CINXE.COM
Unconventional computing - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Unconventional computing - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f6150429-2269-4dd4-b0d6-248626b562d6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Unconventional_computing","wgTitle":"Unconventional computing","wgCurRevisionId":1254234149,"wgRevisionId":1254234149,"wgArticleId":3925795,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Wikipedia articles needing clarification from December 2016","All accuracy disputes","Articles with disputed statements from December 2016","All articles with specifically marked weasel-worded phrases","Articles with specifically marked weasel-worded phrases from December 2016","Classes of computers"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Unconventional_computing","wgRelevantArticleId":3925795,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q176499", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Unconventional computing - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Unconventional_computing"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Unconventional_computing&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Unconventional_computing"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Unconventional_computing rootpage-Unconventional_computing skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Unconventional+computing" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Unconventional+computing" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Unconventional+computing" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Unconventional+computing" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <button aria-controls="toc-Background-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Background subsection</span> </button> <ul id="toc-Background-sublist" class="vector-toc-list"> <li id="toc-Models_of_Computation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Models_of_Computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Models of Computation</span> </div> </a> <ul id="toc-Models_of_Computation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mechanical_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mechanical_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Mechanical computing</span> </div> </a> <ul id="toc-Mechanical_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analog_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analog_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Analog computing</span> </div> </a> <ul id="toc-Analog_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electronic_digital_computers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electronic_digital_computers"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Electronic digital computers</span> </div> </a> <ul id="toc-Electronic_digital_computers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generic_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generic_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Generic approaches</span> </div> </a> <button aria-controls="toc-Generic_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generic approaches subsection</span> </button> <ul id="toc-Generic_approaches-sublist" class="vector-toc-list"> <li id="toc-Physical_objects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physical_objects"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Physical objects</span> </div> </a> <ul id="toc-Physical_objects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reservoir_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reservoir_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Reservoir computing</span> </div> </a> <ul id="toc-Reservoir_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tangible_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tangible_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Tangible computing</span> </div> </a> <ul id="toc-Tangible_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Human_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Human_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Human computing</span> </div> </a> <ul id="toc-Human_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Human-robot_interaction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Human-robot_interaction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Human-robot interaction</span> </div> </a> <ul id="toc-Human-robot_interaction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Swarm_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Swarm_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Swarm computing</span> </div> </a> <ul id="toc-Swarm_computing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Physics_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Physics_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Physics approaches</span> </div> </a> <button aria-controls="toc-Physics_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Physics approaches subsection</span> </button> <ul id="toc-Physics_approaches-sublist" class="vector-toc-list"> <li id="toc-Optical_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optical_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Optical computing</span> </div> </a> <ul id="toc-Optical_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spintronics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spintronics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Spintronics</span> </div> </a> <ul id="toc-Spintronics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Atomtronics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atomtronics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Atomtronics</span> </div> </a> <ul id="toc-Atomtronics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fluidics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fluidics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Fluidics</span> </div> </a> <ul id="toc-Fluidics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Quantum computing</span> </div> </a> <ul id="toc-Quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neuromorphic_quantum_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neuromorphic_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Neuromorphic quantum computing</span> </div> </a> <ul id="toc-Neuromorphic_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Superconducting_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Superconducting_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Superconducting computing</span> </div> </a> <ul id="toc-Superconducting_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Microelectromechanical_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Microelectromechanical_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Microelectromechanical systems</span> </div> </a> <ul id="toc-Microelectromechanical_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Chemistry_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Chemistry_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Chemistry approaches</span> </div> </a> <button aria-controls="toc-Chemistry_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Chemistry approaches subsection</span> </button> <ul id="toc-Chemistry_approaches-sublist" class="vector-toc-list"> <li id="toc-Molecular_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Molecular_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Molecular computing</span> </div> </a> <ul id="toc-Molecular_computing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Biochemistry_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Biochemistry_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Biochemistry approaches</span> </div> </a> <button aria-controls="toc-Biochemistry_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Biochemistry approaches subsection</span> </button> <ul id="toc-Biochemistry_approaches-sublist" class="vector-toc-list"> <li id="toc-Peptide_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Peptide_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Peptide computing</span> </div> </a> <ul id="toc-Peptide_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DNA_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DNA_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>DNA computing</span> </div> </a> <ul id="toc-DNA_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Membrane_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Membrane_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Membrane computing</span> </div> </a> <ul id="toc-Membrane_computing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Biological_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Biological_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Biological approaches</span> </div> </a> <button aria-controls="toc-Biological_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Biological approaches subsection</span> </button> <ul id="toc-Biological_approaches-sublist" class="vector-toc-list"> <li id="toc-Neuroscience" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neuroscience"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Neuroscience</span> </div> </a> <ul id="toc-Neuroscience-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cellular_automata_and_amorphous_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cellular_automata_and_amorphous_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Cellular automata and amorphous computing</span> </div> </a> <ul id="toc-Cellular_automata_and_amorphous_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Evolutionary_computation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Evolutionary_computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Evolutionary computation</span> </div> </a> <ul id="toc-Evolutionary_computation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Mathematical_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Mathematical approaches</span> </div> </a> <button aria-controls="toc-Mathematical_approaches-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical approaches subsection</span> </button> <ul id="toc-Mathematical_approaches-sublist" class="vector-toc-list"> <li id="toc-Ternary_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ternary_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Ternary computing</span> </div> </a> <ul id="toc-Ternary_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reversible_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reversible_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Reversible computing</span> </div> </a> <ul id="toc-Reversible_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chaos_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chaos_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Chaos computing</span> </div> </a> <ul id="toc-Chaos_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stochastic_computing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Stochastic computing</span> </div> </a> <ul id="toc-Stochastic_computing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Unconventional computing</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 2 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-2" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">2 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%88%D8%B3%D8%A8%D8%A9_%D8%BA%D9%8A%D8%B1_%D8%AA%D9%82%D9%84%D9%8A%D8%AF%D9%8A%D8%A9" title="حوسبة غير تقليدية – Arabic" lang="ar" hreflang="ar" data-title="حوسبة غير تقليدية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Computaci%C3%B3n_no_convencional" title="Computación no convencional – Spanish" lang="es" hreflang="es" data-title="Computación no convencional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176499#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Unconventional_computing" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Unconventional_computing" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Unconventional_computing"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Unconventional_computing&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Unconventional_computing&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Unconventional_computing"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Unconventional_computing&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Unconventional_computing&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Unconventional_computing" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Unconventional_computing" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Unconventional_computing&oldid=1254234149" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Unconventional_computing&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Unconventional_computing&id=1254234149&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUnconventional_computing"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUnconventional_computing"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Unconventional_computing&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Unconventional_computing&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176499" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Computing by new or unusual methods</div> <p><b>Unconventional computing</b> (also known as <b>alternative computing</b> or <b>nonstandard computation</b>) is <a href="/wiki/Computing" title="Computing">computing</a> by any of a wide range of new or unusual methods. </p><p>The term <i>unconventional computation</i> was coined by <a href="/wiki/Cristian_S._Calude" class="mw-redirect" title="Cristian S. Calude">Cristian S. Calude</a> and <a href="/wiki/John_Casti" title="John Casti">John Casti</a> and used at the First International Conference on Unconventional Models of Computation<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> in 1998.