CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–9 of 9 results for author: <span class="mathjax">Nordlander, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Nordlander%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Nordlander, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Nordlander%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Nordlander, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07659">arXiv:2408.07659</a> <span> [<a href="https://arxiv.org/pdf/2408.07659">pdf</a>, <a href="https://arxiv.org/format/2408.07659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202409076">10.1002/adma.202409076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enabling two-dimensional electron gas with high room-temperature electron mobility exceeding 100 cm$^2$/Vs at a perovskite oxide interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+G">Georg Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Zupancic%2C+M">Martina Zupancic</a>, <a href="/search/cond-mat?searchtype=author&query=Riaz%2C+A+A">Aysha A. Riaz</a>, <a href="/search/cond-mat?searchtype=author&query=Kalha%2C+C">Curran Kalha</a>, <a href="/search/cond-mat?searchtype=author&query=Schlueter%2C+C">Christoph Schlueter</a>, <a href="/search/cond-mat?searchtype=author&query=Gloskovskii%2C+A">Andrei Gloskovskii</a>, <a href="/search/cond-mat?searchtype=author&query=Regoutz%2C+A">Anna Regoutz</a>, <a href="/search/cond-mat?searchtype=author&query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Bierwagen%2C+O">Oliver Bierwagen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07659v1-abstract-short" style="display: inline;"> In perovskite oxide heterostructures, bulk functional properties coexist with emergent physical phenomena at epitaxial interfaces. Notably, charge transfer at the interface between two insulating oxide layers can lead to the formation of a two-dimensional electron gas (2DEG) with possible applications in, e.g., high-electronmobility transistors and ferroelectric field-effect transistors. So far, t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07659v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07659v1-abstract-full" style="display: none;"> In perovskite oxide heterostructures, bulk functional properties coexist with emergent physical phenomena at epitaxial interfaces. Notably, charge transfer at the interface between two insulating oxide layers can lead to the formation of a two-dimensional electron gas (2DEG) with possible applications in, e.g., high-electronmobility transistors and ferroelectric field-effect transistors. So far, the realization of oxide 2DEGs is, however, largely limited to the interface between the single-crystal substrate and epitaxial film, preventing their deliberate placement inside a larger device architecture. Additionally, the substrate-limited quality of perovskite oxide interfaces hampers room-temperature 2DEG performance due to notoriously low electron mobility. In this work, we demonstrate the controlled creation of an interfacial 2DEG at the epitaxial interface between perovskite oxides BaSnO$_3$ and LaInO$_3$ with enhanced room-temperature electron mobilities up to 119 cm$^2$/Vs - the highest room-temperature value reported so far for a perovskite oxide 2DEG. Using a combination of state-of-the-art deposition modes during oxide molecular beam epitaxy, our approach opens up another degree of freedom in optimization and $in$-$situ$ control of the interface between two epitaxial oxide layers away from the substrate interface. We thus expect our approach to apply to the general class of perovskite oxide 2DEG systems and to enable their improved compatibility with novel device concepts and integration across materials platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07659v1-abstract-full').style.display = 'none'; document.getElementById('2408.07659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">article including supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2024, 2409076 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12757">arXiv:2407.12757</a> <span> [<a href="https://arxiv.org/pdf/2407.12757">pdf</a>, <a href="https://arxiv.org/format/2407.12757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale ferroelectric programming of van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+D">Dengyu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Q">Qingrui Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Akyuz%2C+E">Erin Akyuz</a>, <a href="/search/cond-mat?searchtype=author&query=Hayden%2C+J">John Hayden</a>, <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Josh Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+M">Muqing Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ramachandran%2C+R">Ranjani Ramachandran</a>, <a href="/search/cond-mat?searchtype=author&query=Irvin%2C+P">Patrick Irvin</a>, <a href="/search/cond-mat?searchtype=author&query=Maria%2C+J">Jon-Paul Maria</a>, <a href="/search/cond-mat?searchtype=author&query=Hunt%2C+B+M">Benjamin M. Hunt</a>, <a href="/search/cond-mat?searchtype=author&query=Levy%2C+J">Jeremy Levy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12757v1-abstract-short" style="display: inline;"> The ability to create superlattices in van der Waals (vdW) heterostructures via moir茅 interference heralded a new era in the science and technology of two-dimensional materials. Through precise control of the twist