CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Heinsdorf, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Heinsdorf%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Heinsdorf, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Heinsdorf%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Heinsdorf, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14724">arXiv:2411.14724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14724">pdf</a>, <a href="https://arxiv.org/format/2411.14724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Edge-Edge Correlations without Edge-States: $畏$-clustering State as Ground State of the Extended Attractive SU(3) Hubbard Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+H">Hironobu Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsura%2C+H">Hosho Katsura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14724v1-abstract-short" style="display: inline;"> We explore the phase diagram of the extended attractive SU($3$) Hubbard chain with two-body hopping and nearest-neighbor attraction at half-filling. In the large on-site attraction limit, we identify three different phases: phase separation (PS), Tomonaga-Luttinger liquid (TLL), and charge density wave (CDW). Our analysis reveals that the $畏$-clustering state, a three-component generalization of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14724v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14724v1-abstract-full" style="display: none;"> We explore the phase diagram of the extended attractive SU($3$) Hubbard chain with two-body hopping and nearest-neighbor attraction at half-filling. In the large on-site attraction limit, we identify three different phases: phase separation (PS), Tomonaga-Luttinger liquid (TLL), and charge density wave (CDW). Our analysis reveals that the $畏$-clustering state, a three-component generalization of the $畏$-pairing state, becomes the ground state at the boundary between the PS and TLL phases. On an open chain, this state exhibits an edge-edge correlation, which we call boundary off-diagonal long-range order (bODLRO). Using the density matrix renormalization group (DMRG) method, we numerically study the phase diagram of the model with large but finite on-site interactions and find that the numerical results align with those obtained in the strong coupling limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14724v1-abstract-full').style.display = 'none'; document.getElementById('2411.14724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12789">arXiv:2410.12789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12789">pdf</a>, <a href="https://arxiv.org/format/2410.12789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic Instabilities from Quantum Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12789v1-abstract-short" style="display: inline;"> Altermagnets are a newly identified type of collinear anti-ferromagnetism with vanishing net magnetic moment, characterized by lifted Kramers&#39; degeneracy in parts of the Brillouin zone. Their time-reversal symmetry broken band structure has been observed experimentally and is theoretically well-understood. On the contrary, altermagnetic fluctuations and the formation of the corresponding instabili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12789v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12789v1-abstract-full" style="display: none;"> Altermagnets are a newly identified type of collinear anti-ferromagnetism with vanishing net magnetic moment, characterized by lifted Kramers&#39; degeneracy in parts of the Brillouin zone. Their time-reversal symmetry broken band structure has been observed experimentally and is theoretically well-understood. On the contrary, altermagnetic fluctuations and the formation of the corresponding instabilities remains largely unexplored. We establish a correspondence between the quantum metric of normal and the altermagnetic spin-splitting of ordered phases. We analytically derive a criterion for the formation of instabilities and show that the quantum metric favors altermagnetism. We recover the expression for conventional q=0 instabilities where the spin-splitting terms of the normal state model are locally absent. As an example, we construct an effective model of MnTe and illustrate the relationship between quantum geometry and altermagnetic fluctuations by explicitly computing the quantum metric and the generalized magnetic susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12789v1-abstract-full').style.display = 'none'; document.getElementById('2410.12789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01113">arXiv:2403.01113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01113">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Gapped nodal planes drive a large topological Nernst effect in a chiral lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khanh%2C+N+D">N. D. Khanh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minami%2C+S">S. Minami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschmann%2C+M">M. Hirschmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nomoto%2C+T">T. Nomoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M+C">M. C. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+R">R. Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">N. Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaguchi%2C+D">D. Yamaguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayashi%2C+Y">Y. Hayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamura%2C+Y">Y. Okamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+H">H. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G+Y">G. Y. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y">Y. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seki%2C+S">S. Seki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taguchi%2C+Y">Y. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arita%2C+R">R. Arita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschberger%2C+M">M. Hirschberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01113v3-abstract-short" style="display: inline;"> The electronic structure of compensated antiferromagnets (CAF) has drawn attention for its ability to create large responses, reminiscent of ferromagnets and suitable for data storage and readout, despite (nearly) net-zero spontaneous magnetization. Many of the striking experimental signatures predicted for CAF, such as giant thermoelectric Nernst effects, are enhanced when two or more electronic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01113v3-abstract-full').style.display = 'inline'; document.getElementById('2403.01113v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01113v3-abstract-full" style="display: none;"> The electronic structure of compensated antiferromagnets (CAF) has drawn attention for its ability to create large responses, reminiscent of ferromagnets and suitable for data storage and readout, despite (nearly) net-zero spontaneous magnetization. Many of the striking experimental signatures predicted for CAF, such as giant thermoelectric Nernst effects, are enhanced when two or more electronic bands are nearly degenerate in vicinity of the Fermi energy. Here, we use thermoelectric and electric transport experiments to study the electronic structure of the layered, chiral metal CoNb3S6 in its all-in-all-out CAF ground state and report near-degeneracies of electron bands at the upper and lower boundaries of the first Brillouin zone. Considering non-symmorphic spin-space group symmetries in the non-relativistic approximation for the ordered phase, these near-degeneracies are approximately protected by a lattice translation combined with spin rotation, and are vestiges of nodal planes enforced by a screw axis symmetry in the paramagnetic state. Hot spots of emergent, or fictitious, magnetic fields are formed at the slightly gapped nodal plane, generating the spontaneous Hall and Nernst effects in this CAF. Taking into account more than six hundred Wannier orbitals, our model quantitatively reproduces the observed spontaneous Nernst effect, emphasizes the role of proximate symmetries in the emergent responses of CAF, and demonstrates the promise of ab-initio search for functional responses in a wide class of materials with reconstructed unit cells due to spin or charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01113v3-abstract-full').style.display = 'none'; document.getElementById('2403.01113v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00910">arXiv:2403.00910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00910">pdf</a>, <a href="https://arxiv.org/format/2403.00910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Computational supremacy in quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+A+D">Andrew D. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">Alberto Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rams%2C+M+M">Marek M. Rams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dziarmaga%2C+J">Jacek Dziarmaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiersema%2C+R">Roeland Wiersema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernoudy%2C+W">William Bernoudy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raymond%2C+J">Jack Raymond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaushal%2C+N">Nitin Kaushal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+R">Richard Harris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothby%2C+K">Kelly Boothby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Altomare%2C+F">Fabio Altomare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berkley%2C+A+J">Andrew J. Berkley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschnak%2C+M">Martin Boschnak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+K">Kevin Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+H">Holly Christiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cibere%2C+S">Samantha Cibere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Connor%2C+J">Jake Connor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehn%2C+M+H">Martin H. Dehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deshpande%2C+R">Rahul Deshpande</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ejtemaee%2C+S">Sara Ejtemaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farr%C3%A9%2C+P">Pau Farr茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamer%2C+K">Kelsey Hamer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoskinson%2C+E">Emile Hoskinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shuiyuan Huang</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00910v1-abstract-short" style="display: inline;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations dem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00910v1-abstract-full" style="display: none;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations demand resources that grow exponentially with system size. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schr枚dinger equation. We demonstrate area-law scaling of entanglement in the model quench in two-, three- and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for classical approaches. We assess approximate methods based on tensor networks and neural networks and conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe. Thus quantum annealers can answer questions of practical importance that classical computers cannot. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'none'; document.getElementById('2403.00910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11402">arXiv:2311.11402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11402">pdf</a>, <a href="https://arxiv.org/ps/2311.11402">ps</a>, <a href="https://arxiv.org/format/2311.11402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Superconductivity and Electron-Phonon Drag in the Non-Centrosymmetric Weyl Semimetal LaRhGe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oudah%2C+M">Mohamed Oudah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+H">Hsiang-Hsi Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahu%2C+S">Samikshya Sahu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+A">Armin Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Philippi%2C+K">Kai Philippi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+M+D+T">Marta-Villa De Toro Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yipeng Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kojima%2C+K">Kenji Kojima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">Hidenori Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">Doug A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">Alannah M. Hallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11402v2-abstract-short" style="display: inline;"> We present an exploration of the effect of electron-phonon coupling and broken inversion symmetry on the electronic and thermal properties of the semimetal LaRhGe$_3$. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of $10^{21}\rm{/cm}^3$ with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11402v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11402v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11402v2-abstract-full" style="display: none;"> We present an exploration of the effect of electron-phonon coupling and broken inversion symmetry on the electronic and thermal properties of the semimetal LaRhGe$_3$. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of $10^{21}\rm{/cm}^3$ with high carrier mobilities of $2000~\rm{cm}^2/\rm{Vs}$. When coupled to our theoretical demonstration of symmetry-protected $\textit{almost movable}$ Weyl nodal lines, we conclude that LaRhGe$_3$ supports a Weyl semimetallic state. We discover superconductivity in this compound with a $T_{\text c}$ of 0.39(1) K and $B_{\rm{c}}(0)$ of 2.2(1) mT, with evidence from specific heat and transverse-field muon spin relaxation. We find an exponential dependence in the normal state electrical resistivity below $\sim50$ K, while Seebeck coefficient and thermal conductivity measurements each reveal a prominent peak at low temperatures, indicative of strong electron-phonon interactions. To this end, we examine the temperature-dependent Raman spectra of LaRhGe$_3$ and find that the lifetime of the lowest energy $A_1$ phonon is dominated by phonon-electron scattering instead of anharmonic decay. We conclude that LaRhGe$_3$ has strong electron-phonon coupling in the normal state, while the superconductivity emerges from weak electron-phonon coupling. These results open up the investigation of electron-phonon interactions in the normal state of superconducting non-centrosymmetric Weyl semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11402v2-abstract-full').style.display = 'none'; document.getElementById('2311.11402v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15113">arXiv:2309.15113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15113">pdf</a>, <a href="https://arxiv.org/format/2309.15113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fate of Bosonic Topological Edge Modes in the Presence of Many-Body Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joshi%2C+D+G">Darshan G. Joshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsura%2C+H">Hosho Katsura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15113v2-abstract-short" style="display: inline;"> Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon, or other quasi-particle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15113v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15113v2-abstract-full" style="display: none;"> Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon, or other quasi-particle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the non-interacting quasi-particle picture are most often identified as the reason for the absence of the topological edge modes. Here we report persistent bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. We use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that signatures of these edge modes survive even when the non-interacting quasi-particle theory breaks down, discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15113v2-abstract-full').style.display = 'none'; document.getElementById('2309.15113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05803">arXiv:2308.05803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05803">pdf</a>, <a href="https://arxiv.org/format/2308.05803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02629-3">10.1038/s41567-024-02629-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of the current-induced insulator-to-metal transition in Ca$_2$RuO$_4$ as revealed by transport-ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Suen%2C+C+T">Cissy T Suen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N">Na-Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+M">Michael Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">Pascal Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%BCrsich%2C+K">Katrin F眉rsich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmerman%2C+V">Valentin Zimmerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smit%2C+S">Steef Smit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Au-Yeung%2C+C">Christine