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The general theory of <a href="/wiki/Computation" title="Computation">computation</a> allows for a variety of methods of computation. Computing technology was first developed using <a href="/wiki/Machine_(mechanical)" class="mw-redirect" title="Machine (mechanical)">mechanical</a> systems and then evolved into the use of electronic devices. Other fields of <a href="/wiki/Modern_physics" title="Modern physics">modern physics</a> provide additional avenues for development. </p> <div class="mw-heading mw-heading3"><h3 id="Models_of_Computation">Models of Computation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=2" title="Edit section: Models of Computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Model_of_computation" title="Model of computation">Model of computation</a></div> <p>A model of computation describes how the output of a mathematical function is computed given its input. The model describes how units of computations, memories, and communications are organized.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology. </p><p>A wide variety of models are commonly used; some closely resemble the workings of (idealized) conventional computers, while others do not. Some commonly used models are <a href="/wiki/Register_machine" title="Register machine">register machines</a>, <a href="/wiki/Random-access_machine" title="Random-access machine">random-access machines</a>, <a href="/wiki/Turing_machine" title="Turing machine">Turing machines</a>, <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a>, <a href="/wiki/Rewriting_system" class="mw-redirect" title="Rewriting system">rewriting systems</a>, <a href="/wiki/Digital_circuit" class="mw-redirect" title="Digital circuit">digital circuits</a>, <a href="/wiki/Cellular_automaton" title="Cellular automaton">cellular automata</a>, and <a href="/wiki/Petri_net" title="Petri net">Petri nets</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Mechanical_computing">Mechanical computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=3" title="Edit section: Mechanical computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mechanical_computer" title="Mechanical computer">Mechanical computer</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:De-Te-We-mp3h0651.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/De-Te-We-mp3h0651.jpg/220px-De-Te-We-mp3h0651.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/De-Te-We-mp3h0651.jpg/330px-De-Te-We-mp3h0651.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/De-Te-We-mp3h0651.jpg/440px-De-Te-We-mp3h0651.jpg 2x" data-file-width="3504" data-file-height="2336" /></a><figcaption>Hamann Manus R, a digital mechanical computer</figcaption></figure> <p>Historically, <a href="/wiki/Mechanical_computer" title="Mechanical computer">mechanical computers</a> were used in industry before the advent of the <a href="/wiki/Transistor" title="Transistor">transistor</a>. </p><p>Mechanical computers retain some interest today, both in research and as analogue computers. Some mechanical computers have a theoretical or didactic relevance, such as <a href="/wiki/Billiard-ball_computer" title="Billiard-ball computer">billiard-ball computers</a>, while hydraulic ones like the <a href="/wiki/MONIAC" class="mw-redirect" title="MONIAC">MONIAC</a> or the <a href="/wiki/Water_integrator" title="Water integrator">Water integrator</a> were used effectively.<sup id="cite_ref-pen-empnew_4-0" class="reference"><a href="#cite_note-pen-empnew-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>While some are actually simulated, others are not<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (December 2016)">clarification needed</span></a></i>]</sup>. No attempt is made<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="The material near this tag is possibly inaccurate or nonfactual. (December 2016)">dubious</span></a> – <a href="/wiki/Talk:Unconventional_computing#Dubious" title="Talk:Unconventional computing">discuss</a></i>]</sup> to build a functioning computer through the mechanical collisions of billiard balls. The <a href="/wiki/Domino_computer" title="Domino computer">domino computer</a> is another theoretically interesting mechanical computing scheme.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The reason for this is unclear. (December 2016)">why?</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Analog_computing">Analog computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=4" title="Edit section: Analog computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Analog_computer" title="Analog computer">analog computer</a></div> <p>An analog computer is a type of computer that uses <i><a href="/wiki/Analog_signal" title="Analog signal">analog signals</a></i>, which are continuous physical quantities, to model and solve problems. These signals can be <a href="/wiki/Electrical_network" title="Electrical network">electrical</a>, <a href="/wiki/Mechanics" title="Mechanics">mechanical</a>, or <a href="/wiki/Hydraulics" title="Hydraulics">hydraulic</a> in nature. Analog computers were widely used in scientific and industrial applications, and were often faster than digital computers at the time. However, they started to become obsolete in the 1950s and 1960s and are now mostly used in specific applications such as aircraft flight simulators and teaching control systems in universities.<sup id="cite_ref-Johnston_5-0" class="reference"><a href="#cite_note-Johnston-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Examples of analog computing devices include <a href="/wiki/Slide_rule" title="Slide rule">slide rules</a>, <a href="/wiki/Nomogram" title="Nomogram">nomograms</a>, and complex mechanisms for process control and protective relays.<sup id="cite_ref-9HtsB_6-0" class="reference"><a href="#cite_note-9HtsB-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Antikythera_mechanism" title="Antikythera mechanism">Antikythera mechanism</a>, a mechanical device that calculates the positions of planets and the Moon, and the <a href="/wiki/Planimeter" title="Planimeter">planimeter</a>, a mechanical integrator for calculating the area of an arbitrary 2D shape, are also examples of analog computing. </p> <div class="mw-heading mw-heading3"><h3 id="Electronic_digital_computers">Electronic digital computers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=5" title="Edit section: Electronic digital computers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most modern computers are electronic computers with the <a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">Von Neumann architecture</a> based on digital electronics, with extensive integration made possible following the invention of the transistor and the scaling of <a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a>. </p><p>Unconventional computing is, according to a<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Avoid_weasel_words" class="mw-redirect" title="Wikipedia:Avoid weasel words"><span title="The material near this tag possibly uses too vague attribution or weasel words. (December 2016)">which?</span></a></i>]</sup> conference description,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> "an interdisciplinary research area with the main goal to enrich or go beyond the standard models, such as the <a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">Von Neumann computer architecture</a> and the <a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a>, which have dominated computer science for more than half a century". These methods model their computational operations based on non-standard paradigms, and are currently mostly in the research and development stage. </p><p>This computing behavior can be "simulated"<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (December 2016)">clarification needed</span></a></i>]</sup> using classical silicon-based micro-transistors or <a href="/wiki/Solid_state_(electronics)" class="mw-redirect" title="Solid state (electronics)">solid state</a> computing technologies, but it aims to achieve a new kind of computing. </p> <div class="mw-heading mw-heading2"><h2 id="Generic_approaches">Generic approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=6" title="Edit section: Generic approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>These are unintuitive and pedagogical examples that a computer can be made out of almost anything. </p> <div class="mw-heading mw-heading3"><h3 id="Physical_objects">Physical objects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=7" title="Edit section: Physical objects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Billiard-ball_computer" title="Billiard-ball computer">billiard-ball computer</a> and <a href="/wiki/Domino_computer" title="Domino computer">domino computer</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Domino_logic_gate.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Domino_logic_gate.jpg/150px-Domino_logic_gate.jpg" decoding="async" width="150" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Domino_logic_gate.jpg/225px-Domino_logic_gate.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Domino_logic_gate.jpg/300px-Domino_logic_gate.jpg 2x" data-file-width="2549" data-file-height="3065" /></a><figcaption>An <a href="/wiki/OR_gate" title="OR gate">OR gate</a> built from dominoes</figcaption></figure> <p>A billiard-ball computer is a type of mechanical computer that uses the motion of spherical billiard balls to perform computations. In this model, the wires of a Boolean circuit are represented by paths for the balls to travel on, the presence or absence of a ball on a path encodes the signal on that wire, and gates are simulated by collisions of balls at points where their paths intersect.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>A domino computer is a mechanical computer that uses standing dominoes to represent the amplification or logic gating of digital signals. These constructs can be used to demonstrate digital concepts and can even be used to build simple information processing modules.<sup id="cite_ref-domcom_10-0" class="reference"><a href="#cite_note-domcom-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-comdomcon_11-0" class="reference"><a href="#cite_note-comdomcon-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>Both billiard-ball computers and domino computers are examples of unconventional computing methods that use physical objects to perform computation. </p> <div class="mw-heading mw-heading3"><h3 id="Reservoir_computing">Reservoir computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=8" title="Edit section: Reservoir computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Reservoir_computing" title="Reservoir computing">Reservoir computing</a></div> <p>Reservoir computing is a computational framework derived from recurrent neural network theory that involves mapping input signals into higher-dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir. The reservoir, which can be virtual or physical, is made up of individual non-linear units that are connected in recurrent loops, allowing it to store information. Training is performed only at the readout stage, as the reservoir dynamics are fixed, and this framework allows for the use of naturally available systems, both classical and quantum mechanical, to reduce the effective computational cost. One key benefit of reservoir computing is that it allows for a simple and fast learning algorithm, as well as hardware implementation through <a href="/wiki/Reservoir_computing#Physical_reservoir_computers" title="Reservoir computing">physical reservoirs</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><br /> </p> <div class="mw-heading mw-heading3"><h3 id="Tangible_computing">Tangible computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=9" title="Edit section: Tangible computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Claytronics" class="mw-redirect" title="Claytronics">Claytronics</a> and <a href="/wiki/Tangible_user_interface" title="Tangible user interface">Tangible user interface</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:SandScape.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/SandScape.jpg/150px-SandScape.jpg" decoding="async" width="150" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/SandScape.jpg/225px-SandScape.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/SandScape.jpg/300px-SandScape.jpg 2x" data-file-width="2695" data-file-height="2778" /></a><figcaption><a rel="nofollow" class="external text" href="http://tangible.media.mit.edu/project/sandscape/">SandScape</a>, a tangible computing device installed in the <a href="/wiki/Children%27s_Creativity_Museum" title="Children's Creativity Museum">Children's Creativity Museum</a> in San Francisco</figcaption></figure> <p>Tangible computing refers to the use of physical objects as user interfaces for interacting with digital information. This approach aims to take advantage of the human ability to grasp and manipulate physical objects in order to facilitate collaboration, learning, and design. Characteristics of tangible user interfaces include the coupling of physical representations to underlying digital information and the embodiment of mechanisms for interactive control.