CINXE.COM

Ali Beskok | Southern Methodist University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ali Beskok | Southern Methodist University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="oQXHNsi8Dqx649yAevy/s0QpumGlBBp+q6EqvoYblTcNIud/ULwiH4mEcnhQZMbeOHfiiI4ze896CN3Yr820ZQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ali beskok" /> <meta name="description" content="Ali Beskok, Southern Methodist University: 13 Followers, 1 Following, 243 Research papers. Research interest: Mechanical Engineering." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '914e973515bc354f8c7ae5a761ba52532265b4d2'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15252,"monthly_visitors":"120 million","monthly_visitor_count":120260779,"monthly_visitor_count_in_millions":120,"user_count":278665608,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734038453000); window.Aedu.timeDifference = new Date().getTime() - 1734038453000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2eebbf16f94e23df09908fc0eb355e7d088296bc7bbbbe96567743814345fdd9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-086d9084944b0c8a793ea96ac398b4180db6177bb674e9655034fb25e834c8b4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://smu.academia.edu/ABeskok" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7c63369d6bc1d9729936224080f1002d6f378f0ed8d4ed7c2ee00a7b16812651.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok","photo":"https://0.academia-photos.com/103082674/22882576/22029746/s65_ali.beskok.jpg","has_photo":true,"department":{"id":116585,"name":"Mechanical Engineering","url":"https://smu.academia.edu/Departments/Mechanical_Engineering/Documents","university":{"id":916,"name":"Southern Methodist University","url":"https://smu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://smu.academia.edu/ABeskok&quot;,&quot;location&quot;:&quot;/ABeskok&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;smu.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/ABeskok&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-0b19357a-f7a2-408c-a412-6a4b8b37b5f0"></div> <div id="ProfileCheckPaperUpdate-react-component-0b19357a-f7a2-408c-a412-6a4b8b37b5f0"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ali Beskok" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/103082674/22882576/22029746/s200_ali.beskok.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ali Beskok</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://smu.academia.edu/">Southern Methodist University</a>, <a class="u-tcGrayDarker" href="https://smu.academia.edu/Departments/Mechanical_Engineering/Documents">Mechanical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ali" data-follow-user-id="103082674" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="103082674"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">13</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="103082674" href="https://www.academia.edu/Documents/in/Mechanical_Engineering"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://smu.academia.edu/ABeskok&quot;,&quot;location&quot;:&quot;/ABeskok&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;smu.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/ABeskok&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mechanical Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e1e117d8-c47b-4076-b657-f63f1d95f71b"></div> <div id="Pill-react-component-e1e117d8-c47b-4076-b657-f63f1d95f71b"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ali Beskok</h3></div><div class="js-work-strip profile--work_container" data-work-id="116026275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels"><img alt="Research paper thumbnail of Transport of Water in Graphene Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels">Transport of Water in Graphene Nanochannels</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026275]").text(description); $(".js-view-count[data-work-id=116026275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026275, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026275,"title":"Transport of Water in Graphene Nanochannels","translated_title":"","metadata":{"publication_date":{"day":2,"month":4,"year":2020,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels","translated_internal_url":"","created_at":"2024-03-09T22:51:01.303-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transport_of_Water_in_Graphene_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":11670,"name":"Nanofluidics","url":"https://www.academia.edu/Documents/in/Nanofluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":893307,"name":"Water Transport","url":"https://www.academia.edu/Documents/in/Water_Transport"}],"urls":[{"id":40181223,"url":"https://doi.org/10.1201/9780429347313-16"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes"><img alt="Research paper thumbnail of Saltwater transport through pristine and positively charged graphene membranes" class="work-thumbnail" src="https://attachments.academia-assets.com/112271397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes">Saltwater transport through pristine and positively charged graphene membranes</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Jul 14, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="533f4c6343d2a345ab46ba141c04a944" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271397,&quot;asset_id&quot;:116026273,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026273]").text(description); $(".js-view-count[data-work-id=116026273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "533f4c6343d2a345ab46ba141c04a944" } } $('.js-work-strip[data-work-id=116026273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026273,"title":"Saltwater transport through pristine and positively charged graphene membranes","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT","publication_date":{"day":14,"month":7,"year":2018,"errors":{}},"publication_name":"Journal of Chemical Physics","grobid_abstract_attachment_id":112271397},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes","translated_internal_url":"","created_at":"2024-03-09T22:51:00.682-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271397/thumbnails/1.jpg","file_name":"1.503220720240310-1-4g7xja.pdf","download_url":"https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Saltwater_transport_through_pristine_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271397/1.503220720240310-1-4g7xja-libre.pdf?1710053813=\u0026response-content-disposition=attachment%3B+filename%3DSaltwater_transport_through_pristine_and.pdf\u0026Expires=1734042053\u0026Signature=D0qqTyschNVPZB7WASpjYM1taT8-Z~SAIrIjFq3-gcCBh9kqs4EB2Nq~vbWdSue3EO0NFewOHHxKB4A4-jOPCVF09kDaVXTg7GaKWhXqnptf76IG755d3qIuw8Ka4HCurm-c72wmp3PVJA4ZGCas4fpXU~9rcg8rP3fhA81E4uSIacT920QsDY0X24C3uccMN~GXex31L28h~4edWnN00WoX6MY4fdapn-iD~Q4NcPV5mw43sivxgFN6kyWNmrRf6TzSVl0wIVfsJh8toZqPHVdyz0G7VDaplNxeA-3cPDaiT82s~hgbaMxipe1D9xTR8fvnETUvJWYVWbPDMlao-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271397/thumbnails/1.jpg","file_name":"1.503220720240310-1-4g7xja.pdf","download_url":"https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Saltwater_transport_through_pristine_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271397/1.503220720240310-1-4g7xja-libre.pdf?1710053813=\u0026response-content-disposition=attachment%3B+filename%3DSaltwater_transport_through_pristine_and.pdf\u0026Expires=1734042053\u0026Signature=D0qqTyschNVPZB7WASpjYM1taT8-Z~SAIrIjFq3-gcCBh9kqs4EB2Nq~vbWdSue3EO0NFewOHHxKB4A4-jOPCVF09kDaVXTg7GaKWhXqnptf76IG755d3qIuw8Ka4HCurm-c72wmp3PVJA4ZGCas4fpXU~9rcg8rP3fhA81E4uSIacT920QsDY0X24C3uccMN~GXex31L28h~4edWnN00WoX6MY4fdapn-iD~Q4NcPV5mw43sivxgFN6kyWNmrRf6TzSVl0wIVfsJh8toZqPHVdyz0G7VDaplNxeA-3cPDaiT82s~hgbaMxipe1D9xTR8fvnETUvJWYVWbPDMlao-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"}],"urls":[{"id":40181221,"url":"https://doi.org/10.1063/1.5032207"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters"><img alt="Research paper thumbnail of Numerical Simulation of Gas Flows in Micro-Filters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters">Numerical Simulation of Gas Flows in Micro-Filters</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a functio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026271]").text(description); $(".js-view-count[data-work-id=116026271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026271,"title":"Numerical Simulation of Gas Flows in Micro-Filters","translated_title":"","metadata":{"abstract":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","publication_date":{"day":11,"month":11,"year":2001,"errors":{}}},"translated_abstract":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","internal_url":"https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters","translated_internal_url":"","created_at":"2024-03-09T22:51:00.195-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_Simulation_of_Gas_Flows_in_Micro_Filters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181219,"url":"https://doi.org/10.1115/imece2001/mems-23873"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives"><img alt="Research paper thumbnail of Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives">Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives</a></div><div class="wp-workCard_item"><span>World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering</span><span>, Jul 9, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026269]").text(description); $(".js-view-count[data-work-id=116026269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026269,"title":"Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives","translated_title":"","metadata":{"publisher":"World Academy of Science, Engineering and Technology","publication_date":{"day":9,"month":7,"year":2018,"errors":{}},"publication_name":"World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives","translated_internal_url":"","created_at":"2024-03-09T22:50:59.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"}],"urls":[{"id":40181217,"url":"https://panel.waset.org/abstracts//95064"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance"><img alt="Research paper thumbnail of Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance" class="work-thumbnail" src="https://attachments.academia-assets.com/112271378/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance">Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 25, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4338333a7a0c9c2d76e1ec72f468394a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271378,&quot;asset_id&quot;:116026267,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026267]").text(description); $(".js-view-count[data-work-id=116026267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4338333a7a0c9c2d76e1ec72f468394a" } } $('.js-work-strip[data-work-id=116026267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026267,"title":"Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":25,"month":11,"year":2019,"errors":{}},"publication_name":"Bulletin of the American Physical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance","translated_internal_url":"","created_at":"2024-03-09T22:50:59.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271378,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271378/thumbnails/1.jpg","file_name":"MWS_DFD19-2019-000013.pdf","download_url":"https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membrane_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271378/MWS_DFD19-2019-000013-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membrane_for.pdf\u0026Expires=1734042053\u0026Signature=U4eyIokK5z6aLpFDjjPBuEZ0tuA3pS1Hdh4gKQTUQojX7FP77F7sttpBUfOejN3RRgThrH~ugfa4BoVK5gjtOqFjdetC7Un9iO-I-UK4PjALKf2Obbee0UgbR1NfyfsaqYp1OP1gS~sdxdhVF9-tBPZ5lXLc02N1mk-oGHoN2aAFytbfCccp61QpkDPlIhvVAiOoaWU77bkjlxrVzawV3V3wOrYBA8arTyjx2wfW4PkLFaEy1Pmo6o~h0iPAyGLx-wFMEnp6yy7XerbE4kW7BWObRudWnlx6A1ZO4QZbqDwELkrD2bD0lLveq6h6I1PWh1RLSZlZdJeKIeuVSQ6a6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271378,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271378/thumbnails/1.jpg","file_name":"MWS_DFD19-2019-000013.pdf","download_url":"https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membrane_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271378/MWS_DFD19-2019-000013-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membrane_for.pdf\u0026Expires=1734042053\u0026Signature=U4eyIokK5z6aLpFDjjPBuEZ0tuA3pS1Hdh4gKQTUQojX7FP77F7sttpBUfOejN3RRgThrH~ugfa4BoVK5gjtOqFjdetC7Un9iO-I-UK4PjALKf2Obbee0UgbR1NfyfsaqYp1OP1gS~sdxdhVF9-tBPZ5lXLc02N1mk-oGHoN2aAFytbfCccp61QpkDPlIhvVAiOoaWU77bkjlxrVzawV3V3wOrYBA8arTyjx2wfW4PkLFaEy1Pmo6o~h0iPAyGLx-wFMEnp6yy7XerbE4kW7BWObRudWnlx6A1ZO4QZbqDwELkrD2bD0lLveq6h6I1PWh1RLSZlZdJeKIeuVSQ6a6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination"},{"id":84131,"name":"Water Desalination","url":"https://www.academia.edu/Documents/in/Water_Desalination"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":276273,"name":"Reverse osmosis","url":"https://www.academia.edu/Documents/in/Reverse_osmosis"}],"urls":[{"id":40181215,"url":"http://absimage.aps.org/image/DFD19/MWS_DFD19-2019-000013.