Au-Yeung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">Berend Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krautloher%2C+M">Maximilian Krautloher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">Ilya S Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+R">Roland Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+M">Marcel Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05803v3-abstract-short" style="display: inline;"> The Mott insulator Ca$_2$RuO$_4$ exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05803v3-abstract-full').style.display = 'inline'; document.getElementById('2308.05803v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05803v3-abstract-full" style="display: none;"> The Mott insulator Ca$_2$RuO$_4$ exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the electronic states of Ca$_2$RuO$_4$ by employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with four-probe transport. Two main effects emerge: a clear reduction of the Mott gap and a modification in the dispersion of the Ru-bands. The changes in dispersion occur exclusively along the $XM$ high-symmetry direction, parallel to the $b$-axis where the greatest in-plane lattice change occurs. These experimental observations, together with dynamical mean-field theory (DMFT) calculations simulated from the current-induced structural distortions, indicate the intimate interplay of lattice and orbital-dependent electronic response in the current-driven IMT. Furthermore, based on a free energy analysis, we demonstrate that the current-induced phase, albeit thermodynamically equivalent, is electronically distinct from the high-temperature zero-current metallic phase. Our results provide insight into the elusive nature of the current-induced IMT of Ca$_2$RuO$_4$ and advance the challenging, yet powerful, technique of transport-ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05803v3-abstract-full').style.display = 'none'; document.getElementById('2308.05803v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08109">arXiv:2305.08109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08109">pdf</a>, <a href="https://arxiv.org/format/2305.08109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Higher Berry curvature from matrix product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shiozaki%2C+K">Ken Shiozaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohyama%2C+S">Shuhei Ohyama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08109v2-abstract-short" style="display: inline;"> The higher Berry curvature was introduced by Kapustin and Spodyneiko as an extension of the Berry curvature in quantum mechanical systems with finite degrees of freedom to quantum many-body systems in finite spatial dimensions. In this paper, we propose an alternative formulation of the higher Berry curvature using translationally invariant matrix product states. They are the ground states of a se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08109v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08109v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08109v2-abstract-full" style="display: none;"> The higher Berry curvature was introduced by Kapustin and Spodyneiko as an extension of the Berry curvature in quantum mechanical systems with finite degrees of freedom to quantum many-body systems in finite spatial dimensions. In this paper, we propose an alternative formulation of the higher Berry curvature using translationally invariant matrix product states. They are the ground states of a set of gapped Hamiltonians which are evolved adiabatically through a discretized parameter space. Because matrix product states transform under a projective representation, evaluating the Berry curvature on a closed loop through parameter space is not sufficient to fix all the gauge degrees of freedom. To obtain a gauge-invariant real quantity, the higher-dimensional Berry curvature is evaluated on small tetrahedra in parameter space. Our numerical calculations confirm that the higher Berry curvature varies continuously throughout an adiabatic evolution and becomes quantized over a closed 3-dimensional parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08109v2-abstract-full').style.display = 'none'; document.getElementById('2305.08109v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Sec. V-B-2, numerical calculation for random J1 J2 added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-23-52 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01477">arXiv:2303.01477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.01477">pdf</a>, <a href="https://arxiv.org/format/2303.01477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043165">10.1103/PhysRevResearch.5.043165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fundamental laws of chiral band crossings: local constraints, global constraints, and topological phase diagrams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alpin%2C+K">Kirill Alpin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschmann%2C+M+M">Moritz M. Hirschmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leonhardt%2C+A">Andreas Leonhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yau%2C+W+Y">Wan Yee Yau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01477v1-abstract-short" style="display: inline;"> We derive two fundamental laws of chiral band crossings: (i) a local constraint relating the Chern number to phase jumps of rotation eigenvalues; and (ii) a global constraint determining the number of chiral crossings on rotation axes. Together with the fermion doubling theorem, these laws describe all conditions that a network of chiral band crossing must satisfy. We apply the fundamental laws