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> There are five defining properties of tangible user interfaces, including the ability to multiplex both input and output in space, concurrent access and manipulation of interface components, strong specific devices, spatially aware computational devices, and spatial reconfigurability of devices.<sup id="cite_ref-KimMaher2008_15-0" class="reference"><a href="#cite_note-KimMaher2008-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Human_computing">Human computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=10" title="Edit section: Human computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Human_computer" class="mw-redirect" title="Human computer">Human computer</a></div> <p>The term "human computer" refers to individuals who perform mathematical calculations manually, often working in teams and following fixed rules. In the past, teams of people were employed to perform long and tedious calculations, and the work was divided to be completed in parallel. The term has also been used more recently to describe individuals with exceptional mental arithmetic skills, also known as mental calculators.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Human-robot_interaction">Human-robot interaction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=11" title="Edit section: Human-robot interaction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Human%E2%80%93robot_interaction" title="Human–robot interaction">Human–robot interaction</a> and <a href="/wiki/Cobot" title="Cobot">Cobot</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Db_tuda_jes2899_a.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Db_tuda_jes2899_a.jpg/220px-Db_tuda_jes2899_a.jpg" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Db_tuda_jes2899_a.jpg/330px-Db_tuda_jes2899_a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Db_tuda_jes2899_a.jpg/440px-Db_tuda_jes2899_a.jpg 2x" data-file-width="4256" data-file-height="2832" /></a><figcaption>Human-robot interaction.</figcaption></figure> <p><a href="/wiki/Human-robot_interaction" class="mw-redirect" title="Human-robot interaction">Human-robot interaction</a>, or HRI, is the study of interactions between humans and robots. It involves contributions from fields such as artificial intelligence, robotics, and psychology. <a href="/wiki/Cobot" title="Cobot">Cobots</a>, or collaborative robots, are designed for direct interaction with humans within shared spaces and can be used for a variety of tasks,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> including information provision, logistics, and unergonomic tasks in industrial environments. </p> <div class="mw-heading mw-heading3"><h3 id="Swarm_computing">Swarm computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=12" title="Edit section: Swarm computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Swarm_robotics" title="Swarm robotics">Swarm robotics</a> and <a href="/wiki/Swarm_intelligence" title="Swarm intelligence">swarm intelligence</a></div> <p><a href="/wiki/Swarm_robotics" title="Swarm robotics">Swarm robotics</a> is a field of study that focuses on the coordination and control of multiple robots as a system. Inspired by the emergent behavior observed in social insects, swarm robotics involves the use of relatively simple individual rules to produce complex group behaviors through local communication and interaction with the environment.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> This approach is characterized by the use of large numbers of simple robots and promotes scalability through the use of local communication methods such as radio frequency or infrared. </p> <div class="mw-heading mw-heading2"><h2 id="Physics_approaches">Physics approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=13" title="Edit section: Physics approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Optical_computing">Optical computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=14" title="Edit section: Optical computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Optical_computing" title="Optical computing">Optical computing</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Optical-NOT-gate-int.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Optical-NOT-gate-int.svg/220px-Optical-NOT-gate-int.svg.png" decoding="async" width="220" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Optical-NOT-gate-int.svg/330px-Optical-NOT-gate-int.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Optical-NOT-gate-int.svg/440px-Optical-NOT-gate-int.svg.png 2x" data-file-width="706" data-file-height="371" /></a><figcaption>Realization of a photonic controlled-NOT gate for use in quantum computing</figcaption></figure> <p>Optical computing is a type of computing that uses light waves, often produced by lasers or incoherent sources, for data processing, storage, and communication. While this technology has the potential to offer higher bandwidth than traditional computers, which use electrons, optoelectronic devices can consume a significant amount of energy in the process of converting electronic energy to photons and back. All-optical computers aim to eliminate the need for these conversions, leading to reduced electrical power consumption.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Applications of optical computing include synthetic-aperture radar and optical correlators, which can be used for object detection, tracking, and classification.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spintronics">Spintronics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=15" title="Edit section: Spintronics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spintronics" title="Spintronics">Spintronics</a></div> <p>Spintronics is a field of study that involves the use of the intrinsic spin and magnetic moment of electrons in solid-state devices.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> It differs from traditional electronics in that it exploits the spin of electrons as an additional degree of freedom, which has potential applications in data storage and transfer,<sup id="cite_ref-Bhatti_et_al._25-0" class="reference"><a href="#cite_note-Bhatti_et_al.-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> as well as quantum and neuromorphic computing. Spintronic systems are often created using dilute magnetic semiconductors and Heusler alloys. </p> <div class="mw-heading mw-heading3"><h3 id="Atomtronics">Atomtronics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=16" title="Edit section: Atomtronics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Atomtronics" title="Atomtronics">Atomtronics</a></div> <p>Atomtronics is a form of computing that involves the use of ultra-cold atoms in coherent matter-wave circuits, which can have components similar to those found in electronic or optical systems.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> These circuits have potential applications in several fields, including fundamental physics research and the development of practical devices such as sensors and quantum computers. </p> <div class="mw-heading mw-heading3"><h3 id="Fluidics">Fluidics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=17" title="Edit section: Fluidics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Fluidics" title="Fluidics">Fluidics</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:COANDA-WANDSTRAHLELEMENT-FLIPFLOP.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/6/65/COANDA-WANDSTRAHLELEMENT-FLIPFLOP.gif" decoding="async" width="201" height="263" class="mw-file-element" data-file-width="201" data-file-height="263" /></a><figcaption>A flip flop made using fluidics.</figcaption></figure> <p>Fluidics, or fluidic logic, is the use of fluid dynamics to perform analog or digital operations in environments where electronics may be unreliable, such as those exposed to high levels of electromagnetic interference or ionizing radiation. Fluidic devices operate without moving parts and can use nonlinear amplification, similar to transistors in electronic digital logic. Fluidics are also used in nanotechnology and military applications. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_computing">Quantum computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=18" title="Edit section: Quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a></div> <p>Quantum computing, perhaps the most well-known and developed unconventional computing method, is a type of computation that utilizes the principles of quantum mechanics, such as <a href="/wiki/Quantum_superposition" title="Quantum superposition">superposition</a> and entanglement, to perform calculations.<sup id="cite_ref-Hidary_28-0" class="reference"><a href="#cite_note-Hidary-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Quantum computers use qubits, which are analogous to classical bits but can exist in multiple states simultaneously, to perform operations. While current quantum computers may not yet outperform classical computers in practical applications, they have the potential to solve certain computational problems, such as integer factorization, significantly faster than classical computers. However, there are several challenges to building practical quantum computers, including the difficulty of maintaining qubits' quantum states and the need for error correction.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Quantum complexity theory is the study of the computational complexity of problems with respect to quantum computers. </p> <div class="mw-heading mw-heading3"><h3 id="Neuromorphic_quantum_computing">Neuromorphic quantum computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=19" title="Edit section: Neuromorphic quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Neuromorphic Quantum Computing<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> (abbreviated as 'n.quantum computing') is an unconventional type of computing that uses <a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">neuromorphic computing</a> to perform quantum operations. It was suggested that <a href="/wiki/Quantum_algorithm" title="Quantum algorithm">quantum algorithms</a>, which are algorithms that run on a realistic model of <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computation</a>, can be computed equally efficiently with neuromorphic quantum computing.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p> Both traditional <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a> and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and don't follow the <a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">von Neumann architecture</a>. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the "minimum". Neuromorphic quantum computing and <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a> share similar physical properties during computation<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup>.</p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg/220px-%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg" decoding="async" width="220" height="245" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg/330px-%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ac/%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg/440px-%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%BA%D1%80%D0%B8%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B0_%D0%9C%D0%A4%D0%A2%D0%98.jpg 2x" data-file-width="975" data-file-height="1086" /></a><figcaption>A quantum computer.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Superconducting_computing">Superconducting computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=20" title="Edit section: Superconducting computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Superconducting_computing" title="Superconducting computing">Superconducting computing</a></div> <p>Superconducting computing is a form of cryogenic computing that utilizes the unique properties of superconductors, including zero resistance wires and ultrafast switching, to encode, process, and transport data using single flux quanta. It is often used in quantum computing and requires cooling to cryogenic temperatures for operation. </p> <div class="mw-heading mw-heading3"><h3 id="Microelectromechanical_systems">Microelectromechanical systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=21" title="Edit section: Microelectromechanical systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Microelectromechanical_systems" class="mw-redirect" title="Microelectromechanical systems">Microelectromechanical systems</a> and <a href="/wiki/Nanoelectromechanical_systems" title="Nanoelectromechanical systems">Nanoelectromechanical systems</a></div> <p>Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) are technologies that involve the use of microscopic devices with moving parts, ranging in size from micrometers to nanometers. These devices typically consist of a central processing unit (such as an integrated circuit) and several components that interact with their surroundings, such as sensors.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> MEMS and NEMS technology differ from molecular nanotechnology or molecular electronics in that they also consider factors such as surface chemistry and the effects of ambient electromagnetism and fluid dynamics. Applications of these technologies include accelerometers and sensors for detecting chemical substances.