angle, flat bands and strongly correlated phases have been engineered. The precise twisting of vdW layers is in some sense a bottom-up approach--a single parameter can dial in a wide ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12757v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12757v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12757v1-abstract-full" style="display: none;"> The ability to create superlattices in van der Waals (vdW) heterostructures via moir茅 interference heralded a new era in the science and technology of two-dimensional materials. Through precise control of the twist angle, flat bands and strongly correlated phases have been engineered. The precise twisting of vdW layers is in some sense a bottom-up approach--a single parameter can dial in a wide range of periodic structures. Here, we describe a top-down approach to engineering nanoscale potentials in vdW layers using a buried programmable ferroelectric layer. Ultra-low-voltage electron beam lithography (ULV-EBL) is used to program ferroelectric domains in a ferroelectric Al_{1-x}B_{x}N thin film through a graphene/hexagonal boron nitride (hBN) heterostructure that is transferred on top. We demonstrate ferroelectric field effects by creating a lateral p-n junction, and demonstrate spatial resolution down to 35 nm, limited by the resolution of our scanned probe characterization methods. This innovative, resist-free patterning method is predicted to achieve 10 nm resolution and enable arbitrary programming of vdW layers, opening a pathway to create new phases that are inaccessible by moir茅 techniques. The ability to "paint" different phases of matter on a single vdW "canvas" provides a wealth of new electronic and photonic functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12757v1-abstract-full').style.display = 'none'; document.getElementById('2407.12757v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures and supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15603">arXiv:2307.15603</a> <span> [<a href="https://arxiv.org/pdf/2307.15603">pdf</a>, <a href="https://arxiv.org/format/2307.15603">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47291-8">10.1038/s41467-024-47291-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear optical diode effect in a magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xue-Jian Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hou-Chen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hung-Yu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng-Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Ying-Ming Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Y">Yuqiang Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+F">Fuqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15603v2-abstract-short" style="display: inline;"> Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimeta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15603v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15603v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15603v2-abstract-full" style="display: none;"> Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We show demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15603v2-abstract-full').style.display = 'none'; document.getElementById('2307.15603v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, SI included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun 15, 3017 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07525">arXiv:2211.07525</a> <span> [<a href="https://arxiv.org/pdf/2211.07525">pdf</a>, <a href="https://arxiv.org/ps/2211.07525">ps</a>, <a href="https://arxiv.org/format/2211.07525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01907-2">10.1038/s41567-022-01907-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic metal phase in an electron-doped rare-earth nickelate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Song%2C+Q">Qi Song</a>, <a href="/search/cond-mat?searchtype=author&query=Doyle%2C+S">Spencer Doyle</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+G+A">Grace A. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Baggari%2C+I+E">Ismail El Baggari</a>, <a href="/search/cond-mat?searchtype=author&query=Segedin%2C+D+F">Dan Ferenc Segedin</a>, <a href="/search/cond-mat?searchtype=author&query=Carrizales%2C+D+C">Denisse Cordova Carrizales</a>, <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Ehrets%2C+J+R">James R. Ehrets</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+Z">Zubia Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=El-Sherif%2C+H">Hesham El-Sherif</a>, <a href="/search/cond-mat?searchtype=author&query=Krishna%2C+J">Jyoti Krishna</a>, <a href="/search/cond-mat?searchtype=author&query=Hanson%2C+C">Chase Hanson</a>, <a href="/search/cond-mat?searchtype=author&query=LaBollita%2C+H">Harrison LaBollita</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Lanzara%2C+A">Alessandra Lanzara</a>, <a href="/search/cond-mat?searchtype=author&query=N%27Diaye%2C+A+T">Alpha T. N'Diaye</a>, <a href="/search/cond-mat?searchtype=author&query=Heikes%2C+C+A">Colin A. Heikes</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&query=Brooks%2C+C+M">Charles M. Brooks</a>, <a href="/search/cond-mat?searchtype=author&query=Pamuk%2C+B">Betul Pamuk</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07525v1-abstract-short" style="display: inline;"> Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07525v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07525v1-abstract-full" style="display: none;"> Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric spin structures. The rare earth nickelate NdNiO3 is known to be a noncollinear antiferromagnet where the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here, we find that for low electron doping, the magnetic order on the nickel site is preserved while electronically a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by the bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of the rare-earth nickelates and may enable spintronics applications in this family of correlated oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07525v1-abstract-full').style.display = 'none'; document.getElementById('2211.07525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08006">arXiv:2209.08006</a> <span> [<a href="https://arxiv.org/pdf/2209.08006">pdf</a>, <a href="https://arxiv.org/format/2209.08006">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0098277">10.1063/5.0098277 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxy of hexagonal ABO$_3$ quantum materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Anderson%2C+M+A">Margaret A. Anderson</a>, <a href="/search/cond-mat?searchtype=author&query=Brooks%2C+C+M">Charles M. Brooks</a>, <a href="/search/cond-mat?searchtype=author&query=Holtz%2C+M+E">Megan E. Holtz</a>, <a href="/search/cond-mat?searchtype=author&query=Mundy%2C+J+A">Julia A. Mundy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08006v1-abstract-short" style="display: inline;"> Hexagonal $AB$O$_3$ oxides ($A$, $B$ = cation) are a rich materials class for realizing novel quantum phenomena. Their hexagonal symmetry, oxygen trigonal bipyramid coordination and quasi-two dimensional layering give rise to properties distinct from those of the cubic $AB$O$_3$ perovskites. As bulk materials, most of the focus in this materials class has been on the rare earth manganites, $R$MnO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08006v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08006v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08006v1-abstract-full" style="display: none;"> Hexagonal $AB$O$_3$ oxides ($A$, $B$ = cation) are a rich materials class for realizing novel quantum phenomena. Their hexagonal symmetry, oxygen trigonal bipyramid coordination and quasi-two dimensional layering give rise to properties distinct from those of the cubic $AB$O$_3$ perovskites. As bulk materials, most of the focus in this materials class has been on the rare earth manganites, $R$MnO$_3$ ($R$ = rare earth); these materials display coupled ferroelectricity and antiferromagnetic order. In this review, we focus on the thin film manifestations of the hexagonal $AB$O$_3$ oxides. We cover the stability of the hexagonal oxides and substrates which can be used to template the hexagonal structure. We show how the thin film geometry not only allows for further tuning of the bulk-stable manganites but also the realization of metastable hexagonal oxides such as the $R$FeO$_3$ that combine ferroelectricity with weak ferromagnetic order. The thin film geometry is a promising platform to stabilize additional metastable hexagonal oxides to search for predicted high-temperature superconductivity and topological phases in this materials class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08006v1-abstract-full').style.display = 'none'; document.getElementById('2209.08006v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been accepted by Applied Physics Reviews</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02447">arXiv:2011.02447</a> <span> [<a href="https://arxiv.org/pdf/2011.02447">pdf</a>, <a href="https://arxiv.org/format/2011.02447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.124403">10.1103/PhysRevMaterials.4.124403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial integration of improper ferroelectric h-YMnO$_3$ thin films in heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">J. Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Rossell%2C+M+D">M. D. Rossell</a>, <a href="/search/cond-mat?searchtype=author&query=Campanini%2C+M">M. Campanini</a>, <a href="/search/cond-mat?searchtype=author&query=Fiebig%2C+M">M. Fiebig</a>, <a href="/search/cond-mat?searchtype=author&query=Trassin%2C+M">M. Trassin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02447v1-abstract-short" style="display: inline;"> We report on multiple fundamental qualitative improvements in the growth of improper ferroelectric hexagonal YMnO$_3$ (YMO) thin films and heterostructures by pulsed laser deposition (PLD). By a combination of pre-growth substrate annealing and low-energy-fluence PLD, we obtain a two-dimensional growth mode of the YMO films on yttria-stabilized zirconia (YSZ) with ultralow roughness and devoid of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02447v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02447v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02447v1-abstract-full" style="display: none;"> We report on multiple fundamental qualitative improvements in the growth of improper ferroelectric hexagonal YMnO$_3$ (YMO) thin films and heterostructures by pulsed laser deposition (PLD). By a combination of pre-growth substrate annealing and low-energy-fluence PLD, we obtain a two-dimensional growth mode of the YMO films on