CINXE.COM
Mercedes-Benz 7G-Tronic transmission - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mercedes-Benz 7G-Tronic transmission - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"702ec169-d87d-4229-be87-4ed2b3cabd48","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mercedes-Benz_7G-Tronic_transmission","wgTitle":"Mercedes-Benz 7G-Tronic transmission","wgCurRevisionId":1255243200, "wgRevisionId":1255243200,"wgArticleId":2263811,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Mercedes-Benz_7G-Tronic_transmission","wgRelevantArticleId":2263811,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"7G-Tronic","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true ,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgInternalRedirectTargetUrl":"/wiki/Mercedes-Benz_7G-Tronic_transmission","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ar","autonym":"العربية","dir":"rtl"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir": "ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym": "ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"ca","autonym":"català","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr" },{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"es","autonym":"español","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{ "lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fa","autonym":"فارسی","dir":"rtl"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"fr","autonym":"français","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir" :"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"he","autonym":"עברית","dir":"rtl"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{ "lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"it","autonym":"italiano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki", "autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij" ,"autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ" ,"dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir": "ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{ "lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pt","autonym":"português","dir":"ltr"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym": "davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang": "stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sv","autonym":"svenska","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{ "lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{ "lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zh","autonym":"中文","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq" ,"dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq", "sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q6818104","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true, "talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/1200px-Mercedes-Benz_7G-Tronic_transmission.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="995"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/800px-Mercedes-Benz_7G-Tronic_transmission.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="663"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/640px-Mercedes-Benz_7G-Tronic_transmission.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="531"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Mercedes-Benz 7G-Tronic transmission - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Mercedes-Benz_7G-Tronic_transmission"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Mercedes-Benz_7G-Tronic_transmission rootpage-Mercedes-Benz_7G-Tronic_transmission stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Mercedes-Benz+7G-Tronic+transmission" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Mercedes-Benz+7G-Tronic+transmission" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&wmf_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mercedes-Benz 7G-Tronic transmission</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Mercedes-Benz_7G-Tronic_transmission" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Mercedes-Benz_7G-Tronic_transmission" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Mercedes-Benz+7G-Tronic+transmission" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=7G-Tronic&redirect=no" class="mw-redirect" title="7G-Tronic">7G-Tronic</a>)</span></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><p><b>7G-Tronic</b> is <a href="/wiki/Mercedes-Benz" title="Mercedes-Benz">Mercedes-Benz</a>'s <a href="/wiki/Trademark" title="Trademark">trademark</a> name for its 7-speed <a href="/wiki/Automatic_transmission" title="Automatic transmission">automatic transmission</a>, starting off with the <b>W7A 700</b> and <b>W7A 400</b> (<b>W</b>andler-<b>7</b>-Gang-<b>A</b>utomatik bis <b>700</b> oder <b>400</b> Nm Eingangsdrehmoment; converter-7-gear-automatic with 516 or 295 ft·lb maximum input torque; type <b>722.9</b>) as core models. </p><table class="infobox hproduct"><tbody><tr><th colspan="2" class="infobox-above fn" style="font-size:125%; background-color:#C0C0C0; padding:0.25em 1em; text-align:center;">7G-Tronic</th></tr><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Mercedes-Benz_7G-Tronic_transmission.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/280px-Mercedes-Benz_7G-Tronic_transmission.jpg" decoding="async" width="280" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/420px-Mercedes-Benz_7G-Tronic_transmission.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mercedes-Benz_7G-Tronic_transmission.jpg/560px-Mercedes-Benz_7G-Tronic_transmission.jpg 2x" data-file-width="4314" data-file-height="3577"></a></span></td></tr><tr><th colspan="2" class="infobox-header" style="background-color: #C0C0C0">Overview</th></tr><tr><th scope="row" class="infobox-label">Manufacturer</th><td class="infobox-data"><a href="/wiki/Daimler_AG" class="mw-redirect" title="Daimler AG">Daimler AG</a></td></tr><tr><th scope="row" class="infobox-label">Production</th><td class="infobox-data">2003–2020</td></tr><tr><th colspan="2" class="infobox-header" style="background-color: #C0C0C0">Body and chassis</th></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Car_classification" title="Car classification">Class</a></th><td class="infobox-data">7-speed <a href="/wiki/Longitudinal_engine" title="Longitudinal engine">longitudinal</a> <a href="/wiki/Automatic_transmission" title="Automatic transmission">automatic transmission</a></td></tr><tr><th scope="row" class="infobox-label">Related</th><td class="infobox-data"><a href="/wiki/ZF_6HP_transmission" title="ZF 6HP transmission">ZF 6HP</a> · <a href="/wiki/ZF_8HP_transmission" title="ZF 8HP transmission">ZF 8HP</a></td></tr><tr><th colspan="2" class="infobox-header" style="background-color: #C0C0C0">Chronology</th></tr><tr><th scope="row" class="infobox-label">Predecessor</th><td class="infobox-data"><a href="/wiki/Mercedes-Benz_5G-Tronic_transmission" title="Mercedes-Benz 5G-Tronic transmission">5G-Tronic</a></td></tr><tr><th scope="row" class="infobox-label">Successor</th><td class="infobox-data"><a href="/wiki/Mercedes-Benz_9G-Tronic_transmission" title="Mercedes-Benz 9G-Tronic transmission">9G-Tronic</a></td></tr></tbody></table> <p>This fifth-generation transmission was the first 7-speed automatic transmission ever used on a production passenger vehicle.<sup id="cite_ref-Mercedes_1-0" class="reference"><a href="#cite_note-Mercedes-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> In all applications this transmission is identified as the New Automatic Gearbox Generation Two, or <b>NAG2</b>. It initially debuted in Autumn 2003 on 5 different V8-cylinder models: the <a href="/wiki/Mercedes-Benz_E-Class" title="Mercedes-Benz E-Class">E500</a>, <a href="/wiki/Mercedes-Benz_S-Class" title="Mercedes-Benz S-Class">S 430</a>, <a href="/wiki/Mercedes-Benz_S-Class" title="Mercedes-Benz S-Class">S 500</a>, <a href="/wiki/Mercedes-Benz_CL-Class" title="Mercedes-Benz CL-Class">CL 500</a>, and <a href="/wiki/Mercedes-Benz_SL-Class" title="Mercedes-Benz SL-Class">SL 500</a>. It also soon became available on many 6-cylinder models. Turbocharged V12 engines, 4-cylinder applications and commercial vehicles continued to use the older <a href="/wiki/Mercedes-Benz_5G-Tronic_transmission" title="Mercedes-Benz 5G-Tronic transmission">Mercedes-Benz 5G-Tronic transmission</a> for many years. </p><p>The company claims that the 7G-Tronic is more fuel efficient and has shorter acceleration times and quicker intermediate sprints than the outgoing 5-speed automatic transmission.<sup id="cite_ref-Mercedes_1-1" class="reference"><a href="#cite_note-Mercedes-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> It has 2 reverse gears. </p><p>The transmission can skip gears when downshifting. It also has a <a href="/wiki/Torque_converter" title="Torque converter">torque converter</a> lock-up on all 7 gears, allowing better transmission of torque for improved acceleration. The transmission's casing is made of <a href="/wiki/Magnesium_alloy" title="Magnesium alloy">magnesium alloy</a>, a first for the industry, to save weight.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2009)">citation needed</span></a></i>]</sup> The 7G-Tronic transmission is built at the Mercedes-Benz <a href="/wiki/Stuttgart" title="Stuttgart">Stuttgart</a>-<a href="/wiki/Untert%C3%BCrkheim" class="mw-redirect" title="Untertürkheim">Untertuerkheim</a> plant in Germany, the site of <a href="/wiki/Daimler-Benz" class="mw-redirect" title="Daimler-Benz">Daimler-Benz</a>'s original production facility. </p><p>In July 2009, Mercedes-Benz announced they are working on a new nine-speed automatic.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable collapsible" style="text-align:center"> <caption>Gear Ratios<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">Gear</div><div style="margin-right:2em;text-align:left">Model</div> </th> <th>R 2 </th> <th>R 1 </th> <th>1 </th> <th>2 </th> <th>3 </th> <th>4 </th> <th>5 </th> <th>6 </th> <th>7 </th> <th>Total<br>Span </th> <th>Span<br>Center </th> <th>Avg.<br>Step </th> <th>Compo-<br>nents </th></tr> <tr> <td colspan="14" style="background:#AAF;"> </td></tr> <tr> <th>W7A All<br>2003 </th> <td>−2.231 </td> <td>−3.416 </td> <td>4.377 </td> <td>2.859 </td> <td>1.921 </td> <td>1.368 </td> <td>1.000 </td> <td>0.820 </td> <td>0.728 </td> <td>6.016 </td> <td>1.785 </td> <td>1.349 </td> <td>4 Gearsets<br>4 Brakes<br>3 Clutches </td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-lower-alpha reflist-columns-2"> <ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage</span> </li> </ol></div> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Specifications"><span class="tocnumber">1</span> <span class="toctext">Specifications</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Operating_Modes"><span class="tocnumber">1.1</span> <span class="toctext">Operating Modes</span></a> <ul> <li class="toclevel-3 tocsection-3"><a href="#Regular"><span class="tocnumber">1.1.1</span> <span class="toctext">Regular</span></a></li> <li class="toclevel-3 tocsection-4"><a href="#%E2%80%9ELimp-Home_Mode%E2%80%9C"><span class="tocnumber">1.1.2</span> <span class="toctext">„Limp-Home Mode“</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-5"><a href="#AMG_SpeedShift"><span class="tocnumber">1.2</span> <span class="toctext">AMG SpeedShift</span></a> <ul> <li class="toclevel-3 tocsection-6"><a href="#AMG_SpeedShift_TCT"><span class="tocnumber">1.2.1</span> <span class="toctext">AMG SpeedShift TCT</span></a></li> <li class="toclevel-3 tocsection-7"><a href="#AMG_SpeedShift_MCT"><span class="tocnumber">1.2.2</span> <span class="toctext">AMG SpeedShift MCT</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-8"><a href="#Layout"><span class="tocnumber">1.3</span> <span class="toctext">Layout</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#Applications"><span class="tocnumber">2</span> <span class="toctext">Applications</span></a> <ul> <li class="toclevel-2 tocsection-10"><a href="#Mercedes_models"><span