CINXE.COM

(PDF) Perspectives on continuum flow models for force-driven nano-channel liquid flows

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="yPYiS+hlZyAiR1bHq7wZBeo4I5tlqSjf3aLbFU/uKbGDeX52amXDz1BNmB2gWMDOFhhq4sYxe4DoUZR4Gayycg==" /> <meta name="citation_title" content="Perspectives on continuum flow models for force-driven nano-channel liquid flows" /> <meta name="citation_publication_date" content="2017/11/20" /> <meta name="citation_journal_title" content="Bulletin of the American Physical Society" /> <meta name="citation_author" content="Ali Beskok" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows" /> <meta name="twitter:title" content="Perspectives on continuum flow models for force-driven nano-channel liquid flows" /> <meta name="twitter:description" content="Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum" /> <meta name="twitter:image" content="https://0.academia-photos.com/103082674/22882576/22029746/s200_ali.beskok.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows" /> <meta property="og:title" content="Perspectives on continuum flow models for force-driven nano-channel liquid flows" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum" /> <meta property="article:author" content="https://smu.academia.edu/ABeskok" /> <meta name="description" content="Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum" /> <title>(PDF) Perspectives on continuum flow models for force-driven nano-channel liquid flows</title> <link rel="canonical" href="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '9cc56b6b72378ebfe43f03f7b6e11f169e3fb47d'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734052196000); window.Aedu.timeDifference = new Date().getTime() - 1734052196000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Ali Beskok"}],"contributor":[],"dateCreated":"2024-03-09","dateModified":"2024-11-24","datePublished":"2017-11-20","headline":"Perspectives on continuum flow models for force-driven nano-channel liquid flows","image":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","inLanguage":"en","keywords":["Materials Science","Mechanics"],"publication":"Bulletin of the American Physical Society","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Cambridge University Press"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"smu"}],"thumbnailUrl":"https://attachments.academia-assets.com/112271377/thumbnails/1.jpg","url":"https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "5b8b69837c7a3d21c971210664f9c3ac6f1ff44d5150e20f14584adb6c9674ec", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="YMIo68zdnoYtPBxyvAKmRDJySiUoxkKUf2pJc7WvuygrTXTWTt06aV820qi35n+PzlIDXIteEctKmQYe4+0g6w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="OCUmk57QvFpkdku7cHjyxvBpDQV6oN0ySsL0FqmqwupzqnquHNAYtRZ8hWF7nCsNDElEfNk4jm1/Mbt7/+hZKQ==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-1e0a91de9afc71f3bcc9819f839d05fb16da3cae88cee3bdd331b09732fa6b3e.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 103082674; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F116026264%2FPerspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F116026264%2FPerspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":112271377,"identifier":"Attachment_112271377","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":116026264,"created_at":"2024-03-09T22:50:58.991-08:00","from_world_paper_id":251165509,"updated_at":"2024-11-24T18:54:55.050-08:00","_data":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.","publication_date":"2017,11,20","publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":"112271377"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"low","language":"en","title":"Perspectives on continuum flow models for force-driven nano-channel liquid flows","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [103082674]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:112271377,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Perspectives on continuum flow models for force-driven nano-channel liquid flows”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/112271377/mini_magick20240310-1-vqmwcf.png?1710053495" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Perspectives on continuum flow models for force-driven nano-channel liquid flows</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="103082674" href="https://smu.academia.edu/ABeskok"><img alt="Profile image of Ali Beskok" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/103082674/22882576/22029746/s65_ali.beskok.jpg" />Ali Beskok</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2017, Bulletin of the American Physical Society</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">1 page</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 116026264; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=116026264"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Submitted for the DFD17 Meeting of The American Physical Society Perspectives on continuum flow models for force-driven nanochannel liquid flows ALI BESKOK, JAFAR GHORBANIAN, ALPER CELEBI, Southern Methodist University-A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:112271377,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:112271377,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="112271377" data-landing_url="https://www.academia.edu/116026264/Perspectives_on_continuum_flow_models_for_force_driven_nano_channel_liquid_flows" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="29797777" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/29797777/A_phenomenological_continuum_model_for_force_driven_nano_channel_liquid_flows">A phenomenological continuum model for force-driven nano-channel liquid flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1024734" href="https://independent.academia.edu/jafarghorbanian">jafar ghorbanian</a></div><p class="ds-related-work--abstract ds2-5-body-sm">A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state, and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution, volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A phenomenological continuum model for force-driven nano-channel liquid flows&quot;,&quot;attachmentId&quot;:50254731,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/29797777/A_phenomenological_continuum_model_for_force_driven_nano_channel_liquid_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/29797777/A_phenomenological_continuum_model_for_force_driven_nano_channel_liquid_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="17412838" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17412838/Molecular_dynamics_simulation_of_liquid_argon_flow_in_nanochannels_using_different_potential_functions">Molecular dynamics simulation of liquid argon flow in nanochannels using different potential functions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37137442" href="https://independent.academia.edu/HabibAminfar">Habib Aminfar</a></div><p class="ds-related-work--abstract ds2-5-body-sm">The micro Poiseuille flow for liquid argon flowing in a nanoscale channel formed by two solid walls was studied in the present paper. The solid wall material was selected as platinum, which has well established interaction potential. We consider the intermolecular force not only among the liquid argon molecules, but also between the liquid argon atoms and the solid wall particles, therefore three regions, i.e. the liquid argon computation domain, the top and bottom solid wall regions are included for the force interaction. The present MD (Molecular Dynamics) simulation was performed without any assumptions at the wall surface. The objective of the study is to find how the flow and the slip boundaries at the wall surface are affected by the applied gravity force, or the shear rate. The MD simulations are performed in a nondimensional unit system, with the periodic boundary conditions applied except in the channel height direction. Once the steady state is reached, the macroscopic parameters are evaluated using the statistical mechanics approach. For all the cases tested numerically in the present paper, slip boundaries occur, and such slip velocity at the stationary wall surface increases with increasing the applied gravity force, or the shear rate. The slip length, which is defined as the distance that the liquid particles shall travel beyond the wall surfaces to reach the same velocity as the wall surface, sharply decreases at small shear rate, then slightly decreases with increasing the applied shear rate. We observe that the liquid viscosity remains nearly constant at small shear rates, and the Newtonian flow occurs. However, with increasing the shear rate, the viscosity increases and the non-Newtonian flow appears.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular dynamics simulation of liquid argon flow in nanochannels using different potential functions&quot;,&quot;attachmentId&quot;:42261863,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/17412838/Molecular_dynamics_simulation_of_liquid_argon_flow_in_nanochannels_using_different_potential_functions&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/17412838/Molecular_dynamics_simulation_of_liquid_argon_flow_in_nanochannels_using_different_potential_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="27786929" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27786929/Scale_effects_in_nano_channel_liquid_flows">Scale effects in nano‑channel liquid flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1024734" href="https://independent.academia.edu/jafarghorbanian">jafar ghorbanian</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52097670" href="https://independent.academia.edu/SarahBeskok">Sarah Beskok</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Force-driven liquid Argon flows both in nano-scale periodic domains and in Gold nano-channels are simulated using non-equilibrium molecular dynamics to investigate the scale and wall-force field effects. We examined variations in liquid density, viscosity, velocity profile, slip-length, shear stress and mass flow rate in different sized periodic-domains and nano-channels at a fixed thermodynamic state. In absence of walls, liquid Argon obeys Newton’s law of viscosity with the desired absolute viscosity in domains as small as 4 molecular diameters in height. Results prove that deviations from continuum solution is solely due to wall effects. Simulations in nano-channels with heights varying from 3.26 nm to 36 nm exhibit parabolic velocity profiles with constant slip length modeled by Navier-type slip boundary condition. Both channel averaged density and “apparent viscosity” decrease with reduced channel height, which has competing effects in determination of the mass flow rate. Density layering and wall force field induce deviations from Newton’s law of viscosity in the near wall region, while constant “apparent viscosity” with the deformation rate from a parabolic velocity profile successfully predicts shear stress in the bulk flow region.