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows"><img alt="Research paper thumbnail of Perspectives on continuum flow models for force-driven nano-channel liquid flows" class="work-thumbnail" src="https://attachments.academia-assets.com/112271377/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows">Perspectives on continuum flow models for force-driven nano-channel liquid flows</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 20, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19cd4efdec73625ceb6fac0075c1f13e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271377,&quot;asset_id&quot;:116026264,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026264]").text(description); $(".js-view-count[data-work-id=116026264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026264, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19cd4efdec73625ceb6fac0075c1f13e" } } $('.js-work-strip[data-work-id=116026264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026264,"title":"Perspectives on continuum flow models for force-driven nano-channel liquid flows","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.","publication_date":{"day":20,"month":11,"year":2017,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":112271377},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows","translated_internal_url":"","created_at":"2024-03-09T22:50:58.991-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271377,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271377/MWS_DFD17-2017-000396-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=Fgj3QnlLdPSIE2rQoD7y3JoXdDbVlBkGIFIU96RHpJopC3aUAzozMEOvG6JtiThq00V~01vNvHWQbgTMRlygJfEnkLrH0esAo~jDGXUq~CL~h3MSN8qQsFV~0EW3u5O8U619bFfuj0zAoc3y331HJmjZdob7bZiXQ67NiroLQmsgxWAZl01GJvb3d4SkNLXCjOH2Mu3nE1zbnSbDw1zx4ICQBDBMGImbP5kjCsP-1c~JUerIkZzLvds1HgyY6CsA372CLWxxl63eOGEQfsGPZU5lg4aH5TJDLY~RKkw0Em~UGYEaqlvgQviEIttoVtN8mufq-fJ01DNfu7n557xu1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271377,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271377/MWS_DFD17-2017-000396-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=Fgj3QnlLdPSIE2rQoD7y3JoXdDbVlBkGIFIU96RHpJopC3aUAzozMEOvG6JtiThq00V~01vNvHWQbgTMRlygJfEnkLrH0esAo~jDGXUq~CL~h3MSN8qQsFV~0EW3u5O8U619bFfuj0zAoc3y331HJmjZdob7bZiXQ67NiroLQmsgxWAZl01GJvb3d4SkNLXCjOH2Mu3nE1zbnSbDw1zx4ICQBDBMGImbP5kjCsP-1c~JUerIkZzLvds1HgyY6CsA372CLWxxl63eOGEQfsGPZU5lg4aH5TJDLY~RKkw0Em~UGYEaqlvgQviEIttoVtN8mufq-fJ01DNfu7n557xu1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112271376,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271376/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271376/download_file","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271376/MWS_DFD17-2017-000396-libre.pdf?1710053806=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=UzUw-Yhn6CXdza7yBUrFTou4v5w1iXG4Iq-6lteqpHOGCb9sVHolsI-2-vDJwFs9UsmvGIeMgOokn48PJSBYPutm~sfBBUGEJPvEpOmEaoHpF5h7PRTHraLGQS1LgazYeHOEg62vwxZ6f8ogxplV1kWvH6evMkI9vGEaJLqzmO1KHlj1gQhZ6KZXrMqmevvDzQJdJNSJinf6NQ8pwXmnFxgFicjiRrT7CGXkI-b3sWV5r3LvoCqI6ETgdCPRpRxo8LZmfuspny8f3eWZaDNJvlsOkpKrG7zWN3XqWT4ee4dYjdPeh41dPdyJ4R-QG-9pbJIqSi6Yc~xbrIDkE-6Z7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"}],"urls":[{"id":40181213,"url":"http://absimage.aps.org/image/DFD17/MWS_DFD17-2017-000396.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel"><img alt="Research paper thumbnail of Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel">Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polyst...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026262]").text(description); $(".js-view-count[data-work-id=116026262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026262, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026262,"title":"Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel","translated_title":"","metadata":{"abstract":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","internal_url":"https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel","translated_internal_url":"","created_at":"2024-03-09T22:50:58.604-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40181211,"url":"https://doi.org/10.1115/imece2009-12891"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation"><img alt="Research paper thumbnail of Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation" class="work-thumbnail" src="https://attachments.academia-assets.com/112271379/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation">Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation</a></div><div class="wp-workCard_item"><span>DergiPark (Istanbul University)</span><span>, Oct 31, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale perio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e90fcebbd87775ca049cc96d4328493f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271379,&quot;asset_id&quot;:116026260,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026260]").text(description); $(".js-view-count[data-work-id=116026260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026260, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e90fcebbd87775ca049cc96d4328493f" } } $('.js-work-strip[data-work-id=116026260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026260,"title":"Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation","translated_title":"","metadata":{"publisher":"Istanbul University","ai_title_tag":"Slip Length of Water in Carbon Nanoconfinements via MD Simulations","grobid_abstract":"Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.","publication_date":{"day":31,"month":10,"year":2019,"errors":{}},"publication_name":"DergiPark (Istanbul University)","grobid_abstract_attachment_id":112271379},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation","translated_internal_url":"","created_at":"2024-03-09T22:50:58.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271379,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271379/thumbnails/1.jpg","file_name":"1244041.pdf","download_url":"https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hydrodynamic_Slip_Length_of_Water_in_Car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271379/1244041-libre.pdf?1710053849=\u0026response-content-disposition=attachment%3B+filename%3DHydrodynamic_Slip_Length_of_Water_in_Car.pdf\u0026Expires=1734042053\u0026Signature=Ii-sXPlUPc3gC8N8NwV0~Clc8i9~Pr91qGVPoTPkpKaRlyFE5Vv2VCqBBBkGXDwDAn2fhTFqlyR7AG0qHMgdlAOARxht064xc4L9R4b2eZWBLxJro3GImbdc0~a9~QIMISumdkGIYPXPHyTTXb-R689GV9G6G5sYorxs6G-Oz-VKtrTqShLIEnINt162aYKPA~DYM5cpDARQrD5p5z7YN88QVGTaoIHMlpGpnLJbuVzToU69g7TvHp~T5YvALmPiObthUGG~azNVkOreg77LTpYoYCvJGQJ-yebCyy25MykeWdCCGb36Qn3xYBvIj~YNS6-91ttTOcILPNoGIJTJmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271379,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271379/thumbnails/1.jpg","file_name":"1244041.pdf","download_url":"https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hydrodynamic_Slip_Length_of_Water_in_Car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271379/1244041-libre.pdf?1710053849=\u0026response-content-disposition=attachment%3B+filename%3DHydrodynamic_Slip_Length_of_Water_in_Car.pdf\u0026Expires=1734042053\u0026Signature=Ii-sXPlUPc3gC8N8NwV0~Clc8i9~Pr91qGVPoTPkpKaRlyFE5Vv2VCqBBBkGXDwDAn2fhTFqlyR7AG0qHMgdlAOARxht064xc4L9R4b2eZWBLxJro3GImbdc0~a9~QIMISumdkGIYPXPHyTTXb-R689GV9G6G5sYorxs6G-Oz-VKtrTqShLIEnINt162aYKPA~DYM5cpDARQrD5p5z7YN88QVGTaoIHMlpGpnLJbuVzToU69g7TvHp~T5YvALmPiObthUGG~azNVkOreg77LTpYoYCvJGQJ-yebCyy25MykeWdCCGb36Qn3xYBvIj~YNS6-91ttTOcILPNoGIJTJmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":952571,"name":"Music Information Dynamics","url":"https://www.academia.edu/Documents/in/Music_Information_Dynamics"}],"urls":[{"id":40181209,"url":"https://dergipark.org.tr/tr/download/article-file/1244041"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels"><img alt="Research paper thumbnail of The role of water models on the prediction of slip length of water in graphene nanochannels" class="work-thumbnail" src="https://attachments.academia-assets.com/112271395/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels">The role of water models on the prediction of slip length of water in graphene nanochannels</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Nov 7, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac1a371f657a3c35cab1e7fe8fe7b982" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271395,&quot;asset_id&quot;:116026258,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026258]").text(description); $(".js-view-count[data-work-id=116026258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac1a371f657a3c35cab1e7fe8fe7b982" } } $('.js-work-strip[data-work-id=116026258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026258,"title":"The role of water models on the prediction of slip length of water in graphene nanochannels","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.","publication_date":{"day":7,"month":11,"year":2019,"errors":{}},"publication_name":"Journal of Chemical Physics","grobid_abstract_attachment_id":112271395},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels","translated_internal_url":"","created_at":"2024-03-09T22:50:57.800-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271395/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_role_of_water_models_on_the_predicti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271395/download-libre.pdf?1710053829=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_water_models_on_the_predicti.pdf\u0026Expires=1734042053\u0026Signature=Kt3r-cCqw37K9TGHahu0v82ZXI1N8fqKQ~ysRO~HoZyoe9rFz2ctWfDvgOh0KyNWKLYsjUqmYityeQKQy0oLzcrLz03sjC32b2ZAhYfD4Q-WeG1RiCM2mD50DPbgATqv1Neu~u8LKngwmMHelK-wv9Pd0H-c~iX305o~Xt5iSLvJ3w0f5eOVoAFr-C~75RJOJNxjqbu0ZXfnsZbO93~vwVgM2Bs05M7XCF84PjhTlwqMGo9P6UxIDWKtjRjHU1gFPLw3nioAMPHZjh~iYRG5QGpuCaBBAVy-Iyfy2TEZ2mJ5j5SOapbnESMusuj1ni9YAGE7Pv9AMlbmU~imsr~7Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271395/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_role_of_water_models_on_the_predicti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271395/download-libre.pdf?1710053829=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_water_models_on_the_predicti.pdf\u0026Expires=1734042053\u0026Signature=Kt3r-cCqw37K9TGHahu0v82ZXI1N8fqKQ~ysRO~HoZyoe9rFz2ctWfDvgOh0KyNWKLYsjUqmYityeQKQy0oLzcrLz03sjC32b2ZAhYfD4Q-WeG1RiCM2mD50DPbgATqv1Neu~u8LKngwmMHelK-wv9Pd0H-c~iX305o~Xt5iSLvJ3w0f5eOVoAFr-C~75RJOJNxjqbu0ZXfnsZbO93~vwVgM2Bs05M7XCF84PjhTlwqMGo9P6UxIDWKtjRjHU1gFPLw3nioAMPHZjh~iYRG5QGpuCaBBAVy-Iyfy2TEZ2mJ5j5SOapbnESMusuj1ni9YAGE7Pv9AMlbmU~imsr~7Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":40181207,"url":"https://doi.org/10.1063/1.5123713"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026256"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump"><img alt="Research paper thumbnail of Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump">Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump</a></div><div class="wp-workCard_item"><span>Micro-Electro-Mechanical Systems (MEMS)</span><span>, Nov 15, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Uns...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026256"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026256"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026256; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026256]").text(description); $(".js-view-count[data-work-id=116026256]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026256; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026256']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026256, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026256]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026256,"title":"Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump","translated_title":"","metadata":{"abstract":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","publication_date":{"day":15,"month":11,"year":1998,"errors":{}},"publication_name":"Micro-Electro-Mechanical Systems (MEMS)"},"translated_abstract":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","internal_url":"https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump","translated_internal_url":"","created_at":"2024-03-09T22:50:57.393-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181205,"url":"https://doi.org/10.1115/imece1998-1225"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026254"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels"><img alt="Research paper thumbnail of Flow and Species Transport Control in Grooved Micro-Channels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels">Flow and Species Transport Control in Grooved Micro-Channels</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, elec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026254"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026254"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026254; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026254]").text(description); $(".js-view-count[data-work-id=116026254]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026254; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026254']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026254, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026254]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026254,"title":"Flow and Species Transport Control in Grooved Micro-Channels","translated_title":"","metadata":{"abstract":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","internal_url":"https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels","translated_internal_url":"","created_at":"2024-03-09T22:50:56.966-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":4130241,"name":"Control volume","url":"https://www.academia.edu/Documents/in/Control_volume"}],"urls":[{"id":40181203,"url":"https://doi.org/10.1115/imece2005-82111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026252"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall"><img alt="Research paper thumbnail of DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall" class="work-thumbnail" src="https://attachments.academia-assets.com/112271394/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall">DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall</a></div><div class="wp-workCard_item"><span>ELECTROPHORESIS</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles&amp;#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7de3f39bbadb069a8e9a612ca66d898f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271394,&quot;asset_id&quot;:116026252,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026252"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026252"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026252; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026252]").text(description); $(".js-view-count[data-work-id=116026252]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026252; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026252']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026252, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7de3f39bbadb069a8e9a612ca66d898f" } } $('.js-work-strip[data-work-id=116026252]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026252,"title":"DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall","translated_title":"","metadata":{"abstract":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","publisher":"Wiley","publication_name":"ELECTROPHORESIS"},"translated_abstract":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","internal_url":"https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall","translated_internal_url":"","created_at":"2024-03-09T22:50:56.408-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271394/thumbnails/1.jpg","file_name":"DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall.pdf","download_url":"https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DC_electrokinetic_motion_of_colloidal_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271394/DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall-libre.pdf?1710053818=\u0026response-content-disposition=attachment%3B+filename%3DDC_electrokinetic_motion_of_colloidal_cy.pdf\u0026Expires=1734042053\u0026Signature=V9eD4k-3ISIpsfY5RqRvxOdNBjW11pzgEjzQSMRkPa0OfPXGdG2WBFpAmuMe4ccyTgB2P7c31sXK0bRawlQBumeV01uuuhzYk6iI416ZI-Ou1I8bS196RjAd8m4fAp8T5V~lDDhKAJypAuZizPneNZ9dwpBDm6Ae8MK3FjyuH2lk7tqJRdnXnki~kPEmNe6NlBBxSKAyuW9mJQtjhug7DMtLQlbINoDe697~cOzuwagob4ePt9eizIhUymCpw3Z5Yx9tq3QP5Q1x~U7u8Vypxjh85-2FzSykotCr2wp0oZSfu2-cZXDiq0mr2PpJ5jNspMXeDOGMop9qDW2XTVrfMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271394/thumbnails/1.jpg","file_name":"DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall.pdf","download_url":"https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DC_electrokinetic_motion_of_colloidal_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271394/DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall-libre.pdf?1710053818=\u0026response-content-disposition=attachment%3B+filename%3DDC_electrokinetic_motion_of_colloidal_cy.pdf\u0026Expires=1734042053\u0026Signature=V9eD4k-3ISIpsfY5RqRvxOdNBjW11pzgEjzQSMRkPa0OfPXGdG2WBFpAmuMe4ccyTgB2P7c31sXK0bRawlQBumeV01uuuhzYk6iI416ZI-Ou1I8bS196RjAd8m4fAp8T5V~lDDhKAJypAuZizPneNZ9dwpBDm6Ae8MK3FjyuH2lk7tqJRdnXnki~kPEmNe6NlBBxSKAyuW9mJQtjhug7DMtLQlbINoDe697~cOzuwagob4ePt9eizIhUymCpw3Z5Yx9tq3QP5Q1x~U7u8Vypxjh85-2FzSykotCr2wp0oZSfu2-cZXDiq0mr2PpJ5jNspMXeDOGMop9qDW2XTVrfMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":126982,"name":"Drag","url":"https://www.academia.edu/Documents/in/Drag"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1115377,"name":"Colloid","url":"https://www.academia.edu/Documents/in/Colloid"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"}],"urls":[{"id":40181201,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/elps.202100266"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders"><img