to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01477v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01477v1-abstract-full" style="display: none;"> We derive two fundamental laws of chiral band crossings: (i) a local constraint relating the Chern number to phase jumps of rotation eigenvalues; and (ii) a global constraint determining the number of chiral crossings on rotation axes. Together with the fermion doubling theorem, these laws describe all conditions that a network of chiral band crossing must satisfy. We apply the fundamental laws to prove the existence of enforced double Weyl points, nodal planes, and generic Weyl points, among others. In addition, we show that chiral space-group symmetries cannot stabilize nodal lines with finite Chern numbers. Combining the local constraint with explicit low-energy models, we determine the generic topological phase diagrams of all multi-fold crossings. Remarkably, we find a four-fold crossing with Chern number 5, which exceeds the previously conceived maximum Chern number of 4. We identify BaAsPt as a suitable material with this four-fold crossing exhibiting Chern number 5 near the Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01477v1-abstract-full').style.display = 'none'; document.getElementById('2303.01477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043165 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06190">arXiv:2212.06190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06190">pdf</a>, <a href="https://arxiv.org/format/2212.06190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.125111">10.1103/PhysRevB.107.125111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> IrF4: From Tetrahedral Compass Model to Topological Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+C">C. Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganter%2C+O">O. Ganter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">N. Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">S. M. Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06190v1-abstract-short" style="display: inline;"> The intersection of topology, symmetry, and magnetism yields a rich structure of possible phases. In this work, we study theoretically the consequences of magnetism on IrF4, which was recently identified as a possible candidate topological nodal chain semimetal in the absence of magnetic order. We show that the spin-orbital nature of the Ir moments gives rise to strongly anisotropic magnetic coupl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06190v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06190v1-abstract-full" style="display: none;"> The intersection of topology, symmetry, and magnetism yields a rich structure of possible phases. In this work, we study theoretically the consequences of magnetism on IrF4, which was recently identified as a possible candidate topological nodal chain semimetal in the absence of magnetic order. We show that the spin-orbital nature of the Ir moments gives rise to strongly anisotropic magnetic couplings resembling a tetrahedral compass model on a diamond lattice. The predicted magnetic ground state preserves key symmetries protecting the nodal lines, such that they persist into the ordered phase at the mean-field level. The consequences for other symmetry reductions are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06190v1-abstract-full').style.display = 'none'; document.getElementById('2212.06190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05375">arXiv:2108.05375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05375">pdf</a>, <a href="https://arxiv.org/format/2108.05375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.124202">10.1103/PhysRevMaterials.5.124202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry-enforced topological band crossings in orthorhombic crystals: Classification and materials discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leonhardt%2C+A">Andreas Leonhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschmann%2C+M+M">Moritz M. Hirschmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabini%2C+D+H">Douglas H. Fabini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05375v1-abstract-short" style="display: inline;"> We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large number of different band degeneracies, including movable Weyl and Dirac points with hourglass dispersions, fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable noda&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05375v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05375v1-abstract-full" style="display: none;"> We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large number of different band degeneracies, including movable Weyl and Dirac points with hourglass dispersions, fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable nodal lines, nodal chains, and topological nodal planes. Interestingly, spin-orbit coupled materials in the space groups 18, 36, 44, 45, and 46 can have band pairs with only two Weyl points in the entire Brillouin zone. This results in a simpler connectivity of the Fermi arcs and more pronounced topological responses than in materials with four or more Weyl points. In addition, we show that the symmetries of the space groups 56, 61, and 62 enforce nontrivial weak $\mathbb{Z}_2$ topology in materials with strong spin-orbit coupling, leading to helical surface states. With these classification results in hand, we perform extensive database searches for orthorhombic materials crystallizing in the relevant space groups. We find that Sr$_2$Bi$_3$ and Ir$_2$Si have bands crossing the Fermi energy with a symmetry-enforced nontrivial $\mathbb{Z}_2$ invariant, CuIrB possesses nodal chains near the Fermi energy, Pd$_7$Se$_4$ and Ag$_2$Se exhibit fourfold double Weyl points, the