CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 187 results for author: <span class="mathjax">Shi, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Shi%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shi, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shi%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shi, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07122">arXiv:2412.07122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07122">pdf</a>, <a href="https://arxiv.org/format/2412.07122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum oscillation in Hopf-link semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C+M">C. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07122v1-abstract-short" style="display: inline;"> Since the discovery of the relation between the Chern number and quantum Hall effect, searching for observables of topological invariants has been an intriguing topic. Topological Hopf-link semimetals have attracted tremendous interest, in which the conduction and valence energy bands touch at linked nodal lines. However, it is challenging to identify this sophisticated topology. We propose to use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07122v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07122v1-abstract-full" style="display: none;"> Since the discovery of the relation between the Chern number and quantum Hall effect, searching for observables of topological invariants has been an intriguing topic. Topological Hopf-link semimetals have attracted tremendous interest, in which the conduction and valence energy bands touch at linked nodal lines. However, it is challenging to identify this sophisticated topology. We propose to use the quantum oscillation in strong magnetic fields to probe the Hopf links. For a generic model of Hopf-link semimetal that captures the linked-trivial phase transition, we figure out the phase shifts of oscillation for all Fermi pockets in all magnetic-field directions, by presenting self-consistent results from the Fermi surface tomography, Landau fan diagram, and electrical resistivity. As the magnetic field is rotated, the phase shifts exhibit a unique pattern, which could help to identify Hopf links in real materials, such as those in Li$_2$NaN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07122v1-abstract-full').style.display = 'none'; document.getElementById('2412.07122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11817">arXiv:2411.11817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11817">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Hierarchical Sapphire Nanostructures using Ultrafast Laser Induced Morphology Change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheung%2C+J">Joshua Cheung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+K">Kun-Chieh Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokalski%2C+P">Peter Sokalski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chih-Hao Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11817v1-abstract-short" style="display: inline;"> Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11817v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11817v1-abstract-full" style="display: none;"> Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy. The irradiated regions are then removed using a subsequent wet etch in hydrofluoric acid. Laser confocal measurements conducted before and after the etching process quantify the degree of selective etching. The results indicate that a threshold laser pulse intensity is required for selective etching to occur. This process can be used to fabricate hierarchical sapphire nanostructures over large areas with enhanced hydrophobicity, which exhibits an apparent contact angle of 140 degrees and a high roll-off angle that are characteristic of the rose petal effect. Additionally, the fabricated structures have high broadband diffuse transmittance of up to 81.8% with low loss, which can find applications in optical diffusers. Our findings provide new insights into the interplay between the light-matter interactions, where Raman shifts associated with different vibrational modes can be used as a predictive measure of selective etching. These results advance the development of sapphire nanostructure fabrication, which can find applications in infrared optics, protective windows, and consumer electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11817v1-abstract-full').style.display = 'none'; document.getElementById('2411.11817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08414">arXiv:2411.08414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08414">pdf</a>, <a href="https://arxiv.org/format/2411.08414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chunyan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Ling Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08414v1-abstract-short" style="display: inline;"> Machine learning has become a crucial tool for predicting the properties of crystalline materials. However, existing methods primarily represent material information by constructing multi-edge graphs of crystal structures, often overlooking the chemical and physical properties of elements (such as atomic radius, electronegativity, melting point, and ionization energy), which have a significant imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08414v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08414v1-abstract-full" style="display: none;"> Machine learning has become a crucial tool for predicting the properties of crystalline materials. However, existing methods primarily represent material information by constructing multi-edge graphs of crystal structures, often overlooking the chemical and physical properties of elements (such as atomic radius, electronegativity, melting point, and ionization energy), which have a significant impact on material performance. To address this limitation, we first constructed an element property knowledge graph and utilized an embedding model to encode the element attributes within the knowledge graph. Furthermore, we propose a multimodal fusion framework, ESNet, which integrates element property features with crystal structure features to generate joint multimodal representations. This provides a more comprehensive perspective for predicting the performance of crystalline materials, enabling the model to consider both microstructural composition and chemical characteristics of the materials. We conducted experiments on the Materials Project benchmark dataset, which showed leading performance in the bandgap prediction task and achieved results on a par with existing benchmarks in the formation energy prediction task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08414v1-abstract-full').style.display = 'none'; document.getElementById('2411.08414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01743">arXiv:2411.01743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01743">pdf</a>, <a href="https://arxiv.org/ps/2411.01743">ps</a>, <a href="https://arxiv.org/format/2411.01743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Pseudo Transitions in the Finite-Size Blume-Capel Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fangfang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+K">Kai Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di%2C+Z">Zengru Di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01743v2-abstract-short" style="display: inline;"> This article investigates the pseudo transitions of the Blume-Capel model on two-dimensional finite-size lattices. By employing the Wang-Landau sampling method and microcanonical inflection point analysis, we identified the positions of phase transitions as well as higher-order phase transitions. Through Metropolis sampling and canonical ensemble analysis, we obtained the corresponding geometric c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01743v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01743v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01743v2-abstract-full" style="display: none;"> This article investigates the pseudo transitions of the Blume-Capel model on two-dimensional finite-size lattices. By employing the Wang-Landau sampling method and microcanonical inflection point analysis, we identified the positions of phase transitions as well as higher-order phase transitions. Through Metropolis sampling and canonical ensemble analysis, we obtained the corresponding geometric characteristics of the system at these transition points. The results indicate the presence of a third-order independent phase transition in the system. However, when the crystal field parameter $D$ exceeds 1.965, crossing the tricritical point, no third-order dependent phase transition is observed. Furthermore, the positions of the third-order phase transition obtained from both microcanonical and canonical analyses are consistent and mutually corroborative. We speculate that third-order dependent transitions may only occur in second-order phase transitions and not in first-order transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01743v2-abstract-full').style.display = 'none'; document.getElementById('2411.01743v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00423">arXiv:2411.00423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00423">pdf</a>, <a href="https://arxiv.org/ps/2411.00423">ps</a>, <a href="https://arxiv.org/format/2411.00423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Geometric properties of the additional third-order transitions in the two-dimensional Potts model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fangfang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+K">Kai Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di%2C+Z">Zengru Di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00423v2-abstract-short" style="display: inline;"> Within the canonical ensemble framework, this paper investigates the presence of higher-order transition signals in the q-state Potts model (for q&gt;3), using two geometric order parameters: isolated spins number and the average perimeter of clusters. Our results confirm that higher-order transitions exist in the Potts model, where the number of isolated spins reliably indicates third-order independ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00423v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00423v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00423v2-abstract-full" style="display: none;"> Within the canonical ensemble framework, this paper investigates the presence of higher-order transition signals in the q-state Potts model (for q&gt;3), using two geometric order parameters: isolated spins number and the average perimeter of clusters. Our results confirm that higher-order transitions exist in the Potts model, where the number of isolated spins reliably indicates third-order independent transitions. This signal persists regardless of the system&#39;s phase transition order, even at higher values of q. In contrast, the average perimeter of clusters, used as an order parameter for detecting third-order dependent transitions, shows that for q = 6 and q = 8, the signal for third-order dependent transitions disappears, indicating its absence in systems undergoing first-order transitions. These findings are consistent with results from microcanonical inflection-point analysis, further validating the robustness of this approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00423v2-abstract-full').style.display = 'none'; document.getElementById('2411.00423v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15099">arXiv:2410.15099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> A new approach to N-doped di-molybdenum carbide with enhanced superconductivity via Urea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yunwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15099v1-abstract-short" style="display: inline;"> Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature (Tc) of the parent superconducting materials. Herein, a new simple urea approach is developed to synthesize the N-doped alfa-Mo2C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo2C1-xNx compositions. XRD results show that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15099v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15099v1-abstract-full" style="display: none;"> Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature (Tc) of the parent superconducting materials. Herein, a new simple urea approach is developed to synthesize the N-doped alfa-Mo2C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo2C1-xNx compositions. XRD results show that the structure of alfa-Mo2C remains unchanged and that there is a variation of lattice parameters with nitrogen doping. Resistivity, magnetic susceptibility, and heat capacity measurement results confirm that the superconducting transition temperature (Tc) was strongly increased from 2.68 K (x = 0) to 7.05 K (x = 0.49). First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening, which enhances electron-phonon coupling. This results in an increase in Tc and a sharp rise in the upper critical field. Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15099v1-abstract-full').style.display = 'none'; document.getElementById('2410.15099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14820">arXiv:2410.14820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14820">pdf</a>, <a href="https://arxiv.org/format/2410.14820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Universal Vibrational Anharmonicity in Carbyne-like Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lechner%2C+J+M+A">Johannes M. A. Lechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marabotti%2C+P">Pietro Marabotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pichler%2C+T">Thomas Pichler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casari%2C+C+S">Carlo Spartaco Casari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heeg%2C+S">Sebastian Heeg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14820v1-abstract-short" style="display: inline;"> Carbyne, an infinite linear chain of carbon atoms, is the truly one-dimensional allotrope of carbon. While ideal carbyne and its fundamental properties have remained elusive, carbyne-like materials like carbyne chains confined inside carbon nanotubes are available for study. Here, we probe the longitudinal optical phonon (C-mode) of confined carbyne chains by Raman spectroscopy up to the third ove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14820v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14820v1-abstract-full" style="display: none;"> Carbyne, an infinite linear chain of carbon atoms, is the truly one-dimensional allotrope of carbon. While ideal carbyne and its fundamental properties have remained elusive, carbyne-like materials like carbyne chains confined inside carbon nanotubes are available for study. Here, we probe the longitudinal optical phonon (C-mode) of confined carbyne chains by Raman spectroscopy up to the third overtone. We observe a strong vibrational anharmonicity that increases with decreasing C-mode frequency, reaching up to 8% for the third overtone. Moreover, we find that the relation between vibrational anharmonicity and C-mode frequency is universal to carbyne-like materials, including ideal carbyne. This establishes experimentally that carbyne and related materials have pronounced anharmonic potential landscapes which must be included in the theoretical description of their structure and properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14820v1-abstract-full').style.display = 'none'; document.getElementById('2410.14820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09145">arXiv:2410.09145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09145">pdf</a>, <a href="https://arxiv.org/format/2410.09145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The Ultra-critical Floquet Non-Fermi Liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-kun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsyshyn%2C+O">Oles Matsyshyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+C+W">Justin C. W. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villadiego%2C+I+S">Inti Sodemann Villadiego</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09145v1-abstract-short" style="display: inline;"> We demonstrate that periodically driven Fermions coupled to simple bosonic baths have steady state occupations of Floquet Bloch bands that generically display non-analyticties at certain momenta which resemble the Fermi surfaces of equilibrium non-Fermi liquids. Remarkably these non-equilibrium Fermi surfaces remain sharp even when the bath is at finite temperature, leading to critical power-law d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09145v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09145v1-abstract-full" style="display: none;"> We demonstrate that periodically driven Fermions coupled to simple bosonic baths have steady state occupations of Floquet Bloch bands that generically display non-analyticties at certain momenta which resemble the Fermi surfaces of equilibrium non-Fermi liquids. Remarkably these non-equilibrium Fermi surfaces remain sharp even when the bath is at finite temperature, leading to critical power-law decaying correlations at finite temperature, a phenomenon with no analogue in equilibrium. We also show that generically there is in-gap current rectification for clean metals lacking inversion symmetry, and explain why this occurs universally regardless of the details of collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09145v1-abstract-full').style.display = 'none'; document.getElementById('2410.09145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19726">arXiv:2409.19726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19726">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c04137">10.1021/acs.nanolett.4c04137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-Chip Terahertz Spectroscopy for Dual-Gated van der Waals Heterostructures at Cryogenic Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+F">Fangzhou Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yacoby%2C+A">Amir Yacoby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19726v2-abstract-short" style="display: inline;"> Van der Waals heterostructures have emerged as a versatile platform to study correlated and topological electron physics. Spectroscopy experiments in the THz regime are crucial, since the energy of THz photons matches that of relevant excitations and charge dynamics. However, their micron-size and complex (dual-)gated structures have challenged such measurements. Here, we demonstrate on-chip THz s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19726v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19726v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19726v2-abstract-full" style="display: none;"> Van der Waals heterostructures have emerged as a versatile platform to study correlated and topological electron physics. Spectroscopy experiments in the THz regime are crucial, since the energy of THz photons matches that of relevant excitations and charge dynamics. However, their micron-size and complex (dual-)gated structures have challenged such measurements. Here, we demonstrate on-chip THz spectroscopy on a dual-gated bilayer graphene device at liquid helium temperature. To avoid unwanted THz absorption by metallic gates, we developed a scheme of operation by combining semiconducting gates and optically controlled gating. This allows us to measure the clean THz response of graphene without being affected by the gates. We observed the THz signatures of electric-field-induced bandgap opening at the charge neutrality. We measured Drude conductivities at varied charge densities and extracted key parameters, including effective masses and scattering rates. This work paves the way for studying novel emergent phenomena in dual-gated two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19726v2-abstract-full').style.display = 'none'; document.getElementById('2409.19726v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01516">arXiv:2409.01516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01516">pdf</a>, <a href="https://arxiv.org/format/2409.01516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Higher-order Skin Effect through a Hermitian-non-Hermitian Correspondence and Its Observation in an Acoustic Kagome Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jia-Xin Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Castro%2C+P+F">Pedro Fittipaldi de Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tianhong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jeewoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudich%2C+M">Mourad Oudich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jun Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jing Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+Y">Yun Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benalcazar%2C+W+A">Wladimir A. Benalcazar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01516v2-abstract-short" style="display: inline;"> The non-Hermitian skin effect (NHSE) is a distinctive topological phenomenon observed in nonHermitian systems. Recently, there has been considerable interest in exploring higher-order NHSE occurrences in two and three dimensions. In such systems, topological edge states collapse into a corner while bulk states remain delocalized. Through a Hermitian-non-Hermitian correspondence, this study predict&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01516v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01516v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01516v2-abstract-full" style="display: none;"> The non-Hermitian skin effect (NHSE) is a distinctive topological phenomenon observed in nonHermitian systems. Recently, there has been considerable interest in exploring higher-order NHSE occurrences in two and three dimensions. In such systems, topological edge states collapse into a corner while bulk states remain delocalized. Through a Hermitian-non-Hermitian correspondence, this study predicts and experimentally observes the higher-order NHSE in an acoustic Kagome lattice possessing nonreciprocal hoppings. By rotating the frequency spectrum and employing complexfrequency excitation techniques, we observe the localization of acoustic energy towards a corner of the lattice in the topologically nontrivial phase, even when the source is located far from that corner. In contrast, the acoustic energy spreads out when excited at the frequencies hosting the bulk states. These observations are unequivocal evidence of the higher-order NHSE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01516v2-abstract-full').style.display = 'none'; document.getElementById('2409.01516v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15233">arXiv:2408.15233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15233">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Signatures of Chiral Superconductivity in Rhombohedral Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhenghan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+M">Muyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+G">Gang Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+Z">Zhenqi Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+P">Peng Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15233v1-abstract-short" style="display: inline;"> Chiral superconductors are unconventional superconducting states that break time reversal symmetry spontaneously and typically feature Cooper pairing at non-zero angular momentum. Such states may host Majorana fermions and provide an important platform for topological physics research and fault-tolerant quantum computing. Despite of intensive search and prolonged studies of several candidate syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15233v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15233v1-abstract-full" style="display: none;"> Chiral superconductors are unconventional superconducting states that break time reversal symmetry spontaneously and typically feature Cooper pairing at non-zero angular momentum. Such states may host Majorana fermions and provide an important platform for topological physics research and fault-tolerant quantum computing. Despite of intensive search and prolonged studies of several candidate systems, chiral superconductivity has remained elusive so far. Here we report the discovery of unconventional superconductivity in rhombohedral tetra-layer graphene. We observed two superconducting states in the gate-induced flat conduction bands with Tc up to 300 mK and charge density ne as low as 2.4*1011 cm-2, appearing robustly in three different devices, where electrons reside close to a proximate WSe2 layer, far away from WSe2, and in the absence of WSe2 respectively. Spontaneous time-reversal-symmetry-breaking (TRSB) due to electron&#39;s orbital motion is found, and several observations indicate the chiral nature of these superconducting states, including 1. In the superconducting state, Rxx shows fluctuations at zero magnetic field and magnetic hysteresis versus an out-of-plane magnetic field B, which are absent from all other superconductors; 2. one superconducting state develops within a spin- and valley-polarized quarter-metal phase, and is robust against the neighboring spin-valley-polarized quarter-metal state under B; 3. the normal states show anomalous Hall signals at zero magnetic field and magnetic hysteresis. We also observed a critical B &gt; 0.9 Tesla, higher than any graphene superconductivity reported so far and indicates a strong-coupling superconductivity close the BCS-BEC crossover. Our observations establish a pure carbon material for the study of topological superconductivity, and pave the way to explore Majorana modes and topological quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15233v1-abstract-full').style.display = 'none'; document.getElementById('2408.15233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10203">arXiv:2408.10203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10203">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Extended Quantum Anomalous Hall States in Graphene/hBN Moir茅 Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10203v1-abstract-short" style="display: inline;"> Electrons in topological flat bands can form novel topological states driven by the correlation effects. The penta-layer rhombohedral graphene/hBN moire superlattice has been shown to host fractional quantum anomalous Hall effect (FQAHE) at ~400 mK, triggering discussions around the underlying mechanism and the role of moire effects. In particular, novel electron crystal states with non-trivial to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10203v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10203v1-abstract-full" style="display: none;"> Electrons in topological flat bands can form novel topological states driven by the correlation effects. The penta-layer rhombohedral graphene/hBN moire superlattice has been shown to host fractional quantum anomalous Hall effect (FQAHE) at ~400 mK, triggering discussions around the underlying mechanism and the role of moire effects. In particular, novel electron crystal states with non-trivial topology have been proposed. Here we report DC electrical transport measurement in rhombohedral penta- and tetra-layer graphene/hBN moire superlattices at electronic temperatures down to ~40 mK. We observed two more FQAH states in the penta-layer devices than previously reported. In a new tetra-layer device, we observed FQAHE at filling factors v = 3/5 and 2/3 at 300 mK. With a small bias current and the lowest temperature, we observed a new extended quantum anomalous Hall (EQAH) state and magnetic hysteresis, where Rxy = h/e2 and vanishing Rxx span a wide range of moire filling factor v from 0.5 to up to 1.3. By increasing the temperature or current, FQAHE can be recovered -- suggesting the break-down of the EQAH states and a phase transition into the fractional quantum Hall liquid. Furthermore, we observed displacement field-induced quantum phase transitions from the EQAH states to Fermi liquid, FQAH liquid and the likely composite Fermi liquid. Our observation establishes a new topological phase of electrons with quantized Hall resistance at zero magnetic field, and enriches the emergent quantum phenomena in materials with topological flat bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10203v1-abstract-full').style.display = 'none'; document.getElementById('2408.10203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09906">arXiv:2408.09906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Diverse Impacts of Spin-Orbit Coupling on Superconductivity in Rhombohedral Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xiaoyan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kakani%2C+V">Vivek Kakani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09906v1-abstract-short" style="display: inline;"> Engineering non-Abelian quasiparticles by combining superconductivity and topological states have been proposed as a route to realize topological quantum computation. Rhombohedral multilayer graphene with layer number N&gt;=3 has been shown as a promising platform, as it hosts integer and fractional quantum anomalous Hall effects when proximitized by transition metal dichalcogenide (TMD) and a moire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09906v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09906v1-abstract-full" style="display: none;"> Engineering non-Abelian quasiparticles by combining superconductivity and topological states have been proposed as a route to realize topological quantum computation. Rhombohedral multilayer graphene with layer number N&gt;=3 has been shown as a promising platform, as it hosts integer and fractional quantum anomalous Hall effects when proximitized by transition metal dichalcogenide (TMD) and a moire potential. However, superconductivity in similar devices have remained largely unexplored, although proximitized spin-orbit-coupling (SOC) effect has been shown to strengthen or induce superconductivity in both crystalline and twisted graphene. Here we report electron transport measurements of TMD-proximitized rhombohedral trilayer graphene (RTG) at temperatures down to 40 mK. We observed a new hole-doped superconducting state SC4 with a transition temperature Tc of 230 mK. On the electron-doped side, we identified a new isospin-symmetry breaking three-quarter-metal (TQM) phase. Near this three-quarter-metal state, the state SC3, very weak in bare RTG, is fully developed into a superconducting state at 110 mK. By performing fermiology analysis based on the quantum oscillation measurement, we showed that the SC3 and SC4 states reside at the phase boundaries between different isospin-symmetry-breaking states. These observations are aligned with the existing understanding that SOC enhances graphene superconductivity. Surprisingly, the original superconducting state SC1 in bare RTG is strongly suppressed in the presence of TMD, and we cannot find it down to the base temperature of our measurement. Our observations form the basis of exploring superconductivity and non-Abelian quasiparticles in rhombohedral graphene devices, and provide experimental evidence that challenges the understanding of the impacts of SOC on graphene superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09906v1-abstract-full').style.display = 'none'; document.getElementById('2408.09906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages; 4 figures, 1 table, 13 extended data figures;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09421">arXiv:2408.09421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Chemical versus physical pressure effects on the structure transition of bilayer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tenglong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lili Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Miao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09421v1-abstract-short" style="display: inline;"> The observation of high-$T_c$ superconductivity (HTSC) in concomitant with pressure-induced orthorhombic-tetragonal structural transition in the bilayer La$_{3}$Ni$_2$O$_7$ has sparked hopes of achieving HTSC by stabilizing the tetragonal phase at ambient pressure. To mimic the effect of external physical pressures, the application of chemical pressure via replacing La$^3$$^+$ with smaller rare-ea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09421v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09421v1-abstract-full" style="display: none;"> The observation of high-$T_c$ superconductivity (HTSC) in concomitant with pressure-induced orthorhombic-tetragonal structural transition in the bilayer La$_{3}$Ni$_2$O$_7$ has sparked hopes of achieving HTSC by stabilizing the tetragonal phase at ambient pressure. To mimic the effect of external physical pressures, the application of chemical pressure via replacing La$^3$$^+$ with smaller rare-earth R$^3$$^+$ has been considered as a potential route. Here we clarify the distinct effects of chemical and physical pressures on the structural transition of bilayer nickelates through a combined experimental and theoretical investigation. Contrary to general expectations, we find that substitutions of smaller R$^3$$^+$ for La$^3$$^+$ in La$_{3-x}$R$_x$Ni$_2$O$_{7-未}$, despite of an overall lattice contraction, produce stronger orthorhombic structural distortions and thus require higher pressures to induce the structural transition. We established a quantitative relationship between the critical pressure $P_c$ for structural transition and the average size of $A$-site cations. A linear extrapolation of $P_c$ versus &lt;$r_A$&gt; yields a putative critical value of &lt;$r_A$&gt;$_c$ ~ 1.23 angstrom for $P_c$ ~ 1 bar. The negative correlation between $P_c$ and &lt;$r_A$&gt; indicates that it is unlikely to reduce $P_c$ to ambient by replacing La$^3$$^+$ with smaller R$^3$$^+$ ions. Instead, partial substitution of La$^3$$^+$ with larger cations such as alkaline-earth Sr$^2$$^+$ or Ba$^2$$^+$ might be a feasible approach. Our results provide valuable guidelines in the quest of ambient-pressure HTSC in bilayer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09421v1-abstract-full').style.display = 'none'; document.getElementById('2408.09421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05726">arXiv:2408.05726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05726">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2023.101298">10.1016/j.mtphys.2023.101298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity Discovered in Niobium Polyhydride at High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+Q">Q. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+H">L. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V+B">V. B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">S. Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H+Z">H. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05726v3-abstract-short" style="display: inline;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05726v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05726v3-abstract-full" style="display: none;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to the nature of superconductivity while the upper critical field at zero temperature Hc2(0) is estimated to~16.8 Tesla while the GL coherent length ~57 angstrom is estimated. The structure investigation using synchrotron radiation implies that the observed superconductivity may come from Fm-3m phase of NbH3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'none'; document.getElementById('2408.05726v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 40, 101298 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05681">arXiv:2407.05681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05681">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bulk high-temperature superconductivity in the high-pressure tetragonal phase of bilayer La2PrNi2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaoling Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoping Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huaixin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+J">Jie Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jie Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yunqing Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hanming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xiaoli Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianping Sun</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05681v1-abstract-short" style="display: inline;"> The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa. Subsequent investigations achieved zero resistance in single- and poly-crystalline samples under hydrostatic pressure conditions. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05681v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05681v1-abstract-full" style="display: none;"> The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa. Subsequent investigations achieved zero resistance in single- and poly-crystalline samples under hydrostatic pressure conditions. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the filamentary nature with low superconducting volume fraction. The presence of a novel &#34;1313&#34; polymorph and competing R-P phases obscured proper identification of the phase for HTSC. Thus, achieving bulk HTSC and identifying the phase at play are the most prominent tasks at present. Here, we address these issues in the praseodymium (Pr)-doped La2PrNi2O7 polycrystalline samples. We find that the substitutions of Pr for La effectively inhibits the intergrowth of different R-P phases, resulting in nearly pure bilayer structure. For La2PrNi2O7, pressure-induced orthorhombic-to-tetragonal structural transition takes place at Pc ~ 11 GPa, above which HTSC emerges gradually upon further compression. The superconducting transition temperatures at 18-20 GPa reach Tconset = 82.5 K and Tczero = 60 K, which are the highest values among known nickelate superconductors. More importantly, bulk HTSC was testified by detecting clear diamagnetic signals below ~75 K corresponding to an estimated superconducting volume fraction ~ 57(5)% at 20 GPa. Our results not only resolve the existing controversies but also illuminate directions for exploring bulk HTSC in the bilayer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05681v1-abstract-full').style.display = 'none'; document.getElementById('2407.05681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09180">arXiv:2405.09180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48224-1">10.1038/s41467-024-48224-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated and DC-powered superconducting microcomb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wuyue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lili Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Junliang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+T">Tingting Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jiazheng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+X">Xiuhao Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Ying Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+X">Xuecou Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chunhai Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Labao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xiaoqing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+G">Guozhu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L">Lin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huabing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09180v1-abstract-short" style="display: inline;"> Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09180v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09180v1-abstract-full" style="display: none;"> Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes ultra-low power. Our turnkey apparatus comprises a basic nonlinear superconducting device, a Josephson junction, directly coupled to a superconducting microstrip resonator. We showcase coherent comb generation through self-started mode-locking. Therefore, comb emission is initiated solely by activating a DC bias source, with power consumption as low as tens of picowatts. The resulting comb spectrum resides in the microwave domain and spans multiple octaves. The linewidths of all comb lines can be narrowed down to 1 Hz through a unique coherent injection-locking technique. Our work represents a critical step towards fully integrated microwave photonics and offers the potential for integrated quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09180v1-abstract-full').style.display = 'none'; document.getElementById('2405.09180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 4009 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12104">arXiv:2403.12104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12104">pdf</a>, <a href="https://arxiv.org/format/2403.12104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104106">10.1103/PhysRevB.110.104106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topology reconstruction for asymmetric systems by isomorphic mapping or perturbation approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yunlin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingguang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+X">Xingchao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+L">Langlang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xianjun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+F">Fang Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunya Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12104v3-abstract-short" style="display: inline;"> The systems without symmetries, e.g. the spatial and chiral symmetries, are generally thought to be improper for topological study and no conventional integral topological invariant can be well defined. In this work, with multi-band asymmetric Rice-Mele-like systems as examples, for the first time we show that the topology of all gaps can be reconstructed by two general methods and topological ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12104v3-abstract-full').style.display = 'inline'; document.getElementById('2403.12104v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12104v3-abstract-full" style="display: none;"> The systems without symmetries, e.g. the spatial and chiral symmetries, are generally thought to be improper for topological study and no conventional integral topological invariant can be well defined. In this work, with multi-band asymmetric Rice-Mele-like systems as examples, for the first time we show that the topology of all gaps can be reconstructed by two general methods and topological origin of many phenomena are revealed. A new integral topological invariant, i.e. the renormalized real-space winding number, can properly characterize the topology and bulk-edge correspondence of such systems. For the first method, an isomorphic mapping relationship between a Rice-Mele-like system and its chiral counterpart is set up, which accounts for the topology reconstruction in the half-filling gaps. For the second method, the Hilbert space of asymmetric systems could be reduced into degenerate subspaces by perturbation approximation, so that the topology in subspaces accounts for the topology reconstruction in the fractional-filling gaps. Surprisingly, the topology reconstructed by perturbation approximation exhibits extraordinary robustness since the topological edge states even exist far beyond the weak perturbation limit. We also show that both methods can be widely used for other asymmetric systems, e.g. the two-dimensional (2D) Rice-Mele systems and the superconductor systems. At last, for the asymmetric photonic systems, we predict different topological edge states by our topology-reconstruction theory and experimentally observe them in the laboratory, which agrees with each other very well. Our findings open a door for investigating new topological phenomena in asymmetric systems by various topological reconstruction methods which should greatly expand the category of topology study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12104v3-abstract-full').style.display = 'none'; document.getElementById('2403.12104v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02577">arXiv:2403.02577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad6a0a">10.1088/1674-1056/ad6a0a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zixian Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+X">Xing Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chaoxin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+P">Peiyue Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yunwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bing Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02577v1-abstract-short" style="display: inline;"> Kagome system usually attracts great interest in condensed matter physics due to its unique structure hosting various exotic states such as superconductivity (SC), charge density wave (CDW), and nontrivial topological states. Topological semimetal RbTi3Bi5 consisting of the kagome layer of Ti shares a similar crystal structure to topological correlated materials AV3Sb5 (A = K, Rb, Cs) but with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02577v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02577v1-abstract-full" style="display: none;"> Kagome system usually attracts great interest in condensed matter physics due to its unique structure hosting various exotic states such as superconductivity (SC), charge density wave (CDW), and nontrivial topological states. Topological semimetal RbTi3Bi5 consisting of the kagome layer of Ti shares a similar crystal structure to topological correlated materials AV3Sb5 (A = K, Rb, Cs) but with the absence of CDW and SC. Systematic de Haas-van Alphen (dHvA) oscillation measurements are performed on the single crystals of RbTi3Bi5 to pursue nontrivial topological physics and exotic states. Combining with theoretical calculations, detailed Fermi surface topology and band structure are investigated. A two-dimensional (2D) Fermi pocket \b{eta} is revealed with a light-effective mass in consistent with the semimetal predictions. Landau Fan of RbTi3Bi5 reveals a zero Berry phase for the \b{eta} oscillation in contrast to that of CsTi3Bi5. These results suggest the kagome RbTi3Bi5 is a good candidate to explore nontrivial topological exotic states and topological correlated physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02577v1-abstract-full').style.display = 'none'; document.getElementById('2403.02577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 107102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02556">arXiv:2403.02556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c00656">10.1021/acs.chemmater.4c00656 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the EuCd_{2}As_{2} Semiconducting Band Gap via n-type La-Doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+R+A">Ryan A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+J">Jesaiah King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shuyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+A+J">Archibald J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Christopher Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasmal%2C+S">Souvik Sasmal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+I">I-Hsuan Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Aalok Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+N+R">Natalie R. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+C">Chuting Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+E">Emma Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolocan%2C+A">Andrei Dolocan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+R">Roland Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heremans%2C+J+P">Joseph P. Heremans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katoch%2C+J">Jyoti Katoch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldberger%2C+J+E">Joshua E. Goldberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02556v1-abstract-short" style="display: inline;"> EuCd_{2}As_{2} has attracted considerable interest as one of the few magnetic Weyl semimetal candidate materials, although recently there have been emerging reports that claim it to have a semiconducting electronic structure. To resolve this debate, we established the growth of n-type EuCd_{2}As_{2} crystals, to directly visualize the nature of the conduction band using angle resolve photoemission&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02556v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02556v1-abstract-full" style="display: none;"> EuCd_{2}As_{2} has attracted considerable interest as one of the few magnetic Weyl semimetal candidate materials, although recently there have been emerging reports that claim it to have a semiconducting electronic structure. To resolve this debate, we established the growth of n-type EuCd_{2}As_{2} crystals, to directly visualize the nature of the conduction band using angle resolve photoemission spectroscopy (ARPES). We show that La-doping leads to n-type transport signatures in both the thermopower and Hall effect measurements, in crystals with doping levels at 2 - 6 x 10^{17} e^{-} cm^{-3}. Both p-type and n-type doped samples exhibit antiferromagnetic ordering at 9 K. ARPES experiments at 6 K clearly show the presence of the conduction band minimum at 0.8 eV above the valence band maximum, which is further corroborated by the observation of a 0.71 - 0.72 eV band gap in room temperature diffuse reflectance absorbance measurements. Together these findings unambiguously show that EuCd_{2}As_{2} is indeed a semiconductor with a substantial band gap and not a topological semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02556v1-abstract-full').style.display = 'none'; document.getElementById('2403.02556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15869">arXiv:2402.15869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15869">pdf</a>, <a href="https://arxiv.org/format/2402.15869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Phase Diagram and Spectroscopic Evidence of Supersolids in Quantum Ising Magnet K$_2$Co(SeO$_3$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghasemi%2C+A">Alireza Ghasemi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Liyu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagay%2C+Z">Zhenisbek Tagay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E">Eun-Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaime%2C+M">Marcelo Jaime</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yiqing Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winn%2C+B">Barry Winn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xianghan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R">Robert Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broholm%2C+C">Collin Broholm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15869v1-abstract-short" style="display: inline;"> A supersolid is a quantum entangled state of matter that combines features of both superfluids and solids. Despite predictions of its analog in quantum magnets, the experimental realization was lacking until recent claims in triangular-lattice compounds. Here, we report the magnetic phase diagram and neutron scattering for a spin-1/2 triangular-lattice antiferromagnet, K$_2$Co(SeO$_3$)$_2$. In zer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15869v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15869v1-abstract-full" style="display: none;"> A supersolid is a quantum entangled state of matter that combines features of both superfluids and solids. Despite predictions of its analog in quantum magnets, the experimental realization was lacking until recent claims in triangular-lattice compounds. Here, we report the magnetic phase diagram and neutron scattering for a spin-1/2 triangular-lattice antiferromagnet, K$_2$Co(SeO$_3$)$_2$. In zero field, neutron spectroscopy reveals the gradual development of a $\sqrt3 \times sqrt3$ magnetic order associated with $Z_3$ symmetry breaking for temperatures 5 K &lt; T &lt; 15 K. Below 5 K, the emergence of a Goldstone mode from low-energy continuum scattering suggests that the system enters a supersolid phase characterized by the breaking of both $Z_3$ and spin rotational U(1) symmetry. In c-axis-oriented magnetic fields 1.1 T &lt; B &lt; 21 T, a prominent 1/3 magnetization plateau phase emerges, accompanied by a distinct high-field supersolid phase (18 T &lt; B &lt; 21 T). From the coherent spin wave excitations in the 1/3 magnetized plateau phase, we infer the spin Hamiltonian, which features nearest neighbor interactions with $J_z$ = 2.98(2) meV and $J_{\rm perp}$ = 0.21(3) meV. Our work demonstrates that K$_2$Co(SeO$_3$)$_2$ is a spectacular example of a spin-1/2 triangular-lattice quantum Ising antiferromagnet, documents its magnetic phase diagram highlighting two supersolid phases, and provides spectroscopic evidence of zero-field supersolidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15869v1-abstract-full').style.display = 'none'; document.getElementById('2402.15869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13468">arXiv:2401.13468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13468">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.2c09457">10.1021/jacs.2c09457 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the pressure-induced phase transitions of Methylammonium Lead Bromide Perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+A">Akun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez-Platas%2C+J">Javier Gonzalez-Platas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+R">Robin Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+C">Catalin Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Guillen%2C+I">Ismael Fernandez-Guillen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abargues%2C+R">Rafael Abargues</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boix%2C+P+P">Pablo P. Boix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lan-Ting Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errandonea%2C+D">Daniel Errandonea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13468v1-abstract-short" style="display: inline;"> The high-pressure crystal structure evolution of CH3NH3PbBr3 (MAPbBr3) perovskite has been investigated by single-crystal X-ray diffraction and synchrotron-based powder X-ray diffraction. Single-crystal X-ray diffraction reveals that the crystal structure of MAPbBr3 undergoes two phase transitions following the space-group sequence: Pm-3m-to-Im3-to-Pmn21. The transitions take place at around 0.8 a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13468v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13468v1-abstract-full" style="display: none;"> The high-pressure crystal structure evolution of CH3NH3PbBr3 (MAPbBr3) perovskite has been investigated by single-crystal X-ray diffraction and synchrotron-based powder X-ray diffraction. Single-crystal X-ray diffraction reveals that the crystal structure of MAPbBr3 undergoes two phase transitions following the space-group sequence: Pm-3m-to-Im3-to-Pmn21. The transitions take place at around 0.8 and 1.8 GPa, respectively. This result is contradicting the previously reported phase transition sequence: Pm-3m-to-Im3-to-Pnma. In this work the crystal structures of each of the three phases are determined from single-crystal X-ray diffraction analysis which is later supported by Rietveld refinement of powder X-ray diffraction patterns. The pressure dependence of the crystal lattice parameters and unit-cell volumes are determined from the two aforementioned techniques, as well as the bulk moduli for each phase. The bandgap behaviour of MAPbBr3 has been studied up to around 4 GPa, by the means of single-crystal optical-absorption experiments. The evolution of the bandgap has been well explained using the pressure dependence of the Pb-Br bond distance and Pb-Br-Pb angles as determined from single-crystal X-ray diffraction experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13468v1-abstract-full').style.display = 'none'; document.getElementById('2401.13468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2022, 144, 20099-20108 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00270">arXiv:2312.00270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00270">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Insulator to Metal Transition, Spin-Phonon Coupling, and Potential Magnetic Transition Observed in Quantum Spin Liquid Candidate LiYbSe$_2$ under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jose%2C+G+C">Greeshma C. Jose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lavina%2C+B">Barbara Lavina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+W">Wenli Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00270v2-abstract-short" style="display: inline;"> Metallization of quantum spin liquid (QSL) materials has long been considered as a potential route to achieve unconventional superconductivity. Here we report our endeavor in this direction by pressurizing a three-dimensional QSL candidate, LiYbSe$_2$, with a previously unreported pyrochlore structure. High-pressure X-ray diffraction and Raman studies up to 50 GPa reveal no appreciable changes of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00270v2-abstract-full').style.display = 'inline'; document.getElementById('2312.00270v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00270v2-abstract-full" style="display: none;"> Metallization of quantum spin liquid (QSL) materials has long been considered as a potential route to achieve unconventional superconductivity. Here we report our endeavor in this direction by pressurizing a three-dimensional QSL candidate, LiYbSe$_2$, with a previously unreported pyrochlore structure. High-pressure X-ray diffraction and Raman studies up to 50 GPa reveal no appreciable changes of structural symmetry or distortion in this pressure range. This compound is so insulating that its resistance decreases below 10$^5$ $惟$ only at pressures above 25 GPa in the corresponding temperature range accompanying the gradual reduction of band gap upon compression. Interestingly, an insulator-to-metal transition takes place in LiYbSe$_2$ at about 68 GPa and the metallic behavior remains up to 123.5 GPa, the highest pressure reached in the present study. A possible sign of magnetic or other phase transition was observed in LiYbSe$_2$. The insulator-to-metal transition in LiYbSe$_2$ under high pressure makes it an ideal system to study the pressure effects on QSL candidates of spin-1/2 Yb$^{3+}$ system in different lattice patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00270v2-abstract-full').style.display = 'none'; document.getElementById('2312.00270v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14408">arXiv:2311.14408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14408">pdf</a>, <a href="https://arxiv.org/format/2311.14408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.9.083301">10.1103/PhysRevFluids.9.083301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Localized jammed clusters persist in shear-thickening suspension subjected to swirling excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-Xin Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Song-Chuan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14408v2-abstract-short" style="display: inline;"> We investigate the dynamic evolution of heterogeneity in shear-thickening suspensions subjected to swirling excitation with a free surface. The uniform state of such a system may lose its stability when the oscillation frequency is above a threshold, and density waves spontaneously form (Shi \textit{et al.} JFM 2024). Here, we report a novel state where jammed clusters emerge in high-density regio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14408v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14408v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14408v2-abstract-full" style="display: none;"> We investigate the dynamic evolution of heterogeneity in shear-thickening suspensions subjected to swirling excitation with a free surface. The uniform state of such a system may lose its stability when the oscillation frequency is above a threshold, and density waves spontaneously form (Shi \textit{et al.} JFM 2024). Here, we report a novel state where jammed clusters emerge in high-density region of the density waves. The jammed cluster exhibits unique motion, creating downstream high-density regions distinct from previously reported state of density waves. Additionally, theoretical calculations show that reducing suspension thickness lowers the frequency and global concentration $桅$ threshold for the heterogeneity onset. Notably, the minimal $桅$ for instability can be lower than the onset of discontinuous shear thickening transition. We also highlight the role of the free surface in cluster growth and persistence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14408v2-abstract-full').style.display = 'none'; document.getElementById('2311.14408v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08212">arXiv:2311.08212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08212">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of high-temperature superconductivity in the high-pressure tetragonal phase of La2PrNi2O7-未 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaoling Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hanming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xiaoli Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uwatoko%2C+Y">Yoshiya Uwatoko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08212v2-abstract-short" style="display: inline;"> The recent discovery of high-temperature superconductivity in the Ruddlesden-Popper phase La3Ni2O7 under high pressure marks a significant breakthrough in the field of 3d transition-metal oxide superconductors. For an emerging novel class of high-Tc superconductors, it is crucial to find more analogous superconducting materials with a dedicated effort toward broadening the scope of nickelate super&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08212v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08212v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08212v2-abstract-full" style="display: none;"> The recent discovery of high-temperature superconductivity in the Ruddlesden-Popper phase La3Ni2O7 under high pressure marks a significant breakthrough in the field of 3d transition-metal oxide superconductors. For an emerging novel class of high-Tc superconductors, it is crucial to find more analogous superconducting materials with a dedicated effort toward broadening the scope of nickelate superconductors. Here, we report on the observation of high-Tc superconductivity in the high-pressure tetragonal I4/mmm phase of La2PrNi2O7 above ~10 GPa, which is distinct from the reported orthorhombic Fmmm phase of La3Ni2O7 above 14 GPa. For La2PrNi2O7, the onset and the zero-resistance temperatures of superconductivity reach Tconset = 78.2 K and Tczero = 40 K at 15 GPa. This superconducting phase shares the samilar structural symmetry as many cuprate superconductors, providing a fresh platform to investigate underlying mechanisms of nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08212v2-abstract-full').style.display = 'none'; document.getElementById('2311.08212v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10916">arXiv:2310.10916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10916">pdf</a>, <a href="https://arxiv.org/ps/2310.10916">ps</a>, <a href="https://arxiv.org/format/2310.10916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Low energy electrodynamics and a hidden Fermi liquid in the heavy-fermion CeCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+Y">L. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagay%2C+Z">Zhenisbek Tagay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiahao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+K">Khoan Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K">Kyle Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10916v1-abstract-short" style="display: inline;"> We present time-domain THz spectroscopy of thin films of the heavy-fermion superconductor CeCoIn$_5$. The complex optical conductivity is analyzed through a Drude model and extended Drude model analysis. Below the $\approx$ 40 K Kondo coherence temperature, a narrow Drude-like peak forms, as the result of the $f$ orbital - conduction electron hybridization and the formation of the heavy-fermion st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10916v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10916v1-abstract-full" style="display: none;"> We present time-domain THz spectroscopy of thin films of the heavy-fermion superconductor CeCoIn$_5$. The complex optical conductivity is analyzed through a Drude model and extended Drude model analysis. Below the $\approx$ 40 K Kondo coherence temperature, a narrow Drude-like peak forms, as the result of the $f$ orbital - conduction electron hybridization and the formation of the heavy-fermion state. Via an extended Drude model analysis, we measure the frequency-dependent scattering rate ($1/ 蟿$) and effective mass ($m^*/m_b$). This scattering rate shows a linear dependence on temperature, which matches the dependence of the resistivity as expected. Nonetheless, the width of the low-frequency Drude peak (characterized by a {\it renormalized} quasiparticle scattering rate ($1 / 蟿^* = m_b/ m^* 蟿$) does show a $T^2$ dependence giving evidence for a hidden Fermi state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10916v1-abstract-full').style.display = 'none'; document.getElementById('2310.10916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04033">arXiv:2310.04033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwad241">10.1093/nsr/nwad241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity with Tc 116K discovered in antimony polyhydrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+F">J. F. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+Q">Q. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R+C">R. C. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bykov%2C+M">M. Bykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04033v3-abstract-short" style="display: inline;"> Superconductivity (SC) was experimentally observed for the first time in antimony polyhydride. The diamond anvil cell combined with laser heating system was used to synthesize the antimony polyhydride sample at high pressure and high temperature conditions. In-situ high pressure transport measurements as function of temperature with applied magnet are performed to study the SC properties. It was f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04033v3-abstract-full').style.display = 'inline'; document.getElementById('2310.04033v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04033v3-abstract-full" style="display: none;"> Superconductivity (SC) was experimentally observed for the first time in antimony polyhydride. The diamond anvil cell combined with laser heating system was used to synthesize the antimony polyhydride sample at high pressure and high temperature conditions. In-situ high pressure transport measurements as function of temperature with applied magnet are performed to study the SC properties. It was found that the antimony polyhydride samples show superconducting transition with critical temperature Tc 116 K at 184 GPa. The investigation of SC at magnetic field revealed that the superconducting coherent length ~40 angstroms based on Ginzburg Landau (GL) equation. Antimony polyhydride superconductor has the second highest Tc in addition to sulfur hydride among the polyhydrides of elements from main group IIIA to VIIA in periodic table. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04033v3-abstract-full').style.display = 'none'; document.getElementById('2310.04033v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 11, nwad241 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17378">arXiv:2309.17378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.17378">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.011040">10.1103/PhysRevX.14.011040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced superconductivity in polycrystalline La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yadong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaoling Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hanming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Haizhong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uwatoko%2C+Y">Yoshiya Uwatoko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17378v2-abstract-short" style="display: inline;"> We synthesized polycrystalline La3Ni2O7 samples by using the sol-gel method without post-annealing under high oxygen pressure, and then measured temperature-dependent resistivity under various hydrostatic pressures up to 14.5 GPa in a cubic anvil cell apparatus. We find that the density-wave-like anomaly in resistivity is progressively suppressed with increasing pressure and the resistivity drop c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17378v2-abstract-full').style.display = 'inline'; document.getElementById('2309.17378v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17378v2-abstract-full" style="display: none;"> We synthesized polycrystalline La3Ni2O7 samples by using the sol-gel method without post-annealing under high oxygen pressure, and then measured temperature-dependent resistivity under various hydrostatic pressures up to 14.5 GPa in a cubic anvil cell apparatus. We find that the density-wave-like anomaly in resistivity is progressively suppressed with increasing pressure and the resistivity drop corresponding to the onset of superconductivity emerges at pressure as low as 7 GPa. Zero resistivity is achieved at 9 GPa below 6.6 K, which increases quickly with pressure to 35.6 K at 14.5 GPa. The observation of zero-resistance state in the polycrystalline La3Ni2O7 samples under high pressures not only corroborates the recent report of superconductivity in the pressurized La3Ni2O7 crystals but also facilitates further studies on this emerging family of nickelate high-Tc superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17378v2-abstract-full').style.display = 'none'; document.getElementById('2309.17378v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Physical Review X (Featured in Physics) 14, 011040( 2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 14, 011040 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09260">arXiv:2309.09260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09260">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Visualizing the Zhang-Rice singlet, molecular orbitals and pair formation in cuprate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shusen Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Z">Zhiheng Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sixuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zehao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xintong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Luchuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qingqing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yayu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09260v1-abstract-short" style="display: inline;"> The parent compound of cuprates is a charge-transfer-type Mott insulator with strong hybridization between the Cu $3d_{\mathrm x^2-y^2}$ and O $2p$ orbitals. A key question concerning the pairing mechanism is the behavior of doped holes in the antiferromagnetic (AF) Mott insulator background, which is a prototypical quantum many-body problem. It was proposed that doped hole on the O site tends to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09260v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09260v1-abstract-full" style="display: none;"> The parent compound of cuprates is a charge-transfer-type Mott insulator with strong hybridization between the Cu $3d_{\mathrm x^2-y^2}$ and O $2p$ orbitals. A key question concerning the pairing mechanism is the behavior of doped holes in the antiferromagnetic (AF) Mott insulator background, which is a prototypical quantum many-body problem. It was proposed that doped hole on the O site tends to form a singlet, known as Zhang-Rice singlet (ZRS), with the unpaired Cu spin. But experimentally little is known about the properties of a single hole and the interplay between them that leads to superconductivity. Here we use scanning tunneling microscopy to visualize the electronic states in hole-doped $\mathrm{Ca_2CuO_2Cl_2}$, aiming to establish the atomic-scale local basis for pair formation. A single doped hole is shown to have an in-gap state and a clover-shaped spatial distribution that can be attributed to a localized ZRS. When the dopants are close enough, they develop delocalized molecular orbitals with characteristic stripe- and ladder-shaped patterns, accompanied by the opening of a small gap around the Fermi level ($E_{\mathrm F}$). With increasing doping, the molecular orbitals proliferate in space and gradually form densely packed plaquettes, but the stripe and ladder patterns remain nearly the same. The low-energy electronic states of the molecular orbitals are intimately related to the local pairing properties, thus play a vitally important role in the emergence of superconductivity. We propose that the Cooper pair is formed by two holes occupying the stripe-like molecular orbital, while the attractive interaction is mediated by the AF spin background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09260v1-abstract-full').style.display = 'none'; document.getElementById('2309.09260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03268">arXiv:2309.03268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03268">pdf</a>, <a href="https://arxiv.org/format/2309.03268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.146402">10.1103/PhysRevLett.132.146402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Floquet Fermi Liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-kun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsyshyn%2C+O">Oles Matsyshyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+C+W">Justin C. W. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villadiego%2C+I+S">Inti Sodemann Villadiego</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03268v1-abstract-short" style="display: inline;"> We demonstrate the existence of a non-equilibrium &#34;Floquet Fermi Liquid&#34; state arising in partially filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of &#34;Floquet Fermi surfaces&#34; enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these states, including their quantum oscillations under magnetic fields which featur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03268v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03268v1-abstract-full" style="display: none;"> We demonstrate the existence of a non-equilibrium &#34;Floquet Fermi Liquid&#34; state arising in partially filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of &#34;Floquet Fermi surfaces&#34; enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these states, including their quantum oscillations under magnetic fields which feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi surfaces, consistent with those observed in microwave induced resistance oscillation experiments. We also investigate their specific heat and thermodynamic density of states and demonstrate how by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi surfaces towards non-equilibrium van-Hove singularities without changing the electron density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03268v1-abstract-full').style.display = 'none'; document.getElementById('2309.03268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16420">arXiv:2308.16420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16420">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of Flat Band and Van Hove Singularity in Non-superconducting Nitrogen-doped Lutetium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+X">Xin Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zihan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shiyu Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenlong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guodong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Luchuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+P">Pengfei Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naamneh%2C+M">Muntaser Naamneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Runzhe Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">Bastien Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junzhang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16420v2-abstract-short" style="display: inline;"> Hydrogen-rich materials offer a compelling avenue towards room temperature superconductivity, albeit under ultra-high pressure. However, the experimental investigation of the electronic band structure remains elusive, due to the inherent instability of most of the hydrogen-rich materials upon pressure release. Very recently, nitrogen-doped lutetium hydride was claimed to host room temperature supe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16420v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16420v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16420v2-abstract-full" style="display: none;"> Hydrogen-rich materials offer a compelling avenue towards room temperature superconductivity, albeit under ultra-high pressure. However, the experimental investigation of the electronic band structure remains elusive, due to the inherent instability of most of the hydrogen-rich materials upon pressure release. Very recently, nitrogen-doped lutetium hydride was claimed to host room temperature superconductivity under near ambient pressure but was disproven by following works. Upon decompression, nitrogen doped lutetium hydride manifests a stable metallic phase with dark blue color. Moreover, high temperature superconductivity has been reported in lutetium hydrides Lu4H23 (~71 K) under around 200 GPa. These properties engender an unprecedented opportunity, allowing for the experimental investigation of the electronic band structure intrinsic to hydrogen-rich material. In this work, using angle resolved photoemission spectroscopy to investigate the non-superconducting nitrogen doped lutetium hydride, we observed significant flat band and Van Hove singularity marginally below the Fermi level. These salient features, identified as critical elements, proffer potential amplifiers for the realization of heightened superconductivity, as evidenced by prior research. Our results not only unveil a confluence of potent strong correlation effects and anisotropy within the Lu-H-N compound, but also provide a prospect for engineering high temperature superconductivity through the strategic manipulation of flat band and the VHS, effectively tailoring their alignment with the Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16420v2-abstract-full').style.display = 'none'; document.getElementById('2308.16420v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00775">arXiv:2308.00775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00775">pdf</a>, <a href="https://arxiv.org/format/2308.00775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Possible Eliashberg-type superconductivity enhancement effects in a two-band superconductor MgB2 driven by narrow-band THz pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sobolev%2C+S">Sergei Sobolev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanz%2C+A">Amon Lanz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pokharel%2C+A">Amrit Pokharel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kabanov%2C+V">Viktor Kabanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tie-Quan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Z">Zi-Zhao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+Y">L. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nan-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashkin%2C+A">Alexej Pashkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uykur%2C+E">Ece Uykur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helm%2C+M">Manfred Helm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demsar%2C+J">Jure Demsar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00775v1-abstract-short" style="display: inline;"> We study THz-driven condensate dynamics in epitaxial thin films of MgB$_{2}$, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00775v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00775v1-abstract-full" style="display: none;"> We study THz-driven condensate dynamics in epitaxial thin films of MgB$_{2}$, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the THz-driven suppression of condensate density reveals an unexpected decrease in pair-breaking efficiency with increasing temperature - unlike in the case of optical excitation. The reduced pair-breaking efficiency of narrow-band THz pulses, displaying minimum near $\approx0.7$ T$_{c}$, is attributed to THz-driven, long-lived, non-thermal quasiparticle distribution, resulting in Eliashberg-type enhancement of superconductivity, competing with pair-breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00775v1-abstract-full').style.display = 'none'; document.getElementById('2308.00775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08957">arXiv:2307.08957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08957">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39781-y">10.1038/s41467-023-39781-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">Ning Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+X">Xudong Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weiyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zheng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samor%C3%AC%2C+P">Paolo Samor矛</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinlan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songlin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08957v1-abstract-short" style="display: inline;"> Electrochemical reactions represent essential processes in fundamental chemistry that foster a wide range of applications. Although most electrochemical reactions in bulk substances can be well described by the classical Marcus-Gerischer charge transfer theory, the realistic reaction character and mechanism in dimensionally confined systems remain unknown. Here, we report the multiparametric surve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08957v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08957v1-abstract-full" style="display: none;"> Electrochemical reactions represent essential processes in fundamental chemistry that foster a wide range of applications. Although most electrochemical reactions in bulk substances can be well described by the classical Marcus-Gerischer charge transfer theory, the realistic reaction character and mechanism in dimensionally confined systems remain unknown. Here, we report the multiparametric survey on the kinetics of lateral photooxidation in structurally identical WS2 and MoS2 monolayers, where electrochemical oxidation occurs at the atomically thin monolayer edges. The oxidation rate is correlated quantitatively with various crystallographic and environmental parameters, including the density of reactive sites, humidity, temperature, and illumination fluence. In particular, we observe distinctive reaction barriers of 1.4 and 0.9 eV for the two structurally identical semiconductors and uncover an unusual non-Marcusian charge transfer mechanism in these dimensionally confined monolayers due to the limit in reactant supplies. A scenario of band bending is proposed to explain the discrepancy in reaction barriers. These results add important knowledge into the fundamental electrochemical reaction theory in low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08957v1-abstract-full').style.display = 'none'; document.getElementById('2307.08957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 14, 4074 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15139">arXiv:2306.15139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15139">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-29447-6">10.1038/s41467-022-29447-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-invasive digital etching of van der Waals semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chunchen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+X+C+T">Xiaoqing Chen Tae-Soo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyeon%2C+M">Minseung Gyeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+C+J">Jian Chen Jinlan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L+Y+X+W+K">Linwei Yu Xinran Wang Kibum Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orgiu%2C+E">Emanuele Orgiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samor%C3%AC%2C+P">Paolo Samor矛</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukagoshi%2C+K">Kazuhito Tsukagoshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songlin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15139v1-abstract-short" style="display: inline;"> The capability to finely tailor material thickness with simultaneous atomic precision and non-invasivity would be useful for constructing quantum platforms and post-Moore microelectronics. However, it remains challenging to attain synchronized controls over tailoring selectivity and precision. Here we report a protocol that allows for non-invasive and atomically digital etching of van der Waals tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15139v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15139v1-abstract-full" style="display: none;"> The capability to finely tailor material thickness with simultaneous atomic precision and non-invasivity would be useful for constructing quantum platforms and post-Moore microelectronics. However, it remains challenging to attain synchronized controls over tailoring selectivity and precision. Here we report a protocol that allows for non-invasive and atomically digital etching of van der Waals transition-metal dichalcogenides through selective alloying via low-temperature thermal diffusion and subsequent wet etching. The mechanism of selective alloying between sacrifice metal atoms and defective or pristine dichalcogenides is analyzed with high-resolution scanning transmission electron microscopy. Also, the non-invasive nature and atomic level precision of our etching technique are corroborated by consistent spectral, crystallographic and electrical characterization measurements. The low-temperature charge mobility of as-etched MoS$_2$ reaches up to $1200\,$cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, comparable to that of exfoliated pristine counterparts. The entire protocol represents a highly precise and non-invasive tailoring route for material manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15139v1-abstract-full').style.display = 'none'; document.getElementById('2306.15139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 4 figures, with SI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 13, 1844 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05117">arXiv:2303.05117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05117">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2101-9">10.1007/s11433-023-2101-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity above 70 K observed in lutetium polyhydrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiwen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Changling Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">Ke Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B">Baosen Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sijia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianfa Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Luchuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shaomin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Richeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Luhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yingzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bass%2C+J+D">Jay D Bass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V">Vitali Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">Stella Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haozhe Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05117v3-abstract-short" style="display: inline;"> The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive. The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique. The resistance mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05117v3-abstract-full').style.display = 'inline'; document.getElementById('2303.05117v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05117v3-abstract-full" style="display: none;"> The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive. The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique. The resistance measurements as a function of temperature were performed at the same pressure of synthesis in order to study the transitions of superconductivity (SC). The superconducting transition with a maximum onset temperature (Tc) 71 K was observed at pressure of 218 GPa in the experiments. The Tc decreased to 65 K when pressure was at 181 GPa. From the evolution of SC at applied magnetic fields, the upper critical field at zero temperature 渭0Hc2(0) was obtained to be ~36 Tesla. The in-situ high pressure X-ray diffraction experiments imply that the high Tc SC should arise from the Lu4H23 phase with Pm-3n symmetry that forms a new type of hydrogen cage framework different from those reported for previous light rare earth polyhydride superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05117v3-abstract-full').style.display = 'none'; document.getElementById('2303.05117v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics &amp; Astronomy 66, 267411 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11741">arXiv:2302.11741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.11741">pdf</a>, <a href="https://arxiv.org/format/2302.11741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.234">10.1017/jfm.2024.234 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of a hexagonal pattern in shear-thickening suspensions under orbital oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-Xin Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meng-Fei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Song-Chuan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11741v3-abstract-short" style="display: inline;"> Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations, which challenge the mean-field description of the system. Here, we explore the novel dynamics of a non-Brownian suspension under orbital oscillations, where localized density waves along the flow direction appear beyond an excitation frequency threshold and self-organize into a hexagona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11741v3-abstract-full').style.display = 'inline'; document.getElementById('2302.11741v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11741v3-abstract-full" style="display: none;"> Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations, which challenge the mean-field description of the system. Here, we explore the novel dynamics of a non-Brownian suspension under orbital oscillations, where localized density waves along the flow direction appear beyond an excitation frequency threshold and self-organize into a hexagonal pattern across the system. The spontaneous occurrence of the inhomogeneity pattern arises from a coupling between particle advection and the shear-thickening nature of the suspension. Through linear stability analysis, we show that they overcome the stabilizing effects of particle pressure at sufficient particle volume fraction and oscillation frequency. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for developing local disturbance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11741v3-abstract-full').style.display = 'none'; document.getElementById('2302.11741v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01078">arXiv:2302.01078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01078">pdf</a>, <a href="https://arxiv.org/format/2302.01078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Computational Discovery of Microstructured Composites with Optimal Stiffness-Toughness Trade-Offs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Beichen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+B">Bolei Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shou%2C+W">Wan Shou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+T">Tae-Hyun Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuanming Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yiyue Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Liang Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusik%2C+W">Wojciech Matusik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01078v2-abstract-short" style="display: inline;"> The conflict between stiffness and toughness is a fundamental problem in engineering materials design. However, the systematic discovery of microstructured composites with optimal stiffness-toughness trade-offs has never been demonstrated, hindered by the discrepancies between simulation and reality and the lack of data-efficient exploration of the entire Pareto front. We introduce a generalizable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01078v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01078v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01078v2-abstract-full" style="display: none;"> The conflict between stiffness and toughness is a fundamental problem in engineering materials design. However, the systematic discovery of microstructured composites with optimal stiffness-toughness trade-offs has never been demonstrated, hindered by the discrepancies between simulation and reality and the lack of data-efficient exploration of the entire Pareto front. We introduce a generalizable pipeline that integrates physical experiments, numerical simulations, and artificial neural networks to address both challenges. Without any prescribed expert knowledge of material design, our approach implements a nested-loop proposal-validation workflow to bridge the simulation-to-reality gap and discover microstructured composites that are stiff and tough with high sample efficiency. Further analysis of Pareto-optimal designs allows us to automatically identify existing toughness enhancement mechanisms, which were previously discovered through trial-and-error or biomimicry. On a broader scale, our method provides a blueprint for computational design in various research areas beyond solid mechanics, such as polymer chemistry, fluid dynamics, meteorology, and robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01078v2-abstract-full').style.display = 'none'; document.getElementById('2302.01078v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09835">arXiv:2301.09835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09835">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microwave heating as a universal method to transform confined molecules into armchair graphene nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haoyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yingzhi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+K">Kunpeng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Ziheng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+T">Takeshi Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+C+H">Chi Ho Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+C+W">Chi Wah Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+C+L">Chee Leung Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+W">Weili Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kecheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09835v1-abstract-short" style="display: inline;"> Armchair graphene nanoribbons (AGNRs) with sub-nanometer width are potential materials for fabrication of novel nanodevices thanks to their moderate direct band gaps. AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface. However, it is time-consuming and not suitable for large-scale production. AGNRs can also be grown by transforming precursor molecules inside sin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09835v1-abstract-full').style.display = 'inline'; document.getElementById('2301.09835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09835v1-abstract-full" style="display: none;"> Armchair graphene nanoribbons (AGNRs) with sub-nanometer width are potential materials for fabrication of novel nanodevices thanks to their moderate direct band gaps. AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface. However, it is time-consuming and not suitable for large-scale production. AGNRs can also be grown by transforming precursor molecules inside single-walled carbon nanotubes via furnace annealing, but the obtained AGNRs are normally twisted. In this work, microwave heating is applied for transforming precursor molecules into AGNRs. The fast heating process allows synthesizing the AGNRs in seconds. Several different molecules were successfully transformed into AGNRs, suggesting that it is a universal method. More importantly, as demonstrated by Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy and theoretical calculations, less twisted AGNRs are synthesized by the microwave heating than the furnace annealing. Our results reveal a route for rapid production of AGNRs in large scale, which would benefit future applications in novel AGNRs-based semiconductor devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09835v1-abstract-full').style.display = 'none'; document.getElementById('2301.09835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07891">arXiv:2301.07891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07891">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Simulation of environmental impacts on the synthesis of carbyne with more than 6000 atoms for emerging continuously tunable energy barriers in CNT-based transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+C+H">Chi Ho Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeung%2C+Y+M">Yan Ming Yeung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+W+C">Wing Cheung Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chak-yin Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+C+L">Chee