<sup id="cite_ref-Ventra2004_42-0" class="reference"><a href="#cite_note-Ventra2004-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Chemistry_approaches">Chemistry approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=22" title="Edit section: Chemistry approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rotaxane_cartoon.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Rotaxane_cartoon.jpg/220px-Rotaxane_cartoon.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Rotaxane_cartoon.jpg/330px-Rotaxane_cartoon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/c/cd/Rotaxane_cartoon.jpg 2x" data-file-width="361" data-file-height="242" /></a><figcaption>Graphical representation of a <a href="/wiki/Rotaxane" title="Rotaxane">rotaxane</a>, useful as a molecular switch</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Molecular_computing">Molecular computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=23" title="Edit section: Molecular computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Molecular_scale_electronics" title="Molecular scale electronics">Molecular scale electronics</a>, <a href="/wiki/Chemical_computing" class="mw-redirect" title="Chemical computing">Chemical computing</a>, and <a href="/wiki/Molecular_logic_gate" title="Molecular logic gate">Molecular logic gate</a></div> <p>Molecular computing is an unconventional form of computing that utilizes chemical reactions to perform computations. Data is represented by variations in chemical concentrations,<sup id="cite_ref-ijirt.org_43-0" class="reference"><a href="#cite_note-ijirt.org-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> and the goal of this type of computing is to use the smallest stable structures, such as single molecules, as electronic components. This field, also known as chemical computing or reaction-diffusion computing, is distinct from the related fields of conductive polymers and organic electronics, which use molecules to affect the bulk properties of materials. </p> <div class="mw-heading mw-heading2"><h2 id="Biochemistry_approaches">Biochemistry approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=24" title="Edit section: Biochemistry approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Peptide_computing">Peptide computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=25" title="Edit section: Peptide computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Peptide_computing" title="Peptide computing">peptide computing</a></div> <p>Peptide computing is a computational model that uses peptides and antibodies to solve NP-complete problems and has been shown to be computationally universal. It offers advantages over DNA computing, such as a larger number of building blocks and more flexible interactions, but has not yet been practically realized due to the limited availability of specific monoclonal antibodies.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="DNA_computing">DNA computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=26" title="Edit section: DNA computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/DNA_computing" title="DNA computing">DNA computing</a></div> <p>DNA computing is a branch of unconventional computing that uses DNA and molecular biology hardware to perform calculations. It is a form of parallel computing that can solve certain specialized problems faster and more efficiently than traditional electronic computers. While DNA computing does not provide any new capabilities in terms of <a href="/wiki/Computability_theory" title="Computability theory">computability theory</a>, it can perform a high number of parallel computations simultaneously. However, DNA computing has slower processing speeds, and it is more difficult to analyze the results compared to digital computers. </p> <div class="mw-heading mw-heading3"><h3 id="Membrane_computing">Membrane computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=27" title="Edit section: Membrane computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Membrane_computing" title="Membrane computing">membrane computing</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:P-System_Membrane_Format.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/P-System_Membrane_Format.pdf/page1-220px-P-System_Membrane_Format.pdf.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/P-System_Membrane_Format.pdf/page1-330px-P-System_Membrane_Format.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/P-System_Membrane_Format.pdf/page1-440px-P-System_Membrane_Format.pdf.jpg 2x" data-file-width="1495" data-file-height="1122" /></a><figcaption>Nine Region Membrane Computer</figcaption></figure> <p>Membrane computing, also known as P systems,<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> is a subfield of computer science that studies distributed and parallel computing models based on the structure and function of biological membranes. In these systems, objects such as symbols or strings are processed within compartments defined by membranes, and the communication between compartments and with the external environment plays a critical role in the computation. P systems are hierarchical and can be represented graphically, with rules governing the production, consumption, and movement of objects within and between regions. While these systems have largely remained theoretical,<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> some have been shown to have the potential to solve NP-complete problems and have been proposed as hardware implementations for unconventional computing. </p> <div class="mw-heading mw-heading2"><h2 id="Biological_approaches">Biological approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=28" title="Edit section: Biological approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Biologically-inspired_computing" class="mw-redirect" title="Biologically-inspired computing">Biologically-inspired computing</a>, <a href="/wiki/Natural_computing" title="Natural computing">natural computing</a>, and <a href="/wiki/Biological_computing" title="Biological computing">Biological computing</a></div> <p>Biological computing, also known as bio-inspired computing or natural computation, is the study of using models inspired by biology to solve computer science problems, particularly in the fields of artificial intelligence and machine learning. It encompasses a range of computational paradigms including artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, and more, which can be implemented using traditional electronic hardware or alternative physical media such as biomolecules or trapped-ion quantum computing devices. It also includes the study of understanding biological systems through engineering semi-synthetic organisms and viewing natural processes as information processing. The concept of the universe itself as a computational mechanism has also been proposed.<sup id="cite_ref-handbook_NC_48-0" class="reference"><a href="#cite_note-handbook_NC-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NCA_book_49-0" class="reference"><a href="#cite_note-NCA_book-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Neuroscience">Neuroscience</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=29" title="Edit section: Neuroscience"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Neuromorphic_computing" title="Neuromorphic computing">Neuromorphic computing</a> and <a href="/wiki/Wetware_computer" title="Wetware computer">wetware computer</a></div> <p>Neuromorphic computing involves using electronic circuits to mimic the neurobiological architectures found in the human nervous system, with the goal of creating artificial neural systems that are inspired by biological ones.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> These systems can be implemented using a variety of hardware, such as memristors,<sup id="cite_ref-Maan_1–13_52-0" class="reference"><a href="#cite_note-Maan_1–13-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> spintronic memories, and transistors,<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:2_54-0" class="reference"><a href="#cite_note-:2-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> and can be trained using a range of software-based approaches, including error backpropagation<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> and canonical learning rules.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> The field of neuromorphic engineering seeks to understand how the design and structure of artificial neural systems affects their computation, representation of information, adaptability, and overall function, with the ultimate aim of creating systems that exhibit similar properties to those found in nature. Wetware computers, which are composed of living neurons, are a conceptual form of neuromorphic computing that has been explored in limited prototypes.<sup id="cite_ref-:1_57-0" class="reference"><a href="#cite_note-:1-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cellular_automata_and_amorphous_computing">Cellular automata and amorphous computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=30" title="Edit section: Cellular automata and amorphous computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Cellular_automata" class="mw-redirect" title="Cellular automata">Cellular automata</a> and <a href="/wiki/Amorphous_computing" title="Amorphous computing">Amorphous computing</a></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Gospers_glider_gun.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/e/e5/Gospers_glider_gun.gif" decoding="async" width="250" height="180" class="mw-file-element" data-file-width="250" data-file-height="180" /></a><figcaption><a href="/wiki/Bill_Gosper" title="Bill Gosper">Gosper's</a> <a href="/wiki/Gun_(cellular_automaton)" title="Gun (cellular automaton)">Glider Gun</a> creating "<a href="/wiki/Glider_(Conway%27s_Life)" class="mw-redirect" title="Glider (Conway's Life)">gliders</a>" in the cellular automaton <a href="/wiki/Conway%27s_Game_of_Life" title="Conway's Game of Life">Conway's Game of Life</a><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Cellular automata are discrete models of computation consisting of a grid of cells in a finite number of states, such as on and off. The state of each cell is determined by a fixed rule based on the states of the cell and its neighbors. There are four primary classifications of cellular automata, ranging from patterns that stabilize into homogeneity to those that become extremely complex and potentially Turing-complete. Amorphous computing refers to the study of computational systems using large numbers of parallel processors with limited computational ability and local interactions, regardless of the physical substrate. Examples of naturally occurring amorphous computation can be found in developmental biology, molecular biology, neural networks, and chemical engineering. The goal of amorphous computation is to understand and engineer novel systems through the characterization of amorphous algorithms as abstractions. </p> <div class="mw-heading mw-heading3"><h3 id="Evolutionary_computation">Evolutionary computation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=31" title="Edit section: Evolutionary computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Evolutionary_computation" title="Evolutionary computation">Evolutionary computation</a></div> <p>Evolutionary computation is a type of artificial intelligence and soft computing that uses algorithms inspired by biological evolution to find optimized solutions to a wide range of problems. It involves generating an initial set of candidate solutions, stochastically removing less desired solutions, and introducing small random changes to create a new generation. The population of solutions is subjected to natural or artificial selection and mutation, resulting in evolution towards increased fitness according to the chosen fitness function. Evolutionary computation has proven effective in various problem settings and has applications in both computer science and evolutionary biology. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_approaches">Mathematical approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=32" title="Edit section: Mathematical approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Ternary_computing">Ternary computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=33" title="Edit section: Ternary computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ternary_computing" class="mw-redirect" title="Ternary computing">Ternary computing</a></div> <p>Ternary computing is a type of computing that uses <a href="/wiki/Ternary_logic" class="mw-redirect" title="Ternary logic">ternary logic</a>, or base 3, in its calculations rather than the more common <a href="/wiki/Principle_of_bivalence" title="Principle of bivalence">binary system</a>. Ternary computers use trits, or ternary digits, which can be defined in several ways, including unbalanced ternary, fractional unbalanced ternary, balanced ternary, and unknown-state logic. Ternary quantum computers use qutrits instead of trits. Ternary computing has largely been replaced by binary computers, but it has been proposed for use in high-speed, low-power consumption devices using the Josephson junction as a balanced ternary memory cell. </p> <div class="mw-heading mw-heading3"><h3 id="Reversible_computing">Reversible computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=34" title="Edit section: Reversible computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Reversible_computing" title="Reversible computing">Reversible computing</a></div> <p>Reversible computing is a type of unconventional computing where the computational process can be reversed to some extent. In order for a computation to be reversible, the relation between states and their successors must be one-to-one, and the process must not result in an increase in physical entropy. Quantum circuits are reversible as long as they do not collapse quantum states, and reversible functions are bijective, meaning they have the same number of inputs as outputs.