class="tocnumber">2.1</span> <span class="toctext">Mercedes models</span></a> <ul> <li class="toclevel-3 tocsection-11"><a href="#Mercedes_C-Class"><span class="tocnumber">2.1.1</span> <span class="toctext">Mercedes C-Class</span></a></li> <li class="toclevel-3 tocsection-12"><a href="#Mercedes_E-Class"><span class="tocnumber">2.1.2</span> <span class="toctext">Mercedes E-Class</span></a></li> <li class="toclevel-3 tocsection-13"><a href="#Mercedes_S-Class"><span class="tocnumber">2.1.3</span> <span class="toctext">Mercedes S-Class</span></a></li> <li class="toclevel-3 tocsection-14"><a href="#Mercedes_SLK-Class"><span class="tocnumber">2.1.4</span> <span class="toctext">Mercedes SLK-Class</span></a></li> <li class="toclevel-3 tocsection-15"><a href="#Mercedes_CLS-Class"><span class="tocnumber">2.1.5</span> <span class="toctext">Mercedes CLS-Class</span></a></li> <li class="toclevel-3 tocsection-16"><a href="#Mercedes_CLK-Class"><span class="tocnumber">2.1.6</span> <span class="toctext">Mercedes CLK-Class</span></a></li> <li class="toclevel-3 tocsection-17"><a href="#AMG_GT-line"><span class="tocnumber">2.1.7</span> <span class="toctext">AMG GT-line</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-18"><a href="#Non_Mercedes-Benz_models"><span class="tocnumber">2.2</span> <span class="toctext">Non Mercedes-Benz models</span></a> <ul> <li class="toclevel-3 tocsection-19"><a href="#Infiniti"><span class="tocnumber">2.2.1</span> <span class="toctext">Infiniti</span></a></li> <li class="toclevel-3 tocsection-20"><a href="#SsangYong_Motor"><span class="tocnumber">2.2.2</span> <span class="toctext">SsangYong Motor</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-1 tocsection-21"><a href="#See_also"><span class="tocnumber">3</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-22"><a href="#References"><span class="tocnumber">4</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-23"><a href="#External_links"><span class="tocnumber">5</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Specifications">Specifications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=1" title="Edit section: Specifications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <div class="mw-heading mw-heading3"><h3 id="Operating_Modes">Operating Modes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=2" title="Edit section: Operating Modes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Regular">Regular</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=3" title="Edit section: Regular" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In normal condition it sequentially shift gears, but if required it can skip some gears, that are: 7 to 5, 6 to 2, 5 to 3 and 3 to 1.<sup id="cite_ref-mbmanual1_4-0" class="reference"><a href="#cite_note-mbmanual1-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>On vehicles with 6 or 8 cylinder engines with comfort mode engaged, as well as on off-road vehicles with low range selected, the transmission will always use 2nd gear as initial gear.<sup id="cite_ref-mbmanual2_5-0" class="reference"><a href="#cite_note-mbmanual2-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="„Limp-Home_Mode“"><span id=".E2.80.9ELimp-Home_Mode.E2.80.9C"></span>„Limp-Home Mode“</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=4" title="Edit section: „Limp-Home Mode“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>If the transmission control unit senses a critical fault during driving, it will activate an emergency operating mode: Upon hydraulic failures, it will stop shifting gears and permanently retain the currently selected gear; if the failure can be pinpointed to one of the internal hydraulic control valves, the transmission will continue shifting but stop using the affected gear(s). Upon electrical failure, the transmission shifts to 6th gear. If the critical fault persists after the vehicle is stopped and the engine restarted, only 2nd gear and reverse gear #2 are available.<sup id="cite_ref-mbmanual1_4-1" class="reference"><a href="#cite_note-mbmanual1-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="AMG_SpeedShift">AMG SpeedShift</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=5" title="Edit section: AMG SpeedShift" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="AMG_SpeedShift_TCT">AMG SpeedShift TCT</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=6" title="Edit section: AMG SpeedShift TCT" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The TCT transmission is essentially the 7G-Tronic automatic transmission including "<b>T</b>orque <b>C</b>onverter <b>T</b>echnology". </p><p>Sporty, performance-oriented version with the same gear ratios. First used in 2005 Mercedes-Benz SLK 55 AMG.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>In 2007, 7G-Tronic transmission with AMG SPEEDSHIFT was also called '7G-Tronic Sport'.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="AMG_SpeedShift_MCT">AMG SpeedShift MCT</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=7" title="Edit section: AMG SpeedShift MCT" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Mercedes-AMG" title="Mercedes-AMG">Mercedes-AMG</a> developed the 7-speed MCT "<b>M</b>ulti <b>C</b>lutch <b>T</b>echnology" planetary <a href="/wiki/Automatic_transmission" title="Automatic transmission">automatic transmission</a>. </p><p>The MCT transmission is essentially the 7G-Tronic automatic transmission without a torque converter. Instead of a torque converter, it uses a compact wet startup clutch to launch the car from a stop and also supports computer-controlled double-clutching. The MCT (Multi-Clutch Technology) acronym refers to a planetary (automatic) transmission's multiple clutches and bands for each gear.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>The MCT is fitted with 4 drive modes: "C" (Comfort), "S" (Sport), "S+" (Sport plus) and "M" (Manual) and boasts 100 millisecond shifts in "M" and "S+" modes. MCT-equipped cars are also fitted with the new AMG DRIVE UNIT with an innovative Race Start function. The AMG DRIVE UNIT is the central control unit for the AMG SPEEDSHIFT MCT 7-speed sports transmission and all driving dynamics functions. The driver can change gears either using the selector lever or by nudging the steering-wheel shift paddles. The new Race start Function is a launch control system that enables the driver to call on maximum acceleration while ensuring optimum traction of the driven wheels. </p><p>It is available on the 2009 <a href="/wiki/Mercedes-Benz_SL-Class" title="Mercedes-Benz SL-Class">SL 63 AMG</a> and <a href="/wiki/Mercedes-Benz_W212#E63_AMG" class="mw-redirect" title="Mercedes-Benz W212">E 63 AMG</a>, and will be used for the 2011 S 63 AMG and CL 63 AMG, and the 2012 CLS 63 AMG and C 63 AMG. </p><p>Compulsory on the 2014 AMG CLS 63 and E 63 models, as well as their "S--Model" variants. Improved with the release of the 2015 model year, by decreasing the lag time between shifts. </p> <div class="mw-heading mw-heading3"><h3 id="Layout">Layout</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=8" title="Edit section: Layout" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Progress is reflected in 7 forward gears<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> using 11 main components,<sup id="cite_ref-Training_1_10-0" class="reference"><a href="#cite_note-Training_1-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-mbmanual1_4-2" class="reference"><a href="#cite_note-mbmanual1-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Training_2_11-0" class="reference"><a href="#cite_note-Training_2-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> compared to 5 forward gears<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> with 9 main components in the previous <a href="/wiki/Mercedes-Benz_5G-Tronic_transmission" title="Mercedes-Benz 5G-Tronic transmission">5G-Tronic</a> transmission. This turns out the design as advanced compared to its <a href="/wiki/Mercedes-Benz_5G-Tronic_transmission" title="Mercedes-Benz 5G-Tronic transmission">predecessor</a> but less economical compared to its <a href="/wiki/ZF_6HP_transmission" title="ZF 6HP transmission">competitors</a>. It uses no bands nor sprag clutches.<sup id="cite_ref-mbmanual1_4-3" class="reference"><a href="#cite_note-mbmanual1-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> It is fully electronic controlled. Torque converter lock-up can operate in all 7 forward gears.<sup id="cite_ref-mbmanual1_4-4" class="reference"><a href="#cite_note-mbmanual1-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-lower-alpha reflist-columns-2"> <ol class="references"> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">plus 2 reverse gears</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">plus 2 reverse gear</span> </li> </ol></div> <table class="wikitable collapsible" style="text-align:center"> <caption>Gear Ratios </caption> <tbody><tr> <th rowspan="2" colspan="4">With Assessment </th> <th colspan="4">Planetary Gear Set: Teeth<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> </th> <th rowspan="2">Count </th> <th rowspan="2">Total<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup><br>Center<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> </th> <th rowspan="2">Avg.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup> </th></tr> <tr> <th colspan="2"><a href="/wiki/Ravigneaux_planetary_gearset" title="Ravigneaux planetary gearset">Ravigneaux</a> </th> <th colspan="2"><a href="/wiki/Epicyclic_gearing" title="Epicyclic gearing">Simple</a> </th></tr> <tr> <td colspan="11" style="background:#AAF;"> </td></tr> <tr> <th>Model<br>Type </th> <th colspan="2">Version<br>First Delivery </th> <th> </th> <th>S<sub>1</sub><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>e<span class="cite-bracket">]</span></a></sup><br>R<sub>1</sub><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>f<span class="cite-bracket">]</span></a></sup> </th> <th>S<sub>2</sub><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>g<span class="cite-bracket">]</span></a></sup><br>R<sub>2</sub><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>h<span class="cite-bracket">]</span></a></sup> </th> <th>S<sub>3</sub><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>i<span class="cite-bracket">]</span></a></sup><br>R<sub>3</sub><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>j<span class="cite-bracket">]</span></a></sup> </th> <th>S<sub>4</sub><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>k<span class="cite-bracket">]</span></a></sup><br>R<sub>4</sub><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>l<span class="cite-bracket">]</span></a></sup> </th> <th>Brakes<br>Clutches </th> <th>Ratio<br>Span </th> <th>Gear<br>Step<sup id="cite_ref-50:50_25-0" class="reference"><a href="#cite_note-50:50-25"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup> </th></tr> <tr style="font-style:italic;"> <th>Gear<br>Ratio </th> <th><span style="color:gray;">R 3</span><sup id="cite_ref-R3_26-0" class="reference"><a href="#cite_note-R3-26"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{R3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{R3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7689e4eac9209d7b716be2176b1fa72f54e82b0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.104ex; height:2.509ex;" alt="{\displaystyle {i_{R3}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.104ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7689e4eac9209d7b716be2176b1fa72f54e82b0d" data-alt="{\displaystyle {i_{R3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>R 2<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{R2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{R2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88a7243c64c283626a3b2539f5d17a106de8fda5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.104ex; height:2.509ex;" alt="{\displaystyle {i_{R2}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.104ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88a7243c64c283626a3b2539f5d17a106de8fda5" data-alt="{\displaystyle {i_{R2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>R 1<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{R1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{R1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5047326539ff093021867a57acab0639fd334ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.104ex; height:2.509ex;" alt="{\displaystyle {i_{R1}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.104ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5047326539ff093021867a57acab0639fd334ef2" data-alt="{\displaystyle {i_{R1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>1<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5654448194cd4263ac422acc27aa8369ba2b17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{1}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5654448194cd4263ac422acc27aa8369ba2b17" data-alt="{\displaystyle {i_{1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>2<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef3d67c27cc65b3c7faca9f455dbac1e5461bf10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef3d67c27cc65b3c7faca9f455dbac1e5461bf10" data-alt="{\displaystyle {i_{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>3<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e653508479968648426f62bf2d8eebc411e8e1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{3}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e653508479968648426f62bf2d8eebc411e8e1c" data-alt="{\displaystyle {i_{3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>4<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{4}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a30dbf92942b0c57b946eb82f01f9a49516f9f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{4}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a30dbf92942b0c57b946eb82f01f9a49516f9f7" data-alt="{\displaystyle {i_{4}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>5<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{5}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{5}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7511b56032b3fbd2471cd56ea9e686ad6ed60b24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{5}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7511b56032b3fbd2471cd56ea9e686ad6ed60b24" data-alt="{\displaystyle {i_{5}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>6<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{6}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae1947e5fcfd07254d5d9574159a10cd9971ea56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{6}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae1947e5fcfd07254d5d9574159a10cd9971ea56" data-alt="{\displaystyle {i_{6}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th>7<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i_{7}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i_{7}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1dfe773e286038de408d64aff343568007f409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.857ex; height:2.509ex;" alt="{\displaystyle {i_{7}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.857ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1dfe773e286038de408d64aff343568007f409" data-alt="{\displaystyle {i_{7}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th></tr> <tr> <th>Step<sup id="cite_ref-50:50_25-1" class="reference"><a href="#cite_note-50:50-25"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup> </th> <th><span style="color:gray;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{R2}}{i_{R3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{R2}}{i_{R3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e24a02e2784a62aecc02053f3634ebaa6c0a9ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.248ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{R2}}{i_{R3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.248ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e24a02e2784a62aecc02053f3634ebaa6c0a9ea9" data-alt="{\displaystyle {\tfrac {i_{R2}}{i_{R3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f9be20708e3ab7e2a4715183132ae70170c5899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.248ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.248ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f9be20708e3ab7e2a4715183132ae70170c5899" data-alt="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\tfrac {i_{R}}{i_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\tfrac {i_{R}}{i_{1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86aba033552c7ac05766c91d1ac9f5340b2935a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:4.389ex; height:4.176ex;" alt="{\displaystyle -{\tfrac {i_{R}}{i_{1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.389ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86aba033552c7ac05766c91d1ac9f5340b2935a5" data-alt="{\displaystyle -{\tfrac {i_{R}}{i_{1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-R:1_27-0" class="reference"><a href="#cite_note-R:1-27"><span class="cite-bracket">[</span>o<span class="cite-bracket">]</span></a></sup> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98e2fbb697405f0d683424b794b4da8cd40cfa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98e2fbb697405f0d683424b794b4da8cd40cfa9" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f885ccc91d974c23e93f551e9c7eef4b245600f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f885ccc91d974c23e93f551e9c7eef4b245600f7" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-1:2_28-0" class="reference"><a href="#cite_note-1:2-28"><span class="cite-bracket">[</span>p<span class="cite-bracket">]</span></a></sup> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{2}}{i_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{2}}{i_{3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d4e87d935bff2b666219760cc4e557b67b0fd78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{2}}{i_{3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d4e87d935bff2b666219760cc4e557b67b0fd78" data-alt="{\displaystyle {\tfrac {i_{2}}{i_{3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{3}}{i_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{3}}{i_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530a95329a5f2046224067a47fff8fbe9a4b00ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{3}}{i_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530a95329a5f2046224067a47fff8fbe9a4b00ff" data-alt="{\displaystyle {\tfrac {i_{3}}{i_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{4}}{i_{5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{4}}{i_{5}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86696f2738176b381cb2070ce7e4f6422d871a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{4}}{i_{5}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86696f2738176b381cb2070ce7e4f6422d871a12" data-alt="{\displaystyle {\tfrac {i_{4}}{i_{5}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{5}}{i_{6}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{5}}{i_{6}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ea98bcb13fa82d9a91805476d8c87cf1988cd23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{5}}{i_{6}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ea98bcb13fa82d9a91805476d8c87cf1988cd23" data-alt="{\displaystyle {\tfrac {i_{5}}{i_{6}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{6}}{i_{7}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{6}}{i_{7}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b72935e5f05f85d4b7012425d3d01036d257aab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{6}}{i_{7}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b72935e5f05f85d4b7012425d3d01036d257aab" data-alt="{\displaystyle {\tfrac {i_{6}}{i_{7}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th></tr> <tr> <th>Δ Step<sup id="cite_ref-LS_29-0" class="reference"><a href="#cite_note-LS-29"><span class="cite-bracket">[</span>q<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-step_30-0" class="reference"><a href="#cite_note-step-30"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup> </th> <th style="background:#DDF;"> </th> <th><span style="color:gray;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}:{\tfrac {i_{R2}}{i_{R3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}:{\tfrac {i_{R2}}{i_{R3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/382534823db8acf70d496d7fa018b815b027250c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.433ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}:{\tfrac {i_{R2}}{i_{R3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 8.433ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/382534823db8acf70d496d7fa018b815b027250c" data-alt="{\displaystyle {\tfrac {i_{R1}}{i_{R2}}}:{\tfrac {i_{R2}}{i_{R3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </th> <th style="background:#DDF;"> </th> <th style="background:#DDF;"> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feef26398b877d1c8a417a752acd5e7ff78485d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.407ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.407ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feef26398b877d1c8a417a752acd5e7ff78485d9" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cab58a5a21bb7af6e25acb6bb3661fc5725eca9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.407ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.407ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cab58a5a21bb7af6e25acb6bb3661fc5725eca9b" data-alt="{\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{3}}{i_{4}}}:{\tfrac {i_{4}}{i_{5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{3}}{i_{4}}}:{\tfrac {i_{4}}{i_{5}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40e09f6f5de6c7edb906cd6a812c9bf88d48624e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.407ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{3}}{i_{4}}}:{\tfrac {i_{4}}{i_{5}}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.407ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40e09f6f5de6c7edb906cd6a812c9bf88d48624e" data-alt="{\displaystyle {\tfrac {i_{3}}{i_{4}}}:{\tfrac {i_{4}}{i_{5}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{4}}{i_{5}}}:{\tfrac {i_{5}}{i_{6}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{4}}{i_{5}}}:{\tfrac {i_{5}}{i_{6}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb38d4dd1c7e2cb84e61f82e93b20332c080408" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.407ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{4}}{i_{5}}}:{\tfrac {i_{5}}{i_{6}}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.407ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb38d4dd1c7e2cb84e61f82e93b20332c080408" data-alt="{\displaystyle {\tfrac {i_{4}}{i_{5}}}:{\tfrac {i_{5}}{i_{6}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{5}}{i_{6}}}:{\tfrac {i_{6}}{i_{7}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{5}}{i_{6}}}:{\tfrac {i_{6}}{i_{7}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/706ff11743716be32f54ab89c54926e5e37ede8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.407ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{5}}{i_{6}}}:{\tfrac {i_{6}}{i_{7}}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.407ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/706ff11743716be32f54ab89c54926e5e37ede8b" data-alt="{\displaystyle {\tfrac {i_{5}}{i_{6}}}:{\tfrac {i_{6}}{i_{7}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th style="background:#DDF;"> </th></tr> <tr> <th>Shaft<br>Speed </th> <th><span