CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;44 of 44 results for author: <span class="mathjax">Ho, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Ho%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ho, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ho%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ho, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20702">arXiv:2410.20702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Field-Induced Polar Order in Monolayer Molybdenum Disulfide Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+D">Duxing Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+W">Wen-Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yu-Chen Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tung Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C">Chen-Hsuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T+H">Tilo H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+N">Naoya Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Ming-Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chun-Liang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Ting-Hua Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Y">Yann-Wen Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeh%2C+N">Nai-Chang Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20702v1-abstract-short" style="display: inline;"> In semiconducting monolayer transition metal dichalcogenides (ML-TMDs), broken inversion symmetry and strong spin-orbit coupling result in spin-valley lock-in effects so that the valley degeneracy may be lifted by external magnetic fields, potentially leading to real-space structural transformation. Here, we report magnetic field (B)-induced giant electric hysteretic responses to back-gate voltage&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20702v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20702v1-abstract-full" style="display: none;"> In semiconducting monolayer transition metal dichalcogenides (ML-TMDs), broken inversion symmetry and strong spin-orbit coupling result in spin-valley lock-in effects so that the valley degeneracy may be lifted by external magnetic fields, potentially leading to real-space structural transformation. Here, we report magnetic field (B)-induced giant electric hysteretic responses to back-gate voltages in ML-MoS2 field-effect transistors (FETs) on SiO2/Si at temperatures &lt; 20 K. The observed hysteresis increases with |B| up to 12 T and is tunable by varying the temperature. Raman spectroscopic and scanning tunneling microscopic studies reveal significant lattice expansion with increasing |B| at 4.2 K, and this lattice expansion becomes asymmetric in ML-MoS2 FETs on rigid SiO2/Si substrates, leading to out-of-plane mirror symmetry breaking and the emergence of a tunable out-of-plane ferroelectric-like polar order. This broken symmetry-induced polarization in ML-MoS2 shows typical ferroelectric butterfly hysteresis in piezo-response force microscopy, adding ML-MoS2 to the single-layer material family that exhibit out-of-plane polar order-induced ferroelectricity, which is promising for such technological applications as cryo-temperature ultracompact non-volatile memories, memtransistors, and ultrasensitive magnetic field sensors. Moreover, the polar effect induced by asymmetric lattice expansion may be further generalized to other ML-TMDs and achieved by nanoscale strain engineering of the substrate without magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20702v1-abstract-full').style.display = 'none'; document.getElementById('2410.20702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16771">arXiv:2406.16771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16771">pdf</a>, <a href="https://arxiv.org/format/2406.16771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01219-8">10.1038/s41928-024-01219-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An antiferromagnetic diode effect in even-layered MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yacoby%2C+A">Amir Yacoby</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16771v2-abstract-short" style="display: inline;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16771v2-abstract-full" style="display: none;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric superconductors, realizing the superconducting diode effect. Here, we show that, even in a centrosymmetric crystal without directional charge separation, the spins of an antiferromagnet (AFM) can generate a spatial directionality, leading to an AFM diode effect. We observe large second-harmonic transport in a nonlinear electronic device enabled by the compensated AFM state of even-layered MnBi2Te4. We also report a novel electrical sum-frequency generation (SFG), which has been rarely explored in contrast to the well-known optical SFG in wide-gap insulators. We demonstrate that the AFM enables an in-plane field-effect transistor and harvesting of wireless electromagnetic energy. The electrical SFG establishes a powerful method to study nonlinear electronics built by quantum materials. The AFM diode effect paves the way for potential device concepts including AFM logic circuits, self-powered AFM spintronics, and other applications that potentially bridge nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'none'; document.getElementById('2406.16771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33+8 pages, 14+2 figures. arXiv admin note: text overlap with arXiv:2306.09575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 7, 751-759 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18577">arXiv:2403.18577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Octahedral and polar phase transitions in freestanding films of SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leroy%2C+L">Ludmila Leroy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ssegger%2C+J">Janine D枚ssegger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abreu%2C+E">Elsa Abreu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18577v1-abstract-short" style="display: inline;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18577v1-abstract-full" style="display: none;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties of the materials ground state. This paper reports the properties of freestanding (FS) films of the canonical oxide, SrTiO3 (STO) with thicknesses 20, 30, 40 and 80 nm. We show that the relaxed ultrathin STO FS films become polar at temperatures as high as 85 K, in contrast to the quantum paraelectric behavior of bulk. Our findings are based on the softening of the ferroelectric mode towards the ferroelectric transition temperature Tc and its consecutive hardening below Tc with further decreasing temperature, probed with THz time domain spectroscopy in transmission mode. We find almost no thickness dependence in Tc. Moreover, we characterize the antiferrodistortive (AFD) phase transition in STO FS by X-ray diffraction (XRD) probing superlattice reflections characteristic for the rotation of the TiO6 octahedra. Our results point to a higher phase transition temperature in comparison to bulk STO, as well as an unbalanced domain population favoring the rotation axis to be in plane. X-ray linear dichroism results further show a preferential Ti xz/yz orbital occupancy at the surface, but with a complete degeneracy in the t2g states in the inner part of the film indicating that the AFD distortion does not strongly affect the t2g splitting. These findings demonstrate that STO FS films have clearly different properties than bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'none'; document.getElementById('2403.18577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09549">arXiv:2401.09549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09549">pdf</a>, <a href="https://arxiv.org/format/2401.09549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interferometric Single-Shot Parity Measurement in an InAs-Al Hybrid Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghaee%2C+M">Morteza Aghaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+A+A">Alejandro Alcaraz Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alam%2C+Z">Zulfi Alam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+R">Rizwan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrzejczuk%2C+M">Mariusz Andrzejczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A">Andrey Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astafev%2C+M">Mikhail Astafev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barzegar%2C+A">Amin Barzegar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+B">Bela Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">Jonathan Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhaskar%2C+U+K">Umesh Kumar Bhaskar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bocharov%2C+A">Alex Bocharov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boddapati%2C+S">Srini Boddapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohn%2C+D">David Bohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bommer%2C+J">Jouri Bommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourdet%2C+L">Leo Bourdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bousquet%2C+A">Arnaud Bousquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boutin%2C+S">Samuel Boutin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casparis%2C+L">Lucas Casparis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapman%2C+B+J">Benjamin James Chapman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatoor%2C+S">Sohail Chatoor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+A+W">Anna Wulff Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chua%2C+C">Cassandra Chua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Codd%2C+P">Patrick Codd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+W">William Cole</a> , et al. (137 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09549v4-abstract-short" style="display: inline;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostruct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'inline'; document.getElementById('2401.09549v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09549v4-abstract-full" style="display: none;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostructures with a gate-defined nanowire. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of these quantum dots&#39; quantum capacitance of up to 1 fF. Our quantum capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio of 1 in 3.7 $渭$s at optimal flux values. From the time traces of the quantum capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. These results are consistent with a measurement of the fermion parity encoded in a pair of Majorana zero modes that are separated by approximately 3 $渭$m and subjected to a low rate of poisoning by non-equilibrium quasiparticles. The large capacitance shift and long poisoning time enable a parity measurement error probability of 1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'none'; document.getElementById('2401.09549v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added data on a second measurement of device A and a measurement of device B, expanded discussion of a trivial scenario. Refs added, author list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01300">arXiv:2401.01300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01300">pdf</a>, <a href="https://arxiv.org/format/2401.01300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01208">10.1021/acs.nanolett.3c01208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering the strain and interlayer excitons of 2D materials via lithographically engraved hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+Y">Yu-Chiang Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhen-You Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fung%2C+S">Shin-Ji Fung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wen-Shin Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siang-Ping Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chiu-Hua Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yang-Hao Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chung-Lin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tse-Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01300v1-abstract-short" style="display: inline;"> Strain engineering has quickly emerged as a viable option to modify the electronic, optical and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that by creating atomically-flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01300v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01300v1-abstract-full" style="display: none;"> Strain engineering has quickly emerged as a viable option to modify the electronic, optical and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that by creating atomically-flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality molybdenum disulfide. The phonon and exciton emissions are shown to vary in accordance with our strain field designs, enabling us to write and draw any photoluminescence color image in a single