CINXE.COM

Search results for: crystallite sizes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crystallite sizes</title> <meta name="description" content="Search results for: crystallite sizes"> <meta name="keywords" content="crystallite sizes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crystallite sizes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crystallite sizes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1000</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crystallite sizes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Photocatalytic Degradation of Organic Polluant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Taoufyq">A. Taoufyq</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakiz"> B. Bakiz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benlhachemi"> A. Benlhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Patout"> L. Patout</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Chokouadeua"> D. V. Chokouadeua</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Guinneton"> F. Guinneton</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nolibe"> G. Nolibe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lyoussi"> A. Lyoussi</a>, <a href="https://publications.waset.org/abstracts/search?q=J-R.%20Gavarri"> J-R. Gavarri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the photo catalytic reactions occurring under solar illumination have attracted worldwide attentions due to a tremendous set of environmental problems. Taking the sunlight into account, it is indispensable to develop highly effective visible-light-driver photo catalysts. Nano structured materials such as MxM’1-xWO6 system are widely studied due to its interesting piezoelectric, dielectric and catalytic properties. These materials can be used in photo catalysis technique for environmental applications, such as waste water treatments. The aim of this study was to investigate the photo catalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photo catalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photo catalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photo catalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bismuth%20tungstate" title="Bismuth tungstate">Bismuth tungstate</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes" title=" crystallite sizes"> crystallite sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction." title=" X-ray diffraction."> X-ray diffraction.</a> </p> <a href="https://publications.waset.org/abstracts/21827/photocatalytic-degradation-of-organic-polluant-reacting-with-tungstates-role-of-microstructure-and-size-effect-on-oxidation-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ghasemi">Behrooz Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Sharijian"> Bahram Sharijian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%2FMo" title="Al2O3/Mo">Al2O3/Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical" title=" mechanochemical"> mechanochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a> </p> <a href="https://publications.waset.org/abstracts/11618/mechanochemical-synthesis-of-al2o3mo-nanocomposite-powders-from-molybdenum-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Preparation and Characterization of Nanometric Ni-Zn Ferrite via Different Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebtesam.%20E.%20Ateia">Ebtesam. E. Ateia</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Salah"> L. M. Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20El-Bassuony"> A. H. El-Bassuony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the presented study was the possibility of developing a nanosized material with enhanced structural properties that was suitable for many applications. Nanostructure ferrite of composition Ni0.5 Zn0.5 Cr0.1 Fe1.9 O4 were prepared by sol–gel, co-precipitation, citrate-gel, flash and oxalate precursor methods. The Structural and micro structural analysis of the investigated samples were carried out. It was observed that the lattice parameter of cubic spinel was constant, and the positions of both tetrahedral and the octahedral bands had a fixed position. The values of the lattice parameter had a significant role in determining the stoichiometric cation distribution of the composition.The average crystalline sizes of the investigated samples were from 16.4 to 69 nm. Discussion was made on the basis of a comparison of average crystallite size of the investigated samples, indicating that the co-precipitation method was the the effective one in producing small crystallite sized samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20preparation" title="chemical preparation">chemical preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title="grain size">grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/31002/preparation-and-characterization-of-nanometric-ni-zn-ferrite-via-different-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharma">S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Batra"> U. Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kapoor"> S. Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dua"> A. Dua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capping%20agent" title="capping agent">capping agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=2-%20sample%20t-test" title=" 2- sample t-test"> 2- sample t-test</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20analysis%20of%20variance%20%28ANOVA%29" title=" two-way analysis of variance (ANOVA)"> two-way analysis of variance (ANOVA)</a> </p> <a href="https://publications.waset.org/abstracts/35507/the-effects-and-interactions-of-synthesis-parameters-on-properties-of-mg-substituted-hydroxyapatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Synthesis and Study of Properties of Polyaniline/Nickel Sulphide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okpaneje%20Onyinye%20Theresa">Okpaneje Onyinye Theresa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugwu%20Laeticia%20Udodiri"> Ugwu Laeticia Udodiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Okereke%20Ngozi%20Agatha"> Okereke Ngozi Agatha</a>, <a href="https://publications.waset.org/abstracts/search?q=Okoli%20Nonso%20Livinus"> Okoli Nonso Livinus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is on the synthesis and study of the optical characterization of polyaniline/nickel sulphide nanocomposite. Polyaniline (PANI) and nickel sulphide (NiS) nanoparticles were synthesized by oxidative chemical polymerization and sol-gel method. The polyaniline nickel sulphide nanocomposites with various concentrations of NiS were synthesized by in-situ polymerization of aniline monomer. In each case, the nickel sulphide nanoparticles were uniformly dispersed in the aniline hydrochloride before the initiation of oxidative chemical polymerization using ammonium persulphate. The samples formed were subjected to optical characterization using an ultraviolet (UV)-visible light (VIS) spectrophotometer (model: 756S UV – VIS). Optical analysis of the synthesized nanoparticles and nanocomposites showed absorption of radiation within VIS regions. The Tauc model was used to obtain the optical band gap. Energy band gap values of PANI and NiS were found to be 2.50 eV and 1.95 eV, respectively. PANI/NiSnanocomposites has an energy band gap that decreased from 2.25 eV to 1.90 eV as the amount of NiS increased (from 0.5g to 2.0g). These optical results showed that these nanocomposites are potential materials to be considered in solar cells and optoelectronics devices. The structural analysis confirmed the formation of polyaniline and hexagonal nickel sulphide with an average crystallite size of 25.521 nm, while average crystallite sizes of PANI/NiSnanocomposites ranged from 19.458 nm to 25.108 nm. Average particle sizes obtained from the SEM images ranged from 23.24 nm to 51.88 nm. Compositional results confirmed the presence of desired elements that made up the nanoparticles and nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title="polyaniline">polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20sulphide" title=" nickel sulphide"> nickel sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline-nickel%20sulphide%20nanocomposite" title=" polyaniline-nickel sulphide nanocomposite"> polyaniline-nickel sulphide nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20characterization" title=" optical characterization"> optical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20properties" title=" compositional properties"> compositional properties</a> </p> <a href="https://publications.waset.org/abstracts/153743/synthesis-and-study-of-properties-of-polyanilinenickel-sulphide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Structural and Morphological Study of Europium Doped ZnO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Nouri">Abdelhak Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration%20lattice" title="deterioration lattice">deterioration lattice</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eu%3AZnO" title=" Eu:ZnO"> Eu:ZnO</a> </p> <a href="https://publications.waset.org/abstracts/101699/structural-and-morphological-study-of-europium-doped-zno" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinan%20B.%20Al-Dabbagh">Jinan B. Al-Dabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozman%20Mohd%20Tahar"> Rozman Mohd Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahadzir%20Ishak"> Mahadzir Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiAl%20alloys" title="TiAl alloys">TiAl alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20materials" title=" nanocrystalline materials"> nanocrystalline materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20science" title=" materials science"> materials science</a> </p> <a href="https://publications.waset.org/abstracts/4295/effect-of-milling-parameters-on-the-characteristics-of-nanocrystalline-tial-alloys-synthesized-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Preparation of MgO Nanoparticles by Green Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Sabbaghan">Maryam Sabbaghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pegah%20Sofalgar"> Pegah Sofalgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MgO" title="MgO">MgO</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/60764/preparation-of-mgo-nanoparticles-by-green-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Foudia">Malika Foudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Zerroual"> Larbi Zerroual </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20battery" title="lead-acid battery">lead-acid battery</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20plate" title=" positive plate"> positive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20%28EIS%29." title=" impedance (EIS). "> impedance (EIS). </a> </p> <a href="https://publications.waset.org/abstracts/23332/effect-of-the-addition-of-additives-on-the-improvement-of-the-performances-of-lead-acid-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Moreh">A. U. Moreh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Momoh"> M. Momoh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Yahya"> H. N. Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hamza"> B. Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20G.%20Saidu"> I. G. Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abdullahi"> S. Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CuAlS2" title="CuAlS2">CuAlS2</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfurisation" title=" sulfurisation"> sulfurisation</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline" title=" crystalline"> crystalline</a> </p> <a href="https://publications.waset.org/abstracts/10459/effect-of-thickness-on-structural-and-electrical-properties-of-cuals2-thin-films-grown-by-two-stage-vacuum-thermal-evaporation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu">Keiji Komatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayato%20Maruyama"> Hayato Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariyuki%20Kato"> Ariyuki Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Akasaka"> Hiroki Akasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20luminescence%20spectroscopy" title="low temperature luminescence spectroscopy">low temperature luminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20identification" title=" material identification"> material identification</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor" title=" strontium aluminates phosphor"> strontium aluminates phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20properties" title=" emission properties "> emission properties </a> </p> <a href="https://publications.waset.org/abstracts/10329/low-temperature-luminescence-spectroscopy-of-violet-sr-al-oeu2-phosphor-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Ajayi">Adebola Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olakunle%20M.%20Makanjuola"> Olakunle M. Makanjuola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20sizes" title="particle sizes">particle sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20flour" title=" maize flour"> maize flour</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Kokoro" title=" Kokoro"> Kokoro</a> </p> <a href="https://publications.waset.org/abstracts/79646/effects-of-particle-sizes-of-maize-flour-on-the-quality-of-traditional-maize-snack-kokoro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendran%20Samykano">Mahendran Samykano</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Mohan"> Ram Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Aravamudhan"> Shyam Aravamudhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20alumina%20oxide" title="anodic alumina oxide">anodic alumina oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel "> nickel </a> </p> <a href="https://publications.waset.org/abstracts/23704/structure-and-morphology-of-electrodeposited-nickel-nanowires-at-an-electrode-distance-of-20mm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles: Characterization and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surendra%20Kumar%20Gautam">Surendra Kumar Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Dhungana"> Mahesh Dhungana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium oxide nanoparticles (MgO NPs) are less toxic to humans and the environment as compared to other metal oxide nanoparticles. Various conventional chemical and physical methods are used for synthesis whose toxicity level is high and highly expensive. As the best alternative, phyto-assisted synthesis has emerged, which uses extracts from plant parts for the synthesis of nanoparticles. Here, we report the synthesis of MgO nanoparticles with the assistance of beetroot extract and leaf extract of P. guajava and A. adenophora. The synthesized MgO NPs were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and UV-visible spectroscopy. X-ray analysis for the broadening of peaks was used to evaluate the crystallite size and lattice strain using Debye-Scherer and Williamson–Hall method. The results of crystallite size obtained by both methods are in close proximity. The crystallite size obtained by the Williamson-Hall method seems more accurate, with values being 8.1 nm and 13.2 nm for beetroot MgO NPs and P. guajava MgO NPs, respectively. The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. The UV-visible absorption spectra of MgO NPs were found to be 310 nm, 315 nm, and 315 nm for beetroot, P. guajava, and A. adenophora leaf extract, respectively. Among the three samples, beetroot-mediated MgO NPs were effective antibacterial against both gram-positive and Gram-negative bacteria. In addition, synthesized MgO NPs also show significant antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl radical. Further, beetroot MgO NPs showed the highest photocatalytic activity of about 91% in comparison with other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MgO%20NPs" title="MgO