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Scale effects in nano‑channel liquid flows&quot;,&quot;attachmentId&quot;:48067298,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/27786929/Scale_effects_in_nano_channel_liquid_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/27786929/Scale_effects_in_nano_channel_liquid_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="16723210" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/16723210/Non_equilibrium_molecular_dynamics_investigation_of_parameters_affecting_planar_nanochannel_flows">Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4071363" href="https://uth.academia.edu/TheodorosKarakasidis">Theodoros Karakasidis</a></div><p class="ds-related-work--abstract ds2-5-body-sm">We present non-equilibrium molecular dynamics simulations of planar Poiseuille flow of liquid argon. Density, velocity, temperature and strain rate profiles across the channel are investigated for channels of width in the range 0.9-17.1nm. In channels of small width (0.9-2nm) the fluid is fully ordered in distinct layers. This ordering persists close to the walls even for wider channels and it is further affected by wall/fluid interaction characteristics while the fluid becomes homogeneous in the central part of the channel. Non-homogeneity in the central part of wider channels is observed only for low average fluid density. Fluid velocity can be successfully fitted by parabolas as system temperature, the magnitude of the external force and channel width increase or when the average fluid density decreases. Temperature distribution across the channel is uniform for fluid strain rates below a critical value.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows&quot;,&quot;attachmentId&quot;:39147105,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/16723210/Non_equilibrium_molecular_dynamics_investigation_of_parameters_affecting_planar_nanochannel_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/16723210/Non_equilibrium_molecular_dynamics_investigation_of_parameters_affecting_planar_nanochannel_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="10527531" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/10527531/Molecular_dynamics_simulation_of_nanoscale_liquid_flows">Molecular dynamics simulation of nanoscale liquid flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="25801481" href="https://independent.academia.edu/YuxiuLi">Yuxiu Li</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microfluidics and Nanofluidics, 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">Molecular dynamics (MD) simulation is a powerful tool to investigate the nanoscale fluid flow. In this article, we review the methods and the applications of MD simulation in liquid flows in nanochannels. For pressuredriven flows, we focus on the fundamental research and the rationality of the model hypotheses. For electrokineticdriven flows and the thermal-driven flows, we concentrate on the principle of generating liquid motion. The slip boundary condition is one of the marked differences between the macro-and micro-scale flows and the nanoscale flows. In this article, we review the parameters controlling the degree of boundary slip and the new findings. MD simulation is based on the Newton&#39;s second law to simulate the particles&#39; interactions and consists of several important processing methods, such as the thermal wall model, the cut-off radius, and the initial condition. Therefore, we also reviewed the recent improvement in these key methods to make the MD simulation more rational and efficient. Finally, we summarized the important discoveries in this research field and proposed some worthwhile future research directions.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular dynamics simulation of nanoscale liquid flows&quot;,&quot;attachmentId&quot;:47324869,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/10527531/Molecular_dynamics_simulation_of_nanoscale_liquid_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/10527531/Molecular_dynamics_simulation_of_nanoscale_liquid_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="107211161" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/107211161/Molecular_dynamics_simulation_of_nanochannel_flows_with_effects_of_wall_lattice_fluid_interactions">Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36015510" href="https://fcu.academia.edu/CYSoong">CY Soong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Physical Review E, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">In the present paper, molecular dynamics simulations are performed to explore the effects of wall latticefluid interactions on the hydrodynamic characteristics in nanochannels. Couette and Poiseuille flows of liquid argon with channel walls of face-centered cubic ͑fcc͒ lattice structure are employed as the model configurations. Truncated and shifted Lennard-Jones ͑LJ͒ 12-6 potentials for evaluations of fluid-fluid and wall-fluid interactions, and a nonlinear spring potential for wall-wall interaction, are used as interatomistic or molecular models. The hydrodynamics at various flow orientation angles with respect to channel walls of lattice planes ͑111͒, ͑100͒, and ͑110͒ are explored. The present work discloses that the effects of key parameters, such as wall density, lattice plane, flow orientation, and LJ interaction energy, have a very significant impact on the nanochannel flow characteristics. The related interfacial phenomena and the underlying physical mechanisms are explored and interpreted. These results are significant in the understanding of nanoscale hydrodynamics, as well as in various applications where an accurate nanoscale flow rate control is necessary.