QCD has had much success in calculating the connected contributions to the quark spin. However, complete calculations, which necessarily involve gluonic and strange-quark contributions, still present some challenges. These "disconnected" contributions typically involve small signals hidden against large statistical backgrounds and rely on computationally intensive stochastic techniques. In this work we demonstrate how a Feynman-Hellmann approach may be used to calculate such quantities, by measuring shifts in the proton energy arising from artificial modifications to the QCD action. We find a statistically significant non-zero result for the disconnected quark spin contribution to the proton of about -5% at a pion mass of 470 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06856v1-abstract-full').style.display = 'none'; document.getElementById('1508.06856v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114517 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06401">arXiv:1508.06401</a> <span> [<a href="https://arxiv.org/pdf/1508.06401">pdf</a>, <a href="https://arxiv.org/ps/1508.06401">ps</a>, <a href="https://arxiv.org/format/1508.06401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/43/10/10LT02">10.1088/0954-3899/43/10/10LT02 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+R">R. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06401v2-abstract-short" style="display: inline;"> Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06401v2-abstract-full').style.display = 'inline'; document.getElementById('1508.06401v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06401v2-abstract-full" style="display: none;"> Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8)\,\mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{蟺^+}-M_{蟺^0}=4.60(20)\,\mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $\bar{MS}$ scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06401v2-abstract-full').style.display = 'none'; document.getElementById('1508.06401v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, text and figures added, Journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-28/T930, DESY 15-153, Edinburgh 2015/18, Liverpool LTH 1053 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05916">arXiv:1508.05916</a> <span> [<a href="https://arxiv.org/pdf/1508.05916">pdf</a>, <a href="https://arxiv.org/ps/1508.05916">ps</a>, <a href="https://arxiv.org/format/1508.05916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Wilson flow and scale setting from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bornyakov%2C+V+G">V. G. Bornyakov</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R">R. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05916v1-abstract-short" style="display: inline;"> We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t0 and w0 for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05916v1-abstract-full').style.display = 'inline'; document.getElementById('1508.05916v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05916v1-abstract-full" style="display: none;"> We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t0 and w0 for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum extrapolation to be taken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05916v1-abstract-full').style.display = 'none'; document.getElementById('1508.05916v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-15-25/T927, DESY 15-154, Edinburgh 2015/19, Liverpool LTH 1054 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07825">arXiv:1507.07825</a> <span> [<a href="https://arxiv.org/pdf/1507.07825">pdf</a>, <a href="https://arxiv.org/ps/1507.07825">ps</a>, <a href="https://arxiv.org/format/1507.07825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Reply to "Comment on `Lattice determination of Sigma - Lambda mixing' " </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Najjar%2C+J">J. Najjar</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07825v1-abstract-short" style="display: inline;"> In this Reply, we respond to the above Comment. Our computation [Phys. Rev. D 91 (2015) 074512] only took into account pure QCD effects, arising from quark mass differences, so it is not surprising that there are discrepancies in isospin splittings and in the Sigma - Lambda mixing angle. We expect that these discrepancies will be smaller in a full calculation incorporating QED effects. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07825v1-abstract-full" style="display: none;"> In this Reply, we respond to the above Comment. Our computation [Phys. Rev. D 91 (2015) 074512] only took into account pure QCD effects, arising from quark mass differences, so it is not surprising that there are discrepancies in isospin splittings and in the Sigma - Lambda mixing angle. We expect that these discrepancies will be smaller in a full calculation incorporating QED effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07825v1-abstract-full').style.display = 'none'; document.getElementById('1507.07825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D 92 (2015) 1, 018502 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zanotti%2C+J+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>