NPs">MgO NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20and%20photocatalytic%20activity" title=" antioxidant and photocatalytic activity"> antioxidant and photocatalytic activity</a> </p> <a href="https://publications.waset.org/abstracts/162422/phyto-assisted-synthesis-of-magnesium-oxide-nanoparticles-characterization-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Toubal"> Badreddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Ni%20co-doped" title="Co-Ni co-doped">Co-Ni co-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=anatase%20TiO2" title=" anatase TiO2"> anatase TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/35968/optical-and-magnetic-properties-of-ferromagnetic-co-ni-co-doped-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Benakcha">R. Benakcha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Omari"> M. Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminate" title="aluminate">aluminate</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthan" title=" lanthan"> lanthan</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/22771/low-temperature-powders-synthesis-of-la1-xmgxalo3-through-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Preparation and Study Corrosion and Electrical Resistivity of Al-Ni-Cr Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20H.%20Abass">Khalid H. Abass </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al-Ni-Cr alloy contains different ratios of Ni and Cr was prepared by mixing Al, Ni and Cr at 800oC under an argon atmosphere. The prepared alloys were heated for 1300 hr to 560oC, and then cooled rapidly by water at the ambient temperature. Surface morphology for alloys is studied by scanning electron microscope (SEM). The resultant homogeneous surface is a result of heat treatment. The X-ray diffraction patterns showed (111), (200), and (220) diffraction lines from cubic Al crystal structure, and suggested that the intensity of peak (111) orientation is predominant. Three binary phases were observed and grown in alloys: Al3Ni (Orthorhombic, a = 6.598Ǻ, b = 7.352 Ǻ, c = 4.802 Ǻ), Cr9Al17 (Rhombohedra, a = 12.910 Ǻ, c = 15.677), and Ni2Cr3 (Tetragonal, a = 8.82 Ǻ, c = 4.58 Ǻ). The average crystallite sizes of the prepared samples were found to be from 3000 to 3094 nm by SEM, which is much smaller than that estimated from XRD data. Corrosion resistance increases with increasing Ni-Cr content in Al alloys. The electrical volume resistivity decreased with increasing Ni-Cr content at low frequency. This behavior can be seen generally at 50Hz, where the electrical volume resistivity reached the value of 3.98×10-8Ω.cm for the ratio Al-1.8 at.%Ni-0.18at.%Cr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Ni-Cr%20alloy" title="Al-Ni-Cr alloy">Al-Ni-Cr alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20current" title=" corrosion current"> corrosion current</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20volume%20resistivity" title=" electrical volume resistivity"> electrical volume resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20phase" title=" binary phase"> binary phase</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20surface" title=" homogeneous surface"> homogeneous surface</a> </p> <a href="https://publications.waset.org/abstracts/2784/preparation-and-study-corrosion-and-electrical-resistivity-of-al-ni-cr-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luen%20Chow%20Chan">Luen Chow Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bike%20frame%20sizes" title="bike frame sizes">bike frame sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=cadence%20rate" title=" cadence rate"> cadence rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pedaling%20power" title=" pedaling power"> pedaling power</a>, <a href="https://publications.waset.org/abstracts/search?q=seat%20height" title=" seat height"> seat height</a> </p> <a href="https://publications.waset.org/abstracts/121431/significance-of-bike-frame-geometric-factors-for-cycling-efficiency-and-muscle-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Dabra">Navneet Dabra</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljinder%20Kaur"> Baljinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhbir%20Singh"> Lakhbir Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Annapu%20Reddy"> V. Annapu Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nath"> R. Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Yong%20Jeong"> Dae-Yong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasbir%20S.