latter one even in the absence of spin-orbit coupling, whereas the fourfold degeneracies in AuTlSb are made up from intersecting nodal lines. For each of these examples we compute the ab-initio band structures, discuss their topologies, and for some cases also calculate the surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05375v1-abstract-full').style.display = 'none'; document.getElementById('2108.05375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures, supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 124202 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12324">arXiv:2102.12324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12324">pdf</a>, <a href="https://arxiv.org/format/2102.12324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.205419">10.1103/PhysRevB.104.205419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A semimetallic square-octagon (fes) two-dimensional polymer with high mobility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tsai-Jung Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springer%2C+M+A">Maximilian A. Springer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuc%2C+A">Agnieszka Kuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heine%2C+T">Thomas Heine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12324v2-abstract-short" style="display: inline;"> The electronic properties of $蟺$-conjugated two-dimensional (2D) polymers near the Fermi level are determined by structural topology and chemical composition. Thus, tight-binding (TB) calculations of the corresponding fundamental network can be used to explore the parameter space to find configurations with intriguing properties before designing the the atomistic 2D polymer network. The vertex-tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12324v2-abstract-full').style.display = 'inline'; document.getElementById('2102.12324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12324v2-abstract-full" style="display: none;"> The electronic properties of $蟺$-conjugated two-dimensional (2D) polymers near the Fermi level are determined by structural topology and chemical composition. Thus, tight-binding (TB) calculations of the corresponding fundamental network can be used to explore the parameter space to find configurations with intriguing properties before designing the the atomistic 2D polymer network. The vertex-transitive \textbf{fes} lattice, which is also called square-octagon lattice, is rich in interesting topological features including Dirac points and flat bands. Herein, we study its electronic and topological properties within the TB framework using representative parameters for chemical systems. Secondly, we demonstrate that the rational implementation of band structure features obtained from TB calculations into 2D polymers is feasible with a family of 2D polymers possessing \textbf{fes} structure. A one-to-one band structure correspondence between fundamental network and 2D polymers is found. Moreover, changing the relative length of linkers connecting the triangulene units in the 2D polymers reflect tuning of hopping parameters in the TB model. These perturbations allow to open sizeable local band gaps at various positions in the Brillouin zone. From analysis of Berry curvature flux, none of the polymers exhibits a large topologically non-trivial band gap. However, we find a particular configuration of semimetallic characteristics with separate electron and hole pockets, which possess very low effective masses both for electrons (as small as $m^*_\mathrm{e} = 0.05$) and holes (as small as $m^*_\mathrm{h} = 0.01$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12324v2-abstract-full').style.display = 'none'; document.getElementById('2102.12324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05301">arXiv:2101.05301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05301">pdf</a>, <a href="https://arxiv.org/format/2101.05301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.075101">10.1103/PhysRevB.104.075101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Double-Weyl Points in the Iron-Based Superconductor CaKFe$_4$As$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">N. Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+M+H">M. H. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">M. Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birol%2C+T">T. Birol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">R. Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">R. M. Fernandes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05301v1-abstract-short" style="display: inline;"> Employing a combination of symmetry analysis, low-energy modeling, and ab initio simulations, we predict the presence of magnetic-field-induced Weyl points close to the Fermi level in CaKFe$_4$As$_4$. Depending on the relative strengths of the magnetic field and of the spin-orbit coupling, the Weyl fermions can carry a topological charge of $\pm1$ or $\pm2$, making CaKFe$_4$As$_4$ a rare realizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05301v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05301v1-abstract-full" style="display: none;"> Employing a combination of symmetry analysis, low-energy modeling, and ab initio simulations, we predict the presence of magnetic-field-induced Weyl points close to the Fermi level in CaKFe$_4$As$_4$. Depending on the relative strengths of the magnetic field and of the spin-orbit coupling, the Weyl fermions can carry a topological charge of $\pm1$ or $\pm2$, making CaKFe$_4$As$_4$ a rare realization of a double-Weyl semimetal. We further predict experimental manifestations of these Weyl points, both in bulk properties, such as the anomalous Hall effect, and in surface properties, such