alt="Research paper thumbnail of Time-Periodic Forced Convection in Micro Heat Spreaders" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders">Time-Periodic Forced Convection in Micro Heat Spreaders</a></div><div class="wp-workCard_item"><span>Micro-Electro-Mechanical Systems (MEMS)</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026250]").text(description); $(".js-view-count[data-work-id=116026250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026250, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026250,"title":"Time-Periodic Forced Convection in Micro Heat Spreaders","translated_title":"","metadata":{"abstract":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","publisher":"American Society of Mechanical Engineers","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Micro-Electro-Mechanical Systems (MEMS)"},"translated_abstract":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","internal_url":"https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders","translated_internal_url":"","created_at":"2024-03-09T22:50:56.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181199,"url":"https://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/doi/10.1115/IMECE2000-1119/6787629/375_1_imece2000-1119.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026248"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday"><img alt="Research paper thumbnail of Professor Satish G. Kandlikar on His 70th Birthday" class="work-thumbnail" src="https://attachments.academia-assets.com/112271372/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday">Professor Satish G. Kandlikar on His 70th Birthday</a></div><div class="wp-workCard_item"><span>Journal of Thermal Science and Engineering Applications</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. H...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ddd6d888f4288ff444d896f4e9dd35e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271372,&quot;asset_id&quot;:116026248,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026248"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026248"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026248; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026248]").text(description); $(".js-view-count[data-work-id=116026248]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026248; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026248']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026248, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ddd6d888f4288ff444d896f4e9dd35e" } } $('.js-work-strip[data-work-id=116026248]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026248,"title":"Professor Satish G. Kandlikar on His 70th Birthday","translated_title":"","metadata":{"publisher":"ASME International","grobid_abstract":"is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Thermal Science and Engineering Applications","grobid_abstract_attachment_id":112271372},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday","translated_internal_url":"","created_at":"2024-03-09T22:50:55.569-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271372,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271372/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271372/tsea_12_6_060301-libre.pdf?1710053812=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=eZju~a12GLaLfkmxQWNy~Zi1Ix-3lZmv3HVNtY1VsvT7AjlNHgPRjWaF295FLbuzyDS-hzgs8VNh8JHLqvEMwAlaW3y5gLsBmHY~jiX6jWZU75AbuMXsP1xEcosxYzVkWXYjjLtizY6rXJBsiwtgG6VDRiI47wHNNbkOWmNi~-e0IlBrMUg6uGRO60JHTYLJevqxNReWq3CpVz17JIMuknS1S0iDymNIZljRhLfX1r~mZpWfh6LD2ulD58OOifeTKlDtAbU7IlFWqWcs7w6uN99pdwaKxsicnhRrMmswFlk~LFRinheSNfQqsVc-NRHN1oqe~JdvmiGUCjT2l2oxgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Professor_Satish_G_Kandlikar_on_His_70th_Birthday","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271372,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271372/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271372/tsea_12_6_060301-libre.pdf?1710053812=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=eZju~a12GLaLfkmxQWNy~Zi1Ix-3lZmv3HVNtY1VsvT7AjlNHgPRjWaF295FLbuzyDS-hzgs8VNh8JHLqvEMwAlaW3y5gLsBmHY~jiX6jWZU75AbuMXsP1xEcosxYzVkWXYjjLtizY6rXJBsiwtgG6VDRiI47wHNNbkOWmNi~-e0IlBrMUg6uGRO60JHTYLJevqxNReWq3CpVz17JIMuknS1S0iDymNIZljRhLfX1r~mZpWfh6LD2ulD58OOifeTKlDtAbU7IlFWqWcs7w6uN99pdwaKxsicnhRrMmswFlk~LFRinheSNfQqsVc-NRHN1oqe~JdvmiGUCjT2l2oxgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112271373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271373/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271373/download_file","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271373/tsea_12_6_060301-libre.pdf?1710053810=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=Shc6RsumOCYX09bR0afsdU6-kUqBNvqJnBPIGfJXFiJ6kE~5LKREbb1PVPl2b5FI8T4eFflmJQX1hk61PXl5iKs~7Jlr90GX1zhiIiwcc6tZTe2y5vUd046e0axDES-6t~CzeyzUhf9J3aS2FYWDJpXAJZUSQjzVQLC2rDetr0IV0pADIQTX98vwMByBqDuIGWAMxE-rroHbVIj6n3obf9aQKdW3eaMow70FjUeU4wbJZAX2xcIFQYgIoQYX5YxXVN7x0GxYKSPY61JtAyxwxVwlfetnVPJ8XQJH51wqL4QINryQYJ2a94Bw63rrqLB1w-HtWG3ELC-cWTB0z7GGig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":40181197,"url":"http://asmedigitalcollection.asme.org/thermalscienceapplication/article-pdf/doi/10.1115/1.4048813/6599013/tsea_12_6_060301.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026246"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids"><img alt="Research paper thumbnail of Interface Resistance and Thermal Transport in Nano-Confined Liquids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids">Interface Resistance and Thermal Transport in Nano-Confined Liquids</a></div><div class="wp-workCard_item"><span>Analysis, Design, and Application</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Miniaturization of microelectronic device components and the development of nano– electro– mechan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026246"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026246]").text(description); $(".js-view-count[data-work-id=116026246]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026246']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026246, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026246]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026246,"title":"Interface Resistance and Thermal Transport in Nano-Confined Liquids","translated_title":"","metadata":{"abstract":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Analysis, Design, and Application"},"translated_abstract":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","internal_url":"https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids","translated_internal_url":"","created_at":"2024-03-09T22:50:55.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":323827,"name":"Thermal Resistance","url":"https://www.academia.edu/Documents/in/Thermal_Resistance"},{"id":3113671,"name":"interfacial thermal resistance","url":"https://www.academia.edu/Documents/in/interfacial_thermal_resistance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026244"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models"><img alt="Research paper thumbnail of Molecular-Based Microfluidic Simulation Models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models">Molecular-Based Microfluidic Simulation Models</a></div><div class="wp-workCard_item"><span>Mechanical Engineering Series</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026244"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026244"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026244; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026244]").text(description); $(".js-view-count[data-work-id=116026244]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026244; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026244']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026244, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026244]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026244,"title":"Molecular-Based Microfluidic Simulation Models","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Mechanical Engineering Series"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models","translated_internal_url":"","created_at":"2024-03-09T22:50:54.919-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Molecular_Based_Microfluidic_Simulation_Models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":3597075,"name":"Mechanical Engineering Series","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering_Series"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination"><img alt="Research paper thumbnail of Charged nanoporous graphene membranes for water desalination" class="work-thumbnail" src="https://attachments.academia-assets.com/112271369/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination">Charged nanoporous graphene membranes for water desalination</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Water desalination using positively and negatively charged single-layer nanoporous graphene membr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1befb1170f57d415b55a8583b95fe8a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271369,&quot;asset_id&quot;:116026231,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026231]").text(description); $(".js-view-count[data-work-id=116026231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026231, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1befb1170f57d415b55a8583b95fe8a7" } } $('.js-work-strip[data-work-id=116026231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026231,"title":"Charged nanoporous graphene membranes for water desalination","translated_title":"","metadata":{"abstract":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","internal_url":"https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination","translated_internal_url":"","created_at":"2024-03-09T22:49:50.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271369,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271369/thumbnails/1.jpg","file_name":"670ea2576aa1bb75b733861a577212578a67.pdf","download_url":"https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membranes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271369/670ea2576aa1bb75b733861a577212578a67-libre.pdf?1710053820=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membranes_fo.pdf\u0026Expires=1734042053\u0026Signature=V3DuexnD7t-xoEXVrwxzhzlsIkBvLjHwCPMENniNR~piJUtv8BMzdvbTjmbTm2muOndsnyFRDiYjL2GW-XRu2GrA5pHgdqILQM2Jw6wAh39nN3nCgTVcPU5wnbVkYpyk3~-UKw8cHd57t63TED6amMgsJRcdbKhle~q~xio~rZCzJw1RZCoCpElhwUrLbHxNgxUWt309iatOyiYfBdBjb0HUtM6lhRvxNvDHHeM1xGVHiU4Q1O4j9IDLAdzuhkzSHrC~BJDRYYla7cJGVtM1KNW~3TI90tWTzxkAuKt1iW93gTEJX2odEko3lPmczPq2IT-z1rkt6qg1-QfSqEpgPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Charged_nanoporous_graphene_membranes_for_water_desalination","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271369,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271369/thumbnails/1.jpg","file_name":"670ea2576aa1bb75b733861a577212578a67.pdf","download_url":"https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membranes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271369/670ea2576aa1bb75b733861a577212578a67-libre.pdf?1710053820=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membranes_fo.pdf\u0026Expires=1734042053\u0026Signature=V3DuexnD7t-xoEXVrwxzhzlsIkBvLjHwCPMENniNR~piJUtv8BMzdvbTjmbTm2muOndsnyFRDiYjL2GW-XRu2GrA5pHgdqILQM2Jw6wAh39nN3nCgTVcPU5wnbVkYpyk3~-UKw8cHd57t63TED6amMgsJRcdbKhle~q~xio~rZCzJw1RZCoCpElhwUrLbHxNgxUWt309iatOyiYfBdBjb0HUtM6lhRvxNvDHHeM1xGVHiU4Q1O4j9IDLAdzuhkzSHrC~BJDRYYla7cJGVtM1KNW~3TI90tWTzxkAuKt1iW93gTEJX2odEko3lPmczPq2IT-z1rkt6qg1-QfSqEpgPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination"},{"id":84131,"name":"Water Desalination","url":"https://www.academia.edu/Documents/in/Water_Desalination"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":40181185,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CP/C9CP01079C"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910236"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems"><img alt="Research paper thumbnail of Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/109304049/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems">Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, Aug 5, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37765b25a7918c3e7b310530b83a8d34" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109304049,&quot;asset_id&quot;:111910236,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910236"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910236"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910236; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910236]").text(description); $(".js-view-count[data-work-id=111910236]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910236; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910236']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910236, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37765b25a7918c3e7b310530b83a8d34" } } $('.js-work-strip[data-work-id=111910236]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910236,"title":"Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.","publication_date":{"day":5,"month":8,"year":2019,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":109304049},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems","translated_internal_url":"","created_at":"2023-12-20T05:35:44.068-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109304049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109304049/thumbnails/1.jpg","file_name":"acs.analchem.9b0216220231220-1-j3v9wf.pdf","download_url":"https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Similar_Response_of_Electrode_Polar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109304049/acs.analchem.9b0216220231220-1-j3v9wf-libre.pdf?1703079930=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Similar_Response_of_Electrode_Polar.pdf\u0026Expires=1734042053\u0026Signature=HvAHh8apkB~RAG18hyELiPSGOwK3xvYmatvuY2nghn4DOL8wyrZxFGF5GV-F-r3w~eUXjuJJncZwGPH5vmFpa4DR8hhH4j6pgrcznt1u16sX9PJIlRgXPoGa3XFyCKwz9hln2mdvxe2-oAaS0Id2y4ItPJwMjxMhT9bBZddJMzUw3spFQ1svM5tmNhSwjG1CpxukaUAVfDDWJyQNWOdIPW-pjKgWbX~sK8t5W8m7LWGE2DZ7NI~RYaT7u0KZqe1sd93~QE9UtE3QVqsjpILQSn4w3TbB9CqjhdG8YFcxmXXwPnSW5TixpZEFFYisGBOlufc2dgtlX4YBQM3DoDFrNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":109304049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109304049/thumbnails/1.jpg","file_name":"acs.analchem.9b0216220231220-1-j3v9wf.pdf","download_url":"https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Similar_Response_of_Electrode_Polar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109304049/acs.analchem.9b0216220231220-1-j3v9wf-libre.pdf?1703079930=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Similar_Response_of_Electrode_Polar.pdf\u0026Expires=1734042053\u0026Signature=HvAHh8apkB~RAG18hyELiPSGOwK3xvYmatvuY2nghn4DOL8wyrZxFGF5GV-F-r3w~eUXjuJJncZwGPH5vmFpa4DR8hhH4j6pgrcznt1u16sX9PJIlRgXPoGa3XFyCKwz9hln2mdvxe2-oAaS0Id2y4ItPJwMjxMhT9bBZddJMzUw3spFQ1svM5tmNhSwjG1CpxukaUAVfDDWJyQNWOdIPW-pjKgWbX~sK8t5W8m7LWGE2DZ7NI~RYaT7u0KZqe1sd93~QE9UtE3QVqsjpILQSn4w3TbB9CqjhdG8YFcxmXXwPnSW5TixpZEFFYisGBOlufc2dgtlX4YBQM3DoDFrNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99790,"name":"Dielectric Spectroscopy","url":"https://www.academia.edu/Documents/in/Dielectric_Spectroscopy"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1746947,"name":"Nernst Equation","url":"https://www.academia.edu/Documents/in/Nernst_Equation"}],"urls":[{"id":37452637,"url":"https://doi.org/10.1021/acs.analchem.9b02162"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910235"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor"><img alt="Research paper thumbnail of Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor" class="work-thumbnail" src="https://attachments.academia-assets.com/109303971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor">Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, May 4, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Conventional immunosensors typically rely on passive diffusion dominated transport of analytes fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce611c41ff61091767e46c059b20b71e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109303971,&quot;asset_id&quot;:111910235,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910235"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910235"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910235; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910235]").text(description); $(".js-view-count[data-work-id=111910235]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910235; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910235']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910235, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce611c41ff61091767e46c059b20b71e" } } $('.js-work-strip[data-work-id=111910235]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910235,"title":"Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.","publication_date":{"day":4,"month":5,"year":2020,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":109303971},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor","translated_internal_url":"","created_at":"2023-12-20T05:35:43.832-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109303971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303971/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303971/RRRapid_20and_20sensitive-libre.pdf?1703079943=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=d9vDRJHP2b01B604RwLefQVux2~aq26iXoXQT0HYGDNnW~B-4GF6HNojFDSR4nBgAb0AmjKoZ5EkxNaCkYNDgliqMgKe6ht~aF0XFK2UeaVVBbtUggqEQYXTvyxvaVJuuMc2aFja577YCKIoTSfxT-qOa0E128LTxxULnDzd~gCIBPnkDWqSwYgT9r1aVbIaQtXdymiuPRso0GqRdAz8fqn9zcG5xU9yDJCSPkRM4KO1Zm3Wps02OKYVgfcJFaKXqV1dXVHm5~JlQ3wp7TYxeVyS9R0aXTnU9b4XJnbCByLpOfnbRRdIj~PtaHh10p1awYZKVBd7zZdtexp7mLDwpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":109303971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303971/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303971/RRRapid_20and_20sensitive-libre.pdf?1703079943=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=d9vDRJHP2b01B604RwLefQVux2~aq26iXoXQT0HYGDNnW~B-4GF6HNojFDSR4nBgAb0AmjKoZ5EkxNaCkYNDgliqMgKe6ht~aF0XFK2UeaVVBbtUggqEQYXTvyxvaVJuuMc2aFja577YCKIoTSfxT-qOa0E128LTxxULnDzd~gCIBPnkDWqSwYgT9r1aVbIaQtXdymiuPRso0GqRdAz8fqn9zcG5xU9yDJCSPkRM4KO1Zm3Wps02OKYVgfcJFaKXqV1dXVHm5~JlQ3wp7TYxeVyS9R0aXTnU9b4XJnbCByLpOfnbRRdIj~PtaHh10p1awYZKVBd7zZdtexp7mLDwpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109303970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303970/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303970/download_file","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303970/RRRapid_20and_20sensitive-libre.pdf?1703079941=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=Z~U3PzYKnWXr2jYiF8rFoYXhsYz~JtmzUCwC4ckf1MYhfmQFWsWa5zkM9SGKm2YT0e3JoKpkrwBtNJI3h9W0E~lLmHNVhgODcjWyshJelJFpJNZUwfl2Wj1oeftcJv47wv5sWOeEI~VCsOFBKGC-8DdVrbtV6JPdKgVJy4L9CQwAf6Rtvtl0HwrLuEYe~TrXFdZpjgR3FkMMUKdL~Plgtw4ooJm3wVNVwlJUyU6kji~HDJxgN1fup0JzYIqKkcv9AxFzr4DghuayMgej2pQBq1zdUe7ychRQbdrotc~UQQj75Fuu9tFw-3AntHvQYOlzPZf3Q0oxUvDVx6Si2uil2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":2493627,"name":"Electrical Impedance","url":"https://www.academia.edu/Documents/in/Electrical_Impedance"}],"urls":[{"id":37452636,"url":"https://repository.kaust.edu.sa/bitstream/10754/662812/1/RRRapid%20and%20sensitive.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910234"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels"><img alt="Research paper thumbnail of Surface Wettability Effects on Evaporating Meniscus in Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels">Surface Wettability Effects on Evaporating Meniscus in Nanochannels</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910234"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910234"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910234; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910234]").text(description); $(".js-view-count[data-work-id=111910234]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910234; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910234']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910234, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111910234]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910234,"title":"Surface Wettability Effects on Evaporating Meniscus in Nanochannels","translated_title":"","metadata":{"publisher":"Social Science Electronic Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Social Science Research Network"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels","translated_internal_url":"","created_at":"2023-12-20T05:35:43.620-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":211877,"name":"Wetting","url":"https://www.academia.edu/Documents/in/Wetting"},{"id":474021,"name":"Evaporator","url":"https://www.academia.edu/Documents/in/Evaporator"},{"id":2494836,"name":"Meniscus","url":"https://www.academia.edu/Documents/in/Meniscus"}],"urls":[{"id":37452635,"url":"https://doi.org/10.2139/ssrn.4074377"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="13159188" id="papers"><div class="js-work-strip profile--work_container" data-work-id="116026275"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels"><img alt="Research paper thumbnail of Transport of Water in Graphene Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels">Transport of Water in Graphene Nanochannels</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026275"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026275"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026275; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026275]").text(description); $(".js-view-count[data-work-id=116026275]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026275; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026275']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026275, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026275]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026275,"title":"Transport of Water in Graphene Nanochannels","translated_title":"","metadata":{"publication_date":{"day":2,"month":4,"year":2020,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026275/Transport_of_Water_in_Graphene_Nanochannels","translated_internal_url":"","created_at":"2024-03-09T22:51:01.303-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transport_of_Water_in_Graphene_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":11670,"name":"Nanofluidics","url":"https://www.academia.edu/Documents/in/Nanofluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":893307,"name":"Water Transport","url":"https://www.academia.edu/Documents/in/Water_Transport"}],"urls":[{"id":40181223,"url":"https://doi.org/10.1201/9780429347313-16"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026273"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes"><img alt="Research paper thumbnail of Saltwater transport through pristine and positively charged graphene membranes" class="work-thumbnail" src="https://attachments.academia-assets.com/112271397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes">Saltwater transport through pristine and positively charged graphene membranes</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Jul 14, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="533f4c6343d2a345ab46ba141c04a944" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271397,&quot;asset_id&quot;:116026273,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026273"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026273]").text(description); $(".js-view-count[data-work-id=116026273]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026273']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026273, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "533f4c6343d2a345ab46ba141c04a944" } } $('.js-work-strip[data-work-id=116026273]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026273,"title":"Saltwater transport through pristine and positively charged graphene membranes","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT","publication_date":{"day":14,"month":7,"year":2018,"errors":{}},"publication_name":"Journal of Chemical Physics","grobid_abstract_attachment_id":112271397},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026273/Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes","translated_internal_url":"","created_at":"2024-03-09T22:51:00.682-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271397/thumbnails/1.jpg","file_name":"1.503220720240310-1-4g7xja.pdf","download_url":"https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Saltwater_transport_through_pristine_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271397/1.503220720240310-1-4g7xja-libre.pdf?1710053813=\u0026response-content-disposition=attachment%3B+filename%3DSaltwater_transport_through_pristine_and.pdf\u0026Expires=1734042053\u0026Signature=D0qqTyschNVPZB7WASpjYM1taT8-Z~SAIrIjFq3-gcCBh9kqs4EB2Nq~vbWdSue3EO0NFewOHHxKB4A4-jOPCVF09kDaVXTg7GaKWhXqnptf76IG755d3qIuw8Ka4HCurm-c72wmp3PVJA4ZGCas4fpXU~9rcg8rP3fhA81E4uSIacT920QsDY0X24C3uccMN~GXex31L28h~4edWnN00WoX6MY4fdapn-iD~Q4NcPV5mw43sivxgFN6kyWNmrRf6TzSVl0wIVfsJh8toZqPHVdyz0G7VDaplNxeA-3cPDaiT82s~hgbaMxipe1D9xTR8fvnETUvJWYVWbPDMlao-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Saltwater_transport_through_pristine_and_positively_charged_graphene_membranes","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271397/thumbnails/1.jpg","file_name":"1.503220720240310-1-4g7xja.pdf","download_url":"https://www.academia.edu/attachments/112271397/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Saltwater_transport_through_pristine_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271397/1.503220720240310-1-4g7xja-libre.pdf?1710053813=\u0026response-content-disposition=attachment%3B+filename%3DSaltwater_transport_through_pristine_and.pdf\u0026Expires=1734042053\u0026Signature=D0qqTyschNVPZB7WASpjYM1taT8-Z~SAIrIjFq3-gcCBh9kqs4EB2Nq~vbWdSue3EO0NFewOHHxKB4A4-jOPCVF09kDaVXTg7GaKWhXqnptf76IG755d3qIuw8Ka4HCurm-c72wmp3PVJA4ZGCas4fpXU~9rcg8rP3fhA81E4uSIacT920QsDY0X24C3uccMN~GXex31L28h~4edWnN00WoX6MY4fdapn-iD~Q4NcPV5mw43sivxgFN6kyWNmrRf6TzSVl0wIVfsJh8toZqPHVdyz0G7VDaplNxeA-3cPDaiT82s~hgbaMxipe1D9xTR8fvnETUvJWYVWbPDMlao-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"}],"urls":[{"id":40181221,"url":"https://doi.org/10.1063/1.5032207"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026271"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters"><img alt="Research paper thumbnail of Numerical Simulation of Gas Flows in Micro-Filters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters">Numerical Simulation of Gas Flows in Micro-Filters</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a functio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026271"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026271]").text(description); $(".js-view-count[data-work-id=116026271]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026271']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026271, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026271]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026271,"title":"Numerical Simulation of Gas Flows in Micro-Filters","translated_title":"","metadata":{"abstract":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","publication_date":{"day":11,"month":11,"year":2001,"errors":{}}},"translated_abstract":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","internal_url":"https://www.academia.edu/116026271/Numerical_Simulation_of_Gas_Flows_in_Micro_Filters","translated_internal_url":"","created_at":"2024-03-09T22:51:00.195-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_Simulation_of_Gas_Flows_in_Micro_Filters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Gas flows through micro-filters are simulated in the continuum and slip flow regimes as a function of the Knudsen, Reynolds and Mach numbers. The numerical simulations are based on the spectral element formulation of compressible Navier-Stokes equations, which utilize previously developed high-order velocity slip and temperature jump boundary conditions. Both slip and no-slip simulations are used to identify the rarefaction effects. The simulation results show skin friction and form-drag reduction with increased Knudsen number. Pressure drops across the filters are compared against several empirical scaling laws, available in the literature. Compressibility becomes important for high-speed flows, creating large density fluctuations across the micro-filter elements. For high Mach number flows, interactions between thermal and kinetic energies of the fluid are observed. It is also shown that viscous heating plays a significant role for highspeed gas flows, impacting heat transfer characteristics of micro-filters.