chip. Moreover, our strain engineering offers a powerful means to significantly and controllably alter the strengths and energies of interlayer excitons at room temperature. This method can be easily extended to other material systems and offers a promise for functional excitonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01300v1-abstract-full').style.display = 'none'; document.getElementById('2401.01300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 23, 7244-7251 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10408">arXiv:2312.10408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10408">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intra-Family Transformation of The Bi-Te Family via in-situ Chemical Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Zhihao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+T+S+M">Tin Seng Manfred Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">Rolf Lortz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sou%2C+I+K">Iam Keong Sou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10408v4-abstract-short" style="display: inline;"> The Bi-Te binary system, characterized by the homologous series of the (Bi2)m(Bi2Te3)n, has always attracted research interest for its layered structures and potential in advanced materials applications. Despite Bi2Te3 has been extensively studied, exploration of other compounds has been constrained by synthesis challenges. This study reports the molecular beam epitaxy (MBE) growth of FeTe on Bi2T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10408v4-abstract-full').style.display = 'inline'; document.getElementById('2312.10408v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10408v4-abstract-full" style="display: none;"> The Bi-Te binary system, characterized by the homologous series of the (Bi2)m(Bi2Te3)n, has always attracted research interest for its layered structures and potential in advanced materials applications. Despite Bi2Te3 has been extensively studied, exploration of other compounds has been constrained by synthesis challenges. This study reports the molecular beam epitaxy (MBE) growth of FeTe on Bi2Te3, demonstrating that varying growth conditions can turn the Bi2Te3 layer into different Bi-Te phases and form corresponding FeTe/Bi-Te heterostructures. Our combined analysis using reflection high-energy electron diffraction (RHEED), high-resolution X-ray diffraction (HRXRD), and high-resolution scanning transmission electron microscopy (HR-STEM), indicates that specific growth conditions used for the growth of the FeTe layer can facilitate the extraction of Te from Bi2Te3, leading to the formation of Bi4Te3 and Bi6Te3. Additionally, by lowering the FeTe growth temperature to 230 oC, Te extraction from the Bi2Te3 layer could be avoided, preserving the Bi2Te3 structure. Notably, all the three FeTe/Bi-Te structures exhibit superconductivity with the FeTe/Bi2Te3 heterostructure enjoying the highest superconductivity quality. These findings introduce a novel method for realizing Bi4Te3 and Bi6Te3 through Te extraction by growing FeTe on Bi2Te3, driven by the high reactivity between Fe and Te. This approach holds promise for synthesizing other members of the Bi-Te series, expanding the functional potential of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10408v4-abstract-full').style.display = 'none'; document.getElementById('2312.10408v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13465">arXiv:2308.13465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202311157">10.1002/adma.202311157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fr%C3%B6jdh%2C+E">Erik Fr枚jdh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baruffaldi%2C+F">Filippo Baruffaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carulla%2C+M">Maria Carulla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiaguo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergamaschi%2C+A">Anna Bergamaschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+C+A+F">Carlos A. F. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleibert%2C+A">Armin Kleibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13465v2-abstract-short" style="display: inline;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13465v2-abstract-full" style="display: none;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L$_3$ edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71掳 between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'none'; document.getElementById('2308.13465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting information available with published version: https://doi.org/10.1002/adma.202311157</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2024, 36, 2311157 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04701">arXiv:2308.04701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04701">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct and in situ examination of Li+ transport kinetics in isotope labelled solid electrolyte interphase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaofei Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Angarita-Gomez%2C+S">Stefany Angarita-Gomez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yaobin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peiyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jun-Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Hao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaolin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yingge Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhijie Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+J+S">Janet S. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balbuena%2C+P+B">Perla B. Balbuena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chongmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zihua Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04701v1-abstract-short" style="display: inline;"> Here, using unique in-situ liquid secondary ion mass spectroscopy on isotope-labelled solid-electrolyte-interphase (SEI), assisted by cryogenic transmission electron microscopy and constrained ab initio molecular dynamics simulation, for the first time we answer the question regarding Li+ transport mechanism across SEI, and quantitatively determine the Li+-mobility therein. We unequivocally unveil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04701v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04701v1-abstract-full" style="display: none;"> Here, using unique in-situ liquid secondary ion mass spectroscopy on isotope-labelled solid-electrolyte-interphase (SEI), assisted by cryogenic transmission electron microscopy and constrained ab initio molecular dynamics simulation, for the first time we answer the question regarding Li+ transport mechanism across SEI, and quantitatively determine the Li+-mobility therein. We unequivocally unveil that Li+ transport in SEI follows a mechanism of successive displacement, rather than &#34;direct-hopping&#34;. We further reveal, in accordance with spatial-dependence of SEI structure across the thickness, the apparent Li+ self-diffusivity varies from 6.7*10-19 m2/s to 1.0*10-20 m2/s, setting a quantitative gauging of ionic transport behavior of SEI layer against the underlining electrode as well as the rate limiting step of battery operation. This direct study on Li+ kinetics in SEI fills part of the decade-long knowledge gap about the most important component in advanced batteries and provides more precise guidelines to the tailoring of interphasial chemistries for future battery chemistries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04701v1-abstract-full').style.display = 'none'; document.getElementById('2308.04701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> None <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15603">arXiv:2307.15603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15603">pdf</a>, <a href="https://arxiv.org/format/2307.15603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47291-8">10.1038/s41467-024-47291-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear optical diode effect in a magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xue-Jian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hou-Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hung-Yu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng-Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Ying-Ming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuqiang Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fuqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15603v2-abstract-short" style="display: inline;"> Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimeta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15603v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15603v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15603v2-abstract-full" style="display: none;"> Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We show demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15603v2-abstract-full').style.display = 'none'; document.getElementById('2307.15603v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, SI included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun 15, 3017 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09575">arXiv:2306.09575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09575">pdf</a>, <a href="https://arxiv.org/format/2306.09575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf1506">10.1126/science.adf1506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09575v2-abstract-short" style="display: inline;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferroma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09575v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09575v2-abstract-full" style="display: none;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'none'; document.getElementById('2306.09575v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 381, 181-186 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07330">arXiv:2303.07330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07330">pdf</a>, <a href="https://arxiv.org/format/2303.07330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.195141">10.1103/PhysRevB.107.195141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical activity and transport in twisted bilayer graphene: the essence of spatial dispersion effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+T">S. Ta Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+V+N">V. Nam Do</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07330v1-abstract-short" style="display: inline;"> This study investigates optical activity and quantum transport in twisted bilayer graphene (TBG) systems, demonstrating that the former results from spatial dispersion effects. The transfer matrix method is used to solve the propagation of electromagnetic waves through two graphene layers that act as the coupling surfaces of a dielectric slab. The resulting optical conductivity tensor is decompose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07330v1-abstract-full').style.display = 'inline'; document.getElementById('2303.07330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07330v1-abstract-full" style="display: none;"> This study investigates optical activity and quantum transport in twisted bilayer graphene (TBG) systems, demonstrating that the former results from spatial dispersion effects. The transfer matrix method is used to solve the propagation of electromagnetic waves through two graphene layers that act as the coupling surfaces of a dielectric slab. The resulting optical conductivity tensor is decomposed into a local and a drag part, with the drag transverse conductivity $蟽_{xy}^{(drag)}$ governing the TBG system&#39;s optical property. An effective continuum model is employed to analyze electron state formation and calculate relevant parts of the optical conductivity tensor. Correlation of electron motions leads to incomplete cancellation and a finite $蟽_{xy}^{(drag)}$ in the chiral TBG lattice. The study also calculates DC conductivity, showing TBG supports quantum conductivity proportional to $e^2/h$ at the intrinsic Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07330v1-abstract-full').style.display = 'none'; document.getElementById('2303.07330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2205.12675</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05451">arXiv:2303.05451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05451">pdf</a>, <a href="https://arxiv.org/format/2303.05451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01493-5">10.1038/s41563-023-01493-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion optical induction of antiferromagnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zhenhao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B+B">Brian B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05451v1-abstract-short" style="display: inline;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05451v1-abstract-full" style="display: none;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics. In this paper, we report the surprising observation of helicity-dependent optical control of fully-compensated antiferromagnetic (AFM) order in 2D even-layered MnBi$_2$Te$_4$, a topological Axion insulator with neither chirality nor $M$. We further demonstrate helicity-dependent optical creation of AFM domain walls by double induction beams and the direct reversal of AFM domains by ultrafast pulses. The control and reversal of AFM domains and domain walls by light helicity have never been achieved in any fully-compensated AFM. To understand this optical control, we study a novel type of circular dichroism (CD) proportional to the AFM order, which only appears in reflection but is absent in transmission. We show that the optical control and CD both arise from the optical Axion electrodynamics, which can be visualized as a Berry curvature real space dipole. Our Axion induction provides the possibility to optically control a family of $\mathcal{PT}$-symmetric AFMs such as Cr$_2$O$_3$, CrI$_3$ and possibly novel states in cuprates. In MnBi$_2$Te$_4$, this further opens the door for optical writing of dissipationless circuit formed by topological edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'none'; document.getElementById('2303.05451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 583-590 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06823">arXiv:2302.