Leung Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+C+W">Chi Wah Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">Rolf Lortz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07891v1-abstract-short" style="display: inline;"> Transistors made up of carbon nanotubes CNT have demonstrated excellent current-voltage characteristics which outperform some high-grade silicon-based transistors. A continuously tunable energy barrier across semiconductor interfaces is desired to make the CNT-based transistors more robust. Despite the direct band gap of carbyne inside a CNT can be widely tuned by strain, the size of carbyne canno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07891v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07891v1-abstract-full" style="display: none;"> Transistors made up of carbon nanotubes CNT have demonstrated excellent current-voltage characteristics which outperform some high-grade silicon-based transistors. A continuously tunable energy barrier across semiconductor interfaces is desired to make the CNT-based transistors more robust. Despite the direct band gap of carbyne inside a CNT can be widely tuned by strain, the size of carbyne cannot be controlled easily. The production of a monoatomic chain with more than 6000 carbon atoms is an enormous technological challenge. To predict the optimal chain length of a carbyne in different molecular environments, we have developed a Monte Carlo model in which a finite-length carbyne with a size of 4000-15000 atoms is encapsulated by a CNT at finite temperatures. Our simulation shows that the stability of the carbyne@nanotube is strongly influenced by the nature and porosity of the CNT, the external pressure, the temperature and the chain length. We have observed an initiation of chain-breaking process in a compressed carbyne@nanotube. Our work provides much needed input for optimising the carbyne length to produce carbon chains much longer than 6000 atoms at ~300K. Design rules are proposed for synthesizing ~1% strained carbyne@(6,5)CNT as a component in CNT-based transistors to tune the energy barriers continuously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07891v1-abstract-full').style.display = 'none'; document.getElementById('2301.07891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2207.14558</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00811">arXiv:2301.00811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00811">pdf</a>, <a href="https://arxiv.org/format/2301.00811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.195135">10.1103/PhysRevB.107.195135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Fermi-Dirac staircase occupation of Floquet bands and current rectification inside the optical gap of metals: a rigorous perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Matsyshyn%2C+O">Oles Matsyshyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+C+W">Justin C. W. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villadiego%2C+I+S">Inti Sodemann Villadiego</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-kun Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00811v1-abstract-short" style="display: inline;"> We consider a model of a Bloch band subjected to an oscillating electric field and coupled to a featureless fermionic heat bath, which can be solved exactly. We demonstrate rigorously that in the limit of vanishing coupling to this bath (so that it acts as an ideal thermodynamic bath) the occupation of the Floquet band is not a simple Fermi-Dirac distribution function of the Floquet energy, but in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00811v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00811v1-abstract-full" style="display: none;"> We consider a model of a Bloch band subjected to an oscillating electric field and coupled to a featureless fermionic heat bath, which can be solved exactly. We demonstrate rigorously that in the limit of vanishing coupling to this bath (so that it acts as an ideal thermodynamic bath) the occupation of the Floquet band is not a simple Fermi-Dirac distribution function of the Floquet energy, but instead it becomes a ``staircase&#39;&#39; version of this distribution. We show that this distribution generically leads to a finite rectified electric current within the optical gap of a metal even in the limit of vanishing carrier relaxation rates, providing a rigorous demonstration that such rectification is generically possible and clarifying previous statements in the optoelectronics literature. We show that this current remains non-zero even up to the leading perturbative second order in the amplitude of electric fields, and that it approaches the standard perturbative expression of the Jerk current obtained from a simpler Boltzmann description within a relaxation time approximation when the frequencies are small compared to the bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00811v1-abstract-full').style.display = 'none'; document.getElementById('2301.00811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13739">arXiv:2212.13739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13739">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/5/057404">10.1088/0256-307X/40/5/057404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity Observed in Tantalum Polyhydride at High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+F">J. F. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+H">L. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V+B">V. B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">S. Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H+Z">H. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13739v3-abstract-short" style="display: inline;"> We report experimental discovery of tantalum polyhydride superconductor. It was synthesized at high pressure and high temperature conditions using diamond anvil cell combined with in-situ high pressure laser heating techniques. The superconductivity was investigated via resistance measurements at pressures. The highest superconducting transition temperature Tc was found to be ~30 K at 197 GPa in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13739v3-abstract-full').style.display = 'inline'; document.getElementById('2212.13739v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13739v3-abstract-full" style="display: none;"> We report experimental discovery of tantalum polyhydride superconductor. It was synthesized at high pressure and high temperature conditions using diamond anvil cell combined with in-situ high pressure laser heating techniques. The superconductivity was investigated via resistance measurements at pressures. The highest superconducting transition temperature Tc was found to be ~30 K at 197 GPa in the sample that was synthesized at the same pressure with ~2000 K heating. The transitions are shifted to low temperature upon applying magnetic fields that supports the superconductivity nature. The upper critical field at zero temperature 渭0Hc2(0) of the superconducting phase is estimated to be ~20 T that corresponds to GL coherent length ~40 angstroms. Our results suggest that the superconductivity may arise from I-43d phase of TaH3. It is, for the first time to our best knowledge, experimental realization of superconducting hydrides for the VB group of transitional metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13739v3-abstract-full').style.display = 'none'; document.getElementById('2212.13739v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published by CPL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 40, 057404 (2023) (Express Letter) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07107">arXiv:2211.07107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07107">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac8cde">10.1088/1674-1056/ac8cde <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nitrogen-tailored quasiparticle energy gaps of polyynes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiling Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Peitao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guowei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07107v1-abstract-short" style="display: inline;"> Polyyne, a sp1-hybridized linear allotrope of carbon, has a tunable quasiparticle energy gap, which depends on the terminated chemical ending groups as well as the chain length. Previously, nitrogen doping was utilized to tailor the properties of different kinds of allotrope of carbon. However, how the nitrogen doping tailors the properties of the polyyne remains unexplored. Here, we applied the G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07107v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07107v1-abstract-full" style="display: none;"> Polyyne, a sp1-hybridized linear allotrope of carbon, has a tunable quasiparticle energy gap, which depends on the terminated chemical ending groups as well as the chain length. Previously, nitrogen doping was utilized to tailor the properties of different kinds of allotrope of carbon. However, how the nitrogen doping tailors the properties of the polyyne remains unexplored. Here, we applied the GW method to study the quasiparticle energy gaps of the N-doped polyynes with different lengths. When a C atom is substituted by a N atom in a polyyne, the quasiparticle energy gap varies with the substituted position in the polyyne. The modification is particularly pronounced when the second-nearest-neighboring carbon atom of a hydrogen atom is substituted. In addition, the nitrogen doping makes the Fermi level closer to the lowest unoccupied molecular orbital, resulting in a n-type semiconductor. Our results suggest another route to tailor the electronic properties of polyyne in addition to the length of polyyne and the terminated chemical ending groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07107v1-abstract-full').style.display = 'none'; document.getElementById('2211.07107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06961">arXiv:2211.06961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06961">pdf</a>, <a href="https://arxiv.org/ps/2211.06961">ps</a>, <a href="https://arxiv.org/format/2211.06961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Revealing strong coupling of collective modes between superconductivity and pseudogap in cuprate superconductor by terahertz third harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J+Y">J. Y. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+Y">L. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">L. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B+H">B. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+X">Z. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S+X">S. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T+Q">T. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Z+Z">Z. Z. Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F+C">F. C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z+F">Z. F. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">K. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+B">X. B. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Q. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+M">Q. M. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T+C">T. C. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R+S">R. S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+Y">X. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06961v1-abstract-short" style="display: inline;"> The study of interaction between different degrees of freedom in solids is of fundamental importance to understand the functionalities of materials. One striking example of such interaction is the intertwined coupling or competition between superconductivity (SC), charge density wave (CDW), pseudogap state (PG), and other exotic phases in cuprate superconductors. Recent emergence of nonlinear Tera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06961v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06961v1-abstract-full" style="display: none;"> The study of interaction between different degrees of freedom in solids is of fundamental importance to understand the functionalities of materials. One striking example of such interaction is the intertwined coupling or competition between superconductivity (SC), charge density wave (CDW), pseudogap state (PG), and other exotic phases in cuprate superconductors. Recent emergence of nonlinear Terahertz (THz) third harmonic generation (THG) spectroscopy provides a powerful tool for exploring the collective (Higgs) modes of superconductivity order parameters, and its interaction with intertwined/competing phases. In this study, we report on nonlinear THz THG spectroscopy of the YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) thin films with different doping. We identify a characteristic temperature $T_{THG}$, below which third order suscepetility $蠂^{(3)}$ emerges. Notably, the $T_{THG}$ is coincident with the crossover temperature $T^*$ of pseudogap in a wide range doping of phase diagram. Upon entering the superconducting state, THG increases sharply but exhibits an abnormal dip feature near $T_c$ which is more clearly seen in optimally doped sample. Strikingly, we observe a beating structure directly in the measured real time waveform of THG signal. Fourier transformation of the time domain waveform gives two separate modes below and above original THG frequency. The observation strongly indicates that an additional mode, presumably Higgs mode, appears at $T_c$ and couples to the mode already developed below $T^*$. The strong coupling effect offers new insight into the interplay between superconductivity and pseudogap. The result unambiguously suggests that the pseudogap phase is not a precursor of superconductivity but represents a distinct order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06961v1-abstract-full').style.display = 'none'; document.getElementById('2211.06961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04852">arXiv:2211.04852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04852">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202206491">10.1002/adfm.202206491 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-clean isotope engineered double-walled carbon nanotubes as tailored hosts to trace the growth of carbyne </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+W">Weili Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+F">Ferenc Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ayala%2C+P">Paola Ayala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pichler%2C+T">Thomas Pichler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04852v1-abstract-short" style="display: inline;"> Increasing attention is currently given to carbyne, the sp1 hybridized one-dimensional carbon allotrope, because of its predicted outstanding mechanical, optical, and electrical properties. Although recently substantial progress has been reported on confined carbyne synthesized inside double-walled carbon nanotubes (DWCNTs), its formation mechanism and precursors for growth remain elusive. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04852v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04852v1-abstract-full" style="display: none;"> Increasing attention is currently given to carbyne, the sp1 hybridized one-dimensional carbon allotrope, because of its predicted outstanding mechanical, optical, and electrical properties. Although recently substantial progress has been reported on confined carbyne synthesized inside double-walled carbon nanotubes (DWCNTs), its formation mechanism and precursors for growth remain elusive. Here, we show a rational design of isotope engineered ultra-clean DWCNTs as tailored hosts to trace the growth of carbyne, which allows to identify the precursor and unravel the formation mechanism of carbyne during high-vacuum annealing at high-temperatures. Using this approach, ultra-clean DWCNTs with 80.4% 13C-enriched inner walls and outer tubes of naturally abundant served to unambiguously prove that only the carbonaceous materials inside the DWCNTs can act as precursors. The exchange of C atoms between inner and outer tubes happens without any growth of carbyne. After applying a secondary oxidation step, it is possible to produce the carbonaceous precursors from the partially oxidized DWCNTs. In this manner, not only carbyne with a record of ~28.8% 13C enrichment is grown, but concomitant healing, reorganization and regrowth of the DWCNTs occurs. This work enables to identify the precursor and trace the growth mechanism of confined carbyne with engineered properties. This is a crucial step, towards accessing the full application potential of confined carbyne hybrids by tailoring not only the isotopic fillers, but also the inner and outer tubes of the DWCNT hosts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04852v1-abstract-full').style.display = 'none'; document.getElementById('2211.04852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08923">arXiv:2208.08923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08923">pdf</a>, <a href="https://arxiv.org/format/2208.08923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adom.202202639">10.1002/adom.202202639 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong nonlinear optical response and transient symmetry switching in Type-II Weyl semimetal $尾$-WP2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tianchen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Liyu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zixiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sijie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiaomei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rongsheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xinyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jiayu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhiguo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08923v1-abstract-short" style="display: inline;"> The topological Weyl semimetals with peculiar band structure exhibit novel nonlinear optical enhancement phenomena even for light at optical wavelengths. While many intriguing nonlinear optical effects were constantly uncovered in type-I semimetals, few experimental works focused on basic nonlinear optical properties in type-II Weyl semimetals. Here we perform a fundamental static and time-resolve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08923v1-abstract-full').style.display = 'inline'; document.getElementById('2208.08923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08923v1-abstract-full" style="display: none;"> The topological Weyl semimetals with peculiar band structure exhibit novel nonlinear optical enhancement phenomena even for light at optical wavelengths. While many intriguing nonlinear optical effects were constantly uncovered in type-I semimetals, few experimental works focused on basic nonlinear optical properties in type-II Weyl semimetals. Here we perform a fundamental static and time-resolved second harmonic generation (SHG) on the three dimensional Type-II Weyl semimetal candidate $尾$-WP$_2$. Although $尾$-WP$_2$ exhibits extremely high conductivity and an extraordinarily large mean free path, the second harmonic generation is unscreened by conduction electrons, we observed rather strong SHG response compared to non-topological polar metals and archetypal ferroelectric insulators. Additionally, our time-resolved SHG experiment traces ultrafast symmetry switching and reveals that polar metal $尾$-WP$_2$ tends to form inversion symmetric metastable state after photo-excitation. Intense femtosecond laser pulse could optically drive symmetry switching and tune nonlinear optical response on ultrafast timescales although the interlayer coupling of $尾$-WP$_2$ is very strong. Our work is illuminating for the polar metal nonlinear optics and potential ultrafast topological optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08923v1-abstract-full').style.display = 'none'; document.getElementById('2208.08923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Optical Materials 2023, 2202639 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05816">arXiv:2208.05816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05816">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity above 80 K in polyhydrides of hafnium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+F">J. F. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R+C">R. C. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+H">L. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakapenka%2C+V+B">V. B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chariton%2C+S">S. Chariton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H+Z">H. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05816v2-abstract-short" style="display: inline;"> Studies on polyhydrides are attracting growing attentions recently due to their potential high temperature superconductivity (SC). We here report the discovery of SC in hafnium polyhydrides at high pressures. The hafnium superhydrides are synthesized at high pressure and high temperature conditions using diamond anvil cell in combination with in-situ high pressure laser heating technique. The SC w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05816v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05816v2-abstract-full" style="display: none;"> Studies on polyhydrides are attracting growing attentions recently due to their potential high temperature superconductivity (SC). We here report the discovery of SC in hafnium polyhydrides at high pressures. The hafnium superhydrides are synthesized at high pressure and high temperature conditions using diamond anvil cell in combination with in-situ high pressure laser heating technique. The SC was investigated by in-situ high pressure resistance measurements in applied magnetic fields. A superconducting transition with onset Tc ~83 K was observed at 243 GPa. The upper critical field Hc2(0) was estimated to be 24 Tesla by GL theory and the consequent superconducting coherent length to be ~37 angstrom. Our results suggest that the superconducting phase is from C2/m-HfH14. This is the first 5d transition metal polyhydride superconductor with Tc above the liquid nitrogen temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05816v2-abstract-full').style.display = 'none'; document.getElementById('2208.05816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by the journal of Material Today Physics (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03388">arXiv:2208.03388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03388">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L140412">10.1103/PhysRevB.107.L140412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency-dependent Phonon-mediated Unidirectional Magnetoresistance in a Metal on an Insulator with Highly Nonequilibrium Magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sullivan%2C+S+E">Sean E. Sullivan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hwijong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weathers%2C+A">Annie Weathers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03388v1-abstract-short" style="display: inline;"> Heavy metal (HM)/magnet bilayers host many magnetoresistances (MR) and spin caloritronic effects. Here we show that the spin Peltier effect and electron-phonon scattering produce much larger unidirectional MR of an HM on a magnetic insulator than existing theories that neglect the interplay between MR and spin caloritronic effects. By accounting for local nonequilibrium in both the magnon chemical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03388v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03388v1-abstract-full" style="display: none;"> Heavy metal (HM)/magnet bilayers host many magnetoresistances (MR) and spin caloritronic effects. Here we show that the spin Peltier effect and electron-phonon scattering produce much larger unidirectional MR of an HM on a magnetic insulator than existing theories that neglect the interplay between MR and spin caloritronic effects. By accounting for local nonequilibrium in both the magnon chemical potential and temperature, our analytical model attributes the observed frequency dependence of the spin Peltier MR and the spin Seebeck effect to the reduction of the thermal penetration depth, which approaches the 1 micron scale magnon spin diffusion length at high frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03388v1-abstract-full').style.display = 'none'; document.getElementById('2208.03388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SES and HL contributed equally. Main paper: 13 pages, 4 figures; supplemental: 44 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03496">arXiv:2207.03496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.03496">pdf</a>, <a href="https://arxiv.org/format/2207.03496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.125151">10.1103/PhysRevB.107.125151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Berry dipole photovoltaic demon and the thermodynamics of photo-current generation within the optical gap of metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-kun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsyshyn%2C+O">Oles Matsyshyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+C+W">Justin C. W. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villadiego%2C+I+S">Inti Sodemann Villadiego</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03496v1-abstract-short" style="display: inline;"> We dismantle the previously held misconception that it is impossible for bulk rectification mechanisms to induce a net DC electric current when the frequency of the impinging radiation lies within the optical gap of a metal in the limit of small carrier relaxation rates. We argue that generically such in-gap rectification mechanisms are irreversible and accompanied by a continuous exchange of ener&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03496v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03496v1-abstract-full" style="display: none;"> We dismantle the previously held misconception that it is impossible for bulk rectification mechanisms to induce a net DC electric current when the frequency of the impinging radiation lies within the optical gap of a metal in the limit of small carrier relaxation rates. We argue that generically such in-gap rectification mechanisms are irreversible and accompanied by a continuous exchange of energy with a heat bath and must also be necessarily accompanied by a small but finite absorption of radiation in order to guarantee the positivity of the net entropy production and abide by the second law of thermodynamics. We show, however, that the intra-band non-linear Hall effect arising from the Berry curvature is a special kind of in-gap rectification mechanism that behaves as a ``photo-voltaic demon&#39;&#39;, namely it can operate as an ideal reversible and dissipationless conveyor of energy between the radiation and an external circuit. Its reversible nature allows for an interesting mode of operation as an amplifier of circularly polarized light, whose efficiency can approach 100%, and which could be technologically promising especially in the infrared frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03496v1-abstract-full').style.display = 'none'; document.getElementById('2207.03496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15473">arXiv:2206.15473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15473">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0122945">10.1063/5.0122945 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of hot phonons and thermal stress in micro-Raman spectra of molybdenum disulphide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sokalski%2C+P">Peter Sokalski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zherui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fleming%2C+G+C">Gabriella Coloyan Fleming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+B">Brandon Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sullivan%2C+S+E">Sean E. Sullivan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Rui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+X">Xiulin Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15473v3-abstract-short" style="display: inline;"> Micro-Raman spectroscopy has become an important tool in probing thermophysical behavior in emerging functional materials such as two-dimensional (2D) layered structures. Localized heating by the focused Raman excitation laser beam is expected to produce both stress and nonequilibrium temperature distributions in the material. Here we investigate the effects of hot optical phonons in the Raman spe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15473v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15473v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15473v3-abstract-full" style="display: none;"> Micro-Raman spectroscopy has become an important tool in probing thermophysical behavior in emerging functional materials such as two-dimensional (2D) layered structures. Localized heating by the focused Raman excitation laser beam is expected to produce both stress and nonequilibrium temperature distributions in the material. Here we investigate the effects of hot optical phonons in the Raman spectra of molybdenum disulphide (MoS2) and distinguish them from those caused by thermally-induced compressive stress, which causes a Raman frequency blue shift in the focused Raman laser spot. With the stress effect accounted for in micro-Raman measurements, the degree of nonequilibrium between the hot optical phonons and the acoustic phonon bath is found to be much smaller than those observed in prior micro-Raman measurements of suspended graphene. The observation agrees with a first-principles based theoretical prediction of overpopulated zone-center optical phonons compared to other optical phonons in the Brillouin zone and acoustic phonons. The findings provide detailed insight into the energy relaxation processes in this emerging 2D transition metal dichalcogenide (TMD) electronic and optoelectronic material and clarify an important question in micro-Raman measurements of thermal transport in this and other 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15473v3-abstract-full').style.display = 'none'; document.getElementById('2206.15473v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages. 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14957">arXiv:2206.14957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14957">pdf</a>, <a href="https://arxiv.org/format/2206.14957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L041407">10.1103/PhysRevB.107.L041407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Hot Zone-center Optical Phonons in Laser Irradiated Molybdenum Disulfide with a Semiconductor Multitemperature Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zherui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokalski%2C+P">Peter Sokalski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+X">Xiulin Ruan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14957v3-abstract-short" style="display: inline;"> Previous multitemperature model (MTM) resolving phonon temperatures at the polarization level and measurements have uncovered remarkable nonequilibrium among different phonon polarizations in laser irradiated graphene and metals. Here, we develop a semiconductor-specific MTM (SC-MTM) by including electron-hole pair generation, diffusion, and recombination, and show that a phonon polarization-level&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14957v3-abstract-full').style.display = 'inline'; document.getElementById('2206.14957v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14957v3-abstract-full" style="display: none;"> Previous multitemperature model (MTM) resolving phonon temperatures at the polarization level and measurements have uncovered remarkable nonequilibrium among different phonon polarizations in laser irradiated graphene and metals. Here, we develop a semiconductor-specific MTM (SC-MTM) by including electron-hole pair generation, diffusion, and recombination, and show that a phonon polarization-level model does not yield observable polarization-based nonequilibrium in laser-irradiated molybdenum disulfide (MoS$_2$). In contrast, appreciable nonequilibrium is predicted between zone-center optical phonons and the other modes. The momentum-based nonequilibrium ratio is found to increase with decreasing laser spot size and interaction with a substrate. This finding is relevant to the understanding of the energy relaxation process in two-dimensional optoelectronic devices and Raman measurements of thermal transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14957v3-abstract-full').style.display = 'none'; document.getElementById('2206.14957v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+L&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10