style="color:gray;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{R3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{R3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e97d12e64a60fb91cfe8dd3edd7f8896488ba039" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.248ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{R3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.248ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e97d12e64a60fb91cfe8dd3edd7f8896488ba039" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{R3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{R2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7c3204e4d0cd80f1b1bec6b6e6ea212f914881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.248ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.248ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7c3204e4d0cd80f1b1bec6b6e6ea212f914881" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{R1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/884558faff2c2591ede23a412b784b61e7e3baa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.248ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.248ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/884558faff2c2591ede23a412b784b61e7e3baa2" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98e2fbb697405f0d683424b794b4da8cd40cfa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98e2fbb697405f0d683424b794b4da8cd40cfa9" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f885ccc91d974c23e93f551e9c7eef4b245600f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f885ccc91d974c23e93f551e9c7eef4b245600f7" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12bfefaa742bbb3f3fd0632009c66ae5f5af56d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12bfefaa742bbb3f3fd0632009c66ae5f5af56d1" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5c653f3d3d9f5b55978c1e11efc8bf95535ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5c653f3d3d9f5b55978c1e11efc8bf95535ebe" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{5}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44926ef4dd556a5442cfec3cddcb474316921bd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{5}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44926ef4dd556a5442cfec3cddcb474316921bd7" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{5}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{6}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{6}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e64328b50ce485fecd6228977b0b59af77a3c18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{6}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e64328b50ce485fecd6228977b0b59af77a3c18" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{6}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{7}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{7}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3e7613d010417625ef443335a31d16e6c19ac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.235ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{7}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.235ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3e7613d010417625ef443335a31d16e6c19ac6" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{7}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th></tr> <tr> <th>Δ Shaft<br>Speed<sup id="cite_ref-speed_31-0" class="reference"><a href="#cite_note-speed-31"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup> </th> <th><span style="color:gray;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}-{\tfrac {i_{1}}{i_{R3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{R2}}}-{\tfrac {i_{1}}{i_{R3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b211b75144d808bb565acd7133ab11b2bf916a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.336ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}-{\tfrac {i_{1}}{i_{R3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.336ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b211b75144d808bb565acd7133ab11b2bf916a55" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{R2}}}-{\tfrac {i_{1}}{i_{R3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}-{\tfrac {i_{1}}{i_{R2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{R1}}}-{\tfrac {i_{1}}{i_{R2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2118da602e8295898a56e27c10071d06445bef6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.336ex; height:4.343ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}-{\tfrac {i_{1}}{i_{R2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.336ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2118da602e8295898a56e27c10071d06445bef6e" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{R1}}}-{\tfrac {i_{1}}{i_{R2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0-{\tfrac {i_{1}}{i_{R1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0-{\tfrac {i_{1}}{i_{R1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac05db6d6a3d9f950af716ee0f8058096d6ecd9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:7.251ex; height:4.343ex;" alt="{\displaystyle 0-{\tfrac {i_{1}}{i_{R1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.251ex;height: 4.343ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac05db6d6a3d9f950af716ee0f8058096d6ecd9b" data-alt="{\displaystyle 0-{\tfrac {i_{1}}{i_{R1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a111e1fa928c2e025be98cd9ff75da89c806820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.238ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}"></noscript><span class="lazy-image-placeholder" style="width: 6.238ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a111e1fa928c2e025be98cd9ff75da89c806820" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c0d056a08f9db7bcae605638aee45fe91b7238" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c0d056a08f9db7bcae605638aee45fe91b7238" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09fe57357620d4f65648df30907af734b8339169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09fe57357620d4f65648df30907af734b8339169" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ff9a154fc00a46f87d0c2143c647a7b7f8daf1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ff9a154fc00a46f87d0c2143c647a7b7f8daf1a" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{5}}}-{\tfrac {i_{1}}{i_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{5}}}-{\tfrac {i_{1}}{i_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5f45ebde3867af3cbf8a98ab8e25f351b5d328b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{5}}}-{\tfrac {i_{1}}{i_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5f45ebde3867af3cbf8a98ab8e25f351b5d328b" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{5}}}-{\tfrac {i_{1}}{i_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{6}}}-{\tfrac {i_{1}}{i_{5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{6}}}-{\tfrac {i_{1}}{i_{5}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b121c82f06905b259bb1258a62209be5f78f5a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{6}}}-{\tfrac {i_{1}}{i_{5}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b121c82f06905b259bb1258a62209be5f78f5a5" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{6}}}-{\tfrac {i_{1}}{i_{5}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{1}}{i_{7}}}-{\tfrac {i_{1}}{i_{6}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{1}}{i_{7}}}-{\tfrac {i_{1}}{i_{6}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f6bd9f5a602edc49a2142fd75d4bc4c69c0b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.311ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{1}}{i_{7}}}-{\tfrac {i_{1}}{i_{6}}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.311ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f6bd9f5a602edc49a2142fd75d4bc4c69c0b6" data-alt="{\displaystyle {\tfrac {i_{1}}{i_{7}}}-{\tfrac {i_{1}}{i_{6}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </th></tr> <tr> <td colspan="11" style="background:#AAF;"> </td></tr> <tr> <th>W7A ALL<br>722.9 </th> <td colspan="2">700 <a href="/wiki/Newton-metre" title="Newton-metre">N⋅m</a> (516 <a href="/wiki/Pound-foot_(torque)" title="Pound-foot (torque)">lb⋅ft</a>)<br>2003<sup id="cite_ref-Training_1_10-1" class="reference"><a href="#cite_note-Training_1-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Training_2_11-1" class="reference"><a href="#cite_note-Training_2-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </td> <td> </td> <td>42<br><b>86</b> </td> <td><b>86</b><br>110 </td> <td>28<br>76 </td> <td>46<br>114 </td> <td>4<br>3 </td> <td>6.0162<br>1.7846 </td> <td style="background:#FFC;"><span style="color:red;"><b>1.3486</b><sup id="cite_ref-50:50_25-2" class="reference"><a href="#cite_note-50:50-25"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup></span> </td></tr> <tr style="font-style:italic;"> <th>Gear<br>Ratio </th> <td><span style="color:gray;">−1.4987</span><sup id="cite_ref-R3_26-1" class="reference"><a href="#cite_note-R3-26"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {598}{399}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>598</mn> <mn>399</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {598}{399}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4caeb85f8834ccfa64ad2201b6d321d4868af8a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.302ex; height:3.676ex;" alt="{\displaystyle {\tfrac {598}{399}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.302ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4caeb85f8834ccfa64ad2201b6d321d4868af8a4" data-alt="{\displaystyle {\tfrac {598}{399}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td>−2.2307<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {38,272}{17,157}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>38</mn> <mo>,</mo> <mn>272</mn> </mrow> <mrow> <mn>17</mn> <mo>,</mo> <mn>157</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {38,272}{17,157}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6210365dbcd16c18020292f8615a481a1b94a0c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.403ex; height:4.176ex;" alt="{\displaystyle {\tfrac {38,272}{17,157}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.403ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6210365dbcd16c18020292f8615a481a1b94a0c3" data-alt="{\displaystyle {\tfrac {38,272}{17,157}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span style="color:red;"><b>−3.4157</b><sup id="cite_ref-R:1_27-1" class="reference"><a href="#cite_note-R:1-27"><span class="cite-bracket">[</span>o<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\tfrac {8,372}{2,451}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>8</mn> <mo>,</mo> <mn>372</mn> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mn>451</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\tfrac {8,372}{2,451}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/850a86fa6a252210eaf72b72ba5ff2bd931e2af4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.39ex; height:4.176ex;" alt="{\displaystyle -{\tfrac {8,372}{2,451}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.39ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/850a86fa6a252210eaf72b72ba5ff2bd931e2af4" data-alt="{\displaystyle -{\tfrac {8,372}{2,451}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </td> <td>4.3772<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {203,840}{46,569}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>203</mn> <mo>,</mo> <mn>840</mn> </mrow> <mrow> <mn>46</mn> <mo>,</mo> <mn>569</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {203,840}{46,569}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7453ac469e33d53391dbcab0d4c4fd871685ff46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.225ex; height:4.176ex;" alt="{\displaystyle {\tfrac {203,840}{46,569}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.225ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7453ac469e33d53391dbcab0d4c4fd871685ff46" data-alt="{\displaystyle {\tfrac {203,840}{46,569}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span style="color:red;">2.8586</span><sup id="cite_ref-step_30-1" class="reference"><a