<sup id="cite_ref-Williams_59-0" class="reference"><a href="#cite_note-Williams-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Chaos_computing">Chaos computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=35" title="Edit section: Chaos computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Chaos_computing" title="Chaos computing">Chaos computing</a></div> <p>Chaos computing is a type of unconventional computing that utilizes chaotic systems to perform computation. Chaotic systems can be used to create logic gates and can be rapidly switched between different patterns, making them useful for fault-tolerant applications and parallel computing. Chaos computing has been applied to various fields such as meteorology, physiology, and finance. </p> <div class="mw-heading mw-heading3"><h3 id="Stochastic_computing">Stochastic computing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=36" title="Edit section: Stochastic computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Stochastic_computing" title="Stochastic computing">Stochastic computing</a></div> <p>Stochastic computing is a method of computation that represents continuous values as streams of random bits and performs complex operations using simple bit-wise operations on the streams. It can be viewed as a hybrid analog/digital computer and is characterized by its progressive precision property, where the precision of the computation increases as the bit stream is extended. Stochastic computing can be used in iterative systems to achieve faster convergence, but it can also be costly due to the need for random bit stream generation and is vulnerable to failure if the assumption of independent bit streams is not met. It is also limited in its ability to perform certain digital functions. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=37" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Network_computing_(disambiguation)" class="mw-redirect mw-disambig" title="Network computing (disambiguation)">Network computing (disambiguation)</a></li> <li><a href="/wiki/WDR_paper_computer" title="WDR paper computer">WDR paper computer</a></li> <li><a href="/wiki/MONIAC" class="mw-redirect" title="MONIAC">MONIAC</a> hydraulic computer</li> <li><a href="/wiki/Hypercomputation" title="Hypercomputation">Hypercomputation</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unconventional_computing&action=edit&section=38" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/">"Unconventional Models of Computation 1998"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Unconventional+Models+of+Computation+1998&rft_id=https%3A%2F%2Fwww.cs.auckland.ac.nz%2Fresearch%2Fgroups%2FCDMTCS%2Fconferences%2Fumc98%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFC.S._Calude" class="citation web cs1">C.S. Calude. <a rel="nofollow" class="external text" href="https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/view-publication.php?selected-id=548">"Unconventional Computing: A Brief Subjective History, CDMTCS Report 480, 2015"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Unconventional+Computing%3A+A+Brief+Subjective+History%2C+CDMTCS+Report+480%2C+2015&rft.au=C.S.+Calude&rft_id=https%3A%2F%2Fwww.cs.auckland.ac.nz%2Fresearch%2Fgroups%2FCDMTCS%2Fresearchreports%2Fview-publication.php%3Fselected-id%3D548&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavage1998" class="citation book cs1"><a href="/wiki/John_E._Savage" title="John E. Savage">Savage, John E.</a> (1998). <i>Models Of Computation: Exploring the Power of Computing</i>. Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0201895391" title="Special:BookSources/978-0201895391"><bdi>978-0201895391</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Models+Of+Computation%3A+Exploring+the+Power+of+Computing&rft.pub=Addison-Wesley&rft.date=1998&rft.isbn=978-0201895391&rft.aulast=Savage&rft.aufirst=John+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-pen-empnew-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-pen-empnew_4-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a>: The Emperor's New Mind. Oxford University Press, 1990. See also corresponding <a href="/wiki/The_Emperor%27s_New_Mind" title="The Emperor's New Mind">article on it</a>.</span> </li> <li id="cite_note-Johnston-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Johnston_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnston,_Sean_F.2006" class="citation book cs1">Johnston, Sean F. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iPfU_powAgAC&q=%22through%20the%201980s%22&pg=PA90"><i>Holographic Visions: A History of New Science</i></a>. OUP Oxford. p. 90. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0191513886" title="Special:BookSources/978-0191513886"><bdi>978-0191513886</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Holographic+Visions%3A+A+History+of+New+Science&rft.pages=90&rft.pub=OUP+Oxford&rft.date=2006&rft.isbn=978-0191513886&rft.au=Johnston%2C+Sean+F.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiPfU_powAgAC%26q%3D%2522through%2520the%25201980s%2522%26pg%3DPA90&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-9HtsB-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-9HtsB_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180908173957/https://arstechnica.com/information-technology/2014/03/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/">"Gears of war: When mechanical analog computers ruled the waves"</a>. 2014-03-18. Archived from <a rel="nofollow" class="external text" href="https://arstechnica.com/information-technology/2014/03/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/">the original</a> on 2018-09-08<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-06-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Gears+of+war%3A+When+mechanical+analog+computers+ruled+the+waves&rft.date=2014-03-18&rft_id=https%3A%2F%2Farstechnica.com%2Finformation-technology%2F2014%2F03%2Fgears-of-war-when-mechanical-analog-computers-ruled-the-waves%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://cnls.lanl.gov/uc07/">"Unconventional computation Conference 2007"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Unconventional+computation+Conference+2007&rft_id=http%3A%2F%2Fcnls.lanl.gov%2Fuc07%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFredkinToffoli1982" class="citation cs2"><a href="/wiki/Edward_Fredkin" title="Edward Fredkin">Fredkin, Edward</a>; <a href="/wiki/Tommaso_Toffoli" title="Tommaso Toffoli">Toffoli, Tommaso</a> (1982), "Conservative logic", <i><a href="/wiki/International_Journal_of_Theoretical_Physics" title="International Journal of Theoretical Physics">International Journal of Theoretical Physics</a></i>, <b>21</b> (3–4): 219–253, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982IJTP...21..219F">1982IJTP...21..219F</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01857727">10.1007/BF01857727</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0657156">0657156</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:37305161">37305161</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Theoretical+Physics&rft.atitle=Conservative+logic&rft.volume=21&rft.issue=3%E2%80%934&rft.pages=219-253&rft.date=1982&rft_id=info%3Adoi%2F10.1007%2FBF01857727&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D657156%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A37305161%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1982IJTP...21..219F&rft.aulast=Fredkin&rft.aufirst=Edward&rft.au=Toffoli%2C+Tommaso&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDurand-Lose2002" class="citation cs2">Durand-Lose, Jérôme (2002), "Computing inside the billiard ball model", in <a href="/wiki/Andrew_Adamatzky" title="Andrew Adamatzky">Adamatzky, Andrew</a> (ed.), <i>Collision-Based Computing</i>, Springer-Verlag, pp. 135–160, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4471-0129-1_6">10.1007/978-1-4471-0129-1_6</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4471-0129-1" title="Special:BookSources/978-1-4471-0129-1"><bdi>978-1-4471-0129-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Computing+inside+the+billiard+ball+model&rft.btitle=Collision-Based+Computing&rft.pages=135-160&rft.pub=Springer-Verlag&rft.date=2002&rft_id=info%3Adoi%2F10.1007%2F978-1-4471-0129-1_6&rft.isbn=978-1-4471-0129-1&rft.aulast=Durand-Lose&rft.aufirst=J%C3%A9r%C3%B4me&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span>.</span> </li> <li id="cite_note-domcom-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-domcom_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://everything2.com/index.pl?node_id=1764437">"Domino computer - Everything2.com"</a>. <i>everything2.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=everything2.com&rft.atitle=Domino+computer+-+Everything2.com&rft_id=https%3A%2F%2Feverything2.com%2Findex.pl%3Fnode_id%3D1764437&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-comdomcon-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-comdomcon_11-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pinkandaint.com/oldhome/comp/dominoes/index.html">Domino computers</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060816075615/http://www.pinkandaint.com/oldhome/comp/dominoes/index.html">Archived</a> August 16, 2006, at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, a detailed description written by <a rel="nofollow" class="external text" href="http://www.pinkandaint.com/">David Johnston</a></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanakaYamaneHérouxNakane2019" class="citation journal cs1">Tanaka, Gouhei; Yamane, Toshiyuki; Héroux, Jean Benoit; Nakane, Ryosho; Kanazawa, Naoki; Takeda, Seiji; Numata, Hidetoshi; Nakano, Daiju; Hirose, Akira (2019-07-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neunet.2019.03.005">"Recent advances in physical reservoir computing: A review"</a>. <i>Neural Networks</i>. <b>115</b>: 100–123. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.04962">1808.04962</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neunet.2019.03.005">10.1016/j.neunet.2019.03.005</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0893-6080">0893-6080</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30981085">30981085</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neural+Networks&rft.atitle=Recent+advances+in+physical+reservoir+computing%3A+A+review&rft.volume=115&rft.pages=100-123&rft.date=2019-07-01&rft_id=info%3Aarxiv%2F1808.04962&rft.issn=0893-6080&rft_id=info%3Apmid%2F30981085&rft_id=info%3Adoi%2F10.1016%2Fj.neunet.2019.03.005&rft.aulast=Tanaka&rft.aufirst=Gouhei&rft.au=Yamane%2C+Toshiyuki&rft.au=H%C3%A9roux%2C+Jean+Benoit&rft.au=Nakane%2C+Ryosho&rft.au=Kanazawa%2C+Naoki&rft.au=Takeda%2C+Seiji&rft.au=Numata%2C+Hidetoshi&rft.au=Nakano%2C+Daiju&rft.au=Hirose%2C+Akira&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.neunet.2019.03.005&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRöhmLüdge2018" class="citation journal cs1">Röhm, André; Lüdge, Kathy (2018-08-03). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2399-6528%2Faad56d">"Multiplexed networks: reservoir computing with virtual and real nodes"</a>. <i>Journal of Physics Communications</i>. <b>2</b> (8): 085007. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1802.08590">1802.08590</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018JPhCo...2h5007R">2018JPhCo...2h5007R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2399-6528%2Faad56d">10.1088/2399-6528/aad56d</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2399-6528">2399-6528</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+Communications&rft.atitle=Multiplexed+networks%3A+reservoir+computing+with+virtual+and+real+nodes&rft.volume=2&rft.issue=8&rft.pages=085007&rft.date=2018-08-03&rft_id=info%3Aarxiv%2F1802.08590&rft.issn=2399-6528&rft_id=info%3Adoi%2F10.1088%2F2399-6528%2Faad56d&rft_id=info%3Abibcode%2F2018JPhCo...2h5007R&rft.aulast=R%C3%B6hm&rft.aufirst=Andr%C3%A9&rft.au=L%C3%BCdge%2C+Kathy&rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F2399-6528%252Faad56d&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIshii2008" class="citation book cs1">Ishii, Hiroshi (2008). "Tangible bits". <i>Proceedings of the 2nd international conference on Tangible and embedded interaction - TEI '08</i>. pp. xv. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1347390.1347392">10.1145/1347390.1347392</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60558-004-3" title="Special:BookSources/978-1-60558-004-3"><bdi>978-1-60558-004-3</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18166868">18166868</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Tangible+bits&rft.btitle=Proceedings+of+the+2nd+international+conference+on+Tangible+and+embedded+interaction+-+TEI+%2708&rft.pages=xv&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18166868%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1145%2F1347390.1347392&rft.isbn=978-1-60558-004-3&rft.aulast=Ishii&rft.aufirst=Hiroshi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-KimMaher2008-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-KimMaher2008_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimMaher2008" class="citation journal cs1">Kim, Mi Jeong; Maher, Mary Lou (30 May 2008). "The Impact of Tangible User Interfaces on Designers' Spatial Cognition". <i>Human–Computer Interaction</i>. <b>23</b> (2): 101–137. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F07370020802016415">10.1080/07370020802016415</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1268154">1268154</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Human%E2%80%93Computer+Interaction&rft.atitle=The+Impact+of+Tangible+User+Interfaces+on+Designers%27+Spatial+Cognition&rft.volume=23&rft.issue=2&rft.pages=101-137&rft.date=2008-05-30&rft_id=info%3Adoi%2F10.1080%2F07370020802016415&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1268154%23id-name%3DS2CID&rft.aulast=Kim&rft.aufirst=Mi+Jeong&rft.au=Maher%2C+Mary+Lou&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1">"computer". <i>Oxford English Dictionary</i> (Third ed.). Oxford University Press. March 2008. <q>1613 'R. B.' Yong Mans Gleanings 1, I have read the truest computer of Times, and the best Arithmetician that ever breathed, and he reduceth thy dayes into a short number.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=computer&rft.btitle=Oxford+English+Dictionary&rft.edition=Third&rft.pub=Oxford+University+Press&rft.date=2008-03&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.themanufacturer.com/articles/i-cobot-future-collaboration-of-man-and-machine/">"I, Cobot: Future collaboration of man and machine"</a> <i>The Manufacturer</i> (2015-11-15). Retrieved on 2016-01-19</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorigoBirattariBrambill2014" class="citation journal cs1">Dorigo, Marco; Birattari, Mauro; Brambill, Manuele (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1463">"Swarm Robotics"</a>. <i>Scholarpedia</i>. <b>9</b>: 1463. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1463">10.4249/scholarpedia.1463</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=Swarm+Robotics&rft.volume=9&rft.pages=1463&rft.date=2014&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.1463&rft.aulast=Dorigo&rft.aufirst=Marco&rft.au=Birattari%2C+Mauro&rft.au=Brambill%2C+Manuele&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.1463&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNolte2001" class="citation book cs1">Nolte, D.D. (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Q9lB-REWP5EC&pg=PA34"><i>Mind at Light Speed: A New Kind of Intelligence</i></a>. Simon and Schuster. p. 34. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7432-0501-6" title="Special:BookSources/978-0-7432-0501-6"><bdi>978-0-7432-0501-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mind+at+Light+Speed%3A+A+New+Kind+of+Intelligence&rft.pages=34&rft.pub=Simon+and+Schuster&rft.date=2001&rft.isbn=978-0-7432-0501-6&rft.aulast=Nolte&rft.aufirst=D.D.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQ9lB-REWP5EC%26pg%3DPA34&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeitelson1988" class="citation book cs1">Feitelson, Dror G. (1988). "Chapter 3: Optical Image and Signal Processing". <i>Optical Computing: A Survey for Computer Scientists</i>. Cambridge, Massachusetts: MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-06112-4" title="Special:BookSources/978-0-262-06112-4"><bdi>978-0-262-06112-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+3%3A+Optical+Image+and+Signal+Processing&rft.btitle=Optical+Computing%3A+A+Survey+for+Computer+Scientists&rft.place=Cambridge%2C+Massachusetts&rft.pub=MIT+Press&rft.date=1988&rft.isbn=978-0-262-06112-4&rft.aulast=Feitelson&rft.aufirst=Dror+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimGodaFardJalali2011" class="citation journal cs1">Kim, S. K.; Goda, K.; Fard, A. M.; Jalali, B. (2011). "Optical time-domain analog pattern correlator for high-speed real-time image recognition". <i>Optics Letters</i>. <b>36</b> (2): 220–2. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011OptL...36..220K">2011OptL...36..220K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2Fol.36.000220">10.1364/ol.36.000220</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21263506">21263506</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15492810">15492810</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optics+Letters&rft.atitle=Optical+time-domain+analog+pattern+correlator+for+high-speed+real-time+image+recognition&rft.volume=36&rft.issue=2&rft.pages=220-2&rft.date=2011&rft_id=info%3Adoi%2F10.1364%2Fol.36.000220&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15492810%23id-name%3DS2CID&rft_id=info%3Apmid%2F21263506&rft_id=info%3Abibcode%2F2011OptL...36..220K&rft.aulast=Kim&rft.aufirst=S.+K.&rft.au=Goda%2C+K.&rft.au=Fard%2C+A.+M.&rft.au=Jalali%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfChtchelkanovaTreger2006" class="citation journal cs1">Wolf, S. A.; Chtchelkanova, A. Y.; Treger, D. M. (2006). "Spintronics—A retrospective and perspective". <i>IBM Journal of Research and Development</i>. <b>50</b>: 101–110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1147%2Frd.501.0101">10.1147/rd.501.0101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IBM+Journal+of+Research+and+Development&rft.atitle=Spintronics%E2%80%94A+retrospective+and+perspective&rft.volume=50&rft.pages=101-110&rft.date=2006&rft_id=info%3Adoi%2F10.1147%2Frd.501.0101&rft.aulast=Wolf&rft.aufirst=S.+A.&rft.au=Chtchelkanova%2C+A.+Y.&rft.au=Treger%2C+D.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110418015231/http://video.google.com/videoplay?docid=2927943907685656536">"Physics Profile: "Stu Wolf: True D! Hollywood Story"<span class="cs1-kern-right"></span>"</a>. Archived from <a rel="nofollow" class="external text" href="http://video.google.com/videoplay?docid=2927943907685656536&q=LevyResearch&ei=dxd1SNCtOqj2rAKxzf1p">the original</a> on 2011-04-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Physics+Profile%3A+%22Stu+Wolf%3A+True+D%21+Hollywood+Story%22&rft_id=http%3A%2F%2Fvideo.google.com%2Fvideoplay%3Fdocid%3D2927943907685656536%26q%3DLevyResearch%26ei%3Ddxd1SNCtOqj2rAKxzf1p&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.science.org/doi/abs/10.1126/science.1065389">Spintronics: A Spin-Based Electronics Vision for the Future</a>. Sciencemag.org (16 November 2001). Retrieved on 21 October 2013.</span> </li> <li id="cite_note-Bhatti_et_al.-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bhatti_et_al._25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhatti2017" class="citation journal cs1">Bhatti, S.; et al. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mattod.2017.07.007">"Spintronics based random access memory: a review"</a>. <i>Materials Today</i>. <b>20</b> (9): 530–548. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mattod.2017.07.007">10.1016/j.mattod.2017.07.007</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10356%2F146755">10356/146755</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Materials+Today&rft.atitle=Spintronics+based+random+access+memory%3A+a+review&rft.volume=20&rft.issue=9&rft.pages=530-548&rft.date=2017&rft_id=info%3Ahdl%2F10356%2F146755&rft_id=info%3Adoi%2F10.1016%2Fj.mattod.2017.07.007&rft.aulast=Bhatti&rft.aufirst=S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.mattod.2017.07.007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmicoBoshierBirklMinguzzi2021" class="citation journal cs1">Amico, L.; Boshier, M.; Birkl, G.; <a href="/wiki/Anna_Minguzzi" title="Anna Minguzzi">Minguzzi, A.</a>; Miniatura, C.; Kwek, L.-C.; Aghamalyan, D.; Ahufinger, V.; Anderson, D.; Andrei, N.; Arnold, A. S.; Baker, M.; Bell, T. A.; Bland, T.; Brantut, J. P. (2021). <a rel="nofollow" class="external text" href="https://avs.scitation.org/doi/10.1116/5.0026178">"Roadmap on Atomtronics: State of the art and perspective"</a>. <i>AVS Quantum Science</i>. <b>3</b> (3): 039201. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.04439">2008.04439</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AVSQS...3c9201A">2021AVSQS...3c9201A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F5.0026178">10.1116/5.0026178</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2639-0213">2639-0213</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235417597">235417597</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AVS+Quantum+Science&rft.atitle=Roadmap+on+Atomtronics%3A+State+of+the+art+and+perspective&rft.volume=3&rft.issue=3&rft.pages=039201&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235417597%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021AVSQS...3c9201A&rft_id=info%3Aarxiv%2F2008.04439&rft.issn=2639-0213&rft_id=info%3Adoi%2F10.1116%2F5.0026178&rft.aulast=Amico&rft.aufirst=L.&rft.au=Boshier%2C+M.&rft.au=Birkl%2C+G.&rft.au=Minguzzi%2C+A.&rft.au=Miniatura%2C+C.&rft.au=Kwek%2C+L.-C.&rft.au=Aghamalyan%2C+D.&rft.au=Ahufinger%2C+V.&rft.au=Anderson%2C+D.&rft.au=Andrei%2C+N.&rft.au=Arnold%2C+A.+S.&rft.au=Baker%2C+M.&rft.au=Bell%2C+T.+A.&rft.au=Bland%2C+T.&rft.au=Brantut%2C+J.+P.&rft_id=https%3A%2F%2Favs.scitation.org%2Fdoi%2F10.1116%2F5.0026178&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmicoAndersonBoshierBrantut2022" class="citation journal cs1">Amico, Luigi; Anderson, Dana; Boshier, Malcolm; Brantut, Jean-Philippe; Kwek, Leong-Chuan; <a href="/wiki/Anna_Minguzzi" title="Anna Minguzzi">Minguzzi, Anna</a>; von Klitzing, Wolf (2022-06-14). "Colloquium : Atomtronic circuits: From many-body physics to quantum technologies". <i>Reviews of Modern Physics</i>. <b>94</b> (4): 041001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2107.08561">2107.08561</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022RvMP...94d1001A">2022RvMP...94d1001A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.94.041001">10.1103/RevModPhys.94.041001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249642063">249642063</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+of+Modern+Physics&rft.atitle=Colloquium+%3A+Atomtronic+circuits%3A+From+many-body+physics+to+quantum+technologies&rft.volume=94&rft.issue=4&rft.pages=041001&rft.date=2022-06-14&rft_id=info%3Aarxiv%2F2107.08561&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249642063%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FRevModPhys.94.041001&rft_id=info%3Abibcode%2F2022RvMP...94d1001A&rft.aulast=Amico&rft.aufirst=Luigi&rft.au=Anderson%2C+Dana&rft.au=Boshier%2C+Malcolm&rft.au=Brantut%2C+Jean-Philippe&rft.au=Kwek%2C+Leong-Chuan&rft.au=Minguzzi%2C+Anna&rft.au=von+Klitzing%2C+Wolf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-Hidary-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hidary_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHidary2019" class="citation book cs1">Hidary, Jack (2019). <i>Quantum computing : an applied approach</i>. Cham: Springer. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-030-23922-0" title="Special:BookSources/978-3-030-23922-0"><bdi>978-3-030-23922-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1117464128">1117464128</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+computing+%3A+an+applied+approach&rft.place=Cham&rft.pages=3&rft.pub=Springer&rft.date=2019&rft_id=info%3Aoclcnum%2F1117464128&rft.isbn=978-3-030-23922-0&rft.aulast=Hidary&rft.aufirst=Jack&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2010" class="citation book cs1"><a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Nielsen, Michael</a>; <a href="/wiki/Isaac_L._Chuang" class="mw-redirect" title="Isaac L. Chuang">Chuang, Isaac</a> (2010). <i><a href="/wiki/Quantum_Computation_and_Quantum_Information" title="Quantum Computation and Quantum Information">Quantum Computation and Quantum Information</a></i> (10th anniversary ed.). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511976667">10.1017/CBO9780511976667</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-511-99277-3" title="Special:BookSources/978-0-511-99277-3"><bdi>978-0-511-99277-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/700706156">700706156</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59717455">59717455</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Computation+and+Quantum+Information&rft.edition=10th+anniversary&rft.date=2010&rft_id=info%3Aoclcnum%2F700706156&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59717455%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FCBO9780511976667&rft.isbn=978-0-511-99277-3&rft.aulast=Nielsen&rft.aufirst=Michael&rft.au=Chuang%2C+Isaac&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklinChong2004" class="citation book cs1">Franklin, Diana; Chong, Frederic T. (2004). "Challenges in Reliable Quantum Computing". <i>Nano, Quantum and Molecular Computing</i>. pp. 247–266. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-4020-8068-9_8">10.1007/1-4020-8068-9_8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-4020-8067-0" title="Special:BookSources/1-4020-8067-0"><bdi>1-4020-8067-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Challenges+in+Reliable+Quantum+Computing&rft.btitle=Nano%2C+Quantum+and+Molecular+Computing&rft.pages=247-266&rft.date=2004&rft_id=info%3Adoi%2F10.1007%2F1-4020-8068-9_8&rft.isbn=1-4020-8067-0&rft.aulast=Franklin&rft.aufirst=Diana&rft.au=Chong%2C+Frederic+T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPakkinColes2019" class="citation news cs1">Pakkin, Scott; Coles, Patrick (10 June 2019). <a rel="nofollow" class="external text" href="https://blogs.scientificamerican.com/observations/the-problem-with-quantum-computers/">"The Problem with Quantum Computers"</a>. <i>Scientific American</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=The+Problem+with+Quantum+Computers&rft.date=2019-06-10&rft.aulast=Pakkin&rft.aufirst=Scott&rft.au=Coles%2C+Patrick&rft_id=https%3A%2F%2Fblogs.scientificamerican.com%2Fobservations%2Fthe-problem-with-quantum-computers%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://cordis.europa.eu/project/id/828826">"Neuromrophic Quantum Computing | Quromorphic Project | Fact Sheet | H2020"</a>. <i>CORDIS | European Commission</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3030%2F828826">10.3030/828826</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CORDIS+%7C+European+Commission&rft.atitle=Neuromrophic+Quantum+Computing+%7C+Quromorphic+Project+%7C+Fact+Sheet+%7C+H2020&rft_id=info%3Adoi%2F10.3030%2F828826&rft_id=https%3A%2F%2Fcordis.europa.eu%2Fproject%2Fid%2F828826&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPehleWetterich2021" class="citation cs2">Pehle, Christian; Wetterich, Christof (2021-03-30), <i>Neuromorphic quantum computing</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.01533">2005.01533</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Neuromorphic+quantum+computing&rft.date=2021-03-30&rft_id=info%3Aarxiv%2F2005.01533&rft.aulast=Pehle&rft.aufirst=Christian&rft.au=Wetterich%2C+Christof&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarleoTroyer2017" class="citation journal cs1">Carleo, Giuseppe; Troyer, Matthias (2017-02-10). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.aag2302">"Solving the quantum many-body problem with artificial neural networks"</a>. <i>Science</i>. <b>355</b> (6325): 602–606. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.02318">1606.02318</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Sci...355..602C">2017Sci...355..602C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aag2302">10.1126/science.aag2302</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28183973">28183973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Solving+the+quantum+many-body+problem+with+artificial+neural+networks&rft.volume=355&rft.issue=6325&rft.pages=602-606&rft.date=2017-02-10&rft_id=info%3Abibcode%2F2017Sci...355..602C&rft_id=info%3Aarxiv%2F1606.02318&rft_id=info%3Apmid%2F28183973&rft_id=info%3Adoi%2F10.1126%2Fscience.aag2302&rft.issn=0036-8075&rft.aulast=Carleo&rft.aufirst=Giuseppe&rft.au=Troyer%2C+Matthias&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.aag2302&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTorlaiMazzolaCarrasquillaTroyer2018" class="citation journal cs1">Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe (2018-02-26). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41567-018-0048-5">"Neural-network quantum state tomography"</a>. <i><a href="/wiki/Nature_Physics" title="Nature Physics">Nature Physics</a></i>. <b>14</b> (5): 447–450. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.05334">1703.05334</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatPh..14..447T">2018NatPh..14..447T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-018-0048-5">10.1038/s41567-018-0048-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-2481">1745-2481</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=Neural-network+quantum+state+tomography&rft.volume=14&rft.issue=5&rft.pages=447-450&rft.date=2018-02-26&rft_id=info%3Aarxiv%2F1703.05334&rft.issn=1745-2481&rft_id=info%3Adoi%2F10.1038%2Fs41567-018-0048-5&rft_id=info%3Abibcode%2F2018NatPh..14..447T&rft.aulast=Torlai&rft.aufirst=Giacomo&rft.au=Mazzola%2C+Guglielmo&rft.au=Carrasquilla%2C+Juan&rft.au=Troyer%2C+Matthias&rft.au=Melko%2C+Roger&rft.au=Carleo%2C+Giuseppe&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41567-018-0048-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharirLevineWiesCarleo2020" class="citation journal cs1">Sharir, Or; Levine, Yoav; Wies, Noam; Carleo, Giuseppe; Shashua, Amnon (2020-01-16). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.124.020503">"Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems"</a>. <i>Physical Review Letters</i>. <b>124</b> (2): 020503. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1902.04057">1902.04057</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvL.124b0503S">2020PhRvL.124b0503S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.124.020503">10.1103/PhysRevLett.124.020503</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32004039">32004039</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Deep+Autoregressive+Models+for+the+Efficient+Variational+Simulation+of+Many-Body+Quantum+Systems&rft.volume=124&rft.issue=2&rft.pages=020503&rft.date=2020-01-16&rft_id=info%3Aarxiv%2F1902.04057&rft_id=info%3Apmid%2F32004039&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.124.020503&rft_id=info%3Abibcode%2F2020PhRvL.124b0503S&rft.aulast=Sharir&rft.aufirst=Or&rft.au=Levine%2C+Yoav&rft.au=Wies%2C+Noam&rft.au=Carleo%2C+Giuseppe&rft.au=Shashua%2C+Amnon&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.124.020503&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBroughtonVerdonMcCourtMartinez2021" class="citation cs2">Broughton, Michael; Verdon, Guillaume; McCourt, Trevor; Martinez, Antonio J.; Yoo, Jae Hyeon; Isakov, Sergei V.; Massey, Philip; Halavati, Ramin; Niu, Murphy Yuezhen (2021-08-26), <i>TensorFlow Quantum: A Software Framework for Quantum Machine Learning</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.02989">2003.02989</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=TensorFlow+Quantum%3A+A+Software+Framework+for+Quantum+Machine+Learning&rft.date=2021-08-26&rft_id=info%3Aarxiv%2F2003.02989&rft.aulast=Broughton&rft.aufirst=Michael&rft.au=Verdon%2C+Guillaume&rft.au=McCourt%2C+Trevor&rft.au=Martinez%2C+Antonio+J.&rft.au=Yoo%2C+Jae+Hyeon&rft.au=Isakov%2C+Sergei+V.&rft.au=Massey%2C+Philip&rft.au=Halavati%2C+Ramin&rft.au=Niu%2C+Murphy+Yuezhen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_Ventra2022" class="citation cs2">Di Ventra, Massimiliano (2022-03-23), <i>MemComputing vs. Quantum Computing: some analogies and major differences</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.12031">2203.12031</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=MemComputing+vs.+Quantum+Computing%3A+some+analogies+and+major+differences&rft.date=2022-03-23&rft_id=info%3Aarxiv%2F2203.12031&rft.aulast=Di+Ventra&rft.aufirst=Massimiliano&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_Ventra2022" class="citation cs2">Di Ventra, Massimiliano (2022-03-23), <i>MemComputing vs. Quantum Computing: some analogies and major differences</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.12031">2203.12031</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=MemComputing+vs.+Quantum+Computing%3A+some+analogies+and+major+differences&rft.date=2022-03-23&rft_id=info%3Aarxiv%2F2203.12031&rft.aulast=Di+Ventra&rft.aufirst=Massimiliano&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilkinsonHartmann2020" class="citation journal cs1">Wilkinson, Samuel A.; Hartmann, Michael J. (2020-06-08). <a rel="nofollow" class="external text" href="https://doi.org/10.1063/5.0008202">"Superconducting quantum many-body circuits for quantum simulation and computing"</a>. <i>Applied Physics Letters</i>. <b>116</b> (23). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.08838">2003.08838</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020ApPhL.116w0501W">2020ApPhL.116w0501W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F5.0008202">10.1063/5.0008202</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6951">0003-6951</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Superconducting+quantum+many-body+circuits+for+quantum+simulation+and+computing&rft.volume=116&rft.issue=23&rft.date=2020-06-08&rft_id=info%3Aarxiv%2F2003.08838&rft.issn=0003-6951&rft_id=info%3Adoi%2F10.1063%2F5.0008202&rft_id=info%3Abibcode%2F2020ApPhL.116w0501W&rft.aulast=Wilkinson&rft.aufirst=Samuel+A.&rft.au=Hartmann%2C+Michael+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1063%2F5.0008202&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldner2008" class="citation book cs1"><a href="/wiki/Jean-Baptiste_Waldner" title="Jean-Baptiste Waldner">Waldner JB</a> (2008). <i>Nanocomputers and Swarm Intelligence</i>. London: <a href="/wiki/ISTE_Ltd" class="mw-redirect" title="ISTE Ltd">ISTE</a> <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. p. 205. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781848210097" title="Special:BookSources/9781848210097"><bdi>9781848210097</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nanocomputers+and+Swarm+Intelligence&rft.place=London&rft.pages=205&rft.pub=ISTE+John+Wiley+%26+Sons&rft.date=2008&rft.isbn=9781848210097&rft.aulast=Waldner&rft.aufirst=JB&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-Ventra2004-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ventra2004_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHughes,_James_E._Jr.Ventra,_Massimiliano_DiEvoy,_Stephane2004" class="citation book cs1">Hughes, James E. Jr.; <a href="/wiki/Massimiliano_Di_Ventra" title="Massimiliano Di Ventra">Ventra, Massimiliano Di</a>; Evoy, Stephane (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mccEGiaPEJwC"><i>Introduction to Nanoscale Science and Technology (Nanostructure Science and Technology)</i></a>. Berlin: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-7720-3" title="Special:BookSources/978-1-4020-7720-3"><bdi>978-1-4020-7720-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Nanoscale+Science+and+Technology+%28Nanostructure+Science+and+Technology%29&rft.place=Berlin&rft.pub=Springer&rft.date=2004&rft.isbn=978-1-4020-7720-3&rft.au=Hughes%2C+James+E.+Jr.&rft.au=Ventra%2C+Massimiliano+Di&rft.au=Evoy%2C+Stephane&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmccEGiaPEJwC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-ijirt.org-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-ijirt.org_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumarMahatoSingh2014" class="citation journal cs1">Kumar, Ambar; Mahato, Akash Kumar; Singh, Akashdeep (2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150615085700/http://www.ijirt.org/paperpublished/IJIRT101166_PAPER.pdf">"Chemical Computing: The different way of computing"</a> <span class="cs1-format">(PDF)</span>. <i>International Journal of Innovative Research in Technology</i>. <b>1</b> (6). <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2349-6002">2349-6002</a>. Archived from <a rel="nofollow" class="external text" href="http://www.ijirt.org/paperpublished/IJIRT101166_PAPER.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-06-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-06-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Innovative+Research+in+Technology&rft.atitle=Chemical+Computing%3A+The+different+way+of+computing&rft.volume=1&rft.issue=6&rft.date=2014&rft.issn=2349-6002&rft.aulast=Kumar&rft.aufirst=Ambar&rft.au=Mahato%2C+Akash+Kumar&rft.au=Singh%2C+Akashdeep&rft_id=http%3A%2F%2Fwww.ijirt.org%2Fpaperpublished%2FIJIRT101166_PAPER.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._Sakthi_BalanKamala_KrithivasanY._Sivasubramanyam2002" class="citation book cs1">M. Sakthi Balan; <a href="/wiki/Kamala_Krithivasan" title="Kamala Krithivasan">Kamala Krithivasan</a>; Y. Sivasubramanyam (2002). "Peptide Computing - Universality and Complexity". <a rel="nofollow" class="external text" href="http://www.csd.uwo.ca/~sakthi/hpp_revised.ps"><i>DNA Computing</i></a>. Lecture Notes in Computer Science. Vol. 2340. pp. 290–299. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-48017-X_27">10.1007/3-540-48017-X_27</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-43775-8" title="Special:BookSources/978-3-540-43775-8"><bdi>978-3-540-43775-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Peptide+Computing+-+Universality+and+Complexity&rft.btitle=DNA+Computing&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=290-299&rft.date=2002&rft_id=info%3Adoi%2F10.1007%2F3-540-48017-X_27&rft.isbn=978-3-540-43775-8&rft.au=M.+Sakthi+Balan&rft.au=Kamala+Krithivasan&rft.au=Y.+Sivasubramanyam&rft_id=http%3A%2F%2Fwww.csd.uwo.ca%2F~sakthi%2Fhpp_revised.ps&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHubert_HugRainer_Schuler2001" class="citation journal cs1"><a href="/w/index.php?title=Hubert_Hug&action=edit&redlink=1" class="new" title="Hubert Hug (page does not exist)">Hubert Hug</a> & <a href="/w/index.php?title=Rainer_Schuler&action=edit&redlink=1" class="new" title="Rainer Schuler (page does not exist)">Rainer Schuler</a> (2001). "Strategies for the development of a peptide computer". <i>Bioinformatics</i>. <b>17</b> (4): 364–368. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2F17.4.364">10.1093/bioinformatics/17.4.364</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11301306">11301306</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bioinformatics&rft.atitle=Strategies+for+the+development+of+a+peptide+computer&rft.volume=17&rft.issue=4&rft.pages=364-368&rft.date=2001&rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2F17.4.364&rft_id=info%3Apmid%2F11301306&rft.au=Hubert+Hug&rft.au=Rainer+Schuler&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPăun" class="citation web cs1">Păun, Gheorghe. <a rel="nofollow" class="external text" href="https://natcomplab.disco.unimib.it/wp-content/uploads/sites/94/2023/12/IntroMemb.pdf">"Introduction to Membrane Computing"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110722063157/http://psystems.disco.unimib.it/download/MembIntro2004.