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions&quot;,&quot;attachmentId&quot;:105946178,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/107211161/Molecular_dynamics_simulation_of_nanochannel_flows_with_effects_of_wall_lattice_fluid_interactions&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/107211161/Molecular_dynamics_simulation_of_nanochannel_flows_with_effects_of_wall_lattice_fluid_interactions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="32510011" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/32510011/Temperature_profiles_and_heat_fluxes_observed_in_molecular_dynamics_simulations_of_force_driven_liquid_flows">Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1024734" href="https://independent.academia.edu/jafarghorbanian">jafar ghorbanian</a></div><p class="ds-related-work--abstract ds2-5-body-sm">This paper concentrates on the unconventional temperature profiles and heat fluxes observed in non-equilibrium molecular dynamics (MD) simulations of force-driven liquid flows in nano-channels. Using MD simulations of liquid argon flows in gold nano-channels, we investigate the manifestation of the first law of thermodynamics for the MD system, and compare it with that of the continuum fluid mechanics. While the energy equation for the continuum system results in heat conduction determined by viscous heating, the first law of thermodynamics in the MD system includes an additional slip-heating term. Interaction strength between argon and gold molecules is varied in order to investigate the effects of slip-velocity on the slip-heating term and the resulting temperature profiles. Heat fluxes and temperature profiles from &#39;&#39;continuum&#39;&#39;, &#39;&#39;continuum augmented with slip-heating&#39;&#39;, and &#39;&#39;heat conduction due to the power input by the driving force&#39;&#39; are modeled and compared with the MD results. The continuum model can neither predict the heat fluxes nor the temperature profiles from MD simulations. While the continuum model augmented with slip-heating matches the MD heat fluxes, the resulting temperature profiles do not agree with the MD predictions. Overall the analytical model based on &#39;&#39;heat conduction due to power input by the driving force&#39;&#39; matches the heat fluxes from MD simulations, while the temperature profiles match MD predictions using an effective thermal conductivity that is about 70% of the thermodynamic value. Using different liquid–wall pairs affects the slip velocity, temperature jump, and the resulting thermal conductivity of the fluid, but results in similar physical observations. The inability of the MD method in mimicking continuum fluid mechanics in energy transport for force-driven liquid flows is scale independent, and it is more likely a numerical artifact.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows&quot;,&quot;attachmentId&quot;:52695128,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/32510011/Temperature_profiles_and_heat_fluxes_observed_in_molecular_dynamics_simulations_of_force_driven_liquid_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/32510011/Temperature_profiles_and_heat_fluxes_observed_in_molecular_dynamics_simulations_of_force_driven_liquid_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="40023055" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40023055/Thermal_interactions_in_nanoscale_fluid_flow_Molecular_dynamics_simulations_with_solid_liquid_interfaces">Thermal interactions in nanoscale fluid flow: Molecular dynamics simulations with solid-liquid interfaces</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44309463" href="https://independent.academia.edu/TCagin">Tahir Cagin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microfluidics and Nanofluidics, 2008</p><p class="ds-related-work--abstract ds2-5-body-sm">Molecular dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model interactions and thermal exchange at the wall-fluid interface. We present a new interactive thermal wall model that can properly simulate the flow and heat transfer in nano-scale channels. The new model utilizes fluid molecules freely interacting with the thermally oscillating wall molecules, which are connected to the lattice positions with &#39;&#39;bonds&#39;&#39;. Thermostats are applied separately to each layer of the walls to keep the wall temperature constant, while temperature of the fluid is sustained without the application of a thermostat. Two-dimensional MD simulation results for shear driven nano-channel flow shows parabolic temperature distribution within the domain, induced by viscous heating due to a constant shear rate. As a result of the Kapitza resistance, temperature profiles exhibit jumps at the fluid-wall interface. Time dependent simulation results for freezing of liquid argon in a nano-channel are also presented.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal interactions in nanoscale fluid flow: Molecular dynamics simulations with solid-liquid interfaces&quot;,&quot;attachmentId&quot;:60218648,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/40023055/Thermal_interactions_in_nanoscale_fluid_flow_Molecular_dynamics_simulations_with_solid_liquid_interfaces&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/40023055/Thermal_interactions_in_nanoscale_fluid_flow_Molecular_dynamics_simulations_with_solid_liquid_interfaces"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="40635129" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40635129/Molecular_dynamics_simulation_of_fluid_flow_passing_through_a_nanochannel_Effects_of_geometric_shape_of_roughnesses">Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5734988" href="https://iaukhsh.academia.edu/DavoodToghraie">Dr. Davood Toghraie</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ScienceDirect, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, we investigate the effects of geometric shape of various roughnesses on the fluid flow passing through a nanochannel by using of molecular dynamics