href="#cite_note-step-30"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {133,120}{46,569}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>133</mn> <mo>,</mo> <mn>120</mn> </mrow> <mrow> <mn>46</mn> <mo>,</mo> <mn>569</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {133,120}{46,569}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adee406666d7cd250494f379079594e5656275af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.225ex; height:4.176ex;" alt="{\displaystyle {\tfrac {133,120}{46,569}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.225ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adee406666d7cd250494f379079594e5656275af" data-alt="{\displaystyle {\tfrac {133,120}{46,569}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td>1.9206<br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2,080}{1,083}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mo>,</mo> <mn>080</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>083</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2,080}{1,083}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e284112c17c8cf88c0059492b1ff54cf444ee279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:4.581ex; height:4.176ex;" alt="{\displaystyle {\tfrac {2,080}{1,083}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.581ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e284112c17c8cf88c0059492b1ff54cf444ee279" data-alt="{\displaystyle {\tfrac {2,080}{1,083}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span style="color:red;">1.3684<sup id="cite_ref-step_30-2" class="reference"><a href="#cite_note-step-30"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {26}{19}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>26</mn> <mn>19</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {26}{19}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aeed8ad9d1b6e4ac30b74852909498038051f1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\displaystyle {\tfrac {26}{19}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aeed8ad9d1b6e4ac30b74852909498038051f1f" data-alt="{\displaystyle {\tfrac {26}{19}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </td> <td><span style="color:red;"><b>1.0000</b><sup id="cite_ref-50:50_25-3" class="reference"><a href="#cite_note-50:50-25"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4d6c445341abf5296843e2168c0cf46ebab377" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{1}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4d6c445341abf5296843e2168c0cf46ebab377" data-alt="{\displaystyle {\tfrac {1}{1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </td> <td><span style="color:red;">0.8204<sup id="cite_ref-speed_31-1" class="reference"><a href="#cite_note-speed-31"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {38,272}{46,651}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>38</mn> <mo>,</mo> <mn>272</mn> </mrow> <mrow> <mn>46</mn> <mo>,</mo> <mn>651</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {38,272}{46,651}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b86123a7744ffe231e36e27da499a4f986e8aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.403ex; height:4.176ex;" alt="{\displaystyle {\tfrac {38,272}{46,651}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.403ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b86123a7744ffe231e36e27da499a4f986e8aa" data-alt="{\displaystyle {\tfrac {38,272}{46,651}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </td> <td><span style="color:red;"><b>0.7276</b><sup id="cite_ref-speed_31-2" class="reference"><a href="#cite_note-speed-31"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup><br><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {8,372}{11,507}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>8</mn> <mo>,</mo> <mn>372</mn> </mrow> <mrow> <mn>11</mn> <mo>,</mo> <mn>507</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {8,372}{11,507}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/780b3ec16a488250e4056fae3098b53db33e7f74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.403ex; height:4.176ex;" alt="{\displaystyle {\tfrac {8,372}{11,507}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.403ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/780b3ec16a488250e4056fae3098b53db33e7f74" data-alt="{\displaystyle {\tfrac {8,372}{11,507}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> </td></tr> <tr> <th>Step </th> <td><span style="color:gray;">1.4884</span> </td> <td>1.5313 </td> <td><span style="color:red;"><b>0.7804</b></span><sup id="cite_ref-R:1_27-2" class="reference"><a href="#cite_note-R:1-27"><span class="cite-bracket">[</span>o<span class="cite-bracket">]</span></a></sup> </td> <th>1.0000 </th> <td style="background:#FFC;"><span style="color:red;">1.5313</span> </td> <td style="background:#FFC;">1.4884 </td> <td style="background:#FFC;"><span style="color:red;">1.4035</span> </td> <td style="background:#FFC;"><span style="color:red;"><b>1.3684</b></span><sup id="cite_ref-50:50_25-4" class="reference"><a href="#cite_note-50:50-25"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup> </td> <td style="background:#FFC;">1.2189 </td> <td style="background:#FFC;">1.1276 </td></tr> <tr> <th>Δ Step<sup id="cite_ref-LS_29-1" class="reference"><a href="#cite_note-LS-29"><span class="cite-bracket">[</span>q<span class="cite-bracket">]</span></a></sup> </th> <td style="background:#DDF;"> </td> <td>1.0288 </td> <td style="background:#DDF;"> </td> <td style="background:#DDF;"> </td> <td style="background:#DFD;"><span style="color:red;">1.0288</span><sup id="cite_ref-step_30-3" class="reference"><a href="#cite_note-step-30"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup> </td> <td style="background:#DFD;">1.0605 </td> <td style="background:#DFD;"><span style="color:red;">1.0256</span><sup id="cite_ref-step_30-4" class="reference"><a href="#cite_note-step-30"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup> </td> <td style="background:#DFD;">1.1226 </td> <td style="background:#DFD;">1.0810 </td> <td style="background:#DDF;"> </td></tr> <tr> <th>Speed </th> <td><span style="color:gray;">–2.9205</span> </td> <td>–1.9622 </td> <td><span style="color:red;"><b>-1.2815</b></span> </td> <th>1.0000 </th> <td>1.5313 </td> <td>2.2791 </td> <td>3.1987 </td> <td>4.3772 </td> <td><span style="color:red;">5.3355</span> </td> <td><span style="color:red;"><b>6.0162</b></span> </td></tr> <tr> <th>Δ Speed </th> <td><span style="color:gray;">0.9583</span> </td> <td>0.6808 </td> <td><span style="color:red;"><b>1.2815</b></span> </td> <th>1.0000 </th> <td style="background:#DFD;">0.5313 </td> <td style="background:#DFD;">0.7478 </td> <td style="background:#DFD;">0.9196 </td> <td style="background:#DFD;">1.1785 </td> <td style="background:#DFD;"><span style="color:red;">0.9583</span><sup id="cite_ref-speed_31-3" class="reference"><a href="#cite_note-speed-31"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup> </td> <td style="background:#DFD;"><span style="color:red;"><b>0.6808</b></span><sup id="cite_ref-speed_31-4" class="reference"><a href="#cite_note-speed-31"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td colspan="11" style="background:#AAF;"> </td></tr> <tr> <th><i>Ratio</i><br><i>R & Even</i> </th> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{R3}=-{\tfrac {S_{4}(S_{3}+R_{3})}{S_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{R3}=-{\tfrac {S_{4}(S_{3}+R_{3})}{S_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52e7dfb00e965f282b7c4cb72fadf451206bb621" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:17.162ex; height:4.676ex;" alt="{\displaystyle i_{R3}=-{\tfrac {S_{4}(S_{3}+R_{3})}{S_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.162ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52e7dfb00e965f282b7c4cb72fadf451206bb621" data-alt="{\displaystyle i_{R3}=-{\tfrac {S_{4}(S_{3}+R_{3})}{S_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{R_{1}S_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{R_{1}S_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e75925132106e3e6ab43eb5f7e92874287d00cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:17.435ex; height:4.676ex;" alt="{\displaystyle -{\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{R_{1}S_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.435ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e75925132106e3e6ab43eb5f7e92874287d00cd" data-alt="{\displaystyle -{\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{R_{1}S_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {(S_{1}+R_{1})(S_{3}+R_{3})(S_{4}+R_{4})}{R_{1}R_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {(S_{1}+R_{1})(S_{3}+R_{3})(S_{4}+R_{4})}{R_{1}R_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f4cff62be9b2f5969f33a9e77a51a6e43de20ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:20.264ex; height:4.676ex;" alt="{\displaystyle {\tfrac {(S_{1}+R_{1})(S_{3}+R_{3})(S_{4}+R_{4})}{R_{1}R_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 20.264ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f4cff62be9b2f5969f33a9e77a51a6e43de20ca" data-alt="{\displaystyle {\tfrac {(S_{1}+R_{1})(S_{3}+R_{3})(S_{4}+R_{4})}{R_{1}R_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{4}={\tfrac {S_{3}+R_{3}}{R_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{4}={\tfrac {S_{3}+R_{3}}{R_{3}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42c1dd2bc32b67b013e34266f622a986d075ca6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:10.988ex; height:4.509ex;" alt="{\displaystyle i_{4}={\tfrac {S_{3}+R_{3}}{R_{3}}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.988ex;height: 4.509ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42c1dd2bc32b67b013e34266f622a986d075ca6e" data-alt="{\displaystyle i_{4}={\tfrac {S_{3}+R_{3}}{R_{3}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{S_{4}(S_{1}+R_{1})(S_{3}+R_{3})+S_{1}S_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{S_{4}(S_{1}+R_{1})(S_{3}+R_{3})+S_{1}S_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2964c7c035b20838a33f74ed8edb0e41f07c02d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.663ex; height:4.843ex;" alt="{\displaystyle {\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{S_{4}(S_{1}+R_{1})(S_{3}+R_{3})+S_{1}S_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 22.663ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2964c7c035b20838a33f74ed8edb0e41f07c02d" data-alt="{\displaystyle {\tfrac {S_{4}(S_{1}+R_{1})(S_{3}+R_{3})}{S_{4}(S_{1}+R_{1})(S_{3}+R_{3})+S_{1}S_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <th><i>Ratio</i><br><i>R1 & Odd</i> </th> <td colspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{R1}=-{\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{2}S_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{R1}=-{\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{2}S_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a4f679cd827ca96bc8510af22c522326570811" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:23.638ex; height:4.676ex;" alt="{\displaystyle i_{R1}=-{\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{2}S_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 23.638ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a4f679cd827ca96bc8510af22c522326570811" data-alt="{\displaystyle i_{R1}=-{\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{2}S_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {(S_{2}+R_{2})(S_{3}+R_{3})(S_{4}+R_{4})}{S_{2}R_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {(S_{2}+R_{2})(S_{3}+R_{3})(S_{4}+R_{4})}{S_{2}R_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d1a2304b5d6a5206da17a64f3e2e8e4618bad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:20.264ex; height:4.676ex;" alt="{\displaystyle {\tfrac {(S_{2}+R_{2})(S_{3}+R_{3})(S_{4}+R_{4})}{S_{2}R_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 20.264ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d1a2304b5d6a5206da17a64f3e2e8e4618bad1" data-alt="{\displaystyle {\tfrac {(S_{2}+R_{2})(S_{3}+R_{3})(S_{4}+R_{4})}{S_{2}R_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {(S_{3}+R_{3})(S_{4}+R_{4})}{R_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {(S_{3}+R_{3})(S_{4}+R_{4})}{R_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1583b754839793d73de96c00b17b46a1e983856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:13.788ex; height:4.676ex;" alt="{\displaystyle {\tfrac {(S_{3}+R_{3})(S_{4}+R_{4})}{R_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 13.788ex;height: 4.