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181219,"url":"https://doi.org/10.1115/imece2001/mems-23873"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026269"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives"><img alt="Research paper thumbnail of Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives">Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives</a></div><div class="wp-workCard_item"><span>World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering</span><span>, Jul 9, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026269"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026269]").text(description); $(".js-view-count[data-work-id=116026269]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026269']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026269, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026269]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026269,"title":"Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives","translated_title":"","metadata":{"publisher":"World Academy of Science, Engineering and Technology","publication_date":{"day":9,"month":7,"year":2018,"errors":{}},"publication_name":"World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026269/Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives","translated_internal_url":"","created_at":"2024-03-09T22:50:59.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_Velocity_Slip_in_Nanoscale_Electroosmotic_Flows_Molecular_and_Continuum_Transport_Perspectives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"}],"urls":[{"id":40181217,"url":"https://panel.waset.org/abstracts//95064"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance"><img alt="Research paper thumbnail of Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance" class="work-thumbnail" src="https://attachments.academia-assets.com/112271378/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance">Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 25, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4338333a7a0c9c2d76e1ec72f468394a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271378,&quot;asset_id&quot;:116026267,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026267]").text(description); $(".js-view-count[data-work-id=116026267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4338333a7a0c9c2d76e1ec72f468394a" } } $('.js-work-strip[data-work-id=116026267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026267,"title":"Charged nanoporous graphene membrane for enhancing reverse osmosis water desalination performance","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":25,"month":11,"year":2019,"errors":{}},"publication_name":"Bulletin of the American Physical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026267/Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance","translated_internal_url":"","created_at":"2024-03-09T22:50:59.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271378,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271378/thumbnails/1.jpg","file_name":"MWS_DFD19-2019-000013.pdf","download_url":"https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membrane_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271378/MWS_DFD19-2019-000013-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membrane_for.pdf\u0026Expires=1734042053\u0026Signature=U4eyIokK5z6aLpFDjjPBuEZ0tuA3pS1Hdh4gKQTUQojX7FP77F7sttpBUfOejN3RRgThrH~ugfa4BoVK5gjtOqFjdetC7Un9iO-I-UK4PjALKf2Obbee0UgbR1NfyfsaqYp1OP1gS~sdxdhVF9-tBPZ5lXLc02N1mk-oGHoN2aAFytbfCccp61QpkDPlIhvVAiOoaWU77bkjlxrVzawV3V3wOrYBA8arTyjx2wfW4PkLFaEy1Pmo6o~h0iPAyGLx-wFMEnp6yy7XerbE4kW7BWObRudWnlx6A1ZO4QZbqDwELkrD2bD0lLveq6h6I1PWh1RLSZlZdJeKIeuVSQ6a6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Charged_nanoporous_graphene_membrane_for_enhancing_reverse_osmosis_water_desalination_performance","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271378,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271378/thumbnails/1.jpg","file_name":"MWS_DFD19-2019-000013.pdf","download_url":"https://www.academia.edu/attachments/112271378/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membrane_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271378/MWS_DFD19-2019-000013-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membrane_for.pdf\u0026Expires=1734042053\u0026Signature=U4eyIokK5z6aLpFDjjPBuEZ0tuA3pS1Hdh4gKQTUQojX7FP77F7sttpBUfOejN3RRgThrH~ugfa4BoVK5gjtOqFjdetC7Un9iO-I-UK4PjALKf2Obbee0UgbR1NfyfsaqYp1OP1gS~sdxdhVF9-tBPZ5lXLc02N1mk-oGHoN2aAFytbfCccp61QpkDPlIhvVAiOoaWU77bkjlxrVzawV3V3wOrYBA8arTyjx2wfW4PkLFaEy1Pmo6o~h0iPAyGLx-wFMEnp6yy7XerbE4kW7BWObRudWnlx6A1ZO4QZbqDwELkrD2bD0lLveq6h6I1PWh1RLSZlZdJeKIeuVSQ6a6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination"},{"id":84131,"name":"Water Desalination","url":"https://www.academia.edu/Documents/in/Water_Desalination"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":276273,"name":"Reverse osmosis","url":"https://www.academia.edu/Documents/in/Reverse_osmosis"}],"urls":[{"id":40181215,"url":"http://absimage.aps.org/image/DFD19/MWS_DFD19-2019-000013.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows"><img alt="Research paper thumbnail of Perspectives on continuum flow models for force-driven nano-channel liquid flows" class="work-thumbnail" src="https://attachments.academia-assets.com/112271377/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows">Perspectives on continuum flow models for force-driven nano-channel liquid flows</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 20, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19cd4efdec73625ceb6fac0075c1f13e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271377,&quot;asset_id&quot;:116026264,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026264]").text(description); $(".js-view-count[data-work-id=116026264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026264, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19cd4efdec73625ceb6fac0075c1f13e" } } $('.js-work-strip[data-work-id=116026264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026264,"title":"Perspectives on continuum flow models for force-driven nano-channel liquid flows","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.","publication_date":{"day":20,"month":11,"year":2017,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":112271377},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows","translated_internal_url":"","created_at":"2024-03-09T22:50:58.991-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271377,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271377/MWS_DFD17-2017-000396-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=Fgj3QnlLdPSIE2rQoD7y3JoXdDbVlBkGIFIU96RHpJopC3aUAzozMEOvG6JtiThq00V~01vNvHWQbgTMRlygJfEnkLrH0esAo~jDGXUq~CL~h3MSN8qQsFV~0EW3u5O8U619bFfuj0zAoc3y331HJmjZdob7bZiXQ67NiroLQmsgxWAZl01GJvb3d4SkNLXCjOH2Mu3nE1zbnSbDw1zx4ICQBDBMGImbP5kjCsP-1c~JUerIkZzLvds1HgyY6CsA372CLWxxl63eOGEQfsGPZU5lg4aH5TJDLY~RKkw0Em~UGYEaqlvgQviEIttoVtN8mufq-fJ01DNfu7n557xu1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271377,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271377/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271377/MWS_DFD17-2017-000396-libre.pdf?1710053808=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=Fgj3QnlLdPSIE2rQoD7y3JoXdDbVlBkGIFIU96RHpJopC3aUAzozMEOvG6JtiThq00V~01vNvHWQbgTMRlygJfEnkLrH0esAo~jDGXUq~CL~h3MSN8qQsFV~0EW3u5O8U619bFfuj0zAoc3y331HJmjZdob7bZiXQ67NiroLQmsgxWAZl01GJvb3d4SkNLXCjOH2Mu3nE1zbnSbDw1zx4ICQBDBMGImbP5kjCsP-1c~JUerIkZzLvds1HgyY6CsA372CLWxxl63eOGEQfsGPZU5lg4aH5TJDLY~RKkw0Em~UGYEaqlvgQviEIttoVtN8mufq-fJ01DNfu7n557xu1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112271376,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271376/thumbnails/1.jpg","file_name":"MWS_DFD17-2017-000396.pdf","download_url":"https://www.academia.edu/attachments/112271376/download_file","bulk_download_file_name":"Perspectives_on_continuum_flow_models_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271376/MWS_DFD17-2017-000396-libre.pdf?1710053806=\u0026response-content-disposition=attachment%3B+filename%3DPerspectives_on_continuum_flow_models_fo.pdf\u0026Expires=1734042053\u0026Signature=UzUw-Yhn6CXdza7yBUrFTou4v5w1iXG4Iq-6lteqpHOGCb9sVHolsI-2-vDJwFs9UsmvGIeMgOokn48PJSBYPutm~sfBBUGEJPvEpOmEaoHpF5h7PRTHraLGQS1LgazYeHOEg62vwxZ6f8ogxplV1kWvH6evMkI9vGEaJLqzmO1KHlj1gQhZ6KZXrMqmevvDzQJdJNSJinf6NQ8pwXmnFxgFicjiRrT7CGXkI-b3sWV5r3LvoCqI6ETgdCPRpRxo8LZmfuspny8f3eWZaDNJvlsOkpKrG7zWN3XqWT4ee4dYjdPeh41dPdyJ4R-QG-9pbJIqSi6Yc~xbrIDkE-6Z7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"}],"urls":[{"id":40181213,"url":"http://absimage.aps.org/image/DFD17/MWS_DFD17-2017-000396.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026262"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel"><img alt="Research paper thumbnail of Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel">Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polyst...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026262"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026262"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026262; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026262]").text(description); $(".js-view-count[data-work-id=116026262]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026262; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026262']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026262, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026262]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026262,"title":"Transient Electrophoretic Motion of Charged Particles Through an L-Shaped Microchannel","translated_title":"","metadata":{"abstract":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","internal_url":"https://www.academia.edu/116026262/Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel","translated_internal_url":"","created_at":"2024-03-09T22:50:58.604-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transient_Electrophoretic_Motion_of_Charged_Particles_Through_an_L_Shaped_Microchannel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":40181211,"url":"https://doi.org/10.1115/imece2009-12891"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026260"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation"><img alt="Research paper thumbnail of Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation" class="work-thumbnail" src="https://attachments.academia-assets.com/112271379/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation">Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation</a></div><div class="wp-workCard_item"><span>DergiPark (Istanbul University)</span><span>, Oct 31, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale perio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e90fcebbd87775ca049cc96d4328493f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271379,&quot;asset_id&quot;:116026260,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026260"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026260"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026260; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026260]").text(description); $(".js-view-count[data-work-id=116026260]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026260; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026260']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026260, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e90fcebbd87775ca049cc96d4328493f" } } $('.js-work-strip[data-work-id=116026260]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026260,"title":"Hydrodynamic Slip Length of Water in Carbon-Based Nanoconfinements: A Molecular Dynamics Investigation","translated_title":"","metadata":{"publisher":"Istanbul University","ai_title_tag":"Slip Length of Water in Carbon Nanoconfinements via MD Simulations","grobid_abstract":"Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.","publication_date":{"day":31,"month":10,"year":2019,"errors":{}},"publication_name":"DergiPark (Istanbul University)","grobid_abstract_attachment_id":112271379},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026260/Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation","translated_internal_url":"","created_at":"2024-03-09T22:50:58.