simulation. The results of simulations are presented for the modeled structures (the five models defined) as number density, velocity, and system temperature profiles for various conditions. By applying roughness to the inner surface of the ideal nano-channel at a thrust force of 0.002 eV/Å, the amplitude of number density of the fluid particles near the walls decreased, while the mean and maximum velocities increased by 6.5% and 2.5% in the presence of square cuboid and hemispheroid roughness , respectively. Furthermore, the dimensionless slip velocity and slip length were, respectively, increased by a maximum of 41.1% and 21.5% in the presence of square cuboid roughness and by a minimum of 0.9% and 0.5% in the presence of hemispheroid roughness. The temperature of the particles at the center of the nano-channel was increased by a maximum of 9.1% and a minimum of 2.8% in the presence of square cuboid and hemispheroid roughness, respectively. Calculation of the Argon-Argon radial distribution function indicated that the maximum of this function decreased by a maximum of 11.8% and a minimum of 8.5% in the presence of rectangular cuboid and ellipsoid roughness, respectively, compared to the ideal nano-channel.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses&quot;,&quot;attachmentId&quot;:60916113,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/40635129/Molecular_dynamics_simulation_of_fluid_flow_passing_through_a_nanochannel_Effects_of_geometric_shape_of_roughnesses&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/40635129/Molecular_dynamics_simulation_of_fluid_flow_passing_through_a_nanochannel_Effects_of_geometric_shape_of_roughnesses"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="3474543" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3474543/Non_equilibrium_Molecular_Dynamics_Simulations_of_Channel_Flows">Non-equilibrium Molecular Dynamics Simulations of Channel Flows</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4071363" href="https://uth.academia.edu/TheodorosKarakasidis">Theodoros Karakasidis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><p class="ds-related-work--abstract ds2-5-body-sm">We present non-equilibrium molecular dynamics simulations of liquid argon flow through nano-channels formed by two infinite krypton plates. Density, velocity and temperature distributions across the channel are studied for channels widths in the range 2.65σ-18.58σ (σ is the argon atom diameter). For small channels (2.65σ-7.9σ) the fluid is ordered in layers and this ordering persists close to the walls even for wider channels. Velocity profiles in small channels deviate from the parabolic behavior predicted by continuum theory. The no-slip condition breaks down in small channels for all external forces and system temperatures studied while for large channels it is always satisfied. For channels of intermediate width the validity of the no-slip condition depends on the system temperature and the magnitude of the driving force. Temperature distribution remains uniform across the channel for values of the driving force below a threshold value which depends on channel width. We calculated also the diffusion coefficient, D, along the flow (x-direction) and across the channel (z-direction). The ratio Dz/Dx increases as the channel width increases with diffusion being higher in layers close to the center of the flow. Acknowledgment: The authors acknowledge financial support of the Hellenic Secretariat for Research &amp; Technology under grant pened-03-uth-3337.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Non-equilibrium Molecular Dynamics Simulations of Channel Flows&quot;,&quot;attachmentId&quot;:50268753,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/3474543/Non_equilibrium_Molecular_Dynamics_Simulations_of_Channel_Flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/3474543/Non_equilibrium_Molecular_Dynamics_Simulations_of_Channel_Flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:112271377,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:112271377,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_112271377" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="16723192" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/16723192/Fluid_Flow_at_the_Nanoscale_How_Fluid_Properties_Deviate_from_the_Bulk">Fluid Flow at the Nanoscale: How Fluid Properties Deviate from the Bulk</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4071363" href="https://uth.academia.edu/TheodorosKarakasidis">Theodoros Karakasidis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Fluid Flow at the Nanoscale: How Fluid Properties Deviate from the Bulk&quot;,&quot;attachmentId&quot;:39147091,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/16723192/Fluid_Flow_at_the_Nanoscale_How_Fluid_Properties_Deviate_from_the_Bulk&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/16723192/Fluid_Flow_at_the_Nanoscale_How_Fluid_Properties_Deviate_from_the_Bulk"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="15786647" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15786647/Unified_description_of_size_effects_of_transport_properties_of_liquids_flowing_in_nanochannels">Unified description of size effects of transport properties of liquids flowing in nanochannels</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34979675" href="https://uth.academia.edu/FSofos">F. Sofos</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4071363" href="https://uth.academia.edu/TheodorosKarakasidis">Theodoros Karakasidis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Heat and Mass Transfer, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Unified description of size effects