yttria-stabilized zirconia (YSZ) with ultralow roughness and devoid of misoriented nanocrystalline inclusions. By inserting a sacrificial manganite layer capped with conducting indium-tin oxide between the substrate and the final film, the latter is grown in a fully lattice-relaxed mode and, thus, without any misfit dislocations while maintaining the extraordinary flatness of the films grown directly on pre-annealed YSZ. This provides a template for the fabrication of heterostructures based on hexagonal manganites as promising class of multiferroics with improper room-temperature ferroelectricity and the implementation of these into technologically relevant epitaxial metal|ferroelectric-type multilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02447v1-abstract-full').style.display = 'none'; document.getElementById('2011.02447v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 4, 124403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10179">arXiv:2005.10179</a> <span> [<a href="https://arxiv.org/pdf/2005.10179">pdf</a>, <a href="https://arxiv.org/format/2005.10179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-020-00794-z">10.1038/s41565-020-00794-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lived modulation of plasmonic absorption by ballistic thermal injection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tomko%2C+J+A">John A. Tomko</a>, <a href="/search/cond-mat?searchtype=author&query=Runnerstrom%2C+E+L">Evan L. Runnerstrom</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yi-Siang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nolen%2C+J+R">Joshua R. Nolen</a>, <a href="/search/cond-mat?searchtype=author&query=Olson%2C+D+H">David H. Olson</a>, <a href="/search/cond-mat?searchtype=author&query=Kelley%2C+K+P">Kyle P. Kelley</a>, <a href="/search/cond-mat?searchtype=author&query=Cleri%2C+A">Angela Cleri</a>, <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Josh Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Caldwell%2C+J+D">Joshua D. Caldwell</a>, <a href="/search/cond-mat?searchtype=author&query=Prezhdo%2C+O+V">Oleg V. Prezhdo</a>, <a href="/search/cond-mat?searchtype=author&query=Maria%2C+J">Jon-Paul Maria</a>, <a href="/search/cond-mat?searchtype=author&query=Hopkins%2C+P+E">Patrick E. Hopkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10179v1-abstract-short" style="display: inline;"> Energy and charge transfer across metal-semiconductor interfaces are the fundamental driving forces for a broad range of applications, such as computing, energy harvesting, and photodetection. However, the exact roles and physical separation of these two phenomena remains unclear, particularly in plasmonically-excited systems or cases of strong nonequilibrium. We report on a series of ultrafast pl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10179v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10179v1-abstract-full" style="display: none;"> Energy and charge transfer across metal-semiconductor interfaces are the fundamental driving forces for a broad range of applications, such as computing, energy harvesting, and photodetection. However, the exact roles and physical separation of these two phenomena remains unclear, particularly in plasmonically-excited systems or cases of strong nonequilibrium. We report on a series of ultrafast plasmonic measurements that provide a direct measure of electronic distributions, both spatially and temporally, following optical excitation of a metal-semiconductor heterostructure. For the first time, we explicitly show that in cases of strong non-equilibrium, a novel energy transduction mechanism arises at the metal/semiconductor interface. We find that hot electrons in the metal contact transfer their energy to pre-existing electrons in the semiconductor, without transfer of charge. These experimental results findings are well-supported by both rigorous multilayer optical modeling and first-principle, ab initio calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10179v1-abstract-full').style.display = 'none'; document.getElementById('2005.10179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09685">arXiv:2005.09685</a> <span> [<a href="https://arxiv.org/pdf/2005.09685">pdf</a>, <a href="https://arxiv.org/format/2005.09685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aelm.202400185">10.1002/aelm.202400185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined electrostatic and strain engineering of BiFeO$_3$ thin films at the morphotropic phase boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Grosso%2C+B+F">Bastien F. Grosso</a>, <a href="/search/cond-mat?searchtype=author&query=Rossell%2C+M+D">Marta D. Rossell</a>, <a href="/search/cond-mat?searchtype=author&query=Maillard%2C+A">Aline Maillard</a>, <a href="/search/cond-mat?searchtype=author&query=Gradauskaite%2C+E">Elzbieta Gradauskaite</a>, <a href="/search/cond-mat?searchtype=author&query=Spaldin%2C+N+A">Nicola A. Spaldin</a>, <a href="/search/cond-mat?searchtype=author&query=Fiebig%2C+M">Manfred Fiebig</a>, <a href="/search/cond-mat?searchtype=author&query=Trassin%2C+M">Morgan Trassin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09685v2-abstract-short" style="display: inline;"> Multiferroic BiFeO$_3$ (BFO) possesses a rich phase diagram that allows strain tuning of its properties in thin-film form. In particular, at large compressive strain, a supertetragonal (T) phase with giant