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271379,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271379/thumbnails/1.jpg","file_name":"1244041.pdf","download_url":"https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hydrodynamic_Slip_Length_of_Water_in_Car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271379/1244041-libre.pdf?1710053849=\u0026response-content-disposition=attachment%3B+filename%3DHydrodynamic_Slip_Length_of_Water_in_Car.pdf\u0026Expires=1734042053\u0026Signature=Ii-sXPlUPc3gC8N8NwV0~Clc8i9~Pr91qGVPoTPkpKaRlyFE5Vv2VCqBBBkGXDwDAn2fhTFqlyR7AG0qHMgdlAOARxht064xc4L9R4b2eZWBLxJro3GImbdc0~a9~QIMISumdkGIYPXPHyTTXb-R689GV9G6G5sYorxs6G-Oz-VKtrTqShLIEnINt162aYKPA~DYM5cpDARQrD5p5z7YN88QVGTaoIHMlpGpnLJbuVzToU69g7TvHp~T5YvALmPiObthUGG~azNVkOreg77LTpYoYCvJGQJ-yebCyy25MykeWdCCGb36Qn3xYBvIj~YNS6-91ttTOcILPNoGIJTJmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hydrodynamic_Slip_Length_of_Water_in_Carbon_Based_Nanoconfinements_A_Molecular_Dynamics_Investigation","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271379,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271379/thumbnails/1.jpg","file_name":"1244041.pdf","download_url":"https://www.academia.edu/attachments/112271379/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hydrodynamic_Slip_Length_of_Water_in_Car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271379/1244041-libre.pdf?1710053849=\u0026response-content-disposition=attachment%3B+filename%3DHydrodynamic_Slip_Length_of_Water_in_Car.pdf\u0026Expires=1734042053\u0026Signature=Ii-sXPlUPc3gC8N8NwV0~Clc8i9~Pr91qGVPoTPkpKaRlyFE5Vv2VCqBBBkGXDwDAn2fhTFqlyR7AG0qHMgdlAOARxht064xc4L9R4b2eZWBLxJro3GImbdc0~a9~QIMISumdkGIYPXPHyTTXb-R689GV9G6G5sYorxs6G-Oz-VKtrTqShLIEnINt162aYKPA~DYM5cpDARQrD5p5z7YN88QVGTaoIHMlpGpnLJbuVzToU69g7TvHp~T5YvALmPiObthUGG~azNVkOreg77LTpYoYCvJGQJ-yebCyy25MykeWdCCGb36Qn3xYBvIj~YNS6-91ttTOcILPNoGIJTJmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":952571,"name":"Music Information Dynamics","url":"https://www.academia.edu/Documents/in/Music_Information_Dynamics"}],"urls":[{"id":40181209,"url":"https://dergipark.org.tr/tr/download/article-file/1244041"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels"><img alt="Research paper thumbnail of The role of water models on the prediction of slip length of water in graphene nanochannels" class="work-thumbnail" src="https://attachments.academia-assets.com/112271395/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels">The role of water models on the prediction of slip length of water in graphene nanochannels</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Nov 7, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac1a371f657a3c35cab1e7fe8fe7b982" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271395,&quot;asset_id&quot;:116026258,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026258]").text(description); $(".js-view-count[data-work-id=116026258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac1a371f657a3c35cab1e7fe8fe7b982" } } $('.js-work-strip[data-work-id=116026258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026258,"title":"The role of water models on the prediction of slip length of water in graphene nanochannels","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.","publication_date":{"day":7,"month":11,"year":2019,"errors":{}},"publication_name":"Journal of Chemical Physics","grobid_abstract_attachment_id":112271395},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026258/The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels","translated_internal_url":"","created_at":"2024-03-09T22:50:57.800-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271395/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_role_of_water_models_on_the_predicti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271395/download-libre.pdf?1710053829=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_water_models_on_the_predicti.pdf\u0026Expires=1734042053\u0026Signature=Kt3r-cCqw37K9TGHahu0v82ZXI1N8fqKQ~ysRO~HoZyoe9rFz2ctWfDvgOh0KyNWKLYsjUqmYityeQKQy0oLzcrLz03sjC32b2ZAhYfD4Q-WeG1RiCM2mD50DPbgATqv1Neu~u8LKngwmMHelK-wv9Pd0H-c~iX305o~Xt5iSLvJ3w0f5eOVoAFr-C~75RJOJNxjqbu0ZXfnsZbO93~vwVgM2Bs05M7XCF84PjhTlwqMGo9P6UxIDWKtjRjHU1gFPLw3nioAMPHZjh~iYRG5QGpuCaBBAVy-Iyfy2TEZ2mJ5j5SOapbnESMusuj1ni9YAGE7Pv9AMlbmU~imsr~7Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_role_of_water_models_on_the_prediction_of_slip_length_of_water_in_graphene_nanochannels","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271395/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/112271395/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_role_of_water_models_on_the_predicti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271395/download-libre.pdf?1710053829=\u0026response-content-disposition=attachment%3B+filename%3DThe_role_of_water_models_on_the_predicti.pdf\u0026Expires=1734042053\u0026Signature=Kt3r-cCqw37K9TGHahu0v82ZXI1N8fqKQ~ysRO~HoZyoe9rFz2ctWfDvgOh0KyNWKLYsjUqmYityeQKQy0oLzcrLz03sjC32b2ZAhYfD4Q-WeG1RiCM2mD50DPbgATqv1Neu~u8LKngwmMHelK-wv9Pd0H-c~iX305o~Xt5iSLvJ3w0f5eOVoAFr-C~75RJOJNxjqbu0ZXfnsZbO93~vwVgM2Bs05M7XCF84PjhTlwqMGo9P6UxIDWKtjRjHU1gFPLw3nioAMPHZjh~iYRG5QGpuCaBBAVy-Iyfy2TEZ2mJ5j5SOapbnESMusuj1ni9YAGE7Pv9AMlbmU~imsr~7Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":40181207,"url":"https://doi.org/10.1063/1.5123713"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026256"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump"><img alt="Research paper thumbnail of Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump">Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump</a></div><div class="wp-workCard_item"><span>Micro-Electro-Mechanical Systems (MEMS)</span><span>, Nov 15, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Uns...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026256"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026256"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026256; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026256]").text(description); $(".js-view-count[data-work-id=116026256]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026256; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026256']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026256, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026256]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026256,"title":"Micro-Fluidic Design and Fluid-Structure Interaction Analysis of a Micro-Pump","translated_title":"","metadata":{"abstract":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","publication_date":{"day":15,"month":11,"year":1998,"errors":{}},"publication_name":"Micro-Electro-Mechanical Systems (MEMS)"},"translated_abstract":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","internal_url":"https://www.academia.edu/116026256/Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump","translated_internal_url":"","created_at":"2024-03-09T22:50:57.393-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Micro_Fluidic_Design_and_Fluid_Structure_Interaction_Analysis_of_a_Micro_Pump","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Conceptual design of a reversible micro-pump system is demonstrated by numerical simulations. Unsteady, incompressible Navier-Stokes equations in a moving boundary system are solved by ΝεκΤαr, a spectral element (high-order) algorithm employing an Arbitrary Lagrangian Eulerian (ALE) formulation on unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynolds number and the geometric parameters. The volumetric flowrate is shown to increase as a function of the Reynolds number. However, the efficiency of the micro-pump decreases with increased Reynolds number, due to the increased leakage effects.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181205,"url":"https://doi.org/10.1115/imece1998-1225"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026254"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels"><img alt="Research paper thumbnail of Flow and Species Transport Control in Grooved Micro-Channels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels">Flow and Species Transport Control in Grooved Micro-Channels</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, elec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026254"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026254"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026254; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026254]").text(description); $(".js-view-count[data-work-id=116026254]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026254; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026254']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026254, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026254]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026254,"title":"Flow and Species Transport Control in Grooved Micro-Channels","translated_title":"","metadata":{"abstract":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","internal_url":"https://www.academia.edu/116026254/Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels","translated_internal_url":"","created_at":"2024-03-09T22:50:56.966-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Flow_and_Species_Transport_Control_in_Grooved_Micro_Channels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We demonstrate flow control concepts in a grooved micro-channel using selectively patterned, electroosmotically active surfaces and locally applied electric fields. This framework enables formation of rather complex flow patterns in simple micro-geometries. Ability to vary the electric field magnitude and its polarity also manifests time-dependent flow alterations, which results in flow and species transport control abilities. The results obtained in a single micro-groove constitute the proof of concept for flow and species transport ...","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":4130241,"name":"Control volume","url":"https://www.academia.edu/Documents/in/Control_volume"}],"urls":[{"id":40181203,"url":"https://doi.org/10.1115/imece2005-82111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026252"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall"><img alt="Research paper thumbnail of DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall" class="work-thumbnail" src="https://attachments.academia-assets.com/112271394/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall">DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall</a></div><div class="wp-workCard_item"><span>ELECTROPHORESIS</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles&amp;#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7de3f39bbadb069a8e9a612ca66d898f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271394,&quot;asset_id&quot;:116026252,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026252"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026252"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026252; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026252]").text(description); $(".js-view-count[data-work-id=116026252]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026252; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026252']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026252, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7de3f39bbadb069a8e9a612ca66d898f" } } $('.js-work-strip[data-work-id=116026252]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026252,"title":"DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall","translated_title":"","metadata":{"abstract":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","publisher":"Wiley","publication_name":"ELECTROPHORESIS"},"translated_abstract":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","internal_url":"https://www.academia.edu/116026252/DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall","translated_internal_url":"","created_at":"2024-03-09T22:50:56.408-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271394/thumbnails/1.jpg","file_name":"DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall.pdf","download_url":"https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DC_electrokinetic_motion_of_colloidal_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271394/DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall-libre.pdf?1710053818=\u0026response-content-disposition=attachment%3B+filename%3DDC_electrokinetic_motion_of_colloidal_cy.pdf\u0026Expires=1734042053\u0026Signature=V9eD4k-3ISIpsfY5RqRvxOdNBjW11pzgEjzQSMRkPa0OfPXGdG2WBFpAmuMe4ccyTgB2P7c31sXK0bRawlQBumeV01uuuhzYk6iI416ZI-Ou1I8bS196RjAd8m4fAp8T5V~lDDhKAJypAuZizPneNZ9dwpBDm6Ae8MK3FjyuH2lk7tqJRdnXnki~kPEmNe6NlBBxSKAyuW9mJQtjhug7DMtLQlbINoDe697~cOzuwagob4ePt9eizIhUymCpw3Z5Yx9tq3QP5Q1x~U7u8Vypxjh85-2FzSykotCr2wp0oZSfu2-cZXDiq0mr2PpJ5jNspMXeDOGMop9qDW2XTVrfMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"DC_electrokinetic_motion_of_colloidal_cylinder_s_in_the_vicinity_of_a_conducting_wall","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"The boundary effects on DC‐electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles\u0026#39; surfaces. The electrokinetic slip‐velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained...","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271394/thumbnails/1.jpg","file_name":"DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall.pdf","download_url":"https://www.academia.edu/attachments/112271394/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"DC_electrokinetic_motion_of_colloidal_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271394/DC_electrokinetic_motion_of_colloidal_cylinder_in_the_vicinity_of_a_conducting_wall-libre.pdf?1710053818=\u0026response-content-disposition=attachment%3B+filename%3DDC_electrokinetic_motion_of_colloidal_cy.pdf\u0026Expires=1734042053\u0026Signature=V9eD4k-3ISIpsfY5RqRvxOdNBjW11pzgEjzQSMRkPa0OfPXGdG2WBFpAmuMe4ccyTgB2P7c31sXK0bRawlQBumeV01uuuhzYk6iI416ZI-Ou1I8bS196RjAd8m4fAp8T5V~lDDhKAJypAuZizPneNZ9dwpBDm6Ae8MK3FjyuH2lk7tqJRdnXnki~kPEmNe6NlBBxSKAyuW9mJQtjhug7DMtLQlbINoDe697~cOzuwagob4ePt9eizIhUymCpw3Z5Yx9tq3QP5Q1x~U7u8Vypxjh85-2FzSykotCr2wp0oZSfu2-cZXDiq0mr2PpJ5jNspMXeDOGMop9qDW2XTVrfMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":126982,"name":"Drag","url":"https://www.academia.edu/Documents/in/Drag"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1115377,"name":"Colloid","url":"https://www.academia.edu/Documents/in/Colloid"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"}],"urls":[{"id":40181201,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/elps.202100266"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026250"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders"><img alt="Research paper thumbnail of Time-Periodic Forced Convection in Micro Heat Spreaders" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders">Time-Periodic Forced Convection in Micro Heat Spreaders</a></div><div class="wp-workCard_item"><span>Micro-Electro-Mechanical Systems (MEMS)</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026250"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026250"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026250; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026250]").text(description); $(".js-view-count[data-work-id=116026250]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026250; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026250']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026250, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026250]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026250,"title":"Time-Periodic Forced Convection in Micro Heat Spreaders","translated_title":"","metadata":{"abstract":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","publisher":"American Society of Mechanical Engineers","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Micro-Electro-Mechanical Systems (MEMS)"},"translated_abstract":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","internal_url":"https://www.academia.edu/116026250/Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders","translated_internal_url":"","created_at":"2024-03-09T22:50:56.