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xcrp.2023.101762">10.1016/j.xcrp.2023.101762 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proximity-induced quasi-one-dimensional superconducting quantum anomalous Hall state: a promising scalable top-down approach towards localized Majorana modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Atanov%2C+O">Omargeldi Atanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+W+T">Wai Ting Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Ying-Ming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+Y+H">Yat Hei Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammond%2C+M+A">Molly A. Hammond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+T+S+M">Tin Seng Manfred Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+T+H">Tsin Hei Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+L">Sui Lun Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+J">Jian Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+S">Sukong Chong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiannong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">Rolf Lortz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06823v1-abstract-short" style="display: inline;"> In this work, ~100 nm wide quantum anomalous Hall insulator (QAHI) nanoribbons are etched from a two-dimensional QAHI film. One part of the nanoribbon is covered with superconducting Nb, while the other part is connected to an Au lead via two-dimensional QAHI regions. Andreev reflection spectroscopy measurements were performed, and multiple in-gap conductance peaks were observed in three different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06823v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06823v1-abstract-full" style="display: none;"> In this work, ~100 nm wide quantum anomalous Hall insulator (QAHI) nanoribbons are etched from a two-dimensional QAHI film. One part of the nanoribbon is covered with superconducting Nb, while the other part is connected to an Au lead via two-dimensional QAHI regions. Andreev reflection spectroscopy measurements were performed, and multiple in-gap conductance peaks were observed in three different devices. In the presence of an increasing magnetic field perpendicular to the QAHI film, the multiple in-gap peak structure evolves into a single zero-bias conductance peak (ZBCP). Theoretical simulations suggest that the measurements are consistent with the scenario that the increasing magnetic field drives the nanoribbons from a multi-channel occupied regime to a single channel occupied regime, and that the ZBCP may be induced by zero energy Majorana modes as previously predicted [24]. Although further experiments are needed to clarify the nature of the ZBCP, we provide initial evidence that quasi-1D QAHI nanoribbon/superconductor heterostructures are new and promising platforms for realizing zero-energy Majorana modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06823v1-abstract-full').style.display = 'none'; document.getElementById('2302.06823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Cell Reports Physical Science 5, 101762 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03919">arXiv:2208.03919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03919">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Interfacial superconductivity and zero bias peak in quasi-one-dimensional Bi2Te3/Fe1+yTe heterostructure nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M+K">Man Kit Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+C+Y">Cheuk Yin Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+L">Sui Lun Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atanov%2C+O">Omargeldi Atanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+W+T">Wai Ting Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">Rolf Lortz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sou%2C+I+K">Iam Keong Sou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03919v4-abstract-short" style="display: inline;"> Bi2Te3/Fe1+yTe heterostructures are known to exhibit interfacial superconductivity between two non-superconducting materials: Fe1+yTe as the parent compound of Fe-based superconducting materials and the topological insulator Bi2Te3. Here, we present a top-down approach starting from two-dimensional (2D) heterostructures to fabricate one-dimensional (1D) Bi2Te3/Fe1+yTe nanowires or narrow nanoribbo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03919v4-abstract-full').style.display = 'inline'; document.getElementById('2208.03919v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03919v4-abstract-full" style="display: none;"> Bi2Te3/Fe1+yTe heterostructures are known to exhibit interfacial superconductivity between two non-superconducting materials: Fe1+yTe as the parent compound of Fe-based superconducting materials and the topological insulator Bi2Te3. Here, we present a top-down approach starting from two-dimensional (2D) heterostructures to fabricate one-dimensional (1D) Bi2Te3/Fe1+yTe nanowires or narrow nanoribbons. We demonstrate that the Bi2Te3/Fe1+yTe heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin-gap structure as in two-dimensional heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero-bias conductance peak indicates the presence of an Andreev bound state and given the involvement of the topological Bi2Te3 surface state, we discuss a possible topological nature of superconductivity with strong interplay with an emerging ferromagnetism due to the interstitial excess iron in the Fe1+yTe layer, developing in parallel with superconductivity at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03919v4-abstract-full').style.display = 'none'; document.getElementById('2208.03919v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02472">arXiv:2207.02472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02472">pdf</a>, <a href="https://arxiv.org/format/2207.02472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245423">10.1103/PhysRevB.107.245423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> InAs-Al Hybrid Devices Passing the Topological Gap Protocol </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghaee%2C+M">Morteza Aghaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akkala%2C+A">Arun Akkala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alam%2C+Z">Zulfi Alam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+R">Rizwan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+A+A">Alejandro Alcaraz Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrzejczuk%2C+M">Mariusz Andrzejczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">Andrey E Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aseev%2C+P">Pavel Aseev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astafev%2C+M">Mikhail Astafev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+B">Bela Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">Jonathan Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boddapati%2C+S">Srini Boddapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boekhout%2C+F">Frenk Boekhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bommer%2C+J">Jouri Bommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+E+B">Esben Bork Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosma%2C+T">Tom Bosma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourdet%2C+L">Leo Bourdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boutin%2C+S">Samuel Boutin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caroff%2C+P">Philippe Caroff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casparis%2C+L">Lucas Casparis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cassidy%2C+M">Maja Cassidy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+A+W">Anna Wulf Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clay%2C+N">Noah Clay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+W+S">William S Cole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corsetti%2C+F">Fabiano Corsetti</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02472v4-abstract-short" style="display: inline;"> We present measurements and simulations of semiconductor-superconductor heterostructure devices that are consistent with the observation of topological superconductivity and Majorana zero modes. The devices are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are defined by electrostatic gates. These devices enable measurements of local and non-loca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02472v4-abstract-full').style.display = 'inline'; document.getElementById('2207.02472v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02472v4-abstract-full" style="display: none;"> We present measurements and simulations of semiconductor-superconductor heterostructure devices that are consistent with the observation of topological superconductivity and Majorana zero modes. The devices are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are defined by electrostatic gates. These devices enable measurements of local and non-local transport properties and have been optimized via extensive simulations to ensure robustness against non-uniformity and disorder. Our main result is that several devices, fabricated according to the design&#39;s engineering specifications, have passed the topological gap protocol defined in Pikulin et al. [arXiv:2103.12217]. This protocol is a stringent test composed of a sequence of three-terminal local and non-local transport measurements performed while varying the magnetic field, semiconductor electron density, and junction transparencies. Passing the protocol indicates a high probability of detection of a topological phase hosting Majorana zero modes as determined by large-scale disorder simulations. Our experimental results are consistent with a quantum phase transition into a topological superconducting phase that extends over several hundred millitesla in magnetic field and several millivolts in gate voltage, corresponding to approximately one hundred micro-electron-volts in Zeeman energy and chemical potential in the semiconducting wire. These regions feature a closing and re-opening of the bulk gap, with simultaneous zero-bias conductance peaks at both ends of the devices that withstand changes in the junction transparencies. The extracted maximum topological gaps in our devices are 20-60 $渭$eV. This demonstration is a prerequisite for experiments involving fusion and braiding of Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02472v4-abstract-full').style.display = 'none'; document.getElementById('2207.02472v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12675">arXiv:2205.12675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12675">pdf</a>, <a href="https://arxiv.org/format/2205.12675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Chiral correlation of drag currents inducing optical activity of twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+T">S. Ta Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+V+N">V. Nam Do</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12675v1-abstract-short" style="display: inline;"> The mechanisms of optical activity and quantum transport of twisted bilayer graphene are studied. The formation of unique electron states in the bilayer systems is studied using an effective continuum model. Such states are shown to support the correlation of transverse motions of electrons in two graphene layers. Because of the chiral structure of the atomic lattices, the contribution of such dra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12675v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12675v1-abstract-full" style="display: none;"> The mechanisms of optical activity and quantum transport of twisted bilayer graphene are studied. The formation of unique electron states in the bilayer systems is studied using an effective continuum model. Such states are shown to support the correlation of transverse motions of electrons in two graphene layers. Because of the chiral structure of the atomic lattices, the contribution of such drag correlations is incompletely cancelled, thus resulting in a drag term of the optical conductivity tensor. We show that the drag term of the conductivity is the manifestation of the spatial dispersion. We show how to analyze and calculate the components of the conductivity tensors that governs the optical activity of the systems. The DC conductivity of the twisted bilayer graphene system is also calculated. It shows the existence of a quantum conductivity value $\propto e^2/h$ at the intrinsic Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12675v1-abstract-full').style.display = 'none'; document.getElementById('2205.12675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10923">arXiv:2110.10923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10923">pdf</a>, <a href="https://arxiv.org/format/2110.10923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115420">10.1103/PhysRevB.106.115420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of magnetic impurity scattering on transport in topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaitkus%2C+J+A">Jesse A. Vaitkus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+J+H">Jared H. Cole</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10923v1-abstract-short" style="display: inline;"> Charge transport in topological insulators is primarily characterised by so-called topologically projected helical edge states, where charge carriers are correlated in spin and momentum. In principle, dissipation-less current can be carried by these edge states as backscattering from impurities and defects is suppressed as long as time-reversal symmetry is not broken. However, applied magnetic fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10923v1-abstract-full').style.display = 'inline'; document.getElementById('2110.10923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10923v1-abstract-full" style="display: none;"> Charge transport in topological insulators is primarily characterised by so-called topologically projected helical edge states, where charge carriers are correlated in spin and momentum. In principle, dissipation-less current can be carried by these edge states as backscattering from impurities and defects is suppressed as long as time-reversal symmetry is not broken. However, applied magnetic fields or underlying nuclear spin-defects in the substrate can break this time reversal symmetry. In particular, magnetic impurities lead to back-scattering by spin-flip processes. We have investigated the effects of point-wise magnetic impurities on the transport properties of helical edge states in the BHZ model using the Non-Equilibrium Green&#39;s Function formalism and compared the results to a semi-analytic approach. Using these techniques we study the influence of impurity strength and spin impurity polarization. We observe a secondary effect of defect-defect interaction that depends on the underlying material parameters which introduces a non-monotonic response of the conductance to defect density. This in turn suggests a qualitative difference in magneto-transport signatures in the dilute and high density spin impurity limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10923v1-abstract-full').style.display = 'none'; document.getElementById('2110.10923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures + appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04929">arXiv:2109.04929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04929">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Data Mining for Terahertz Generation Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valdivia-Berroeta%2C+G+A">Gabriel A. Valdivia-Berroeta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaccardi%2C+Z+B">Zachary B. Zaccardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pettit%2C+S+K+F">Sydney K. F. Pettit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sin-Hang Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmer%2C+B+W">Bruce Wayne Palmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutz%2C+M+J">Matthew J. Lutz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+C">Claire Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+B+P">Brittan P. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+N+K">Natalie K. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlow%2C+C">Connor Barlow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wayment%2C+C+Z">Coriantumr Z. Wayment</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harmon%2C+D+J">Daisy J. Harmon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petersen%2C+P">Paige Petersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+S+J">Stacey J. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michaelis%2C+D+J">David J. Michaelis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+J+A">Jeremy A. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04929v1-abstract-short" style="display: inline;"> We demonstrate a data mining approach to discover and develop new organic nonlinear optical crystals that produce intense pulses of terahertz radiation. We mine the Cambridge Structural Database for non-centrosymmetric materials and use this structural data in tandem with density functional theory calculations to predict new materials that efficiently generate terahertz radiation. This enables us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04929v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04929v1-abstract-full" style="display: none;"> We demonstrate a data mining approach to discover and develop new organic nonlinear optical crystals that produce intense pulses of terahertz radiation. We mine the Cambridge Structural Database for non-centrosymmetric materials and use this structural data in tandem with density functional theory calculations to predict new materials that efficiently generate terahertz radiation. This enables us to (in a relatively short time) discover, synthesize, and grow large, high-quality crystals of four promising materials and characterize them for intense terahertz generation. In a direct comparison to the current state-of-the-art organic terahertz generation crystals, these new materials excel. The discovery and characterization of these novel terahertz generators validates the approach of combining data mining with density functional theory calculations to predict properties of high-performance organic materials, potentially for a host of exciting applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04929v1-abstract-full').style.display = 'none'; document.getElementById('2109.04929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10233">arXiv:2107.10233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10233">pdf</a>, <a href="https://arxiv.org/format/2107.10233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03679-w">10.1038/s41586-021-03679-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer Hall effect in a 2D topological Axion antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Haipeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+A">Amit Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+T">Thomas Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akey%2C+A">Austin Akey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardener%2C+J">Jules Gardener</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10233v1-abstract-short" style="display: inline;"> While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs&#39; unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10233v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10233v1-abstract-full" style="display: none;"> While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs&#39; unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level, where opposite spin alignment within the AFM unit cell forms a rich internal structure. In topological AFMs, such an internal structure leads to a new possibility, where topology and Berry phase can acquire distinct spatial textures. Here, we study this exciting possibility in an AFM Axion insulator, even-layered MnBi$_2$Te$_4$ flakes, where spatial degrees of freedom correspond to different layers. Remarkably, we report the observation of a new type of Hall effect, the layer Hall effect, where electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under no net electric field, even-layered MnBi$_2$Te$_4$ shows no anomalous Hall effect (AHE); However, applying an electric field isolates the response from one layer and leads to the surprising emergence of a large layer-polarized AHE (~50%$\frac{e^2}{h}$). Such a layer Hall effect uncovers a highly rare layer-locked Berry curvature, which serves as a unique character of the space-time $\mathcal{PT}$-symmetric AFM topological insulator state. Moreover, we found that the layer-locked Berry curvature can be manipulated by the Axion field, E$\cdot$B, which drives the system between the opposite AFM states. Our results achieve previously unavailable pathways to detect and manipulate the rich internal spatial structure of fully-compensated topological AFMs. The layer-locked Berry curvature represents a first step towards spatial engineering of Berry phase, such as through layer-specific moir茅 potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10233v1-abstract-full').style.display = 'none'; document.getElementById('2107.10233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A revised version of this article is published in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03079">arXiv:2010.03079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03079">pdf</a>, <a href="https://arxiv.org/ps/2010.03079">ps</a>, <a href="https://arxiv.org/format/2010.03079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0022143">10.1063/5.0022143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> N-polar GaN/AlN resonant tunneling diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+Y">YongJin Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Encomendero%2C+J">Jimy Encomendero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shao-Ting Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+H+G">Huili Grace Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jena%2C+D">Debdeep Jena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03079v1-abstract-short" style="display: inline;"> N-polar GaN/AlN resonant tunneling diodes are realized on single-crystal N-polar GaN bulk substrate by plasma-assisted molecular beam epitaxy growth. The room-temperature current-voltage characteristics reveal a negative differential conductance (NDC) region with a peak tunneling current of 6.8$\pm$ 0.8 kA/cm$^2$ at a forward bias of ~8 V. Under reverse bias, the polarization-induced threshold vol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03079v1-abstract-full').style.display = 'inline'; document.getElementById('2010.03079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03079v1-abstract-full" style="display: none;"> N-polar GaN/AlN resonant tunneling diodes are realized on single-crystal N-polar GaN bulk substrate by plasma-assisted molecular beam epitaxy growth. The room-temperature current-voltage characteristics reveal a negative differential conductance (NDC) region with a peak tunneling current of 6.8$\pm$ 0.8 kA/cm$^2$ at a forward bias of ~8 V. Under reverse bias, the polarization-induced threshold voltage is measured at ~$-$4 V. These resonant and threshold voltages are well explained with the polarization field which is opposite to that of the metal-polar counterpart, confirming the N-polarity of the RTDs. When the device is biased in the NDC-region, electronic oscillations are generated in the external circuit, attesting to the robustness of the resonant tunneling phenomenon. In contrast to metal-polar RTDs, N-polar structures have the emitter on the top of the resonant tunneling cavity. As a consequence, this device architecture opens up the possibility of seamlessly interfacing$-$via resonant tunneling injection$-$a wide range of exotic materials with III-nitride semiconductors, providing a route to explore new device physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03079v1-abstract-full').style.display = 'none'; document.getElementById('2010.03079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 117, 143501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03415">arXiv:2007.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03415">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystal orientation dictated epitaxy of ultrawide bandgap 5.4-8.6 eV $伪$-(AlGa)$_2$O$_3$ on m-plane sapphire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jinno%2C+R">Riena Jinno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+S">Celesta S. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onuma%2C+T">Takeyoshi Onuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+Y">Yongjin Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shao-Ting Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+M+C">Michael C. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kevin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Protasenko%2C+V">Vladimir Protasenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">David A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+H+G">Huili G. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jena%2C+D">Debdeep Jena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03415v2-abstract-short" style="display: inline;"> Ultra-wide bandgap semiconductors are ushering in the next generation of high power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here it is discovered that single-crystalline layers of $伪$-(AlGa)$_2$O$_3$ alloys spanning bandgaps of 5.4 - 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03415v2-abstract-full').style.display = 'inline'; document.getElementById('2007.03415v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03415v2-abstract-full" style="display: none;"> Ultra-wide bandgap semiconductors are ushering in the next generation of high power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here it is discovered that single-crystalline layers of $伪$-(AlGa)$_2$O$_3$ alloys spanning bandgaps of 5.4 - 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the $伪$- to the narrower bandgap $尾$-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a range beyond the reach of all other semiconductor families, heralding the successful epitaxial stabilization of the largest bandgap materials family to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03415v2-abstract-full').style.display = 'none'; document.getElementById('2007.03415v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09644">arXiv:2006.09644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09644">pdf</a>, <a href="https://arxiv.org/format/2006.09644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3693662">10.1063/1.3693662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sustainable spin current in the time-dependent Rashba system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09644v1-abstract-short" style="display: inline;"> The generation of spin current and spin polarization in 2DEG Rashba system is considered, in which the spin-orbital coupling (SOC) is modulated by an ac gate voltage. By using non-Abelian gauge field method, we show the presence of an additional electric field. This field induces a spin current generated even in the presence of impurity scattering and is related to the time-modulation of the Rashb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09644v1-abstract-full').style.display = 'inline'; document.getElementById('2006.09644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09644v1-abstract-full" style="display: none;"> The generation of spin current and spin polarization in 2DEG Rashba system is considered, in which the spin-orbital coupling (SOC) is modulated by an ac gate voltage. By using non-Abelian gauge field method, we show the presence of an additional electric field. This field induces a spin current generated even in the presence of impurity scattering and is related to the time-modulation of the Rashba SOC strength. In addition, the spin precession can be controlled by modulating the modulation frequency of the Rashba SOC strength. It is shown that at high modulation frequency, the precessional motion is suppressed so that the electron spin polarization can be sustained in the 2DEG <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09644v1-abstract-full').style.display = 'none'; document.getElementById('2006.09644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> J. Appl. Phys. vol. 111, 07C327 (2012) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. vol. 111, 07C327 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09617">arXiv:2006.09617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09617">pdf</a>, <a href="https://arxiv.org/format/2006.09617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab4735">10.1088/1367-2630/ab4735 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable spin and orbital polarization in SrTiO3-based heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+W">Weilong Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusydi%2C+A">Andrivo Rusydi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09617v1-abstract-short" style="display: inline;"> We formulate the effective Hamiltonian of Rashba spin-orbit coupling (RSOC) in $\mathrm{LaAlO_3/SrTiO_3}$ (LAO/STO) heterostructures. We derive analytical expressions of properties, e.g., Rashba parameter, effective mass, band edge energy and orbital occupancy, as functions of material and tunable heterostructure parameters. While linear RSOC is dominant around the $螕$-point, cubic RSOC becomes si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09617v1-abstract-full').style.display = 'inline'; document.getElementById('2006.09617v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09617v1-abstract-full" style="display: none;"> We formulate the effective Hamiltonian of Rashba spin-orbit coupling (RSOC) in $\mathrm{LaAlO_3/SrTiO_3}$ (LAO/STO) heterostructures. We derive analytical expressions of properties, e.g., Rashba parameter, effective mass, band edge energy and orbital occupancy, as functions of material and tunable heterostructure parameters. While linear RSOC is dominant around the $螕$-point, cubic RSOC becomes significant at the higher-energy anti-crossing region. We find that linear RSOC stems from the structural inversion asymmetry (SIA), while the cubic term is induced by both SIA and bulk asymmetry. Furthermore, the SOC strength shows a striking dependence on the tunable heterostructure parameters such as STO thickness and the interfacial electric field which is ascribed to the quantum confinement effect near the LAO/STO interface. The calculated values of the linear and cubic RSOC are in agreement with previous experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09617v1-abstract-full').style.display = 'none'; document.getElementById('2006.09617v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 21 103016 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09598">arXiv:2006.09598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09598">pdf</a>, <a href="https://arxiv.org/format/2006.09598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab95df">10.1088/1367-2630/ab95df <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zitterbewegung-mediated RKKY coupling in topological insulator thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siu%2C+Z+B">Zhuo Bin Siu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09598v1-abstract-short" style="display: inline;"> The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Remarkably, the confinement and anisotropy of the electron trajectory are associated with the topological phase transition of the TI system, which can b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09598v1-abstract-full').style.display = 'inline'; document.getElementById('2006.09598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09598v1-abstract-full" style="display: none;"> The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Remarkably, the confinement and anisotropy of the electron trajectory are associated with the topological phase transition of the TI system, which can be controlled by tuning the film thickness and/or applying an in-plane magnetic field. Moreover, persistent electron wavepacket oscillation can be achieved in the TI thin film system at the phase transition point, which may assist in the experimental detection of the jitter motion (Zitterbewegung). The implications of the microscopic picture of electron motion in explaining other transport-related effects, e.g., electron-mediated RKKY coupling in the TI thin film system, are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09598v1-abstract-full').style.display = 'none'; document.getElementById('2006.09598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07509">arXiv:1910.07509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07509">pdf</a>, <a href="https://arxiv.org/format/1910.07509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-021-00537-5">10.1038/s41928-021-00537-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zero-magnetic-field Hall effects in artificially corrugated bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Ching-Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+Y">Yu-Chiang Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lo%2C+S">Shun-Tsung Lo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Botsz Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vu%2C+T">Thi-Hai-Yen Vu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortix%2C+C">Carmine Ortix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tse-Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07509v2-abstract-short" style="display: inline;"> The ability to engineer the electronic band structure and, more strikingly, to access new exotic phase of matter has been the cornerstone of the advance of science and technology. Twisting van der Waals materials to form moir茅 superlattice is a powerful paradigm and can drive graphene from a normal metallic state into an insulating, superconducting, or ferromagnetic states. Here, we present a new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07509v2-abstract-full').style.display = 'inline'; document.getElementById('1910.07509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07509v2-abstract-full" style="display: none;"> The ability to engineer the electronic band structure and, more strikingly, to access new exotic phase of matter has been the cornerstone of the advance of science and technology. Twisting van der Waals materials to form moir茅 superlattice is a powerful paradigm and can drive graphene from a normal metallic state into an insulating, superconducting, or ferromagnetic states. Here, we present a new route to create non-trivial band structure and consequently an exotic phase of matter via lithographically patterned strain (lattice deformation). This method is used to realize an artificially corrugated bilayer graphene wherein the real-space and momentum-space pseudo-magnetic fields (Berry curvatures) coexist and have nontrivial properties, namely, the Berry curvature dipole. This new class of condensed-matter systems enables us to observe the so-called nonlinear anomalous Hall effect and a new type of Hall effect without breaking the time-reversal symmetry. Such artificial material system and our approach to unconventional electronic states may open an avenue of geometrical and/or topological quantum phenomena as well as that of band engineering in van der Waals crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07509v2-abstract-full').style.display = 'none'; document.getElementById('1910.07509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">the submitted (preprint) version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 4,116-125 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08602">arXiv:1804.08602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.08602">pdf</a>, <a href="https://arxiv.org/format/1804.08602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.106801">10.1103/PhysRevLett.121.106801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging the zigzag Wigner crystal in confinement-tunable quantum wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">Heng-Jian Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chia-Hua Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lo%2C+S">Shun-Tsung Lo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Creeth%2C+G">Graham Creeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Sanjeev Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farrer%2C+I">Ian Farrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritchie%2C+D">David Ritchie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffiths%2C+J">Jonathan Griffiths</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+G">Geraint Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+M">Michael Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tse-Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08602v1-abstract-short" style="display: inline;"> The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08602v1-abstract-full').style.display = 'inline'; document.getElementById('1804.08602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08602v1-abstract-full" style="display: none;"> The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08602v1-abstract-full').style.display = 'none'; document.getElementById('1804.08602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 106801 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01302">arXiv:1709.01302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01302">pdf</a>, <a href="https://arxiv.org/ps/1709.01302">ps</a>, <a