as the emergence of prominent Fermi arcs. Because CaKFe$_4$As$_4$ displays unconventional fully-gapped superconductivity below 30 K, our findings open a novel route to investigate the interplay between superconductivity and Weyl fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05301v1-abstract-full').style.display = 'none'; document.getElementById('2101.05301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 075101 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04135">arXiv:2101.04135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.04135">pdf</a>, <a href="https://arxiv.org/format/2101.04135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.195125">10.1103/PhysRevB.104.195125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a Topological Quantum Chemistry description of correlated systems: the case of the Hubbard diamond chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lessnich%2C+D">Dominik Lessnich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertz%2C+T">Thomas Mertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+F">Francesco Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04135v1-abstract-short" style="display: inline;"> The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04135v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04135v1-abstract-full" style="display: none;"> The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is that it only applies to weakly interacting systems-which can be described within band theory. It is an open question to which extent this formalism can be generalized to correlated systems that can exhibit symmetry protected topological phases which are not adiabatically connected to any band insulator. In this work we address the many facettes of this question by considering the specific example of a Hubbard diamond chain. This model features a Mott insulator, a trivial insulating phase and an obstructed atomic limit phase. Here we discuss the nature of the Mott insulator and determine the phase diagram and topology of the interacting model with infinite density matrix renormalization group calculations, variational Monte Carlo simulations and with many-body topological invariants. We then proceed by considering a generalization of the TQC formalism to Green&#39;s functions combined with the concept of topological Hamiltonian to identify the topological nature of the phases, using cluster perturbation theory to calculate the Green&#39;s functions. The results are benchmarked with the above determined phase diagram and we discuss the applicability and limitations of the approach and its possible extensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04135v1-abstract-full').style.display = 'none'; document.getElementById('2101.04135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11246">arXiv:2009.11246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11246">pdf</a>, <a href="https://arxiv.org/format/2009.11246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L060506">10.1103/PhysRevB.103.L060506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic superconductivity and Fermi surface reconstruction in the spin-vortex antiferromagnetic superconductor CaK(Fe$_{0.95}$Ni$_{0.05}$)$_4$As$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Llorens%2C+J+B">Jos茅 Benito Llorens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrera%2C+E">Edwin Herrera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barrena%2C+V">V铆ctor Barrena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+B">Beilun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisov%2C+V">Vladislav Borisov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+W+R">William R. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S">Sergey Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guillam%C3%B3n%2C+I">Isabel Guillam贸n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suderow%2C+H">Hermann Suderow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11246v1-abstract-short" style="display: inline;"> High critical temperature superconductivity often occurs in systems where an antiferromagnetic order is brought near $T=0K$ by slightly modifying pressure or doping. CaKFe$_4$As$_4$ is a superconducting, stoichiometric iron pnictide compound showing optimal superconducting critical temperature with $T_c$ as large as $38$ K. Doping with Ni induces a decrease in $T_c$ and the onset of spin-vortex an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11246v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11246v1-abstract-full" style="display: none;"> High critical temperature superconductivity often occurs in systems where an antiferromagnetic order is brought near $T=0K$ by slightly modifying pressure or doping. CaKFe$_4$As$_4$ is a superconducting, stoichiometric iron pnictide compound showing optimal superconducting critical temperature with $T_c$ as large as $38$ K. Doping with Ni induces a decrease in $T_c$ and the onset of spin-vortex antiferromagnetic order, which consists of spins pointing inwards to or outwards from alternating As sites on the diagonals of the in-plane square Fe lattice. Here we study the band structure of CaK(Fe$_{0.95}$Ni$_{0.05}$)$_4$As$_4$ (T$_c$ = 10 K, T$_N$ = 50 K) using quasiparticle interference with a Scanning Tunneling Microscope (STM) and show that the spin-vortex order induces a Fermi surface reconstruction and a fourfold superconducting gap anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11246v1-abstract-full').style.display = 'none'; document.getElementById('2009.11246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, Supplemental Material on request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 060506 (2021) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10