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_Periodic_Forced_Convection_in_Micro_Heat_Spreaders","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A new micro heat spreader (MHS) concept for efficient dissipation of large, concentrated heat loads is introduced. The MHS is a single-phase, closed micro-fluidic system, which utilize time-periodic forced convection cooling. We verified the MHS concept by numerically simulating its operation under various conditions. Our parametric studies have shown that, unlike the steady laminar forced convection, the Nusselt number for time-periodic forced convection laminar flows have strong dependence on the Reynolds and Prandtl numbers. The increase in the Nusselt number indicates enhanced cooling capability of the MHS device. Based on our parametric studies, we calculated the optimum operation conditions, device dimensions and the maximum heat-dissipation rates.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":2728759,"name":"Micro-Electro-Mechanical Systems (MEMS) technology","url":"https://www.academia.edu/Documents/in/Micro-Electro-Mechanical_Systems_MEMS_technology"}],"urls":[{"id":40181199,"url":"https://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/doi/10.1115/IMECE2000-1119/6787629/375_1_imece2000-1119.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026248"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday"><img alt="Research paper thumbnail of Professor Satish G. Kandlikar on His 70th Birthday" class="work-thumbnail" src="https://attachments.academia-assets.com/112271372/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday">Professor Satish G. Kandlikar on His 70th Birthday</a></div><div class="wp-workCard_item"><span>Journal of Thermal Science and Engineering Applications</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. H...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ddd6d888f4288ff444d896f4e9dd35e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271372,&quot;asset_id&quot;:116026248,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026248"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026248"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026248; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026248]").text(description); $(".js-view-count[data-work-id=116026248]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026248; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026248']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026248, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ddd6d888f4288ff444d896f4e9dd35e" } } $('.js-work-strip[data-work-id=116026248]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026248,"title":"Professor Satish G. Kandlikar on His 70th Birthday","translated_title":"","metadata":{"publisher":"ASME International","grobid_abstract":"is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Thermal Science and Engineering Applications","grobid_abstract_attachment_id":112271372},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026248/Professor_Satish_G_Kandlikar_on_His_70th_Birthday","translated_internal_url":"","created_at":"2024-03-09T22:50:55.569-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271372,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271372/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271372/tsea_12_6_060301-libre.pdf?1710053812=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=eZju~a12GLaLfkmxQWNy~Zi1Ix-3lZmv3HVNtY1VsvT7AjlNHgPRjWaF295FLbuzyDS-hzgs8VNh8JHLqvEMwAlaW3y5gLsBmHY~jiX6jWZU75AbuMXsP1xEcosxYzVkWXYjjLtizY6rXJBsiwtgG6VDRiI47wHNNbkOWmNi~-e0IlBrMUg6uGRO60JHTYLJevqxNReWq3CpVz17JIMuknS1S0iDymNIZljRhLfX1r~mZpWfh6LD2ulD58OOifeTKlDtAbU7IlFWqWcs7w6uN99pdwaKxsicnhRrMmswFlk~LFRinheSNfQqsVc-NRHN1oqe~JdvmiGUCjT2l2oxgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Professor_Satish_G_Kandlikar_on_His_70th_Birthday","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"is one of the well-known names in the field of flow boiling. He was born in June 1950 in India. He received his B.S. in Mechanical Engineering from Marathawada University, India. He received his M.S. and Ph.D. degrees from the Department of Mechanical Engineering at the Indian Institute of Technology (IIT) in Mumbai, India. His supervisor was Prof. S. P. Sukhatme. After finishing his Ph.D. in 1975, Prof. Kandlikar became a faculty member in the Department of Mechanical Engineering at IIT before coming to Rochester Institute of Technology (RIT), in Rochester, New York, in 1980. Currently, he is the Gleason Professor of Mechanical Engineering in the Department of Mechanical Engineering, Rochester Institute of Technology. He was the founder of the RIT Thermal Analysis and Microfluidics Laboratory in 1990, which examines essential phenomena related to microscale fluid dynamics and mechanics. During his career at RIT, Prof. Kandlikar became involved in several activities. For instance, he founded the ASME Heat Transfer chapter in Rochester. He also founded and served as the first Chairman of the E-cubed fair-science and engineering fair for middle school students in celebration of Engineers Week.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271372,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271372/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271372/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271372/tsea_12_6_060301-libre.pdf?1710053812=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=eZju~a12GLaLfkmxQWNy~Zi1Ix-3lZmv3HVNtY1VsvT7AjlNHgPRjWaF295FLbuzyDS-hzgs8VNh8JHLqvEMwAlaW3y5gLsBmHY~jiX6jWZU75AbuMXsP1xEcosxYzVkWXYjjLtizY6rXJBsiwtgG6VDRiI47wHNNbkOWmNi~-e0IlBrMUg6uGRO60JHTYLJevqxNReWq3CpVz17JIMuknS1S0iDymNIZljRhLfX1r~mZpWfh6LD2ulD58OOifeTKlDtAbU7IlFWqWcs7w6uN99pdwaKxsicnhRrMmswFlk~LFRinheSNfQqsVc-NRHN1oqe~JdvmiGUCjT2l2oxgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112271373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271373/thumbnails/1.jpg","file_name":"tsea_12_6_060301.pdf","download_url":"https://www.academia.edu/attachments/112271373/download_file","bulk_download_file_name":"Professor_Satish_G_Kandlikar_on_His_70th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271373/tsea_12_6_060301-libre.pdf?1710053810=\u0026response-content-disposition=attachment%3B+filename%3DProfessor_Satish_G_Kandlikar_on_His_70th.pdf\u0026Expires=1734042053\u0026Signature=Shc6RsumOCYX09bR0afsdU6-kUqBNvqJnBPIGfJXFiJ6kE~5LKREbb1PVPl2b5FI8T4eFflmJQX1hk61PXl5iKs~7Jlr90GX1zhiIiwcc6tZTe2y5vUd046e0axDES-6t~CzeyzUhf9J3aS2FYWDJpXAJZUSQjzVQLC2rDetr0IV0pADIQTX98vwMByBqDuIGWAMxE-rroHbVIj6n3obf9aQKdW3eaMow70FjUeU4wbJZAX2xcIFQYgIoQYX5YxXVN7x0GxYKSPY61JtAyxwxVwlfetnVPJ8XQJH51wqL4QINryQYJ2a94Bw63rrqLB1w-HtWG3ELC-cWTB0z7GGig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":40181197,"url":"http://asmedigitalcollection.asme.org/thermalscienceapplication/article-pdf/doi/10.1115/1.4048813/6599013/tsea_12_6_060301.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026246"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids"><img alt="Research paper thumbnail of Interface Resistance and Thermal Transport in Nano-Confined Liquids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids">Interface Resistance and Thermal Transport in Nano-Confined Liquids</a></div><div class="wp-workCard_item"><span>Analysis, Design, and Application</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Miniaturization of microelectronic device components and the development of nano– electro– mechan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026246"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026246]").text(description); $(".js-view-count[data-work-id=116026246]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026246']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026246, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026246]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026246,"title":"Interface Resistance and Thermal Transport in Nano-Confined Liquids","translated_title":"","metadata":{"abstract":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Analysis, Design, and Application"},"translated_abstract":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","internal_url":"https://www.academia.edu/116026246/Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids","translated_internal_url":"","created_at":"2024-03-09T22:50:55.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interface_Resistance_and_Thermal_Transport_in_Nano_Confined_Liquids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Miniaturization of microelectronic device components and the development of nano– electro– mechanical systems require advanced understanding of thermal transport in nano-materials and devices, where the atomic nature of matter becomes important and the validity of well-known continuum approximations becomes questionable [1]. In the case of semiconductors and insulators, heat is carried primarily by vibrations in the crystal lattice known as phonons. Phonon transport is classically studied by lattice dynamics based on harmonic wave theory in the frequency space. However, the anharmonic behaviors forming in a crystal structure cannot be described with this theory. Alternatively, the coupled motions of the atoms in real space can be modeled by molecular dynamics (MD), which provides the natural formation and transport of phonons via vibrations in the crystal lattice. Hence, MD has been widely employed to model phonon transfer in nanostructures and channels [2,3]. The performance and reliability of aforementioned devices strongly depend on the removal of heat either to the ambient or to a coolant. In such cases, phonon transport observed at the interfaces of nanoscale device components and surrounding/confined fluid, or at the interfaces of suspended nanoparticles and fluid medium in nano-fluidic coolants plays a critical role. At such interfaces, heat transfer is interrupted with a temperature jump due to the deficiency in overlap between phonon dispersions of dissimilar materials. Classical theories considering specular or diffuse phonon scattering predict the upper or lower limits of interface thermal resistance (ITR), while a detailed investigation of intermolecular interactions is needed to resolve interface phonon scattering mechanisms. In this chapter, we present interface phonon transfer at the molecular level, and investigate the validity of continuum hypothesis and Fourier’s law in nano-channels. First, we focus on the conventional ways of using MD for heat transport problems. Most of the previous MD research sandwiched a liquid domain between two solid walls and induced heat flux by fixing the wall CONTENTS","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":323827,"name":"Thermal Resistance","url":"https://www.academia.edu/Documents/in/Thermal_Resistance"},{"id":3113671,"name":"interfacial thermal resistance","url":"https://www.academia.edu/Documents/in/interfacial_thermal_resistance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026244"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models"><img alt="Research paper thumbnail of Molecular-Based Microfluidic Simulation Models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models">Molecular-Based Microfluidic Simulation Models</a></div><div class="wp-workCard_item"><span>Mechanical Engineering Series</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026244"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026244"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026244; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026244]").text(description); $(".js-view-count[data-work-id=116026244]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026244; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026244']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026244, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116026244]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026244,"title":"Molecular-Based Microfluidic Simulation Models","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Mechanical Engineering Series"},"translated_abstract":null,"internal_url":"https://www.academia.edu/116026244/Molecular_Based_Microfluidic_Simulation_Models","translated_internal_url":"","created_at":"2024-03-09T22:50:54.919-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Molecular_Based_Microfluidic_Simulation_Models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":3597075,"name":"Mechanical Engineering Series","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering_Series"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116026231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination"><img alt="Research paper thumbnail of Charged nanoporous graphene membranes for water desalination" class="work-thumbnail" src="https://attachments.academia-assets.com/112271369/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination">Charged nanoporous graphene membranes for water desalination</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Water desalination using positively and negatively charged single-layer nanoporous graphene membr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1befb1170f57d415b55a8583b95fe8a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112271369,&quot;asset_id&quot;:116026231,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116026231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116026231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116026231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116026231]").text(description); $(".js-view-count[data-work-id=116026231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116026231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116026231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116026231, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1befb1170f57d415b55a8583b95fe8a7" } } $('.js-work-strip[data-work-id=116026231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116026231,"title":"Charged nanoporous graphene membranes for water desalination","translated_title":"","metadata":{"abstract":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","internal_url":"https://www.academia.edu/116026231/Charged_nanoporous_graphene_membranes_for_water_desalination","translated_internal_url":"","created_at":"2024-03-09T22:49:50.