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1583b754839793d73de96c00b17b46a1e983856" data-alt="{\displaystyle {\tfrac {(S_{3}+R_{3})(S_{4}+R_{4})}{R_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{5}={\tfrac {1}{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{5}={\tfrac {1}{1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e2b60ead1f256421f5563a19dc6c1059ef1da2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.613ex; height:3.509ex;" alt="{\displaystyle i_{5}={\tfrac {1}{1}}}"></noscript><span class="lazy-image-placeholder" style="width: 6.613ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e2b60ead1f256421f5563a19dc6c1059ef1da2e" data-alt="{\displaystyle i_{5}={\tfrac {1}{1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td colspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{4}(S_{2}+R_{2})(S_{3}+R_{3})+R_{2}S_{3}R_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{4}(S_{2}+R_{2})(S_{3}+R_{3})+R_{2}S_{3}R_{4}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b694af028137b33bbeeaea8481652c331ed1f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.903ex; height:4.843ex;" alt="{\displaystyle {\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{4}(S_{2}+R_{2})(S_{3}+R_{3})+R_{2}S_{3}R_{4}}}}"></noscript><span class="lazy-image-placeholder" style="width: 22.903ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b694af028137b33bbeeaea8481652c331ed1f8" data-alt="{\displaystyle {\tfrac {S_{4}(S_{2}+R_{2})(S_{3}+R_{3})}{S_{4}(S_{2}+R_{2})(S_{3}+R_{3})+R_{2}S_{3}R_{4}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <th colspan="11">Algebra And Actuated Shift Elements<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>t<span class="cite-bracket">]</span></a></sup> </th></tr> <tr> <th>Brake 1<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>u<span class="cite-bracket">]</span></a></sup> </th> <td> </td> <td>❶ </td> <td> </td> <td> </td> <td>❶ </td> <td> </td> <td> </td> <td> </td> <td>❶ </td> <td> </td></tr> <tr> <th>Brake 2<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>v<span class="cite-bracket">]</span></a></sup> </th> <td> </td> <td> </td> <td> </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>Brake 3<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>w<span class="cite-bracket">]</span></a></sup> </th> <td> </td> <td> </td> <td>❶ </td> <td>❶ </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>❶ </td></tr> <tr> <th>Brake BR<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>x<span class="cite-bracket">]</span></a></sup> </th> <td><span style="color:gray;">❶</span><sup id="cite_ref-R3_26-2" class="reference"><a href="#cite_note-R3-26"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup> </td> <td>❶ </td> <td>❶ </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>Clutch 1<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>y<span class="cite-bracket">]</span></a></sup> </th> <td><span style="color:gray;">❶</span><sup id="cite_ref-R3_26-3" class="reference"><a href="#cite_note-R3-26"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td> </td> <td> </td></tr> <tr> <th>Clutch 2<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>z<span class="cite-bracket">]</span></a></sup> </th> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td>❶ </td></tr> <tr> <th>Clutch 3<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>aa<span class="cite-bracket">]</span></a></sup> </th> <td><span style="color:gray;">❶</span><sup id="cite_ref-R3_26-4" class="reference"><a href="#cite_note-R3-26"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup> </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td>❶ </td> <td> </td> <td>❶ </td> <td>❶ </td> <td>❶ </td></tr> <tr> <td colspan="11" style="background:#AAF;"> </td></tr> <tr> <td colspan="11"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-lower-alpha reflist-columns-2"> <ol class="references"> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><b>Layout</b> <ul><li>Input and output are on opposite sides</li> <li>Planetary gearset 2 (the outer Ravigneaux gearset) is on the input (turbine) side</li> <li>Input shafts are <b>R<sub>1</sub></b> and, if actuated, <b>R<sub>3</sub></b></li> <li>Output shaft is <b>C<sub>3</sub></b> (planetary gear carrier of gearset 3)</li></ul> </span></li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><b>Total Ratio Span (Total Ratio Spread · Total Gear Ratio)</b> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {i_{n}}{i_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {i_{n}}{i_{1}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0d37d7d3828245aa49a4abdaf0f8c87117fde5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:2.368ex; height:4.176ex;" alt="{\displaystyle {\tfrac {i_{n}}{i_{1}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.368ex;height: 4.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0d37d7d3828245aa49a4abdaf0f8c87117fde5" data-alt="{\displaystyle {\tfrac {i_{n}}{i_{1}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> <li>A wider span enables the <ul><li>downspeeding when driving outside the city limits</li> <li>increase the climbing ability <ul><li>when driving over mountain passes or off-road</li> <li>or when towing a trailer</li></ul></li></ul></li></ul> </span></li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><b>Ratio Span's Center</b> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i_{n}i_{1})^{\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i_{n}i_{1})^{\tfrac {1}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c600f6c4b848980eeba38e507bf015fd67afe47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.577ex; height:4.509ex;" alt="{\displaystyle (i_{n}i_{1})^{\tfrac {1}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 7.577ex;height: 4.509ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c600f6c4b848980eeba38e507bf015fd67afe47" data-alt="{\displaystyle (i_{n}i_{1})^{\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> <li>The center indicates the speed level of the transmission</li> <li>Together with the final drive ratio</li> <li>it gives the shaft speed level of the vehicle</li></ul> </span></li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><b>Average Gear Step</b> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\tfrac {i_{n}}{i_{1}}})^{\tfrac {1}{n-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mstyle> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\tfrac {i_{n}}{i_{1}}})^{\tfrac {1}{n-1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65a4d42ca7403b1f9cf680a5f415627a3cd5a78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.333ex; height:5.176ex;" alt="{\displaystyle ({\tfrac {i_{n}}{i_{1}}})^{\tfrac {1}{n-1}}}"></noscript><span class="lazy-image-placeholder" style="width: 8.333ex;height: 5.176ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65a4d42ca7403b1f9cf680a5f415627a3cd5a78" data-alt="{\displaystyle ({\tfrac {i_{n}}{i_{1}}})^{\tfrac {1}{n-1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> <li>With decreasing step width <ul><li>the gears connect better to each other</li> <li>shifting comfort increases</li></ul></li></ul> </span></li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Sun 1: sun gear of gearset 1: inner Ravigneaux gearset</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Ring 1: ring gear of gearset 1: inner Ravigneaux gearset</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Sun 2: sun gear of gearset 2: outer Ravigneaux gearset</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Ring 2: ring gear of gearset 2: outer Ravigneaux gearset</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Sun 3: sun gear of gearset 3</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Ring 3: ring gear of gearset 3</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Sun 4: sun gear of gearset 4</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">Ring 4: ring gear of gearset 4</span> </li> <li id="cite_note-50:50-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-50:50_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-50:50_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-50:50_25-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-50:50_25-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-50:50_25-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><b>Standard 50:50<br>— 50 % Is Above And 50 % Is Below The Average Gear Step —</b> <ul><li>With steadily decreasing gear steps (yellow highlighted line <b>Step</b>)</li> <li>and a particularly large step from 1st to 2nd gear <ul><li>the <b>lower half of the gear steps</b> (between the small gears; rounded down, here the first 3) <b>is always larger</b></li> <li>and the <b>upper half of the gear steps</b> (between the large gears; rounded up, here the last 3) <b>is always smaller</b></li></ul></li> <li><b>than the average gear step</b> (cell highlighted yellow two rows above on the far right)</li> <li>lower half: <span style="color:red;"><b>smaller gear steps are a waste of possible ratios (red bold)</b></span></li> <li>upper half: <span style="color:red;"><b>larger gear steps are unsatisfactory (red bold)</b></span></li></ul> </span></li> <li id="cite_note-R3-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-R3_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-R3_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-R3_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-R3_26-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-R3_26-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><span style="color:gray;">In line with the logic for the 2nd reverse gear of the predecessor <a href="/wiki/Mercedes-Benz_5G-Tronic_transmission" title="Mercedes-Benz 5G-Tronic transmission">5G-Tronic</a>, the extended layout provides this 3rd reverse gear, but it was not used in the transmission that was finally launched on the market</span></span> </li> <li id="cite_note-R:1-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-R:1_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-R:1_27-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-R:1_27-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><b>Standard R:1<br>— Reverse And 1st Gear Have The Same Ratio —</b> <ul><li>The ideal reverse gear has the same transmission ratio as 1st gear <ul><li>no impairment when maneuvering</li> <li>especially when towing a trailer</li> <li>a torque converter can only partially compensate for this deficiency</li></ul></li> <li>Plus 11.11 % minus 10 % compared to 1st gear is good</li> <li><span style="color:red;">Plus 25 % minus 20 % is acceptable (red)</span></li> <li><span style="color:red;"><b>Above this is unsatisfactory (bold)</b></span></li></ul> </span></li> <li id="cite_note-1:2-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-1:2_28-0">^</a></b></span> <span class="reference-text"><b>Standard 1:2<br>— Gear Step 1st To 2nd Gear As Small As Possible —</b> <ul><li>With continuously decreasing gear steps (yellow marked line <b>Step</b>)</li> <li>the <b>largest gear step is the one from 1st to 2nd gear,</b> which <ul><li>for a good speed connection and</li> <li>a smooth gear shift</li></ul></li> <li>must be as small as possible <ul><li>A gear ratio of up to 1.6667:1 (5:3) is good</li> <li><span style="color:red;">Up to 1.7500:1 (7:4) is acceptable (red)</span></li> <li><span style="color:red;"><b>Above is unsatisfactory (bold)</b></span></li></ul></li></ul> </span></li> <li id="cite_note-LS-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-LS_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LS_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">From large to small gears (from right to