of transport properties of liquids flowing in nanochannels&quot;,&quot;attachmentId&quot;:42888938,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/15786647/Unified_description_of_size_effects_of_transport_properties_of_liquids_flowing_in_nanochannels&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15786647/Unified_description_of_size_effects_of_transport_properties_of_liquids_flowing_in_nanochannels"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="60793697" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/60793697/Molecular_Dynamics_Study_on_Water_Flow_Behaviour_inside_Planar_Nanochannel_Using_Different_Temperature_Control_Strategies">Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4539305" href="https://lei.academia.edu/RobertasNavakas">Robertas Navakas</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Energies</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies&quot;,&quot;attachmentId&quot;:74079884,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/60793697/Molecular_Dynamics_Study_on_Water_Flow_Behaviour_inside_Planar_Nanochannel_Using_Different_Temperature_Control_Strategies&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/60793697/Molecular_Dynamics_Study_on_Water_Flow_Behaviour_inside_Planar_Nanochannel_Using_Different_Temperature_Control_Strategies"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="66867218" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/66867218/Transport_properties_of_fluids_in_nanochannels_bridging_nano_to_macro">Transport properties of fluids in nanochannels: bridging nano to macro</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4071363" href="https://uth.academia.edu/TheodorosKarakasidis">Theodoros Karakasidis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Transport properties of fluids in nanochannels: bridging nano to macro&quot;,&quot;attachmentId&quot;:77897989,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/66867218/Transport_properties_of_fluids_in_nanochannels_bridging_nano_to_macro&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/66867218/Transport_properties_of_fluids_in_nanochannels_bridging_nano_to_macro"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="77871727" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77871727/Effects_of_different_atomistic_water_models_on_the_velocity_profile_and_density_number_of_Poiseuille_flow_in_a_nano_channel_Molecular_Dynamic_Simulation">Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="221237101" href="https://usbuniversity.academia.edu/CNMSST">Challenges in Nano and Micro Scale Science and Technology</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Challenges in Nano and Micro Scale Science and Technology, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation&quot;,&quot;attachmentId&quot;:85114888,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/77871727/Effects_of_different_atomistic_water_models_on_the_velocity_profile_and_density_number_of_Poiseuille_flow_in_a_nano_channel_Molecular_Dynamic_Simulation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77871727/Effects_of_different_atomistic_water_models_on_the_velocity_profile_and_density_number_of_Poiseuille_flow_in_a_nano_channel_Molecular_Dynamic_Simulation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="70916558" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/70916558/Nonequilibrium_molecular_dynamics_simulations_of_nanoconfined_fluids_at_solid_liquid_interfaces">Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5292064" href="https://polito.academia.edu/PietroAsinari">Pietro Asinari</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Journal of chemical physics, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces&quot;,&quot;attachmentId&quot;:80469416,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/70916558/Nonequilibrium_molecular_dynamics_simulations_of_nanoconfined_fluids_at_solid_liquid_interfaces&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/70916558/Nonequilibrium_molecular_dynamics_simulations_of_nanoconfined_fluids_at_solid_liquid_interfaces"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="40023052" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40023052/Viscous_heating_in_nanoscale_shear_driven_liquid_flows">Viscous heating in nanoscale shear driven liquid flows</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44309463" href="https://independent.academia.edu/TCagin">Tahir Cagin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Microfluidics and Nanofluidics, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Viscous heating in nanoscale shear driven liquid flows&quot;,&quot;attachmentId&quot;:60218665,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/40023052/Viscous_heating_in_nanoscale_shear_driven_liquid_flows&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/40023052/Viscous_heating_in_nanoscale_shear_driven_liquid_flows"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="112786535" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112786535/Multi_parameter_analysis_of_water_flows_in_nanochannels">Multi-parameter analysis of water flows in nanochannels</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34979675" href="https://uth.academia.edu/FSofos">F. Sofos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">DESALINATION AND WATER TREATMENT, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multi-parameter analysis of water flows in nanochannels&quot;,&quot;attachmentId&quot;:109909909,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/112786535/Multi_parameter_analysis_of_water_flows_in_nanochannels&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112786535/Multi_parameter_analysis_of_water_flows_in_nanochannels"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="24779624" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24779624/Micro_and_nanoscale_fluid_flow_on_chemical_channels">Micro- and