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2011-07-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Introduction+to+Membrane+Computing&rft.aulast=P%C4%83un&rft.aufirst=Gheorghe&rft_id=https%3A%2F%2Fnatcomplab.disco.unimib.it%2Fwp-content%2Fuploads%2Fsites%2F94%2F2023%2F12%2FIntroMemb.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US20090124506">U.S. patent 20,090,124,506</a></span></span> </li> <li id="cite_note-handbook_NC-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-handbook_NC_48-0">^</a></b></span> <span class="reference-text">G.Rozenberg, T.Back, J.Kok, Editors, Handbook of Natural Computing, Springer Verlag, 2012</span> </li> <li id="cite_note-NCA_book-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-NCA_book_49-0">^</a></b></span> <span class="reference-text">A.Brabazon, M.O'Neill, S.McGarraghy. <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9783662436301">Natural Computing Algorithms</a>, Springer Verlag, 2015</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamParkHwangKim2021" class="citation journal cs1">Ham, Donhee; Park, Hongkun; Hwang, Sungwoo; Kim, Kinam (2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41928-021-00646-1">"Neuromorphic electronics based on copying and pasting the brain"</a>. <i>Nature Electronics</i>. <b>4</b> (9): 635–644. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-021-00646-1">10.1038/s41928-021-00646-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2520-1131">2520-1131</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240580331">240580331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Electronics&rft.atitle=Neuromorphic+electronics+based+on+copying+and+pasting+the+brain&rft.volume=4&rft.issue=9&rft.pages=635-644&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240580331%23id-name%3DS2CID&rft.issn=2520-1131&rft_id=info%3Adoi%2F10.1038%2Fs41928-021-00646-1&rft.aulast=Ham&rft.aufirst=Donhee&rft.au=Park%2C+Hongkun&rft.au=Hwang%2C+Sungwoo&rft.au=Kim%2C+Kinam&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41928-021-00646-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_de_BurgtLubbermanFullerKeene2017" class="citation journal cs1">van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto (April 2017). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/nmat4856">"A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing"</a>. <i>Nature Materials</i>. <b>16</b> (4): 414–418. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatMa..16..414V">2017NatMa..16..414V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat4856">10.1038/nmat4856</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4660">1476-4660</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28218920">28218920</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=A+non-volatile+organic+electrochemical+device+as+a+low-voltage+artificial+synapse+for+neuromorphic+computing&rft.volume=16&rft.issue=4&rft.pages=414-418&rft.date=2017-04&rft_id=info%3Adoi%2F10.1038%2Fnmat4856&rft.issn=1476-4660&rft_id=info%3Apmid%2F28218920&rft_id=info%3Abibcode%2F2017NatMa..16..414V&rft.aulast=van+de+Burgt&rft.aufirst=Yoeri&rft.au=Lubberman%2C+Ewout&rft.au=Fuller%2C+Elliot+J.&rft.au=Keene%2C+Scott+T.&rft.au=Faria%2C+Gr%C3%A9gorio+C.&rft.au=Agarwal%2C+Sapan&rft.au=Marinella%2C+Matthew+J.&rft.au=Alec+Talin%2C+A.&rft.au=Salleo%2C+Alberto&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnmat4856&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-Maan_1–13-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Maan_1–13_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaanJayadeviJames2016" class="citation journal cs1">Maan, A. K.; Jayadevi, D. A.; James, A. P. (2016-01-01). "A Survey of Memristive Threshold Logic Circuits". <i>IEEE Transactions on Neural Networks and Learning Systems</i>. <b>PP</b> (99): 1734–1746. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.07121">1604.07121</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160407121M">2016arXiv160407121M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTNNLS.2016.2547842">10.1109/TNNLS.2016.2547842</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2162-237X">2162-237X</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27164608">27164608</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1798273">1798273</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Neural+Networks+and+Learning+Systems&rft.atitle=A+Survey+of+Memristive+Threshold+Logic+Circuits&rft.volume=PP&rft.issue=99&rft.pages=1734-1746&rft.date=2016-01-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1798273%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2016arXiv160407121M&rft_id=info%3Aarxiv%2F1604.07121&rft.issn=2162-237X&rft_id=info%3Adoi%2F10.1109%2FTNNLS.2016.2547842&rft_id=info%3Apmid%2F27164608&rft.aulast=Maan&rft.aufirst=A.+K.&rft.au=Jayadevi%2C+D.+A.&rft.au=James%2C+A.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouRamanathan2015" class="citation journal cs1">Zhou, You; Ramanathan, S. (2015-08-01). <a rel="nofollow" class="external text" href="https://zenodo.org/record/895565">"Mott Memory and Neuromorphic Devices"</a>. <i>Proceedings of the IEEE</i>. <b>103</b> (8): 1289–1310. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJPROC.2015.2431914">10.1109/JPROC.2015.2431914</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9219">0018-9219</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11347598">11347598</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+IEEE&rft.atitle=Mott+Memory+and+Neuromorphic+Devices&rft.volume=103&rft.issue=8&rft.pages=1289-1310&rft.date=2015-08-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11347598%23id-name%3DS2CID&rft.issn=0018-9219&rft_id=info%3Adoi%2F10.1109%2FJPROC.2015.2431914&rft.aulast=Zhou&rft.aufirst=You&rft.au=Ramanathan%2C+S.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F895565&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-:2-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-:2_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlzahraniParker2020" class="citation conference cs1">Alzahrani, Rami A.; Parker, Alice C. (2020-07-28). <i>Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling</i>. International Conference on Neuromorphic Systems 2020. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3407197.3407204">10.1145/3407197.3407204</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220794387">220794387</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Neuromorphic+Circuits+With+Neural+Modulation+Enhancing+the+Information+Content+of+Neural+Signaling&rft.date=2020-07-28&rft_id=info%3Adoi%2F10.1145%2F3407197.3407204&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220794387%23id-name%3DS2CID&rft.aulast=Alzahrani&rft.aufirst=Rami+A.&rft.au=Parker%2C+Alice+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEshraghianWardNeftciWang2021" class="citation arxiv cs1">Eshraghian, Jason K.; Ward, Max; Neftci, Emre; Wang, Xinxin; Lenz, Gregor; Dwivedi, Girish; Bennamoun, Mohammed; Jeong, Doo Seok; Lu, Wei D. (1 October 2021). "Training Spiking Neural Networks Using Lessons from Deep Learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2109.12894">2109.12894</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.NE">cs.NE</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Training+Spiking+Neural+Networks+Using+Lessons+from+Deep+Learning&rft.date=2021-10-01&rft_id=info%3Aarxiv%2F2109.12894&rft.aulast=Eshraghian&rft.aufirst=Jason+K.&rft.au=Ward%2C+Max&rft.au=Neftci%2C+Emre&rft.au=Wang%2C+Xinxin&rft.au=Lenz%2C+Gregor&rft.au=Dwivedi%2C+Girish&rft.au=Bennamoun%2C+Mohammed&rft.au=Jeong%2C+Doo+Seok&rft.au=Lu%2C+Wei+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/Hananel-Hazan/bindsnet">"Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 31 March 2020.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=GitHub&rft.atitle=Hananel-Hazan%2Fbindsnet%3A+Simulation+of+spiking+neural+networks+%28SNNs%29+using+PyTorch.&rft.date=2020-03-31&rft_id=https%3A%2F%2Fgithub.com%2FHananel-Hazan%2Fbindsnet&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-:1-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSincell,_Mark" class="citation web cs1">Sincell, Mark. <a rel="nofollow" class="external text" href="http://web.archive.org/web/20191120075215">"Future Tech"</a>. <i>Discover</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Discover&rft.atitle=Future+Tech&rft.au=Sincell%2C+Mark&rft_id=http%3A%2F%2Fweb.archive.org%2Fweb%2F20191120075215&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><a href="/wiki/Daniel_Dennett" title="Daniel Dennett">Daniel Dennett</a> (1995), <i><a href="/wiki/Darwin%27s_Dangerous_Idea" title="Darwin's Dangerous Idea">Darwin's Dangerous Idea</a></i>, Penguin Books, London, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-14-016734-4" title="Special:BookSources/978-0-14-016734-4">978-0-14-016734-4</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-14-016734-X" title="Special:BookSources/0-14-016734-X">0-14-016734-X</a></span> </li> <li id="cite_note-Williams-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams_59-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColin_P._Williams2011" class="citation book cs1">Colin P. Williams (2011). <i>Explorations in Quantum Computing</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. pp. 25–29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84628-887-6" title="Special:BookSources/978-1-84628-887-6"><bdi>978-1-84628-887-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Explorations+in+Quantum+Computing&rft.pages=25-29&rft.pub=Springer&rft.date=2011&rft.isbn=978-1-84628-887-6&rft.au=Colin+P.+Williams&rfr_id=info%3Asid%2Fen.wikipedia.org%3AUnconventional+computing" class="Z3988"></span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐q5cj8 Cached time: 20241122141653 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.603 seconds Real time usage: 0.743 seconds Preprocessor visited node count: 4720/1000000 Post‐expand include size: 130105/2097152 bytes Template argument size: 3430/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 43/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 210149/5000000 bytes Lua time usage: 0.374/10.000 seconds Lua memory usage: 6474034/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 641.214 1 -total 63.68% 408.296 1 Template:Reflist 18.74% 120.170 20 Template:Cite_journal 15.28% 97.946 9 Template:Cite_web 11.61% 74.448 28 Template:Main 9.94% 63.756 1 Template:Short_description 8.16% 52.349 12 Template:Cite_book 6.38% 40.913 2 Template:Clarify 5.93% 38.032 2 Template:Pagetype 5.70% 36.569 2 Template:Fix-span --> <!-- Saved in parser cache with key enwiki:pcache:idhash:3925795-0!canonical and timestamp 20241122141653 and revision id 1254234149. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Unconventional_computing&oldid=1254234149">https://en.wikipedia.org/w/index.php?title=Unconventional_computing&oldid=1254234149</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Classes_of_computers" title="Category:Classes of computers">Classes of computers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_December_2016" title="Category:Wikipedia articles needing clarification from December 2016">Wikipedia articles needing clarification from December 2016</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_December_2016" title="Category:Articles with disputed statements from December 2016">Articles with disputed statements from December 2016</a></li><li><a href="/wiki/Category:All_articles_with_specifically_marked_weasel-worded_phrases" title="Category:All articles with specifically marked weasel-worded phrases">All articles with specifically marked weasel-worded phrases</a></li><li><a href="/wiki/Category:Articles_with_specifically_marked_weasel-worded_phrases_from_December_2016" title="Category:Articles with specifically marked weasel-worded phrases from December 2016">Articles with specifically marked weasel-worded phrases from December 2016</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 October 2024, at 01:12<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Unconventional_computing&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-8cmsp","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"0.603","walltime":"0.743","ppvisitednodes":{"value":4720,"limit":1000000},"postexpandincludesize":{"value":130105,"limit":2097152},"templateargumentsize":{"value":3430,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":43,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":210149,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 641.214 1 -total"," 63.68% 408.296 1 Template:Reflist"," 18.74% 120.170 20 Template:Cite_journal"," 15.28% 97.946 9 Template:Cite_web"," 11.61% 74.448 28 Template:Main"," 9.94% 63.756 1 Template:Short_description"," 8.16% 52.349 12 Template:Cite_book"," 6.38% 40.913 2 Template:Clarify"," 5.93% 38.032 2 Template:Pagetype"," 5.70% 36.569 2 Template:Fix-span"]},"scribunto":{"limitreport-timeusage":{"value":"0.374","limit":"10.000"},"limitreport-memusage":{"value":6474034,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-q5cj8","timestamp":"20241122141653","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Unconventional computing","url":"https:\/\/en.wikipedia.org\/wiki\/Unconventional_computing","sameAs":"http:\/\/www.wikidata.org\/entity\/Q176499","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q176499","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-02-01T22:40:41Z","dateModified":"2024-10-30T01:12:03Z","headline":"Computing by a wide range of new or unusual method"}</script> </body> </html>