left)</span> </li> <li id="cite_note-step-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-step_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-step_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-step_30-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-step_30-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-step_30-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><b>Standard STEP<br>— From Large To Small Gears: Steady And Progressive Increase In Gear Steps —</b> <ul><li>Gear steps should <ul><li><b>increase:</b> Δ Step (first green highlighted line <b>Δ Step</b>) is always greater than 1</li> <li>As <b>progressive</b> as possible: Δ Step is always greater than the previous step</li></ul></li> <li><span style="color:red;">Not progressively increasing is acceptable (red)</span></li> <li><span style="color:red;"><b>Not increasing is unsatisfactory (bold)</b></span></li></ul> </span></li> <li id="cite_note-speed-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-speed_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-speed_31-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-speed_31-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-speed_31-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-speed_31-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><b>Standard SPEED<br>— From Small To Large Gears: Steady Increase In Shaft Speed Difference —</b> <ul><li>Shaft speed differences should <ul><li><b>increase:</b> Δ Shaft Speed (second line marked in green <b>Δ (Shaft) Speed</b>) is always greater than the previous one</li></ul></li> <li><span style="color:red;">1 difference smaller than the previous one is acceptable (red)</span></li> <li><span style="color:red;"><b>2 consecutive ones are a waste of possible ratios (bold)</b></span></li></ul> </span></li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Permanently <b>coupled elements</b> <ul><li><b>C<sub>1</sub></b> and <b>C<sub>2</sub></b> (the common Ravigneaux carrier 1 + 2), and <b>R<sub>4</sub></b></li> <li><b>R<sub>3</sub></b> and <b>C<sub>4</sub></b> (carrier 4)</li></ul> </span></li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Blocks <b>S<sub>1</sub></b> (sun gear of the inner Ravigneaux geaset)</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Blocks <b>S<sub>3</sub></b></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Blocks <b>R<sub>2</sub></b> (ring gear of the outer Ravigneaux gearset)</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Blocks <b>R<sub>3</sub></b> and <b>C<sub>4</sub></b> (carrier 4)</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Couples <b>S<sub>1</sub></b> (sun gear of inner Ravigneaux gearset) with <b>R<sub>2</sub></b> (ring gear of outer Ravigneaux gearset)</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Couples <b>R<sub>1</sub></b> (ring of inner Ravigneaux gearset) with <b>R<sub>3</sub></b> and <b>C<sub>4</sub></b> (carrier 4)</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Couples <b>S<sub>3</sub></b> with <b>S<sub>4</sub></b></span> </li> </ol></div> </td></tr> <tr> <td colspan="11" style="background:#AAF;"> </td></tr></tbody></table> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Applications">Applications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=9" title="Edit section: Applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <div class="mw-heading mw-heading3"><h3 id="Mercedes_models">Mercedes models</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=10" title="Edit section: Mercedes models" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Mercedes_C-Class">Mercedes C-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=11" title="Edit section: Mercedes C-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2005-2007 <a href="/wiki/Mercedes-Benz_W203" class="mw-redirect" title="Mercedes-Benz W203">Mercedes-Benz W203</a> (C 320 CDI, C 230, C 280, C 350; post-facelift)</li> <li>2005-2007 <a href="/wiki/Mercedes-Benz_CL203" class="mw-redirect" title="Mercedes-Benz CL203">Mercedes-Benz CL203</a> (C 230 SportCoupé, C 350 SportCoupé; post-facelift), (CLC 250, CLC 350)</li> <li>2011–2018 <a href="/wiki/Mercedes-Benz_W204" class="mw-redirect" title="Mercedes-Benz W204">Mercedes-Benz W204</a> (C 63 AMG, C 63 AMG Black Series)</li> <li>2014 <a href="/wiki/Mercedes-Benz_W205" class="mw-redirect" title="Mercedes-Benz W205">Mercedes-Benz W205</a> (C 180)</li></ul> <div class="mw-heading mw-heading4"><h4 id="Mercedes_E-Class">Mercedes E-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=12" title="Edit section: Mercedes E-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2009–2016 <a href="/wiki/Mercedes-Benz_E-Class_(W212)" title="Mercedes-Benz E-Class (W212)">Mercedes-Benz W212</a> (E200AMG 7G-Tronic,E63AMG)</li> <li>2009–2013 Mercedes-Benz W212 (E200AMG 7G-Tronic)</li> <li>2005–2009 <a href="/wiki/Mercedes-Benz_E-Class_(W211)" title="Mercedes-Benz E-Class (W211)">Mercedes-Benz W211</a> (E350 v6 7G-Tronic)</li></ul> <div class="mw-heading mw-heading4"><h4 id="Mercedes_S-Class">Mercedes S-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=13" title="Edit section: Mercedes S-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2013–2017 <a href="/wiki/Mercedes-Benz_S-Class_(W222)" title="Mercedes-Benz S-Class (W222)">Mercedes-Benz W222</a> (all models except Maybach S 500 and Maybach S 500 4MATIC)</li> <li>2017–2020 Mercedes-Benz W222 (V12 models only)</li></ul> <div class="mw-heading mw-heading4"><h4 id="Mercedes_SLK-Class">Mercedes SLK-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=14" title="Edit section: Mercedes SLK-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2004–2011 <a href="/wiki/Mercedes-Benz_SLK-Class_(R171)" title="Mercedes-Benz SLK-Class (R171)">Mercedes-Benz R171</a></li> <li>2011–2015 <a href="/wiki/Mercedes-Benz_SLK-Class_(R172)" title="Mercedes-Benz SLK-Class (R172)">Mercedes-Benz R172</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="Mercedes_CLS-Class">Mercedes CLS-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=15" title="Edit section: Mercedes CLS-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2003-2010 <a href="/wiki/Mercedes-Benz_CLS-Class_(C219)" title="Mercedes-Benz CLS-Class (C219)">Mercedes-Benz C219</a></li> <li>2010-2018 <a href="/wiki/Mercedes-Benz_CLS-Class_(C218)" title="Mercedes-Benz CLS-Class (C218)">Mercedes-Benz C218</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="Mercedes_CLK-Class">Mercedes CLK-Class</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=16" title="Edit section: Mercedes CLK-Class" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2002–2010 <a href="/wiki/Mercedes-Benz_CLK-Class_(C209)" title="Mercedes-Benz CLK-Class (C209)">Mercedes-Benz C209</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="AMG_GT-line">AMG GT-line</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=17" title="Edit section: AMG GT-line" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading3"><h3 id="Non_Mercedes-Benz_models">Non Mercedes-Benz models</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=18" title="Edit section: Non Mercedes-Benz models" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Infiniti"><a href="/wiki/Infiniti" title="Infiniti">Infiniti</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=19" title="Edit section: Infiniti" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2014–2019 <a href="/wiki/Infiniti_Q50" title="Infiniti Q50">Infiniti Q50</a> (<a href="/wiki/Mercedes-Benz_M270/M274_engine#M274_DE20_LA" title="Mercedes-Benz M270/M274 engine">2.0t (M274 DE20 LA)</a><sup id="cite_ref-q50_1_40-0" class="reference"><a href="#cite_note-q50_1-40"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>).</li> <li>2015–2016 Infiniti Q50 (<a href="/wiki/Mercedes-Benz_OM651_engine" title="Mercedes-Benz OM651 engine">2.2d (OM651 22 LA)</a><sup id="cite_ref-q50_2_41-0" class="reference"><a href="#cite_note-q50_2-41"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup>).</li> <li>2017–2018 <a href="/wiki/Infiniti_Q60" title="Infiniti Q60">Infiniti Q60</a> (<a href="/wiki/Mercedes-Benz_M270/M274_engine#M274_DE20_LA" title="Mercedes-Benz M270/M274 engine">2.0t (M274 DE20 LA)</a>).</li></ul> <div class="mw-heading mw-heading4"><h4 id="SsangYong_Motor"><a href="/wiki/SsangYong_Motor" class="mw-redirect" title="SsangYong Motor">SsangYong Motor</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=20" title="Edit section: SsangYong Motor" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>2017–2020 <a href="/wiki/SsangYong_Rexton" class="mw-redirect" title="SsangYong Rexton">SsangYong Rexton</a> G4 (2.2 e-XDi Euro 6 Turbo-Diesel)</li> <li><a href="/wiki/SsangYong_Rodius" title="SsangYong Rodius">SsangYong Rodius</a> Korando Turismo (in South Korea)</li> <li><a href="/wiki/SsangYong_Rodius" title="SsangYong Rodius">SsangYong Rodius</a> Turismo (in UK)</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=21" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <ul><li><a href="/wiki/List_of_Daimler_AG_transmissions" title="List of Daimler AG transmissions">List of Daimler AG transmissions</a></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=22" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-Mercedes-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mercedes_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mercedes_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110706185229/http://www.mercedes-benz.ca/content/media_library/canada/mpc_canada/en/mercedes_benz_canada/AboutUs/Press/2003/MB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp/2003-05-14%207G-TRONIC.pdf">"7G-Tronic: Mercedes-Benz presents the world's first seven-speed automatic transmission for passenger cars"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/DaimlerChrysler" class="mw-redirect" title="DaimlerChrysler">DaimlerChrysler</a> press release</i>. Archived from <a rel="nofollow" class="external text" href="http://www.mercedes-benz.ca/content/media_library/canada/mpc_canada/en/mercedes_benz_canada/AboutUs/Press/2003/MB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp/2003-05-14%207G-TRONIC.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2011-07-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-02-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=DaimlerChrysler+press+release&rft.atitle=7G-Tronic%3A+Mercedes-Benz+presents+the+world%27s+first+seven-speed+automatic+transmission+for+passenger+cars&rft_id=http%3A%2F%2Fwww.mercedes-benz.ca%2Fcontent%2Fmedia_library%2Fcanada%2Fmpc_canada%2Fen%2Fmercedes_benz_canada%2FAboutUs%2FPress%2F2003%2FMB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp%2F2003-05-14%25207G-TRONIC.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREF19_July_2010" class="citation web cs1">19 July 2010. <a rel="nofollow" class="external text" href="http://www.autocar.co.uk/News/NewsArticle/AllCars/251467/">"Merc plans nine-speed auto'<span class="cs1-kern-right"></span>"</a>. Autocar.co.uk<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Merc+plans+nine-speed+auto%27&rft.pub=Autocar.co.uk&rft.au=19+July+2010&rft_id=http%3A%2F%2Fwww.autocar.co.uk%2FNews%2FNewsArticle%2FAllCars%2F251467%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-mbmanual1-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-mbmanual1_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mbmanual1_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-mbmanual1_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-mbmanual1_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-mbmanual1_4-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://static.ibsrv.net/mbworld/722.9%20b.pdf">"Mercedes Benz 722.9 Training Manual"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercedes+Benz+722.9+Training+Manual&rft_id=http%3A%2F%2Fstatic.ibsrv.net%2Fmbworld%2F722.9%2520b.