href="https://arxiv.org/format/1709.01302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aadbdd">10.1088/1361-648X/aadbdd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Newton&#39;s second law in spin-orbit torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+S">Shun-Qing Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01302v2-abstract-short" style="display: inline;"> Spin-orbit torque (SOT) refers to the excitation of magnetization dynamics via spin-orbit coupling under the application of a charged current. In this work, we introduce a simple and intuitive description of the SOT in terms of spin force. In Rashba spin-orbit coupling system, the damping-like SOT can be expressed as ${\mathbf T}^\mathrm{so}={\mathbf R}_c\times {\mathbf F}^{\mathrm {so}}$, in anal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01302v2-abstract-full').style.display = 'inline'; document.getElementById('1709.01302v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01302v2-abstract-full" style="display: none;"> Spin-orbit torque (SOT) refers to the excitation of magnetization dynamics via spin-orbit coupling under the application of a charged current. In this work, we introduce a simple and intuitive description of the SOT in terms of spin force. In Rashba spin-orbit coupling system, the damping-like SOT can be expressed as ${\mathbf T}^\mathrm{so}={\mathbf R}_c\times {\mathbf F}^{\mathrm {so}}$, in analogy to the classical torque-force relation, where $R_c$ is the effective radius characterizing the Rashba splitting in the momentum space. As a consequence, the magnetic energy is transferred to the conduction electrons, which dissipates through Joule heating at a rate of $({\mathbf j}_e\cdot {\mathbf F}^{\mathrm {so}})$, with $j_e$ being the applied current. Finally, we propose an experimental verification of our findings via measurement of the anisotropic magnetoresistance effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01302v2-abstract-full').style.display = 'none'; document.getElementById('1709.01302v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Condensed Matter (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.05326">arXiv:1701.05326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.05326">pdf</a>, <a href="https://arxiv.org/ps/1701.05326">ps</a>, <a href="https://arxiv.org/format/1701.05326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.024416">10.1103/PhysRevB.95.024416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetism with divalent Eu in EuNi$_5$As$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W+B">W. B. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smidman%2C+M">M. Smidman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+M">J. M. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J+M">J. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+C">S. C. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+H">H. Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsuei%2C+K+D">K. D. Tsuei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C+Y">C. Y. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y+J">Y. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hanoh Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H+Q">H. Q. Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.05326v1-abstract-short" style="display: inline;"> We have successfully synthesized single crystals of EuNi$_5$As$_3$ using a flux method and we present a comprehensive study of the physical properties using magnetic susceptibility, specific heat, electrical resistivity, thermoelectric power and x-ray absorption spectroscopy (XAS) measurements. EuNi$_5$As$_3$ undergoes two close antiferromagnetic transitions at respective temperatures of $T_{N1}$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05326v1-abstract-full').style.display = 'inline'; document.getElementById('1701.05326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.05326v1-abstract-full" style="display: none;"> We have successfully synthesized single crystals of EuNi$_5$As$_3$ using a flux method and we present a comprehensive study of the physical properties using magnetic susceptibility, specific heat, electrical resistivity, thermoelectric power and x-ray absorption spectroscopy (XAS) measurements. EuNi$_5$As$_3$ undergoes two close antiferromagnetic transitions at respective temperatures of $T_{N1}$ = 7.2 K and $T_{N2}$ = 6.4 K, which are associated with the Eu$^{2+}$ moments. Both transitions are suppressed upon applying a field and we map the temperature-field phase diagrams for fields applied parallel and perpendicular to the easy $a$ axis. XAS measurements reveal that the Eu is strongly divalent, with very little temperature dependence, indicating the localized Eu$^{2+}$ nature of EuNi$_5$As$_3$, with a lack of evidence for heavy fermion behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05326v1-abstract-full').style.display = 'none'; document.getElementById('1701.05326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 024416 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.08116">arXiv:1611.08116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.08116">pdf</a>, <a href="https://arxiv.org/ps/1611.08116">ps</a>, <a href="https://arxiv.org/format/1611.08116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-00911-4">10.1038/s41598-017-00911-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of surface state hybridization on current-induced spin-orbit torque in thin topological insulator films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siu%2C+Z+B">Zhuo Bin Siu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyunsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.08116v2-abstract-short" style="display: inline;"> We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we derived the optimal value of the thickness to maximize the torque. We show numerically that in typical TI thin films made of $\mathrm{Bi_2Se_3}$, the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08116v2-abstract-full').style.display = 'inline'; document.getElementById('1611.08116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.08116v2-abstract-full" style="display: none;"> We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we derived the optimal value of the thickness to maximize the torque. We show numerically that in typical TI thin films made of $\mathrm{Bi_2Se_3}$, the optimal thickness is about 3-5 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08116v2-abstract-full').style.display = 'none'; document.getElementById('1611.08116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7, 792 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06710">arXiv:1611.06710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.06710">pdf</a>, <a href="https://arxiv.org/format/1611.06710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4977072">10.1063/1.4977072 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of surface hybridization on RKKY coupling in ferromagnet/topological insulator/ferromagnet trilayer system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06710v2-abstract-short" style="display: inline;"> We theoretically investigate the RKKY exchange coupling between two ferromagnets (FM) separated by a thin topological insulator film (TI). We find an unusual dependence of the RKKY exchange coupling on the TI thickness ($t_{TI}$). First, when $t_{TI}$ decreases, the coupling amplitude increases at first and reaches its maximum value at some critical thickness, below which the amplitude turns to di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06710v2-abstract-full').style.display = 'inline'; document.getElementById('1611.06710v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06710v2-abstract-full" style="display: none;"> We theoretically investigate the RKKY exchange coupling between two ferromagnets (FM) separated by a thin topological insulator film (TI). We find an unusual dependence of the RKKY exchange coupling on the TI thickness ($t_{TI}$). First, when $t_{TI}$ decreases, the coupling amplitude increases at first and reaches its maximum value at some critical thickness, below which the amplitude turns to diminish. This trend is attributed to the hybridization between surfaces of the TI film, which opens a gap below critical thickness and thus turns the surfaces into insulating state from semi-metal state. In insulating phase, diamagnetism induced by the gap-opening compensates paramagnetism of Dirac state, resulting in a diminishing magnetic susceptibility and RKKY coupling. For typical parameters, the critical thickness in Bi2Se3 thin film is estimated to be in the range of 3-5 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06710v2-abstract-full').style.display = 'none'; document.getElementById('1611.06710v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, MMM conference 2016, updated bib. in AIP Advances (2017)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 7, 055926 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05364">arXiv:1608.05364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05364">pdf</a>, <a href="https://arxiv.org/format/1608.05364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.bpj.2017.03.018">10.1016/j.bpj.2017.03.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsatile lipid vesicles under osmotic stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chabanon%2C+M">Morgan Chabanon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+J+C+S">James C. S. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liedberg%2C+B">Bo Liedberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parikh%2C+A+N">Atul N. Parikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rangamani%2C+P">Padmini Rangamani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05364v2-abstract-short" style="display: inline;"> The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane&#39;s compositional degrees of freedom. Here, we seek to deepe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05364v2-abstract-full').style.display = 'inline'; document.getElementById('1608.05364v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05364v2-abstract-full" style="display: none;"> The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane&#39;s compositional degrees of freedom. Here, we seek to deepen our quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures our experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our findings provide a fundamental framework that has the potential to guide future investigations on the non-equilibrium dynamics of vesicles under osmotic stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05364v2-abstract-full').style.display = 'none'; document.getElementById('1608.05364v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Biophysical Journal 112, 1682-1691, April 25, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.07808">arXiv:1607.07808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.07808">pdf</a>, <a href="https://arxiv.org/ps/1607.07808">ps</a>, <a href="https://arxiv.org/format/1607.07808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.245424">10.1103/PhysRevB.94.245424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of exchange interaction in nitrogen vacancy centre-based magnetometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zilong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivitsky%2C+L+A">Leonid A. Krivitsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.07808v2-abstract-short" style="display: inline;"> We propose a multilayer device comprising of a thin-film-based ferromagnetic hetero-structure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC&#39;s). We find that when the NVC&#39;s are in close proximity (1-2 nm) with the FMH, the exchange energy is comparable to, and may even surpass the magnetostatic interaction energy. This calls for the need to consider and utilize both ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07808v2-abstract-full').style.display = 'inline'; document.getElementById('1607.07808v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.07808v2-abstract-full" style="display: none;"> We propose a multilayer device comprising of a thin-film-based ferromagnetic hetero-structure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC&#39;s). We find that when the NVC&#39;s are in close proximity (1-2 nm) with the FMH, the exchange energy is comparable to, and may even surpass the magnetostatic interaction energy. This calls for the need to consider and utilize both effects in magnetometry based on NVC&#39;s in diamond. As the distance between the FMH and NVC is decreased to the sub-nanometer scale, the exponential increase in the exchange energy suggests spintronic applications of NVC beyond magnetometry, such as detection of spin-Hall effect or spin currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07808v2-abstract-full').style.display = 'none'; document.getElementById('1607.07808v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 245424 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06507">arXiv:1506.06507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.06507">pdf</a>, <a href="https://arxiv.org/ps/1506.06507">ps</a>, <a href="https://arxiv.org/format/1506.06507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2014.296">10.1038/nnano.2014.296 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-electric all-semiconductor spin field effect transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+P">Pojen Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+L+W">L. W. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sfigakis%2C+F">F. Sfigakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+M">M. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chin-Hung Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Ju-Chun Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffiths%2C+J+P">J. P. Griffiths</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farrer%2C+I">I. Farrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beere%2C+H+E">H. E. Beere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+G+A+C">G. A. C. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritchie%2C+D+A">D. A. Ritchie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tse-Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06507v1-abstract-short" style="display: inline;"> The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06507v1-abstract-full').style.display = 'inline'; document.getElementById('1506.06507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06507v1-abstract-full" style="display: none;"> The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation, and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for the incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field effect transistor, in which these obstacles are overcome by employing two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins -- spin injection, manipulation, and detection -- in a purely electrical manner. Such a device is compatible with large-scale integration and hold promise for future spintronic devices for information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06507v1-abstract-full').style.display = 'none'; document.getElementById('1506.06507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 10, 35-39 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04496">arXiv:1503.04496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04496">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/09500340.2015.1024771">10.1080/09500340.2015.1024771 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ravi%2C+K">Koustuban Ravi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Seng-Tiong Ho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04496v1-abstract-short" style="display: inline;"> We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite difference time domain (FDTD) method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04496v1-abstract-full').style.display = 'inline'; document.getElementById('1503.04496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04496v1-abstract-full" style="display: none;"> We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite difference time domain (FDTD) method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two dimensional (2-D) and 3-D simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band filling calculations, simulations of SQW optical gain spectra and photonic crystal lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04496v1-abstract-full').style.display = 'none'; document.getElementById('1503.04496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03651">arXiv:1503.03651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.03651">pdf</a>, <a href="https://arxiv.org/ps/1503.03651">ps</a>, <a href="https://arxiv.org/format/1503.03651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/12/123005">10.1088/1367-2630/17/12/123005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-control of spin-motive force and spin-torque in Rashba SOC systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03651v2-abstract-short" style="display: inline;"> The introduction of a strong Rashba spin orbit coupling (SOC) had been predicted to enhance the spin motive force (SMF) [see Phys. Rev. Lett. {\bf 108}, 217202 (2012)]. In this work, we predict further enhancement of the SMF by time modulation of the Rashba coupling $伪_R$, which induces an additional electric field $E^R_d={\dot 伪_R} m_e/e\hbar({\hat z}\times {\mathbf m})$. When the modulation freq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03651v2-abstract-full').style.display = 'inline'; document.getElementById('1503.03651v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03651v2-abstract-full" style="display: none;"> The introduction of a strong Rashba spin orbit coupling (SOC) had been predicted to enhance the spin motive force (SMF) [see Phys. Rev. Lett. {\bf 108}, 217202 (2012)]. In this work, we predict further enhancement of the SMF by time modulation of the Rashba coupling $伪_R$, which induces an additional electric field $E^R_d={\dot 伪_R} m_e/e\hbar({\hat z}\times {\mathbf m})$. When the modulation frequency is higher than the magnetization precessing frequency, the amplitude of this field is significantly larger than previously predicted results. Correspondingly, the spin torque on the magnetization is also effectively enhanced. Additionally, the nature of SOC induced spin torque in the system can be transformed from damping to antidamping-like by modulating ${\dot 伪_R}$. We also suggest a biasing scheme to achieve rectification of SMF, {\it i.e.}, by application of a square wave voltage at the resonant frequency. Finally, we numerically estimate the resulting spin torque field arising from a Gaussian pulse time modulation of $伪_R$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03651v2-abstract-full').style.display = 'none'; document.getElementById('1503.03651v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17 (2015)123005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.6249">arXiv:1406.6249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.6249">pdf</a>, <a href="https://arxiv.org/format/1406.6249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/16/11/113062">10.1088/1367-2630/16/11/113062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoherence Patterns of Topological Qubits from Majorana Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shih-Hao Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chao%2C+S">Sung-Po Chao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+C">Chung-Hsien Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Feng-Li Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.6249v2-abstract-short" style="display: inline;"> We investigate the decoherence patterns of topological qubits in contact with the environment by a novel way of deriving the open system dynamics other than the Feynman-Vernon. Each topological qubit is made of two Majorana modes of a 1D Kitaev&#39;s chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.6249v2-abstract-full').style.display = 'inline'; document.getElementById('1406.6249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.6249v2-abstract-full" style="display: none;"> We investigate the decoherence patterns of topological qubits in contact with the environment by a novel way of deriving the open system dynamics other than the Feynman-Vernon. Each topological qubit is made of two Majorana modes of a 1D Kitaev&#39;s chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of the topological qubits which are weakly coupled to the fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the cases of non-topological qubits for which they always decohere completely in all Ohmic-like environments, the topological qubits decohere completely in the Ohmic and sub-Ohmic environments but not in the super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits though cannot prevent the qubit states from decoherence in the sub-Ohmic environments, can prevent from thermalization turning into Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments and the time dependence of concurrence for two topological qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.6249v2-abstract-full').style.display = 'none'; document.getElementById('1406.6249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures; v2 ref updated to match NJP version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.2732">arXiv:1404.2732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.2732">pdf</a>, <a href="https://arxiv.org/ps/1404.2732">ps</a>, <a href="https://arxiv.org/format/1404.2732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/107/37005">10.1209/0295-5075/107/37005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin force and intrinsic spin Hall effect in spintronics systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.2732v1-abstract-short" style="display: inline;"> We investigate the spin Hall effect (SHE) in a wide class of spin-orbit coupling systems by using spin force picture. We derive the general relation equation between spin force and spin current and show that the longitudinal force component can induce a spin Hall current, from which we reproduce the spin Hall conductivity obtained previously using Kubo&#39;s formula. This simple spin force picture giv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2732v1-abstract-full').style.display = 'inline'; document.getElementById('1404.2732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.2732v1-abstract-full" style="display: none;"> We investigate the spin Hall effect (SHE) in a wide class of spin-orbit coupling systems by using spin force picture. We derive the general relation equation between spin force and spin current and show that the longitudinal force component can induce a spin Hall current, from which we reproduce the spin Hall conductivity obtained previously using Kubo&#39;s formula. This simple spin force picture gives a clear and intuitive explanation for SHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2732v1-abstract-full').style.display = 'none'; document.getElementById('1404.2732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 107 37005 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.5855">arXiv:1309.5855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.5855">pdf</a>, <a href="https://arxiv.org/format/1309.5855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2014)170">10.1007/JHEP01(2014)170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Decoherence with Holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shih-Hao Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Feng-Li Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+B">Bo Ning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.5855v2-abstract-short" style="display: inline;"> Quantum decoherence is the loss of a system&#39;s purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5855v2-abstract-full').style.display = 'inline'; document.getElementById('1309.5855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.5855v2-abstract-full" style="display: none;"> Quantum decoherence is the loss of a system&#39;s purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obtain the dynamics of the system&#39;s density matrix. We present two exactly solvable examples: (1) a straight string in a BTZ black hole and (2) a scalar probe in AdS$_5$. We prepare an initial state that mimics Schr枚dinger&#39;s cat and identify different stages of its decoherence process using the time-scaling behaviors of R茅nyi entropy. We also relate decoherence to local quantum quenches, and by comparing the time evolution behaviors of the Wigner function and R茅nyi entropy we demonstrate that the relaxation of local quantum excitations leads to the collapse of its wave-function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5855v2-abstract-full').style.display = 'none'; document.getElementById('1309.5855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 13 figures; v2 47 pages &amp; 13 figs, minor revision to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1401:170,2014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.4221">arXiv:1305.4221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.4221">pdf</a>, <a href="https://arxiv.org/ps/1305.4221">ps</a>, <a href="https://arxiv.org/format/1305.4221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4876226">10.1063/1.4876226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin force and the generation of sustained spin current in time-dependent Rashba and Dresselhauss systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C+S">Cong Son Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+M+B+A">Mansoor B. A. Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.4221v1-abstract-short" style="display: inline;"> The generation of spin current and spin polarization in a 2DEG structure is studied in the presence of Dresselhaus and Rashba spin-orbit couplings (SOC), the strength of the latter being modulated in time by an ac gate voltage. By means of the non-Abelian gauge field approach, we established the relation between the Lorentz spin force and the spin current in the SOC system, and showed that the lon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.4221v1-abstract-full').style.display = 'inline'; document.getElementById('1305.4221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.4221v1-abstract-full" style="display: none;"> The generation of spin current and spin polarization in a 2DEG structure is studied in the presence of Dresselhaus and Rashba spin-orbit couplings (SOC), the strength of the latter being modulated in time by an ac gate voltage. By means of the non-Abelian gauge field approach, we established the relation between the Lorentz spin force and the spin current in the SOC system, and showed that the longitudinal component of the spin force induces a transverse spin current. For a constant (time-invariant) Rashba system, we recover the universal spin Hall conductivity of $\frac e{8蟺}$, derived previously via the Berry phase and semiclassical methods. In the case of a time-dependent SOC system, the spin current is sustained even under strong impurity scattering. We evaluated the ac spin current generated by a time-modulated Rashba SOC in the absence of any dc electric field. The magnitude of the spin current reaches a maximum when the modulation frequency matches the Larmor frequency of the electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.4221v1-abstract-full').style.display = 'none'; document.getElementById('1305.4221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 115, 183705 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.1620">arXiv:1207.1620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.1620">pdf</a>, <a href="https://arxiv.org/format/1207.1620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2012)074">10.1007/JHEP12(2012)074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana Zero-modes and Topological Phases of Multi-flavored Jackiw-Rebbi model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shih-Hao Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Feng-Li Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xiao-Gang Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.1620v2-abstract-short" style="display: inline;"> Motivated by the recent Kitaev&#39;s K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.1620v2-abstract-full').style.display = 'inline'; document.getElementById('1207.1620v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.1620v2-abstract-full" style="display: none;"> Motivated by the recent Kitaev&#39;s K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that there exist $\mathbf{Z}$ Majorana zero-modes hosted by the hedgehogs/t&#39;Hooft-Polyakov monopoles, if the model has a $T^2=1$ time reversal symmetry. Guided by the K-theory results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2) doublet fermions in some co-dimensional one planes of the mass parameter space. It turns out we can see the existence of none or a single zero mode when the fermion doublet is only two. We then take a step further to consider four-fermion case and find there can be zero, one or two normalizable zero mode in some particular choices of mass matrices. Our results also indicate that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2) Witten anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.1620v2-abstract-full').style.display = 'none'; document.getElementById('1207.1620v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 3 figures; v2, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4380 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.4185">arXiv:1205.4185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.4185">pdf</a>, <a href="https://arxiv.org/ps/1205.4185">ps</a>, <a href="https://arxiv.org/format/1205.4185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> K-theoretic classification of fermionic operator mixings in holographic conformal field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Shih-Hao Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Feng-Li Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.4185v4-abstract-short" style="display: inline;"> In this paper, we apply the K-theory scheme of classifying the topological insulators/superconductors to classify the topological classes of the massive multi-flavor fermions in anti-de Sitter (AdS) space. In the context of AdS/CFT correspondence, the multi-flavor fermionic mass matrix is dual to the pattern of operator mixing in the boundary conformal field theory (CFT). Thus, our results classif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4185v4-abstract-full').style.display = 'inline'; document.getElementById('1205.4185v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.4185v4-abstract-full" style="display: none;"> In this paper, we apply the K-theory scheme of classifying the topological insulators/superconductors to classify the topological classes of the massive multi-flavor fermions in anti-de Sitter (AdS) space. In the context of AdS/CFT correspondence, the multi-flavor fermionic mass matrix is dual to the pattern of operator mixing in the boundary conformal field theory (CFT). Thus, our results classify the possible patterns of operator mixings among fermionic operators in the holographic CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4185v4-abstract-full').style.display = 'none'; document.getElementById('1205.4185v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 2 figures, 6 tables; v2 the results in section 4 are refined; v3 title changed; v4 title change and revised text for the final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4373 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.2343">arXiv:1108.2343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.2343">pdf</a>, <a href="https://arxiv.org/format/1108.2343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.115303">10.1103/PhysRevB.85.115303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoherence and dynamical decoupling control of nitrogen-vacancy center electron spins in nuclear spin baths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sai-Wah Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ren-Bao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.2343v1-abstract-short" style="display: inline;"> We theoretically study the decoherence and the dynamical decoupling control of nitrogen-vacancy center electron spins in high-purity diamond, where the hyperfine interaction with $^{13}$C nuclear spins is the dominating decoherence mechanism. The decoherence is formulated as the entanglement between the electron spin and the nuclear spins, which is induced by nuclear spin bath evolution conditione&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.2343v1-abstract-full').style.display = 'inline'; document.getElementById('1108.2343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.2343v1-abstract-full" style="display: none;"> We theoretically study the decoherence and the dynamical decoupling control of nitrogen-vacancy center electron spins in high-purity diamond, where the hyperfine interaction with $^{13}$C nuclear spins is the dominating decoherence mechanism. The decoherence is formulated as the entanglement between the electron spin and the nuclear spins, which is induced by nuclear spin bath evolution conditioned on the electron spin state. The nuclear spin bath evolution is driven by elementary processes such as single spin precession and pairwise flip-flops. The importance of different elementary processes in the decoherence depends on the strength of the external magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.2343v1-abstract-full').style.display = 'none'; document.getElementById('1108.2343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 115303 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.4304">arXiv:1011.4304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.4304">pdf</a>, <a href="https://arxiv.org/ps/1011.4304">ps</a>, <a href="https://arxiv.org/format/1011.4304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Eigenstate Estimation for the Bardeen-Cooper-Schrieffer (BCS) Hamiltonian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+Y">S. Y. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rowe%2C+D+J">D. J. Rowe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Baerdemacker%2C+S">S. De Baerdemacker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.4304v1-abstract-short" style="display: inline;"> We show how multi-level BCS Hamiltonians of finite systems in the strong pairing interaction regime can be accurately approximated using multi-dimensional shifted harmonic oscillator Hamiltonians. In the Shifted Harmonic Approximation (SHA), discrete quantum state variables are approximated as continuous ones and algebraic Hamiltonians are replaced by differential operators. Using the SHA, the res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4304v1-abstract-full').style.display = 'inline'; document.getElementById('1011.4304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.4304v1-abstract-full" style="display: none;"> We show how multi-level BCS Hamiltonians of finite systems in the strong pairing interaction regime can be accurately approximated using multi-dimensional shifted harmonic oscillator Hamiltonians. In the Shifted Harmonic Approximation (SHA), discrete quantum state variables are approximated as continuous ones and algebraic Hamiltonians are replaced by differential operators. Using the SHA, the results of the BCS theory, such as the gap equations, can be easily derived without the BCS approximation. In addition, the SHA preserves the symmetries associated with the BCS Hamiltonians. Lastly, for all interaction strengths, the SHA can be used to identify the most important basis states -- allowing accurate computation of low-lying eigenstates by diagonalizing BCS Hamiltonians in small subspaces of what may otherwise be vastly larger Hilbert spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4304v1-abstract-full').style.display = 'none'; document.getElementById('1011.4304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.4320">arXiv:1003.4320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.4320">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2011.22">10.1038/nnano.2011.22 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear spin pair coherence in diamond for atomic scale magnetometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jian-Liang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sai-Wah Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+T">Tsz-Kai Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R+B">R. B. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.4320v1-abstract-short" style="display: inline;"> The nitrogen-vacancy (NV) centre, as a promising candidate solid state system of quantum information processing, its electron spin coherence is influenced by the magnetic field fluctuations due to the local environment. In pure diamonds, the environment consists of hundreds of C-13 nuclear spins randomly spreading in several nanometers range forming a spin bath. Controlling and prolonging the elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.4320v1-abstract-full').style.display = 'inline'; document.getElementById('1003.4320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.4320v1-abstract-full" style="display: none;"> The nitrogen-vacancy (NV) centre, as a promising candidate solid state system of quantum information processing, its electron spin coherence is influenced by the magnetic field fluctuations due to the local environment. In pure diamonds, the environment consists of hundreds of C-13 nuclear spins randomly spreading in several nanometers range forming a spin bath. Controlling and prolonging the electron spin coherence under the influence of spin bath are challenging tasks for the quantum information processing. On the other hand, for a given bath distribution, many of its characters are encoded in the electron spin coherence. So it is natural to ask the question: is it possible to &#39;decode&#39; the electron spin coherence, and extract the information about the bath structures? Here we show that, among hundreds of C-13 bath spins, there exist strong coupling clusters, which give rise to the millisecond oscillations of the electron spin coherence. By analyzing these oscillation features, the key properties of the coherent nuclear spin clusters, such as positions, orientations, and coupling strengths, could be uniquely identified. This addressability of the few-nuclear-spin cluster extends the feasibility of using the nuclear spins in diamond as qubits in quantum computing. Furthermore, it provides a novel prototype of single-electron spin based, high-resolution and ultra-sensitive detector for the chemical and biological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.4320v1-abstract-full').style.display = 'none'; document.getElementById('1003.4320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, Nature Nanotechnology (2011)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 6, 242-246 (2011) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10