%20Hundal"> Jasbir S. Hundal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferroelectric%20polymer%20composite" title="ferroelectric polymer composite">ferroelectric polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remanemt%20polarization" title=" remanemt polarization"> remanemt polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20switching" title=" back switching"> back switching</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallite%20size" title=" crystallite size"> crystallite size</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20parameters%20and%20surface%20roughness" title=" lattice parameters and surface roughness"> lattice parameters and surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/9842/ferroelectricity-in-fused-potassium-nitrate-polymer-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indah%20Kurniawaty">Indah Kurniawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoki%20Yulizar"> Yoki Yulizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Haryo%20Satriya%20Oktaviano"> Haryo Satriya Oktaviano</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Kusuma%20Rianto"> Adam Kusuma Rianto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MgO" title="MgO">MgO</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=calliandra%20calothyrsus" title=" calliandra calothyrsus"> calliandra calothyrsus</a>, <a href="https://publications.waset.org/abstracts/search?q=green-synthesis" title=" green-synthesis"> green-synthesis</a> </p> <a href="https://publications.waset.org/abstracts/163162/one-pot-synthesis-and-characterization-of-magnesium-oxide-nanoparticles-prepared-by-calliandra-calothyrsus-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjot%20Kaur"> Harjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20thickness" title=" varying thickness"> varying thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses%20and%20strain%20rates" title=" stresses and strain rates"> stresses and strain rates</a> </p> <a href="https://publications.waset.org/abstracts/173915/the-creep-analysis-of-a-varying-thickness-on-a-rotating-composite-disk-with-different-particle-size-by-using-sherbys-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Small-Sided Games in Football: Effect of Field Sizes on Technical Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Guven">Faruk Guven</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurtekin%20Erkmen"> Nurtekin Erkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Samet%20Aktas"> Samet Aktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Taskin"> Cengiz Taskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine effects of field sizes on technical parameters of small-sided games in football players. Eight amateur football players (27.23±3.08 years, heigth: 171.01±5.36 cm, body weigth: 66.86±4.54 kg, sports experience: 12.88±3.28 years) performed 4-a-side small-sided games (SSG) with different field sizes. In SSGs, field sizes were 30 x 40 m and 26 mx24 m. SSGs was conducted as a series of 3 bouts of 6 min with 5 min recovery durations. All SSGs were video recorded using two digital video camcorder positioned on a tripot. Shoot on taget, passes, succesful passes, unsuccesful passes, dripling, tackle, possession in SSGs were counted by Mathball Match Analysis System. The effects of bouts on technical score were examined separately using a Friedman’s test. Mann Whitney U test was applied to analyse differences between field sizes. There were no significant differences in shoots on target, total pass, successful pass, tackle, interception, possession between bouts in 30x40 m field size (p>0.05). Unsuccessful pass in bout 3 for 30x40 m field size was lower than bout 1 and bout 2 (p<0.05) and dripling in bout 3 was lower than bout 2 (p<0.05). There was no significant difference in technical actions between bouts for 26x34 m field size (p>0.05). Shoot on target in SSG with 26 x 34 m field size was higher than SSG with 30x40 m field size (p<0.05). Unsuccessful pass for 26x34 m field size in bout 3 was higher than SSG with 30x40 m field size (p<0.05). There was no significant difference in technical actions between field sizes (p>0.05). In conclusion; in this study demonstrates that technical actions in a-4-side SSG are not influenced by different field sizes (for 30x40 m and 26x34 m field sizes). This consequence is same for both total SSG time and each bout. Dripling and unsuccessful pass decrease in bout 3 during SSG in 30 x 40 m field size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small-sided%20games" title="small-sided games">small-sided games</a>, <a href="https://publications.waset.org/abstracts/search?q=football" title=" football"> football</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20actions" title=" technical actions"> technical actions</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20science" title=" sport science"> sport science</a> </p> <a href="https://publications.waset.org/abstracts/17946/small-sided-games-in-football-effect-of-field-sizes-on-technical-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mondal">Smita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Pandey"> Dinesh Kumar Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Biswas"> Prakash Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycerol" title="glycerol">glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2-PDO" title="2-PDO">2-PDO</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/94178/selective-conversion-of-biodiesel-derived-glycerol-to-12-propanediol-over-highly-efficient-gh-al2o3-supported-bimetallic-cu-ni-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> Automatic Measurement of Garment Sizes Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maulik%20Parmar">Maulik Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumeet%20Sandhu"> Sumeet Sandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title="convolutional neural networks">convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=garment%20measurements" title=" garment measurements"> garment measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20warping" title=" image warping"> image warping</a>, <a href="https://publications.waset.org/abstracts/search?q=keypoints" title=" keypoints"> keypoints</a> </p> <a href="https://publications.waset.org/abstracts/104495/automatic-measurement-of-garment-sizes-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jayaram">P. Jayaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasoon%20Prasannan"> Prasoon Prasannan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Deepak"> N. K. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20P.%20Pradyumnan"> P. P. Pradyumnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PL" title="PL">PL</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TCOs" title=" TCOs"> TCOs</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/44720/microstructure-analysis-and-multiple-photoluminescence-in-high-temperature-electronic-conducting-inzrzno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiee-Jian%20Wu">Tiee-Jian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yuan%20Hsu"> Chih-Yuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box-Cox%20transform" title="Box-Cox transform">Box-Cox transform</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20estimation" title=" density estimation"> density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20seeking" title=" mode seeking"> mode seeking</a>, <a href="https://publications.waset.org/abstracts/search?q=semiparametric%20method" title=" semiparametric method"> semiparametric method</a> </p> <a href="https://publications.waset.org/abstracts/53756/a-semiparametric-approach-to-estimate-the-mode-of-continuous-multivariate-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meichen%20Lee">Meichen Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20K.%20H.%20Leung"> Michael K. H. Leung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160&deg;C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20solvothermal%20process" title="microwave solvothermal process">microwave solvothermal process</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoplates" title=" nanoplates"> nanoplates</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=visible-light%20photocatalysis" title=" visible-light photocatalysis"> visible-light photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/18921/microwave-assisted-fabrication-of-visible-light-activated-biobr-nanoplate-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> A Prediction Method for Large-Size Event Occurrences in the Sandpile Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Channgam">S. Channgam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sae-Tang"> A. Sae-Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Termsaithong"> T. Termsaithong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25&times;25, 50&times;50, 75&times;75 and 100&times;100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50&times;50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bak-Tang-Wiesenfeld%20sandpile%20model" title="Bak-Tang-Wiesenfeld sandpile model">Bak-Tang-Wiesenfeld sandpile model</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title=" cross-correlation"> cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=avalanches" title=" avalanches"> avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20method" title=" prediction method"> prediction method</a> </p> <a href="https://publications.waset.org/abstracts/43151/a-prediction-method-for-large-size-event-occurrences-in-the-sandpile-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ould%20Mohamed%20Cheikh">Ould Mohamed Cheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Chaik"> Mounir Chaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20El%20Aakib"> Hind El Aakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Aggour"> Mohamed Aggour</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Outzourhit"> Abdelkader Outzourhit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films%20Zn%28O" title="thin films Zn(O">thin films Zn(O</a>, <a href="https://publications.waset.org/abstracts/search?q=S%29%20properties" title="S) properties">S) properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn%28O" title=" Zn(O"> Zn(O</a>, <a href="https://publications.waset.org/abstracts/search?q=S%29%20by%20Rf-sputtering" title="S) by Rf-sputtering">S) by Rf-sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnS%20for%20solar%20cells" title=" ZnS for solar cells"> ZnS for solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films%20for%20renewable%20energy" title=" thin films for renewable energy"> thin films for renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/66128/structural-and-optical-properties-of-rf-sputtered-zns-and-znso-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uchechukwu%20Vincent%20Okpala">Uchechukwu Vincent Okpala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=velvet%20tamarind" title=" velvet tamarind"> velvet tamarind</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnS." title=" ZnS."> ZnS.</a> </p> <a href="https://publications.waset.org/abstracts/184491/synthesis-and-characterization-of-un-doped-and-velvet-tamarind-doped-zns-crystals-using-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crystallite%20sizes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10