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-mbmanual2-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-mbmanual2_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://f01.justanswer.com/73bbchevy/52d5945c-5b37-4c72-9765-f200ee00e793_tips_and_tricks.pdf">"Mercedes Benz 722.9 Workshop Tips and Tricks Manual"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercedes+Benz+722.9+Workshop+Tips+and+Tricks+Manual&rft_id=https%3A%2F%2Ff01.justanswer.com%2F73bbchevy%2F52d5945c-5b37-4c72-9765-f200ee00e793_tips_and_tricks.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090804092034/http://media.daimler.com/dcmedia/0-921-614226-1-789843-1-0-0-0-0-1-12635-614226-0-1-0-0-0-0-0.html?TS=1248130312329">"Daimler Global Media Site > Mercedes-Benz Cars > AMG"</a>. Archived from <a rel="nofollow" class="external text" href="http://media.daimler.com/dcmedia/0-921-614226-1-789843-1-0-0-0-0-1-12635-614226-0-1-0-0-0-0-0.html?TS=1248130312329">the original</a> on 2009-08-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-07-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Daimler+Global+Media+Site+%3E+Mercedes-Benz+Cars+%3E+AMG&rft_id=http%3A%2F%2Fmedia.daimler.com%2Fdcmedia%2F0-921-614226-1-789843-1-0-0-0-0-1-12635-614226-0-1-0-0-0-0-0.html%3FTS%3D1248130312329&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20091110075348/http://media.daimler.com/dcmedia/0-921-658575-1-1030828-1-0-0-0-0-1-11701-854934-0-1-0-0-0-0-0.html">"The new-generation SLK: More powerful, more economical, more intense | Daimler Global Media Site > Mercedes-Benz Cars > Mercedes-Benz P. Cars > Roadsters > SLK-Class"</a>. Archived from <a rel="nofollow" class="external text" href="http://media.daimler.com/dcmedia/0-921-658575-1-1030828-1-0-0-0-0-1-11701-854934-0-1-0-0-0-0-0.html">the original</a> on 2009-11-10<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-07-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+new-generation+SLK%3A+More+powerful%2C+more+economical%2C+more+intense+%26%23124%3B+Daimler+Global+Media+Site+%3E+Mercedes-Benz+Cars+%3E+Mercedes-Benz+P.+Cars+%3E+Roadsters+%3E+SLK-Class&rft_id=http%3A%2F%2Fmedia.daimler.com%2Fdcmedia%2F0-921-658575-1-1030828-1-0-0-0-0-1-11701-854934-0-1-0-0-0-0-0.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090131170842/http://paultan.org/archives/2008/02/11/new-7-speed-amg-speedshift-mct-debuts/">"New 7-speed AMG SPEEDSHIFT MCT"</a>. Archived from <a rel="nofollow" class="external text" href="http://paultan.org/archives/2008/02/11/new-7-speed-amg-speedshift-mct-debuts/">the original</a> on 2009-01-31<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+7-speed+AMG+SPEEDSHIFT+MCT&rft_id=http%3A%2F%2Fpaultan.org%2Farchives%2F2008%2F02%2F11%2Fnew-7-speed-amg-speedshift-mct-debuts%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-Training_1-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Training_1_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Training_1_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://shop.ukrtrans.biz/wp-content/uploads/catalogs/722.9.pdf">"Catalog"</a> <span class="cs1-format">(PDF)</span>. shop.ukrtrans.biz<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-01-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Catalog&rft.pub=shop.ukrtrans.biz&rft_id=http%3A%2F%2Fshop.ukrtrans.biz%2Fwp-content%2Fuploads%2Fcatalogs%2F722.9.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-Training_2-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Training_2_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Training_2_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190628162658/https://procarmanuals.com/mercedes-benz-automatic-transmission-722-9-technical-training-materials/">"Mercedes-Benz Automatic Transmission 722.9 Technical Training Materials - PDF Free Online"</a>. Archived from <a rel="nofollow" class="external text" href="https://procarmanuals.com/mercedes-benz-automatic-transmission-722-9-technical-training-materials/">the original</a> on 2019-06-28<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-06-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercedes-Benz+Automatic+Transmission+722.9+Technical+Training+Materials+-+PDF+Free+Online&rft_id=https%3A%2F%2Fprocarmanuals.com%2Fmercedes-benz-automatic-transmission-722-9-technical-training-materials%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-q50_1-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-q50_1_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://paultan.org/2014/03/05/first-view-daimlers-2-0-turbo-infiniti-engine-bay/">"First view of Mercedes 2.0 turbo in the Infiniti Q50"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=First+view+of+Mercedes+2.0+turbo+in+the+Infiniti+Q50&rft_id=https%3A%2F%2Fpaultan.org%2F2014%2F03%2F05%2Ffirst-view-daimlers-2-0-turbo-infiniti-engine-bay%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> <li id="cite_note-q50_2-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-q50_2_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.carmag.co.za/road-tests/comparative-road-tests/infiniti-q50-22d-sport-vs-mercedes-benz-c220-bluetec-7g-tronic/">"Infiniti Q50 2,2d Sport vs. Mercedes-Benz C220 BlueTEC 7G-tronic"</a>. 18 October 2014.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Infiniti+Q50+2%2C2d+Sport+vs.+Mercedes-Benz+C220+BlueTEC+7G-tronic&rft.date=2014-10-18&rft_id=https%3A%2F%2Fwww.carmag.co.za%2Froad-tests%2Fcomparative-road-tests%2Finfiniti-q50-22d-sport-vs-mercedes-benz-c220-bluetec-7g-tronic%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></span> </li> </ol></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=edit&section=23" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <ul><li><a rel="nofollow" class="external text" href="http://ecu.de/mercedes/getriebesteuerger%C3%A4t/vgs---nag2-%287g-tronic%29-5150/">7g-Tronic ECU Repair</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040717133631/http://www.germancarfans.com/print.cfm/ID/2030515.001">GermanCarFans</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110706185229/http://www.mercedes-benz.ca/content/media_library/canada/mpc_canada/en/mercedes_benz_canada/AboutUs/Press/2003/MB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp/2003-05-14%207G-TRONIC.pdf">"7G-Tronic: Mercedes-Benz presents the world's first seven-speed automatic transmission for passenger cars"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/DaimlerChrysler" class="mw-redirect" title="DaimlerChrysler">DaimlerChrysler</a> press release</i>. Archived from <a rel="nofollow" class="external text" href="http://www.mercedes-benz.ca/content/media_library/canada/mpc_canada/en/mercedes_benz_canada/AboutUs/Press/2003/MB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp/2003-05-14%207G-TRONIC.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 6 July 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">14 October</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=DaimlerChrysler+press+release&rft.atitle=7G-Tronic%3A+Mercedes-Benz+presents+the+world%27s+first+seven-speed+automatic+transmission+for+passenger+cars&rft_id=http%3A%2F%2Fwww.mercedes-benz.ca%2Fcontent%2Fmedia_library%2Fcanada%2Fmpc_canada%2Fen%2Fmercedes_benz_canada%2FAboutUs%2FPress%2F2003%2FMB_Press-Release_May14-2003.object-Single-MEDIA.download.tmp%2F2003-05-14%25207G-TRONIC.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMercedes-Benz+7G-Tronic+transmission" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://att24.de/">ATT24 GmbH</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portal</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Sportcar_sergio_luiz_ara_01.svg/21px-Sportcar_sergio_luiz_ara_01.svg.png" decoding="async" width="21" height="8" class="mw-file-element" data-file-width="600" data-file-height="219"></noscript><span class="lazy-image-placeholder" style="width: 21px;height: 8px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Sportcar_sergio_luiz_ara_01.svg/21px-Sportcar_sergio_luiz_ara_01.svg.png" data-alt="" data-width="21" data-height="8" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Sportcar_sergio_luiz_ara_01.svg/32px-Sportcar_sergio_luiz_ara_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Sportcar_sergio_luiz_ara_01.svg/42px-Sportcar_sergio_luiz_ara_01.svg.png 2x" data-class="mw-file-element"> </span></span></span> </span><a href="/wiki/Portal:Cars" title="Portal:Cars">Cars</a></li></ul></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5857dfdcd6‐ptcvj Cached time: 20241203070552 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.579 seconds Real time usage: 0.780 seconds Preprocessor visited node count: 5222/1000000 Post‐expand include size: 62488/2097152 bytes Template argument size: 10436/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 78536/5000000 bytes Lua time usage: 0.280/10.000 seconds Lua memory usage: 7465859/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 539.594 1 -total 25.82% 139.335 4 Template:Reflist 20.44% 110.304 12 Template:Cite_web 16.96% 91.492 1 Template:Mercedes-Benz_Corporation 15.83% 85.422 1 Template:Navbox 15.27% 82.390 2 Template:Short_description 10.22% 55.144 4 Template:Pagetype 9.19% 49.570 1 Template:Infobox_automobile 9.08% 48.996 1 Template:Citation_needed 8.11% 43.788 1 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:2263811:|#|:idhash:canonical and timestamp 20241203070552 and revision id 1255243200. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.038 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&oldid=1255243200">https://en.wikipedia.org/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&oldid=1255243200</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Musikgeniesser" data-user-gender="unknown" data-timestamp="1730672223"> <span>Last edited on 3 November 2024, at 22:17</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/7G-TRONIC" title="7G-TRONIC – German" lang="de" hreflang="de" data-title="7G-TRONIC" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/7G-TRONIC" title="7G-TRONIC – Japanese" lang="ja" hreflang="ja" data-title="7G-TRONIC" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/7G-Tronic" title="7G-Tronic – Russian" lang="ru" hreflang="ru" data-title="7G-Tronic" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/7G-Tronic" title="7G-Tronic – Ukrainian" lang="uk" hreflang="uk" data-title="7G-Tronic" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 3 November 2024, at 22:17<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Mercedes-Benz_7G-Tronic_transmission&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5b4c46c98-x9hjl","wgBackendResponseTime":221,"wgPageParseReport":{"limitreport":{"cputime":"0.579","walltime":"0.780","ppvisitednodes":{"value":5222,"limit":1000000},"postexpandincludesize":{"value":62488,"limit":2097152},"templateargumentsize":{"value":10436,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":78536,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 539.594 1 -total"," 25.82% 139.335 4 Template:Reflist"," 20.44% 110.304 12 Template:Cite_web"," 16.96% 91.492 1 Template:Mercedes-Benz_Corporation"," 15.83% 85.422 1 Template:Navbox"," 15.27% 82.390 2 Template:Short_description"," 10.22% 55.144 4 Template:Pagetype"," 9.19% 49.570 1 Template:Infobox_automobile"," 9.08% 48.996 1 Template:Citation_needed"," 8.11% 43.788 1 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.280","limit":"10.000"},"limitreport-memusage":{"value":7465859,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5857dfdcd6-ptcvj","timestamp":"20241203070552","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Mercedes-Benz 7G-Tronic transmission","url":"https:\/\/en.wikipedia.org\/wiki\/Mercedes-Benz_7G-Tronic_transmission","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6818104","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6818104","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-07-19T08:27:21Z","dateModified":"2024-11-03T22:17:03Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/21\/Mercedes-Benz_7G-Tronic_transmission.jpg","headline":"motor vehicle"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>