nanoscale fluid flow on chemical channels</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39681609" href="https://independent.academia.edu/JensHarting">Jens Harting</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Soft Matter, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Micro- and nanoscale fluid flow on chemical channels&quot;,&quot;attachmentId&quot;:45107886,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/24779624/Micro_and_nanoscale_fluid_flow_on_chemical_channels&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24779624/Micro_and_nanoscale_fluid_flow_on_chemical_channels"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="515814" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/515814/Equilibrium_molecular_dynamics_studies_on_nanoscale_confined_fluids">Equilibrium molecular dynamics studies on nanoscale-confined fluids</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="155301" href="https://iyte.academia.edu/MuratBarisik">Murat Barisik</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Equilibrium molecular dynamics studies on nanoscale-confined fluids&quot;,&quot;attachmentId&quot;:2473213,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/515814/Equilibrium_molecular_dynamics_studies_on_nanoscale_confined_fluids&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/515814/Equilibrium_molecular_dynamics_studies_on_nanoscale_confined_fluids"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="40575514" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40575514/Investigation_the_atomic_arrangement_and_stability_of_the_fluid_inside_a_rough_nanochannel_in_both_presence_and_absence_of_different_roughness_by_using_of_accurate_nano_scale_simulation">Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5734988" href="https://iaukhsh.academia.edu/DavoodToghraie">Dr. Davood Toghraie</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ScienceDirect, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation&quot;,&quot;attachmentId&quot;:60854977,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/40575514/Investigation_the_atomic_arrangement_and_stability_of_the_fluid_inside_a_rough_nanochannel_in_both_presence_and_absence_of_different_roughness_by_using_of_accurate_nano_scale_simulation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/40575514/Investigation_the_atomic_arrangement_and_stability_of_the_fluid_inside_a_rough_nanochannel_in_both_presence_and_absence_of_different_roughness_by_using_of_accurate_nano_scale_simulation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="22076463" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22076463/Anomalous_flow_behavior_in_nanochannels_A_molecular_dynamics_study">Anomalous flow behavior in nanochannels: A molecular dynamics study</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43372350" href="https://iit.academia.edu/SohailMurad">Sohail Murad</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Chemical Physics Letters, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Anomalous flow behavior in nanochannels: A molecular dynamics study&quot;,&quot;attachmentId&quot;:42751889,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/22076463/Anomalous_flow_behavior_in_nanochannels_A_molecular_dynamics_study&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/22076463/Anomalous_flow_behavior_in_nanochannels_A_molecular_dynamics_study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="657126" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/657126/Molecular_dynamics_simulations_of_shear_driven_gas_flows_in_nano_channels">Molecular dynamics simulations of shear-driven gas flows in nano-channels</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="155301" href="https://iyte.academia.edu/MuratBarisik">Murat Barisik</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Molecular dynamics simulations of shear-driven gas flows in nano-channels&quot;,&quot;attachmentId&quot;:3629704,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/657126/Molecular_dynamics_simulations_of_shear_driven_gas_flows_in_nano_channels&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/657126/Molecular_dynamics_simulations_of_shear_driven_gas_flows_in_nano_channels"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="116612464" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116612464/Thermodynamic_properties_of_gold_water_nanofluids_using_molecular_dynamics">Thermodynamic properties of gold–water nanofluids using molecular dynamics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33203939" href="https://independent.academia.edu/SamuelPaolucci">Samuel Paolucci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Nanoparticle Research, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermodynamic properties of gold–water nanofluids using molecular dynamics&quot;,&quot;attachmentId&quot;:112693650,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/116612464/Thermodynamic_properties_of_gold_water_nanofluids_using_molecular_dynamics&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/116612464/Thermodynamic_properties_of_gold_water_nanofluids_using_molecular_dynamics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="511" href="https://www.academia.edu/Documents/in/Materials_Science">Materials Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="512" href="https://www.academia.edu/Documents/in/Mechanics">Mechanics</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10