polarization is stabilized over the more common rhombohedral (R) structure. To utilize the functionality of such metastable BFO phases in device applications, it is essential to understand the f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09685v2-abstract-full').style.display = 'inline'; document.getElementById('2005.09685v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09685v2-abstract-full" style="display: none;"> Multiferroic BiFeO$_3$ (BFO) possesses a rich phase diagram that allows strain tuning of its properties in thin-film form. In particular, at large compressive strain, a supertetragonal (T) phase with giant polarization is stabilized over the more common rhombohedral (R) structure. To utilize the functionality of such metastable BFO phases in device applications, it is essential to understand the ferroelectric phase evolution upon insertion in nanoscale heterostructures. Here, we explore the emergence of ferroelectric phases close to the morphotropic phase boundary in compressively strained BFO during thin-film growth using in-situ optical second harmonic generation. We find that the epitaxial films form at the growth temperature in the ideal T phase without critical thickness for the polarization. Signatures of T-like and R-like monoclinically distorted phases only appear upon sample cooling. We furthermore demonstrate a robustness of single-domain polarization in the high-temperature T phase during the growth of capacitor-like metal|ferroelectric|metal heterostructures. Here, a reduction in tetragonality of the T phase, rather than domain formation, lowers the electrostatic energy. At this lower tetragonality, density-functional calculations and scanning transmission electron microscopy point to the stabilization of a new metastable R-like monoclinic structure upon cooling the heterostructure down to room temperature. Our results thus show that the combination of strain and electrostatic phase stabilization in BFO heterostructures yields a prominent platform for exploring ferroelectric phases and realizing ultrathin ferroelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09685v2-abstract-full').style.display = 'none'; document.getElementById('2005.09685v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09083">arXiv:2005.09083</a> <span> [<a href="https://arxiv.org/pdf/2005.09083">pdf</a>, <a href="https://arxiv.org/format/2005.09083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c04819">10.1021/acs.nanolett.0c04819 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inversion-symmetry engineering in sub-unit-cell-layered oxide thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nordlander%2C+J">J. Nordlander</a>, <a href="/search/cond-mat?searchtype=author&query=Rossell%2C+M+D">M. D. Rossell</a>, <a href="/search/cond-mat?searchtype=author&query=Campanini%2C+M">M. Campanini</a>, <a href="/search/cond-mat?searchtype=author&query=Fiebig%2C+M">M. Fiebig</a>, <a href="/search/cond-mat?searchtype=author&query=Trassin%2C+M">M. Trassin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09083v1-abstract-short" style="display: inline;"> Inversion symmetry breaking is a ubiquitous concept in condensed-matter science. On the one hand, it is a prerequisite for many technologically relevant effects such as piezoelectricity, photovoltaic and nonlinear optical properties and spin-transport phenomena. On the other hand, it may determine abstract properties such as the electronic topology in quantum materials. Therefore, the creation of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09083v1-abstract-full').style.display = 'inline'; document.getElementById('2005.09083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09083v1-abstract-full" style="display: none;"> Inversion symmetry breaking is a ubiquitous concept in condensed-matter science. On the one hand, it is a prerequisite for many technologically relevant effects such as piezoelectricity, photovoltaic and nonlinear optical properties and spin-transport phenomena. On the other hand, it may determine abstract properties such as the electronic topology in quantum materials. Therefore, the creation of materials where inversion symmetry can be turned on or off by design may be the ultimate route towards controlling parity-related phenomena and functionalities. Here, we engineer the symmetry of ultrathin epitaxial oxide films by sub-unit-cell growth control. We reversibly activate and deactivate inversion symmetry in the layered hexagonal manganites, h-RMnO$_3$ with R = Y, Er, Tb. While an odd number of half-unit-cell layers exhibits a breaking of inversion symmetry through its arrangement of MnO$_5$ bipyramids, an even number of such half-unit-cell layers takes on a centrosymmetric structure. Here we control the resulting symmetry by tracking the growth in situ via optical second-harmonic generation. We furthermore demonstrate that our symmetry engineering works independent of the choice of R and even in heterostructures mixing constituents with different R in a two-dimensional growth mode. Symmetry engineering on the atomic level thus suggests a new platform for the controlled activation and deactivation of symmetry-governed functionalities in oxide-electronic epitaxial thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09083v1-abstract-full').style.display = 'none'; document.getElementById('2005.09083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>