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112271369,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271369/thumbnails/1.jpg","file_name":"670ea2576aa1bb75b733861a577212578a67.pdf","download_url":"https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membranes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271369/670ea2576aa1bb75b733861a577212578a67-libre.pdf?1710053820=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membranes_fo.pdf\u0026Expires=1734042053\u0026Signature=V3DuexnD7t-xoEXVrwxzhzlsIkBvLjHwCPMENniNR~piJUtv8BMzdvbTjmbTm2muOndsnyFRDiYjL2GW-XRu2GrA5pHgdqILQM2Jw6wAh39nN3nCgTVcPU5wnbVkYpyk3~-UKw8cHd57t63TED6amMgsJRcdbKhle~q~xio~rZCzJw1RZCoCpElhwUrLbHxNgxUWt309iatOyiYfBdBjb0HUtM6lhRvxNvDHHeM1xGVHiU4Q1O4j9IDLAdzuhkzSHrC~BJDRYYla7cJGVtM1KNW~3TI90tWTzxkAuKt1iW93gTEJX2odEko3lPmczPq2IT-z1rkt6qg1-QfSqEpgPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Charged_nanoporous_graphene_membranes_for_water_desalination","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Water desalination using positively and negatively charged single-layer nanoporous graphene membranes.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":112271369,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112271369/thumbnails/1.jpg","file_name":"670ea2576aa1bb75b733861a577212578a67.pdf","download_url":"https://www.academia.edu/attachments/112271369/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Charged_nanoporous_graphene_membranes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112271369/670ea2576aa1bb75b733861a577212578a67-libre.pdf?1710053820=\u0026response-content-disposition=attachment%3B+filename%3DCharged_nanoporous_graphene_membranes_fo.pdf\u0026Expires=1734042053\u0026Signature=V3DuexnD7t-xoEXVrwxzhzlsIkBvLjHwCPMENniNR~piJUtv8BMzdvbTjmbTm2muOndsnyFRDiYjL2GW-XRu2GrA5pHgdqILQM2Jw6wAh39nN3nCgTVcPU5wnbVkYpyk3~-UKw8cHd57t63TED6amMgsJRcdbKhle~q~xio~rZCzJw1RZCoCpElhwUrLbHxNgxUWt309iatOyiYfBdBjb0HUtM6lhRvxNvDHHeM1xGVHiU4Q1O4j9IDLAdzuhkzSHrC~BJDRYYla7cJGVtM1KNW~3TI90tWTzxkAuKt1iW93gTEJX2odEko3lPmczPq2IT-z1rkt6qg1-QfSqEpgPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination"},{"id":84131,"name":"Water Desalination","url":"https://www.academia.edu/Documents/in/Water_Desalination"},{"id":87336,"name":"Nanoporous","url":"https://www.academia.edu/Documents/in/Nanoporous"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":40181185,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CP/C9CP01079C"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910236"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems"><img alt="Research paper thumbnail of Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/109304049/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems">Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, Aug 5, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37765b25a7918c3e7b310530b83a8d34" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109304049,&quot;asset_id&quot;:111910236,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910236"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910236"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910236; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910236]").text(description); $(".js-view-count[data-work-id=111910236]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910236; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910236']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910236, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37765b25a7918c3e7b310530b83a8d34" } } $('.js-work-strip[data-work-id=111910236]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910236,"title":"Self-Similar Response of Electrode Polarization for Binary Electrolytes in Parallel Plate Capacitor Systems","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.","publication_date":{"day":5,"month":8,"year":2019,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":109304049},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910236/Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems","translated_internal_url":"","created_at":"2023-12-20T05:35:44.068-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109304049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109304049/thumbnails/1.jpg","file_name":"acs.analchem.9b0216220231220-1-j3v9wf.pdf","download_url":"https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Similar_Response_of_Electrode_Polar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109304049/acs.analchem.9b0216220231220-1-j3v9wf-libre.pdf?1703079930=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Similar_Response_of_Electrode_Polar.pdf\u0026Expires=1734042053\u0026Signature=HvAHh8apkB~RAG18hyELiPSGOwK3xvYmatvuY2nghn4DOL8wyrZxFGF5GV-F-r3w~eUXjuJJncZwGPH5vmFpa4DR8hhH4j6pgrcznt1u16sX9PJIlRgXPoGa3XFyCKwz9hln2mdvxe2-oAaS0Id2y4ItPJwMjxMhT9bBZddJMzUw3spFQ1svM5tmNhSwjG1CpxukaUAVfDDWJyQNWOdIPW-pjKgWbX~sK8t5W8m7LWGE2DZ7NI~RYaT7u0KZqe1sd93~QE9UtE3QVqsjpILQSn4w3TbB9CqjhdG8YFcxmXXwPnSW5TixpZEFFYisGBOlufc2dgtlX4YBQM3DoDFrNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_Similar_Response_of_Electrode_Polarization_for_Binary_Electrolytes_in_Parallel_Plate_Capacitor_Systems","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external AC voltage is revisited. The Nernst-Planck equations are simplified to Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, , a function of the Debye length, , the electrode separation distance, = , and the ionic diffusion coefficient. Normalizing the impedance magnitude with the solution resistance, and making the frequency dimensionless with the , we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a singlel curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at AC potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":109304049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109304049/thumbnails/1.jpg","file_name":"acs.analchem.9b0216220231220-1-j3v9wf.pdf","download_url":"https://www.academia.edu/attachments/109304049/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Similar_Response_of_Electrode_Polar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109304049/acs.analchem.9b0216220231220-1-j3v9wf-libre.pdf?1703079930=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Similar_Response_of_Electrode_Polar.pdf\u0026Expires=1734042053\u0026Signature=HvAHh8apkB~RAG18hyELiPSGOwK3xvYmatvuY2nghn4DOL8wyrZxFGF5GV-F-r3w~eUXjuJJncZwGPH5vmFpa4DR8hhH4j6pgrcznt1u16sX9PJIlRgXPoGa3XFyCKwz9hln2mdvxe2-oAaS0Id2y4ItPJwMjxMhT9bBZddJMzUw3spFQ1svM5tmNhSwjG1CpxukaUAVfDDWJyQNWOdIPW-pjKgWbX~sK8t5W8m7LWGE2DZ7NI~RYaT7u0KZqe1sd93~QE9UtE3QVqsjpILQSn4w3TbB9CqjhdG8YFcxmXXwPnSW5TixpZEFFYisGBOlufc2dgtlX4YBQM3DoDFrNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99790,"name":"Dielectric Spectroscopy","url":"https://www.academia.edu/Documents/in/Dielectric_Spectroscopy"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1746947,"name":"Nernst Equation","url":"https://www.academia.edu/Documents/in/Nernst_Equation"}],"urls":[{"id":37452637,"url":"https://doi.org/10.1021/acs.analchem.9b02162"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910235"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor"><img alt="Research paper thumbnail of Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor" class="work-thumbnail" src="https://attachments.academia-assets.com/109303971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor">Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, May 4, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Conventional immunosensors typically rely on passive diffusion dominated transport of analytes fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce611c41ff61091767e46c059b20b71e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109303971,&quot;asset_id&quot;:111910235,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910235"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910235"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910235; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910235]").text(description); $(".js-view-count[data-work-id=111910235]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910235; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910235']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910235, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce611c41ff61091767e46c059b20b71e" } } $('.js-work-strip[data-work-id=111910235]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910235,"title":"Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.","publication_date":{"day":4,"month":5,"year":2020,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":109303971},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910235/Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor","translated_internal_url":"","created_at":"2023-12-20T05:35:43.832-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109303971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303971/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303971/RRRapid_20and_20sensitive-libre.pdf?1703079943=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=d9vDRJHP2b01B604RwLefQVux2~aq26iXoXQT0HYGDNnW~B-4GF6HNojFDSR4nBgAb0AmjKoZ5EkxNaCkYNDgliqMgKe6ht~aF0XFK2UeaVVBbtUggqEQYXTvyxvaVJuuMc2aFja577YCKIoTSfxT-qOa0E128LTxxULnDzd~gCIBPnkDWqSwYgT9r1aVbIaQtXdymiuPRso0GqRdAz8fqn9zcG5xU9yDJCSPkRM4KO1Zm3Wps02OKYVgfcJFaKXqV1dXVHm5~JlQ3wp7TYxeVyS9R0aXTnU9b4XJnbCByLpOfnbRRdIj~PtaHh10p1awYZKVBd7zZdtexp7mLDwpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rapid_and_Sensitive_Detection_of_Nanomolecules_by_an_AC_Electrothermal_Flow_Facilitated_Impedance_Immunosensor","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/ml. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring biomolecules in biologically relevant media such as blood, urine, and saliva.","owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[{"id":109303971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303971/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303971/download_file?st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&st=MTczNDAzODQ1Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303971/RRRapid_20and_20sensitive-libre.pdf?1703079943=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=d9vDRJHP2b01B604RwLefQVux2~aq26iXoXQT0HYGDNnW~B-4GF6HNojFDSR4nBgAb0AmjKoZ5EkxNaCkYNDgliqMgKe6ht~aF0XFK2UeaVVBbtUggqEQYXTvyxvaVJuuMc2aFja577YCKIoTSfxT-qOa0E128LTxxULnDzd~gCIBPnkDWqSwYgT9r1aVbIaQtXdymiuPRso0GqRdAz8fqn9zcG5xU9yDJCSPkRM4KO1Zm3Wps02OKYVgfcJFaKXqV1dXVHm5~JlQ3wp7TYxeVyS9R0aXTnU9b4XJnbCByLpOfnbRRdIj~PtaHh10p1awYZKVBd7zZdtexp7mLDwpg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109303970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109303970/thumbnails/1.jpg","file_name":"RRRapid_20and_20sensitive.pdf","download_url":"https://www.academia.edu/attachments/109303970/download_file","bulk_download_file_name":"Rapid_and_Sensitive_Detection_of_Nanomol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109303970/RRRapid_20and_20sensitive-libre.pdf?1703079941=\u0026response-content-disposition=attachment%3B+filename%3DRapid_and_Sensitive_Detection_of_Nanomol.pdf\u0026Expires=1734042053\u0026Signature=Z~U3PzYKnWXr2jYiF8rFoYXhsYz~JtmzUCwC4ckf1MYhfmQFWsWa5zkM9SGKm2YT0e3JoKpkrwBtNJI3h9W0E~lLmHNVhgODcjWyshJelJFpJNZUwfl2Wj1oeftcJv47wv5sWOeEI~VCsOFBKGC-8DdVrbtV6JPdKgVJy4L9CQwAf6Rtvtl0HwrLuEYe~TrXFdZpjgR3FkMMUKdL~Plgtw4ooJm3wVNVwlJUyU6kji~HDJxgN1fup0JzYIqKkcv9AxFzr4DghuayMgej2pQBq1zdUe7ychRQbdrotc~UQQj75Fuu9tFw-3AntHvQYOlzPZf3Q0oxUvDVx6Si2uil2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":2493627,"name":"Electrical Impedance","url":"https://www.academia.edu/Documents/in/Electrical_Impedance"}],"urls":[{"id":37452636,"url":"https://repository.kaust.edu.sa/bitstream/10754/662812/1/RRRapid%20and%20sensitive.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111910234"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels"><img alt="Research paper thumbnail of Surface Wettability Effects on Evaporating Meniscus in Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels">Surface Wettability Effects on Evaporating Meniscus in Nanochannels</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111910234"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111910234"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111910234; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111910234]").text(description); $(".js-view-count[data-work-id=111910234]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111910234; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111910234']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111910234, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111910234]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111910234,"title":"Surface Wettability Effects on Evaporating Meniscus in Nanochannels","translated_title":"","metadata":{"publisher":"Social Science Electronic Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Social Science Research Network"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111910234/Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels","translated_internal_url":"","created_at":"2023-12-20T05:35:43.620-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":103082674,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Surface_Wettability_Effects_on_Evaporating_Meniscus_in_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":103082674,"first_name":"Ali","middle_initials":null,"last_name":"Beskok","page_name":"ABeskok","domain_name":"smu","created_at":"2019-02-21T14:44:03.747-08:00","display_name":"Ali Beskok","url":"https://smu.academia.edu/ABeskok"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":211877,"name":"Wetting","url":"https://www.academia.edu/Documents/in/Wetting"},{"id":474021,"name":"Evaporator","url":"https://www.academia.edu/Documents/in/Evaporator"},{"id":2494836,"name":"Meniscus","url":"https://www.academia.edu/Documents/in/Meniscus"}],"urls":[{"id":37452635,"url":"https://doi.org/10.2139/ssrn.4074377"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "aaa87737c185959e25164d96aecab6ddc9f734b7befeb51869c3f350e6783f8c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="B5TVG4gXw5ZVFrWLqgv3LBu+X7C7YvHBq1FTbxqMZyWrs/VSEBfvJaZxG3OAk45BZ+AHWZBVkHB6+KQJM1pGdw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://smu.academia.edu/ABeskok" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="MHa5N+dBRoERuHOhaRr2abpqxP2sHfYmgA2yORRvweGcUZl+f0FqMuLf3VlDgo8ExjScFIcql5dRpEVfPbngsw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10