CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;41 of 41 results for author: <span class="mathjax">Weidem眉ller, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Weidem眉ller, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Weidem%C3%BCller%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Weidem眉ller, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16031">arXiv:2410.16031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16031">pdf</a>, <a href="https://arxiv.org/ps/2410.16031">ps</a>, <a href="https://arxiv.org/format/2410.16031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00601-024-01971-9">10.1007/s00601-024-01971-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An experimental platform for studying the heteronuclear Efimov effect with an ultracold mixture of $^6$Li and $^{133}$Cs atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lippi%2C+E">Eleonora Lippi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Repp%2C+M">Marc Repp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">Rico Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rautenberg%2C+M">Michael Rautenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krom%2C+T">Tobias Krom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">Eva D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chomaz%2C+L">Lauriane Chomaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16031v2-abstract-short" style="display: inline;"> We present the experimental apparatus enabling the observation of the heteronuclear Efimov effect in an optically trapped ultracold mixture of $^6$Li-$^{133}$Cs with high-resolution control of the interactions. A compact double-species Zeeman slower consisting of four interleaving helical coils allows for a fast-switching between two optimized configurations for either Li or Cs and provides an eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16031v2-abstract-full').style.display = 'inline'; document.getElementById('2410.16031v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16031v2-abstract-full" style="display: none;"> We present the experimental apparatus enabling the observation of the heteronuclear Efimov effect in an optically trapped ultracold mixture of $^6$Li-$^{133}$Cs with high-resolution control of the interactions. A compact double-species Zeeman slower consisting of four interleaving helical coils allows for a fast-switching between two optimized configurations for either Li or Cs and provides an efficient sequential loading into their respective MOTs. By means of a bichromatic optical trapping scheme based on species-selective trapping we prepare mixtures down to 100 nK of 1$\times$ 10$^4$ Cs atoms and 7$\times$ 10$^3$ Li atoms. Highly stable magnetic fields allow high-resolution atom-loss spectroscopy and enable to resolve splitting in the loss feature of a few tens of milligauss. These features allowed for a detailed study of the Efimov effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16031v2-abstract-full').style.display = 'none'; document.getElementById('2410.16031v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01807">arXiv:2302.01807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01807">pdf</a>, <a href="https://arxiv.org/format/2302.01807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Ultracold plasmas from strongly anti-correlated Rydberg gases in the Kinetic Field Theory formalism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kozlikin%2C+E">Elena Kozlikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lilow%2C+R">Robert Lilow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pauly%2C+M">Martin Pauly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartelmann%2C+M">Matthias Bartelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01807v1-abstract-short" style="display: inline;"> The dynamics of correlated systems is relevant in many fields ranging from cosmology to plasma physics. However, they are challenging to predict and understand even for classical systems due to the typically large numbers of particles involved. Here, we study the evolution of an ultracold, correlated many-body system with repulsive interactions and initial correlations set by the Rydberg blockade&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01807v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01807v1-abstract-full" style="display: none;"> The dynamics of correlated systems is relevant in many fields ranging from cosmology to plasma physics. However, they are challenging to predict and understand even for classical systems due to the typically large numbers of particles involved. Here, we study the evolution of an ultracold, correlated many-body system with repulsive interactions and initial correlations set by the Rydberg blockade using the analytical framework of Kinetic Field Theory (KFT). The KFT formalism is based on the path-integral formulation for classical mechanics and was first developed and successfully used in cosmology to describe structure formation in Dark Matter. The theoretical framework offers a high flexibility regarding the initial configuration and interactions between particles and, in addition, is computationally cheap. More importantly, the analytic approach allows us to gain better insight into the processes which dominate the dynamics. In this work we show that KFT can be applied in a much more general context and study the evolution of a correlated ion plasma. We find good agreement between the analytical KFT results for the evolution of the correlation function and results obtained from numerical simulations. We use the correlation functions obtained with KFT to compute the temperature increase in the ionic system due to disorder-induced heating. For certain choices of parameters we observe that the effect can be reversed, leading to correlation cooling. Due to its numerical efficiency as compared to numerical simulations, a detailed study using KFT can help to constrain parameter spaces where disorder-induced heating is minimal in order to reach the regime of strong coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01807v1-abstract-full').style.display = 'none'; document.getElementById('2302.01807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.15981">arXiv:2210.15981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.15981">pdf</a>, <a href="https://arxiv.org/format/2210.15981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.053310">10.1103/PhysRevA.107.053310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous loss behavior in a single-component Fermi gas close to a $p$-Wave Feshbach resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Welz%2C+K">K. Welz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">M. Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">B. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippi%2C+E">E. Lippi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rautenberg%2C+M">M. Rautenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chomaz%2C+L">L. Chomaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.15981v2-abstract-short" style="display: inline;"> We theoretically investigate three-body losses in a single-component Fermi gas near a $p$-wave Feshbach resonance in the interacting, non-unitary regime. We extend the cascade model introduced by Waseem \textit{et al.} [M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Phys. Rev. A \textbf{99}, 052704 (2019)] to describe the elastic and inelastic collision processes. We find that the loss behavio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15981v2-abstract-full').style.display = 'inline'; document.getElementById('2210.15981v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.15981v2-abstract-full" style="display: none;"> We theoretically investigate three-body losses in a single-component Fermi gas near a $p$-wave Feshbach resonance in the interacting, non-unitary regime. We extend the cascade model introduced by Waseem \textit{et al.} [M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Phys. Rev. A \textbf{99}, 052704 (2019)] to describe the elastic and inelastic collision processes. We find that the loss behavior exhibits a $n^3$ and an anomalous $n^2$ density dependence for a ratio of elastic-to-inelastic collision rate larger and smaller than 1, respectively. The corresponding evolutions of the energy distribution show collisional cooling or evolution toward low-energetic non-thermalized steady states, respectively. These findings are particularly relevant for understanding atom loss and energetic evolution of ultracold gases of fermionic lithium atoms in their ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15981v2-abstract-full').style.display = 'none'; document.getElementById('2210.15981v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 053310 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14474">arXiv:2207.14474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14474">pdf</a>, <a href="https://arxiv.org/format/2207.14474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134212">10.1103/PhysRevB.106.134212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pair localization in dipolar systems with tunable positional disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Braemer%2C+A">Adrian Braemer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">Martin G盲rttner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14474v2-abstract-short" style="display: inline;"> Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14474v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14474v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14474v2-abstract-full" style="display: none;"> Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade effect,we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings, arising from power-law interactions between randomly positioned spins. Using established spectral and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive physical picture consistent with our numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14474v2-abstract-full').style.display = 'none'; document.getElementById('2207.14474v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 main figures, 1 supplementary figure, close to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 134212 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14216">arXiv:2207.14216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14216">pdf</a>, <a href="https://arxiv.org/format/2207.14216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent pair localization in a many-body quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braemer%2C+A">Adrian Braemer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Signoles%2C+A">Adrien Signoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thaicharoen%2C+N">Nithiwadee Thaicharoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">Andr茅 Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">Martin G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14216v2-abstract-short" style="display: inline;"> Understanding how closed quantum systems dynamically approach thermal equilibrium presents a major unresolved problem in statistical physics. Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis. However, in the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14216v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14216v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14216v2-abstract-full" style="display: none;"> Understanding how closed quantum systems dynamically approach thermal equilibrium presents a major unresolved problem in statistical physics. Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis. However, in the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales, as in spin glasses or many-body localized systems. In general, particularly in long-range interacting quantum systems, the specific nature of the disorder necessary for the emergence of a prethermal, metastable state--distinctly separating the timescales of initial relaxation and subsequent slow thermalization--remains an open question. We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator. We observe a drastic change in the late-time magnetization when increasing disorder strength. The data is well described by models based on pairs of strongly interacting spins, which are treated as thermal for weak disorder and isolated for strong disorder. Our results indicate a crossover into a pair-localized prethermal regime in a closed quantum system of thousands of spins in the critical case where the exponent of the power law interaction matches the spatial dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14216v2-abstract-full').style.display = 'none'; document.getElementById('2207.14216v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04342">arXiv:2202.04342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04342">pdf</a>, <a href="https://arxiv.org/format/2202.04342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> A Network Approach to Atomic Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wellnitz%2C+D">David Wellnitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keki%C4%87%2C+A">Armin Keki膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heiss%2C+J">Julian Heiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gertz%2C+M">Michael Gertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spitz%2C+A">Andreas Spitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04342v1-abstract-short" style="display: inline;"> Network science provides a universal framework for modeling complex systems, contrasting the reductionist approach generally adopted in physics. In a prototypical study, we utilize network models created from spectroscopic data of atoms to predict microscopic properties of the underlying physical system. For simple atoms such as helium, an a posteriori inspection of spectroscopic network communiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04342v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04342v1-abstract-full" style="display: none;"> Network science provides a universal framework for modeling complex systems, contrasting the reductionist approach generally adopted in physics. In a prototypical study, we utilize network models created from spectroscopic data of atoms to predict microscopic properties of the underlying physical system. For simple atoms such as helium, an a posteriori inspection of spectroscopic network communities reveals the emergence of quantum numbers and symmetries. For more complex atoms such as thorium, finer network hierarchies suggest additional microscopic symmetries or configurations. Link prediction yields a quantitative ranking of yet unknown atomic transitions, offering opportunities to discover new spectral lines in a well-controlled manner. Our work promotes a genuine bi-directional exchange of methodology between network science and physics, and presents new perspectives for the study of atomic spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04342v1-abstract-full').style.display = 'none'; document.getElementById('2202.04342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 + 7 pages, 3 + 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09590">arXiv:2201.09590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09590">pdf</a>, <a href="https://arxiv.org/format/2201.09590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.123201">10.1103/PhysRevLett.131.123201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Many-Body Dynamics in an Ultracold Rydberg-Excited Atomic Mott Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bharti%2C+V">V. Bharti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sugawa%2C+S">S. Sugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizoguchi%2C+M">M. Mizoguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunimi%2C+M">M. Kunimi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+L%C3%A9s%C3%A9leuc%2C+S">S. de L茅s茅leuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomita%2C+T">T. Tomita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohmori%2C+K">K. Ohmori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09590v1-abstract-short" style="display: inline;"> We report the observation and control of ultrafast non-equilibrium many-body electron dynamics in Rydberg-excited spatially-ordered ultracold atoms created from a three-dimensional unity-filling atomic Mott insulator. By implementing time-domain Ramsey interferometry with attosecond precision in our Rydberg atomic system, we observe picosecond-scale ultrafast many-body dynamics that is essentially&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09590v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09590v1-abstract-full" style="display: none;"> We report the observation and control of ultrafast non-equilibrium many-body electron dynamics in Rydberg-excited spatially-ordered ultracold atoms created from a three-dimensional unity-filling atomic Mott insulator. By implementing time-domain Ramsey interferometry with attosecond precision in our Rydberg atomic system, we observe picosecond-scale ultrafast many-body dynamics that is essentially governed by the emergence and evolution of many-body correlations between long-range interacting atoms in an optical lattice. We analyze our observations with different theoretical approaches and find that quantum fluctuations have to be included beyond semi-classical descriptions to describe the observed dynamics. Our Rydberg lattice platform combined with an ultrafast approach, which is robust against environmental noises, opens the door for simulating strongly-correlated electron dynamics by long-range van der Waals interaction and resonant dipole-dipole interaction to the charge-overlapping regime in synthetic ultracold atomic crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09590v1-abstract-full').style.display = 'none'; document.getElementById('2201.09590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 123201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00779">arXiv:2111.00779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00779">pdf</a>, <a href="https://arxiv.org/format/2111.00779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.104204">10.1103/PhysRevB.105.104204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of position disordered Ising spins with a soft-core potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Canzhu Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiaodong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yabing Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y+H">Y. H. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00779v1-abstract-short" style="display: inline;"> We theoretically study magnetization relaxation of Ising spins distributed randomly in a $d$-dimension homogeneous and Gaussian profile under a soft-core two-body interaction potential $\propto1/[1+(r/R_c)^伪]$ ($伪\ge d$), where $r$ is the inter-spin distance and $R_c$ is the soft-core radius. The dynamics starts with all spins polarized in the transverse direction. In the homogeneous case, an anal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00779v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00779v1-abstract-full" style="display: none;"> We theoretically study magnetization relaxation of Ising spins distributed randomly in a $d$-dimension homogeneous and Gaussian profile under a soft-core two-body interaction potential $\propto1/[1+(r/R_c)^伪]$ ($伪\ge d$), where $r$ is the inter-spin distance and $R_c$ is the soft-core radius. The dynamics starts with all spins polarized in the transverse direction. In the homogeneous case, an analytic expression is derived at the thermodynamic limit, which starts as $\propto\exp(-t^2)$ and follows a stretched-exponential law asymptotically at long time with an exponent $尾=d/伪$. In between an oscillating behaviour is observed with a damping amplitude. For Gaussian samples, the degree of disorder in the system can be controlled by the ratio $l_蟻/R_c$ with $l_蟻$ the mean inter-spin distance and the magnetization dynamics is investigated numerically. In the limit of $l_蟻/R_c\ll1$, a coherent many-body dynamics is recovered for the total magnetization despite of the position disorder of spins. In the opposite limit of $l_蟻/R_c\gg1$, a similar dynamics as that in the homogeneous case emerges at later time after a initial fast decay of the magnetization. We obtain a stretched exponent of $尾\approx0.18$ for the asymptotic evolution with $d=3, 伪=6$, which is different from that in the homogeneous case ($尾=0.5$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00779v1-abstract-full').style.display = 'none'; document.getElementById('2111.00779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.14459">arXiv:2107.14459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.14459">pdf</a>, <a href="https://arxiv.org/format/2107.14459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.020303">10.1103/PRXQuantum.3.020303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave-engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scholl%2C+P">P. Scholl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+H+J">H. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bornet%2C+G">G. Bornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wallner%2C+F">F. Wallner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barredo%2C+D">D. Barredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lahaye%2C+T">T. Lahaye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browaeys%2C+A">A. Browaeys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henriet%2C+L">L. Henriet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">C. Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+S">S. Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">A. Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">A. Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">G. Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.14459v2-abstract-short" style="display: inline;"> We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics, such as the implementation of the Heisenberg model in square arrays, and the study of spin transport in 1D. We fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14459v2-abstract-full').style.display = 'inline'; document.getElementById('2107.14459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.14459v2-abstract-full" style="display: none;"> We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics, such as the implementation of the Heisenberg model in square arrays, and the study of spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms, and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvements. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens exciting prospects in the field of quantum simulation, quantum information processing and quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14459v2-abstract-full').style.display = 'none'; document.getElementById('2107.14459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 main figures, 2 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X Quantum vol. 3, p. 020303 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13314">arXiv:2107.13314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13314">pdf</a>, <a href="https://arxiv.org/format/2107.13314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L100201">10.1103/PhysRevB.105.L100201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semiclassical simulations predict glassy dynamics for disordered Heisenberg models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schultzen%2C+P">Philipp Schultzen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">Martin G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13314v1-abstract-short" style="display: inline;"> We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13314v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13314v1-abstract-full" style="display: none;"> We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian. Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and integrability of the Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13314v1-abstract-full').style.display = 'none'; document.getElementById('2107.13314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01597">arXiv:2105.01597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01597">pdf</a>, <a href="https://arxiv.org/format/2105.01597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd9547">10.1126/science.abd9547 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Hamiltonian Engineering of an Isolated Many-Body Spin System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thaicharoen%2C+N">Nithiwadee Thaicharoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grimshandl%2C+D">David Grimshandl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01597v1-abstract-short" style="display: inline;"> Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiting vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01597v1-abstract-full').style.display = 'inline'; document.getElementById('2105.01597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01597v1-abstract-full" style="display: none;"> Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiting vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. Applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semi-classical simulation. Synthesising a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of non-equilibrium dynamics in a single experimental setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01597v1-abstract-full').style.display = 'none'; document.getElementById('2105.01597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00349">arXiv:2104.00349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00349">pdf</a>, <a href="https://arxiv.org/format/2104.00349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L020201">10.1103/PhysRevB.105.L020201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glassy quantum dynamics of disordered Ising spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schultzen%2C+P">Philipp Schultzen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">Martin G盲rttner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00349v2-abstract-short" style="display: inline;"> We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $伪\geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $尾= d/伪$ in the thermodynamic limit. Numerically, we confirm that glassy behav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00349v2-abstract-full').style.display = 'inline'; document.getElementById('2104.00349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00349v2-abstract-full" style="display: none;"> We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $伪\geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $尾= d/伪$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00349v2-abstract-full').style.display = 'none'; document.getElementById('2104.00349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13221">arXiv:2009.13221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13221">pdf</a>, <a href="https://arxiv.org/format/2009.13221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s13538-020-00811-5">10.1007/s13538-020-00811-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermions meet two bosons -- the heteronuclear Efimov effect revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rautenberg%2C+M">Michael Rautenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippi%2C+E">Eleonora Lippi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drescher%2C+M">Moritz Drescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salmhofer%2C+M">Manfred Salmhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enss%2C+T">Tilman Enss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13221v1-abstract-short" style="display: inline;"> In this article, we revisit the heteronuclear Efimov effect in a Bose-Fermi mixture with large mass difference in the Born-Oppenheimer picture. As a specific example, we consider the combination of bosonic $^{133}\mathrm{Cs}$ and fermionic $^6\mathrm{Li}$. In a system consisting of two heavy bosons and one light fermion, the fermion-mediated potential between the two heavy bosons gives rise to an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13221v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13221v1-abstract-full" style="display: none;"> In this article, we revisit the heteronuclear Efimov effect in a Bose-Fermi mixture with large mass difference in the Born-Oppenheimer picture. As a specific example, we consider the combination of bosonic $^{133}\mathrm{Cs}$ and fermionic $^6\mathrm{Li}$. In a system consisting of two heavy bosons and one light fermion, the fermion-mediated potential between the two heavy bosons gives rise to an infinite series of three-body bound states. The intraspecies scattering length determines the three-body parameter and the scaling factor between consecutive Efimov states. In a second scenario, we replace the single fermion by an entire Fermi Sea at zero temperature. The emerging interaction potential for the two bosons exhibits long-range oscillations leading to a weakening of the binding and a breakup of the infinite series of Efimov states. In this scenario, the binding energies follow a modified Efimov scaling law incorporating the Fermi momentum. The scaling factor between deeply bound states is governed by the intraspecies interaction, analogous to the Efimov states in vacuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13221v1-abstract-full').style.display = 'none'; document.getElementById('2009.13221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Braz J Phys (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03029">arXiv:2009.03029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.03029">pdf</a>, <a href="https://arxiv.org/format/2009.03029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.063321">10.1103/PhysRevA.102.063321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of two heavy Fermi polarons: resonances and quasibound states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Enss%2C+T">Tilman Enss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rautenberg%2C+M">Michael Rautenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippi%2C+E">Eleonora Lippi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drescher%2C+M">Moritz Drescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salmhofer%2C+M">Manfred Salmhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03029v2-abstract-short" style="display: inline;"> Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations of the medium. When there is short-range attraction between impurities and fermions, also the induced interaction between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We theoretically investigate the scattering properties and comput&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03029v2-abstract-full').style.display = 'inline'; document.getElementById('2009.03029v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03029v2-abstract-full" style="display: none;"> Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations of the medium. When there is short-range attraction between impurities and fermions, also the induced interaction between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths between two heavy impurities in an ideal Fermi gas at zero temperature. While the induced interaction between impurities is weakly attractive for weak impurity-medium interactions, we find that impurities strongly and attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the induced scattering length and even strong repulsion. These resonances occur whenever a three-body Efimov bound state appears at the continuum threshold. At energies above the continuum threshold, we find that the Efimov state in medium can turn into a quasibound state with a finite decay width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03029v2-abstract-full').style.display = 'none'; document.getElementById('2009.03029v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 063321 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01264">arXiv:1912.01264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01264">pdf</a>, <a href="https://arxiv.org/format/1912.01264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> High partial-wave Feshbach resonances in an ultracold $^6$Li-$^{133}$Cs mixture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">Eberhard Tiemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01264v1-abstract-short" style="display: inline;"> We measure higher partial wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs by magnetic field dependent atom-loss spectroscopy. For the $p$-wave Feshbach resonances we observe triplet structures corresponding to different projections of the pair rotation angular momentum onto the external magnetic field axis. We attribute the splittings to the spin-spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01264v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01264v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01264v1-abstract-full" style="display: none;"> We measure higher partial wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs by magnetic field dependent atom-loss spectroscopy. For the $p$-wave Feshbach resonances we observe triplet structures corresponding to different projections of the pair rotation angular momentum onto the external magnetic field axis. We attribute the splittings to the spin-spin and spin-rotation couplings by modelling the observation using a full coupled-channel calculation. Comparison with an oversimplified model, estimating the spin-rotation coupling by describing the weakly bound close-channel molecular state with the perturbative multipole expansion, reveals the significant contribution of the molecular wavefunction at short internuclear distances. Our findings highlight the potential of Feshbach resonances in providing precise information on short- and intermediate-range molecular couplings and wavefunctions. The observed $d$-wave Feshbach resonances allow us to refine the LiCs singlet and triplet ground-state molecular potential curves at large internuclear separations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01264v1-abstract-full').style.display = 'none'; document.getElementById('1912.01264v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, see also arXiv:1910.12011</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.12011">arXiv:1910.12011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.12011">pdf</a>, <a href="https://arxiv.org/format/1910.12011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin-rotation coupling in p-wave Feshbach resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">Eberhard Tiemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.12011v2-abstract-short" style="display: inline;"> We report evidence for spin-rotation coupling in $p$-wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs lifting the commonly observed degeneracy of states with equal absolute value of orbital-angular-momentum projection on the external magnetic field. By employing magnetic field dependent atom-loss spectroscopy we find triplet structures in $p$-wave resonan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12011v2-abstract-full').style.display = 'inline'; document.getElementById('1910.12011v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.12011v2-abstract-full" style="display: none;"> We report evidence for spin-rotation coupling in $p$-wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs lifting the commonly observed degeneracy of states with equal absolute value of orbital-angular-momentum projection on the external magnetic field. By employing magnetic field dependent atom-loss spectroscopy we find triplet structures in $p$-wave resonances. Comparison with coupled-channel calculations, including contributions from both spin-spin and spin-rotation interactions, yields a spin-rotation coupling parameter $|纬|=0.566(50)\times10^{-3}$. Our findings highlight the potential of Feshbach resonances in revealing subtle molecular couplings and providing precise information on electronic and nuclear wavefunctions, especially at short internuclear distance. The existence of a non-negligible spin-rotation splitting may have consequences for future classifications of $p$-wave superfluid phases in spin-polarized fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12011v2-abstract-full').style.display = 'none'; document.getElementById('1910.12011v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, welcome comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05292">arXiv:1910.05292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05292">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.253201">10.1103/PhysRevLett.124.253201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast creation of overlapping Rydberg electrons in an atomic BEC and Mott-insulator lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mizoguchi%2C+M">Michiteru Mizoguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunimi%2C+M">Masaya Kunimi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">Akira Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takeda%2C+S">Shuntaro Takeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takei%2C+N">Nobuyuki Takei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bharti%2C+V">Vineet Bharti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koyasu%2C+K">Kuniaki Koyasu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kishimoto%2C+T">Tetsuo Kishimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaksch%2C+D">Dieter Jaksch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glaetzle%2C+A">Alexander Glaetzle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiffner%2C+M">Martin Kiffner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masella%2C+G">Guido Masella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pupillo%2C+G">Guido Pupillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohmori%2C+K">Kenji Ohmori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05292v1-abstract-short" style="display: inline;"> An array of ultracold atoms in an optical lattice (Mott insulator) excited to a state where single electron wave-functions spatially overlap would represent a new and ideal platform to simulate exotic electronic many-body phenomena in the condensed phase. However, this highly excited non-equilibrium system is expected to be so short-lived that it has eluded observation so far. Here, we demonstrate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05292v1-abstract-full').style.display = 'inline'; document.getElementById('1910.05292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05292v1-abstract-full" style="display: none;"> An array of ultracold atoms in an optical lattice (Mott insulator) excited to a state where single electron wave-functions spatially overlap would represent a new and ideal platform to simulate exotic electronic many-body phenomena in the condensed phase. However, this highly excited non-equilibrium system is expected to be so short-lived that it has eluded observation so far. Here, we demonstrate the first step toward its realization by exciting high-lying electronic (Rydberg) states of the atomic Mott insulator with a coherent ultrashort laser pulse. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization and the formation of an ultracold plasma. These observations signal the actual creation of exotic electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05292v1-abstract-full').style.display = 'none'; document.getElementById('1910.05292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 253201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11959">arXiv:1909.11959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.11959">pdf</a>, <a href="https://arxiv.org/format/1909.11959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.011011">10.1103/PhysRevX.11.011011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glassy dynamics in a disordered Heisenberg quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alves%2C+R+F">R. Ferracini Alves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">M. G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">G. Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11959v3-abstract-short" style="display: inline;"> Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11959v3-abstract-full').style.display = 'inline'; document.getElementById('1909.11959v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11959v3-abstract-full" style="display: none;"> Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11959v3-abstract-full').style.display = 'none'; document.getElementById('1909.11959v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 011011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09831">arXiv:1909.09831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09831">pdf</a>, <a href="https://arxiv.org/format/1909.09831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.050701">10.1103/PhysRevA.100.050701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of dipolar splittings in high-resolution atom-loss spectroscopy of $^6$Li $p$-wave Feshbach resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerken%2C+M">Manuel Gerken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+B">Binh Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">Eberhard Tiemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09831v1-abstract-short" style="display: inline;"> We report on the observation of dipolar splitting in 6Li p-wave Feshbach resonances by highresolution atom-loss spectroscopy. The Feshbach resonances at 159 G and 215 G exhibit a doublet structure of 10 mG and 13 mG, respectively, associated with different projections of the orbital angular momentum. The observed splittings agree very well with coupled-channel calculations. We map out the temperat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09831v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09831v1-abstract-full" style="display: none;"> We report on the observation of dipolar splitting in 6Li p-wave Feshbach resonances by highresolution atom-loss spectroscopy. The Feshbach resonances at 159 G and 215 G exhibit a doublet structure of 10 mG and 13 mG, respectively, associated with different projections of the orbital angular momentum. The observed splittings agree very well with coupled-channel calculations. We map out the temperature dependence of the atom-loss spectrum allowing us to extrapolate resonance positions and the corresponding widths to zero temperature. The observed dipolar splitting in fermionic lithium might be useful for the realization of the quantum phase transition between the polar and axial p-wave superfluid phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09831v1-abstract-full').style.display = 'none'; document.getElementById('1909.09831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 050701 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.06802">arXiv:1909.06802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.06802">pdf</a>, <a href="https://arxiv.org/format/1909.06802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.063812">10.1103/PhysRevA.100.063812 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blockade-induced resonant enhancement of the optical nonlinearity in a Rydberg medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walther%2C+V">Valentin Walther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong-Chang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohl%2C+T">Thomas Pohl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.06802v1-abstract-short" style="display: inline;"> We predict a resonant enhancement of the nonlinear optical response of an interacting Rydberg gas under conditions of electromagnetically induced transparency. The enhancement originates from a two-photon process which resonantly couples electronic states of a pair of atoms dressed by a strong control field. We calculate the optical response for the three-level system by explicitly including the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06802v1-abstract-full').style.display = 'inline'; document.getElementById('1909.06802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.06802v1-abstract-full" style="display: none;"> We predict a resonant enhancement of the nonlinear optical response of an interacting Rydberg gas under conditions of electromagnetically induced transparency. The enhancement originates from a two-photon process which resonantly couples electronic states of a pair of atoms dressed by a strong control field. We calculate the optical response for the three-level system by explicitly including the dynamics of the intermediate state. We find an analytical expression for the third order susceptibility for a weak classical probe field. The nonlinear absorption displays the strongest resonant behavior on two-photon resonance where the detuning of the probe field equals the Rabi frequency of the control field. The nonlinear dispersion of the medium exhibits various spatial shapes depending on the interaction strength. Based on the developed model, we propose a realistic experimental scenario to observe the resonance by performing transmission measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06802v1-abstract-full').style.display = 'none'; document.getElementById('1909.06802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 063812 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07532">arXiv:1809.07532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07532">pdf</a>, <a href="https://arxiv.org/format/1809.07532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.213606">10.1103/PhysRevLett.123.213606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diffusive to non-ergodic dipolar transport in a dissipative atomic medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildhagen%2C+H">H. Wildhagen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weimer%2C+H">H. Weimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07532v1-abstract-short" style="display: inline;"> We investigate the dipole mediated transport of Rydberg impurities through an ultracold gas of atoms excited to an auxiliary Rydberg state. In one experiment we continuously probe the system by coupling the auxiliary Rydberg state to a rapidly decaying state which realizes a dissipative medium. In-situ imaging of the impurities reveals diffusive spreading controlled by the intensity of the probe l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07532v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07532v1-abstract-full" style="display: none;"> We investigate the dipole mediated transport of Rydberg impurities through an ultracold gas of atoms excited to an auxiliary Rydberg state. In one experiment we continuously probe the system by coupling the auxiliary Rydberg state to a rapidly decaying state which realizes a dissipative medium. In-situ imaging of the impurities reveals diffusive spreading controlled by the intensity of the probe laser. By preparing the same density of hopping partners but then switching off the dressing fields the spreading is effectively frozen. This is consistent with numerical simulations which indicate the coherently evolving system enters a non-ergodic extended phase due to disorder. This opens the way to study transport and localization phenomena in systems with long-range hopping and controllable dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07532v1-abstract-full').style.display = 'none'; document.getElementById('1809.07532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 213606 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04970">arXiv:1805.04970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04970">pdf</a>, <a href="https://arxiv.org/format/1805.04970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.023619">10.1103/PhysRevA.98.023619 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Macroscopic quantum escape of Bose-Einstein condensates: Analysis of experimentally realizable quasi-one-dimensional traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alcala%2C+D+A">Diego A. Alcala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urban%2C+G">Gregor Urban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carr%2C+L+D">Lincoln D. Carr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04970v1-abstract-short" style="display: inline;"> The variational-JWKB method is used to determine experimentally accessible macroscopic quantum tunneling regimes of quasi-bound Bose-Einstein condensates in two quasi one-dimensional trap configurations. The potentials can be created by magnetic and optical traps, a symmetric trap from two offset Gaussian barriers and a tilt trap from a linear gradient and Gaussian barrier. Scaling laws in barrier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04970v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04970v1-abstract-full" style="display: none;"> The variational-JWKB method is used to determine experimentally accessible macroscopic quantum tunneling regimes of quasi-bound Bose-Einstein condensates in two quasi one-dimensional trap configurations. The potentials can be created by magnetic and optical traps, a symmetric trap from two offset Gaussian barriers and a tilt trap from a linear gradient and Gaussian barrier. Scaling laws in barrier parameters, ranging from inverse polynomial to square root times exponential, are calculated and used to elucidate different dynamical regimes, such as when classical oscillations dominate tunneling rates in the symmetric trap. The symmetric trap is found to be versatile, with tunneling times at and below one second, able to hold $10^{3}$ to $10^{4}$ atoms, and realizable for atoms ranging from rubidium to lithium, with unadjusted scattering lengths. The tilt trap produces sub-second tunneling times, is able to hold a few hundred atoms of lighter elements like lithium, and requiring the use of Feshbach resonance to reduce scattering lengths. To explore a large parameter space, an extended Gaussian variational ansatz is used, which can approximate large traps with Thomas-Fermi profiles. Nonlinear interactions in the Gross-Pitaevskii equation are shown to produce additional effective mean-field barriers, affecting scaling laws. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04970v1-abstract-full').style.display = 'none'; document.getElementById('1805.04970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 023619 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00790">arXiv:1709.00790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00790">pdf</a>, <a href="https://arxiv.org/format/1709.00790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.039901">10.1103/PhysRevA.97.039901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional magneto-optical trap as a source for cold strontium atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nosske%2C+I">Ingo Nosske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Couturier%2C+L">Luc Couturier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+F">Fachao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Canzhu Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+C">Chang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blume%2C+J">Jan Blume</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y+H">Y. H. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00790v3-abstract-short" style="display: inline;"> We report on the realization of a transversely loaded two-dimensional magneto-optical trap serving as a source for cold strontium atoms. We analyze the dependence of the source&#39;s properties on various parameters, in particular the intensity of a pushing beam accelerating the atoms out of the source. An atomic flux exceeding $10^9\,\mathrm{atoms/s}$ at a rather moderate oven temperature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00790v3-abstract-full').style.display = 'inline'; document.getElementById('1709.00790v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00790v3-abstract-full" style="display: none;"> We report on the realization of a transversely loaded two-dimensional magneto-optical trap serving as a source for cold strontium atoms. We analyze the dependence of the source&#39;s properties on various parameters, in particular the intensity of a pushing beam accelerating the atoms out of the source. An atomic flux exceeding $10^9\,\mathrm{atoms/s}$ at a rather moderate oven temperature of $500\,^\circ\mathrm{C}$ is achieved. The longitudinal velocity of the atomic beam can be tuned over several tens of m/s by adjusting the power of the pushing laser beam. The beam divergence is around $60$ mrad, determined by the transverse velocity distribution of the cold atoms. The slow atom source is used to load a three-dimensional magneto-optical trap realizing loading rates up to $10^9\,\mathrm{atoms/s}$ without indication of saturation of the loading rate for increasing oven temperature. The compact setup avoids undesired effects found in alternative sources like, e.g., Zeeman slowers, such as vacuum contamination and black-body radiation due to the hot strontium oven. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00790v3-abstract-full').style.display = 'none'; document.getElementById('1709.00790v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 053415 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.05957">arXiv:1703.05957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.05957">pdf</a>, <a href="https://arxiv.org/format/1703.05957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.063601">10.1103/PhysRevLett.120.063601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relaxation of an isolated dipolar-interacting Rydberg quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Orioli%2C+A+P">A. Pi帽eiro Orioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildhagen%2C+H">H. Wildhagen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berges%2C+J">J. Berges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.05957v2-abstract-short" style="display: inline;"> How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05957v2-abstract-full').style.display = 'inline'; document.getElementById('1703.05957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.05957v2-abstract-full" style="display: none;"> How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we employ different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05957v2-abstract-full').style.display = 'none'; document.getElementById('1703.05957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 063601 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.08007">arXiv:1701.08007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.08007">pdf</a>, <a href="https://arxiv.org/format/1701.08007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.062708">10.1103/PhysRevA.95.062708 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of the intraspecies scattering length in the Efimov scenario with large mass difference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">Eva D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yujun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+C+H">Chris H. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.08007v2-abstract-short" style="display: inline;"> We experimentally and theoretically study the effect of the intraspecies scattering length onto the heteronuclear Efimov scenario, following up on our earlier observation of Efimov resonances in an ultracold Cs-Li mixture for negative [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] and positive Cs-Cs scattering length [Ulmanis et al., Phys. Rev. Lett. 117, 153201 (2016)]. Three theoretical mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08007v2-abstract-full').style.display = 'inline'; document.getElementById('1701.08007v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.08007v2-abstract-full" style="display: none;"> We experimentally and theoretically study the effect of the intraspecies scattering length onto the heteronuclear Efimov scenario, following up on our earlier observation of Efimov resonances in an ultracold Cs-Li mixture for negative [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] and positive Cs-Cs scattering length [Ulmanis et al., Phys. Rev. Lett. 117, 153201 (2016)]. Three theoretical models of increasing complexity are employed to quantify its influence on the scaling factor and the three-body parameter: a simple Born-Oppenheimer picture, a zero-range theory, and a spinless van der Waals model. These models are compared to Efimov resonances observed in an ultracold mixture of bosonic $^{133}$Cs and fermionic $^6$Li atoms close to two Cs-Li Feshbach resonances located at 843 G and 889 G, characterized by different sign and magnitude of the Cs-Cs interaction. By changing the sign and magnitude of the intraspecies scattering length different scaling behaviors of the three-body loss rate are identified, in qualitative agreement with theoretical predictions. The three-body loss rate is strongly influenced by the intraspecies scattering length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08007v2-abstract-full').style.display = 'none'; document.getElementById('1701.08007v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 062708 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01477">arXiv:1608.01477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01477">pdf</a>, <a href="https://arxiv.org/format/1608.01477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.153201">10.1103/PhysRevLett.117.153201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heteronuclear Efimov scenario with positive intraspecies scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">Stephan H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">Rico Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">Eva D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yujun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+C+H">Chris H. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01477v2-abstract-short" style="display: inline;"> We investigate theoretically and experimentally the heteronuclear Efimov scenario for a three-body system that consists of two bosons and one distinguishable particle with positive intraspecies scattering lengths. The three-body parameter at the three-body scattering threshold and the scaling factor between consecutive Efimov resonances are found to be controlled by the scattering length between t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01477v2-abstract-full').style.display = 'inline'; document.getElementById('1608.01477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01477v2-abstract-full" style="display: none;"> We investigate theoretically and experimentally the heteronuclear Efimov scenario for a three-body system that consists of two bosons and one distinguishable particle with positive intraspecies scattering lengths. The three-body parameter at the three-body scattering threshold and the scaling factor between consecutive Efimov resonances are found to be controlled by the scattering length between the two bosons, approximately independent of short-range physics. We observe two excited-state Efimov resonances in the three-body recombination spectra of an ultracold mixture of fermionic $^6 $Li and bosonic $^{133} $Cs atoms close to a Li-Cs Feshbach resonance, where the Cs-Cs interaction is positive. Deviation of the obtained scaling factor of 4.0(3) from the universal prediction of 4.9 and the absence of the ground state Efimov resonance shed new light on the interpretation of the universality and the discrete scaling behavior of heteronuclear Efimov physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01477v2-abstract-full').style.display = 'none'; document.getElementById('1608.01477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, additional supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117 (2016) 153201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.07728">arXiv:1602.07728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.07728">pdf</a>, <a href="https://arxiv.org/format/1602.07728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/49/16/164002">10.1088/0953-4075/49/16/164002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gavryusev%2C+V">V. Gavryusev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferreira-Cao%2C+M">M. Ferreira-Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCrn%2C+G">G. Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+C+S">C. S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">H. Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert-de-Saint-Vincent%2C+M">M. Robert-de-Saint-Vincent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.07728v2-abstract-short" style="display: inline;"> We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07728v2-abstract-full').style.display = 'inline'; document.getElementById('1602.07728v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.07728v2-abstract-full" style="display: none;"> We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07728v2-abstract-full').style.display = 'none'; document.getElementById('1602.07728v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 49 164002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05585">arXiv:1509.05585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.05585">pdf</a>, <a href="https://arxiv.org/format/1509.05585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.93.022707">10.1103/PhysRevA.93.022707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal three-body recombination and Efimov resonances in an ultracold Li-Cs mixture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">J. Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">S. H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">R. Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+F">F. Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrov%2C+D+S">D. S. Petrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">E. D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05585v2-abstract-short" style="display: inline;"> We study Efimov resonances via three-body loss in an ultracold two-component gas of fermionic $^6$Li and bosonic $^{133}$Cs atoms close to a Feshbach resonance at 843~G, extending results reported previously [Pires \textit{et al.}, Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120~nK. The experimental scheme for reaching lower temperatures is based upon compensating the gravity-induc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05585v2-abstract-full').style.display = 'inline'; document.getElementById('1509.05585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05585v2-abstract-full" style="display: none;"> We study Efimov resonances via three-body loss in an ultracold two-component gas of fermionic $^6$Li and bosonic $^{133}$Cs atoms close to a Feshbach resonance at 843~G, extending results reported previously [Pires \textit{et al.}, Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120~nK. The experimental scheme for reaching lower temperatures is based upon compensating the gravity-induced spatial separation of the mass-imbalanced gases with bichromatic optical dipole traps. We observe the first and second excited Li-Cs-Cs Efimov resonance in the magnetic field dependence of the three-body event rate constant, in good agreement with the universal zero-range theory at finite temperature [Petrov and Werner, Phys. Rev. A 92, 022704 (2015)]. Deviations are found for the Efimov ground state, and the inelasticity parameter $畏$ is found to be significantly larger than those for single-species systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05585v2-abstract-full').style.display = 'none'; document.getElementById('1509.05585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 93, 022707 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03635">arXiv:1504.03635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.03635">pdf</a>, <a href="https://arxiv.org/format/1504.03635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13449">10.1038/ncomms13449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Takei%2C+N">Nobuyuki Takei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sommer%2C+C">Christian Sommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genes%2C+C">Claudiu Genes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pupillo%2C+G">Guido Pupillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goto%2C+H">Haruka Goto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koyasu%2C+K">Kuniaki Koyasu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiba%2C+H">Hisashi Chiba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohmori%2C+K">Kenji Ohmori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03635v2-abstract-short" style="display: inline;"> Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast ev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03635v2-abstract-full').style.display = 'inline'; document.getElementById('1504.03635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03635v2-abstract-full" style="display: none;"> Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03635v2-abstract-full').style.display = 'none'; document.getElementById('1504.03635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7, 13449 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01892">arXiv:1504.01892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01892">pdf</a>, <a href="https://arxiv.org/format/1504.01892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.093002">10.1103/PhysRevLett.115.093002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">H. Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=W%C3%BCster%2C+S">S. W眉ster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01892v1-abstract-short" style="display: inline;"> We investigate the transport of excitations through a chain of atoms with non-local dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping and a regim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01892v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01892v1-abstract-full" style="display: none;"> We investigate the transport of excitations through a chain of atoms with non-local dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of non-trivial dissipation, correlations and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01892v1-abstract-full').style.display = 'none'; document.getElementById('1504.01892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 093002 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.04799">arXiv:1501.04799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.04799">pdf</a>, <a href="https://arxiv.org/format/1501.04799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/5/055009">10.1088/1367-2630/17/5/055009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">J. Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">S. H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">R. Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">E. D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">E. Tiemann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.04799v1-abstract-short" style="display: inline;"> We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 G and 1000 G. Close to two broad Feshbach resonances we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of the binding energy on the external magnetic field strength. Based on the binding energi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04799v1-abstract-full').style.display = 'inline'; document.getElementById('1501.04799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.04799v1-abstract-full" style="display: none;"> We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 G and 1000 G. Close to two broad Feshbach resonances we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of the binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave Feshbach resonances we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave Li-Cs Feshbach resonances as compared to our previous work [Pires \textit{et al.}, Phys. Rev. Lett. \textbf{112}, 250404 (2014)]. We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04799v1-abstract-full').style.display = 'none'; document.getElementById('1501.04799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17, 055009 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.0477">arXiv:1406.0477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.0477">pdf</a>, <a href="https://arxiv.org/format/1406.0477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.012710">10.1103/PhysRevA.90.012710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analyzing Feshbach resonances -- A $^6$Li -$^{133}$Cs case study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">Rico Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Repp%2C+M">Marc Repp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">Juris Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">Eva D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiecke%2C+T+G">Tobias G. Tiecke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+C+H">Chris H. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruzic%2C+B+P">Brandon P. Ruzic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohn%2C+J+L">John L. Bohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">Eberhard Tiemann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.0477v1-abstract-short" style="display: inline;"> We provide a comprehensive comparison of a coupled channels calculation, the asymptotic bound state model (ABM), and the multichannel quantum defect theory (MQDT). Quantitative results for $^6$Li -$^{133}$Cs are presented and compared to previously measured $^6$Li -$^{133}$Cs Feshbach resonances (FRs) [M. Repp et al., Phys. Rev. A 87 010701(R) (2013)]. We demonstrate how the accuracy of the ABM ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0477v1-abstract-full').style.display = 'inline'; document.getElementById('1406.0477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.0477v1-abstract-full" style="display: none;"> We provide a comprehensive comparison of a coupled channels calculation, the asymptotic bound state model (ABM), and the multichannel quantum defect theory (MQDT). Quantitative results for $^6$Li -$^{133}$Cs are presented and compared to previously measured $^6$Li -$^{133}$Cs Feshbach resonances (FRs) [M. Repp et al., Phys. Rev. A 87 010701(R) (2013)]. We demonstrate how the accuracy of the ABM can be stepwise improved by including magnetic dipole-dipole interactions and coupling to a non-dominant virtual state. We present a MQDT calculation, where magnetic dipole-dipole and second order spin-orbit interactions are included. A frame transformation formalism is introduced, which allows the assignment of measured FRs with only three parameters. All three models achieve a total rms error of &lt; 1G on the observed FRs. We critically compare the different models in view of the accuracy for the description of FRs and the required input parameters for the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0477v1-abstract-full').style.display = 'none'; document.getElementById('1406.0477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 90, 012710 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.7246">arXiv:1403.7246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.7246">pdf</a>, <a href="https://arxiv.org/format/1403.7246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.250404">10.1103/PhysRevLett.112.250404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">R. Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">J. Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fner%2C+S">S. H盲fner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Repp%2C+M">M. Repp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arias%2C+A">A. Arias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">E. D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.7246v2-abstract-short" style="display: inline;"> We observe two consecutive heteronuclear Efimov resonances in an ultracold Li-Cs mixture by measuring three-body loss coefficients as a function of magnetic field near a Feshbach resonance. The first resonance is detected at a scattering length of $a_-^{(1)}=-320(10)~a_0$ corresponding to $\sim 7 $ ($\sim 3$) times the Li-Cs (Cs-Cs) van der Waals range. The second resonance appears at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.7246v2-abstract-full').style.display = 'inline'; document.getElementById('1403.7246v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.7246v2-abstract-full" style="display: none;"> We observe two consecutive heteronuclear Efimov resonances in an ultracold Li-Cs mixture by measuring three-body loss coefficients as a function of magnetic field near a Feshbach resonance. The first resonance is detected at a scattering length of $a_-^{(1)}=-320(10)~a_0$ corresponding to $\sim 7 $ ($\sim 3$) times the Li-Cs (Cs-Cs) van der Waals range. The second resonance appears at $5.8(1.0) a_-^{(1)}$ close to the unitarity-limited regime at the sample temperature of 450 nK. Indication of a third resonance is found in the atom loss spectra. The scaling of the resonance positions is close to the universal scaling value of 4.9 predicted for zero temperature. Deviations from universality might be caused by finite-range and temperature effects, as well as magnetic field dependent Cs-Cs interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.7246v2-abstract-full').style.display = 'none'; document.getElementById('1403.7246v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.0264">arXiv:1308.0264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.0264">pdf</a>, <a href="https://arxiv.org/format/1308.0264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.013002">10.1103/PhysRevLett.112.013002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">H. Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert-de-Saint-Vincent%2C+M">M. Robert-de-Saint-Vincent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+C+S">C. S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breyel%2C+D">D. Breyel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komnik%2C+A">A. Komnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6nleber%2C+D+W">D. W. Sch枚nleber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">M. G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evers%2C+J">J. Evers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.0264v2-abstract-short" style="display: inline;"> We experimentally study the full counting statistics of few-body Rydberg aggregates excited from a quasi-one-dimensional Rydberg gas. We measure asymmetric excitation spectra and increased second and third order statistical moments of the Rydberg number distribution, from which we determine the average aggregate size. Direct comparisons with numerical simulations reveal the presence of liquid-like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0264v2-abstract-full').style.display = 'inline'; document.getElementById('1308.0264v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.0264v2-abstract-full" style="display: none;"> We experimentally study the full counting statistics of few-body Rydberg aggregates excited from a quasi-one-dimensional Rydberg gas. We measure asymmetric excitation spectra and increased second and third order statistical moments of the Rydberg number distribution, from which we determine the average aggregate size. Direct comparisons with numerical simulations reveal the presence of liquid-like spatial correlations, and indicate sequential growth of the aggregates around an initial grain. These findings demonstrate the importance of dissipative effects in strongly correlated Rydberg gases and introduce a way to study spatio-temporal correlations in strongly-interacting many-body quantum systems without imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0264v2-abstract-full').style.display = 'none'; document.getElementById('1308.0264v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages plus supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 013002 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.1074">arXiv:1307.1074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.1074">pdf</a>, <a href="https://arxiv.org/format/1307.1074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+C+S">C. S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">H. Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+N+L+M">N. L. M. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faber%2C+A">A. Faber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Busche%2C+H">H. Busche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert-de-Saint-Vincent%2C+M">M. Robert-de-Saint-Vincent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.1074v1-abstract-short" style="display: inline;"> Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1074v1-abstract-full').style.display = 'inline'; document.getElementById('1307.1074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.1074v1-abstract-full" style="display: none;"> Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1074v1-abstract-full').style.display = 'none'; document.getElementById('1307.1074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures; submitted to a special issue of &#39;Frontiers of Physics&#39; dedicated to &#39;Quantum Foundation and Technology: Frontiers and Future&#39;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.7265">arXiv:1211.7265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.7265">pdf</a>, <a href="https://arxiv.org/format/1211.7265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.203601">10.1103/PhysRevLett.110.203601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+C+S">Christoph S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">Georg G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">Hanna Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert-de-Saint-Vincent%2C+M">Martin Robert-de-Saint-Vincent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4rttner%2C+M">Martin G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evers%2C+J">J枚rg Evers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">Shannon Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.7265v2-abstract-short" style="display: inline;"> Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and enables new quantum technologies involving the manipulation of single photons and atoms. A prototypical atom-light interface is electromagnetically induced transparency, in which quantum interference gives rise to hybrid states of photons and atoms called dark-state polaritons. We have observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.7265v2-abstract-full').style.display = 'inline'; document.getElementById('1211.7265v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.7265v2-abstract-full" style="display: none;"> Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and enables new quantum technologies involving the manipulation of single photons and atoms. A prototypical atom-light interface is electromagnetically induced transparency, in which quantum interference gives rise to hybrid states of photons and atoms called dark-state polaritons. We have observed individual dark-state polaritons as they propagate through an ultracold atomic gas involving Rydberg states. Strong long-range interactions between Rydberg atoms give rise to an effective interaction blockade for dark-state polaritons, which results in large optical nonlinearities and modified polariton number statistics. The observed statistical fluctuations drop well below the quantum noise limit indicating that photon correlations modified by the strong interactions have a significant back-action on the Rydberg atom statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.7265v2-abstract-full').style.display = 'none'; document.getElementById('1211.7265v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 203601 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.2139">arXiv:1211.2139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.2139">pdf</a>, <a href="https://arxiv.org/ps/1211.2139">ps</a>, <a href="https://arxiv.org/format/1211.2139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.010701">10.1103/PhysRevA.87.010701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of interspecies Li-Cs Feshbach resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Repp%2C+M">M. Repp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pires%2C+R">R. Pires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulmanis%2C+J">J. Ulmanis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heck%2C+R">R. Heck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhnle%2C+E+D">E. D. Kuhnle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">E. Tiemann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.2139v2-abstract-short" style="display: inline;"> We report on the observation of nineteen interspecies Feshbach resonances in an optically trapped ultracold Bose-Fermi mixture of ^{133}Cs and ^{6}Li in the two energetically lowest spin states. We assign the resonances to s- and p-wave molecular channels by a coupled-channels calculation, resulting in an accurate determination of LiCs ground state potentials. Fits of the resonance position based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2139v2-abstract-full').style.display = 'inline'; document.getElementById('1211.2139v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.2139v2-abstract-full" style="display: none;"> We report on the observation of nineteen interspecies Feshbach resonances in an optically trapped ultracold Bose-Fermi mixture of ^{133}Cs and ^{6}Li in the two energetically lowest spin states. We assign the resonances to s- and p-wave molecular channels by a coupled-channels calculation, resulting in an accurate determination of LiCs ground state potentials. Fits of the resonance position based on the undressed Asymptotic Bound State model do not provide the same level of accuracy as the coupled-channels calculation. Several broad s-wave resonances provide prospects to create fermionic LiCs molecules with a large dipole moment via Feshbach association followed by stimulated Raman passage. Two of the s-wave resonances overlap with a zero crossing of the Cs scattering length which offers prospects for the investigation of polarons in an ultracold Li-Cs mixture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2139v2-abstract-full').style.display = 'none'; document.getElementById('1211.2139v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 87, 010701 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.5443">arXiv:1106.5443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.5443">pdf</a>, <a href="https://arxiv.org/ps/1106.5443">ps</a>, <a href="https://arxiv.org/format/1106.5443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.013002">10.1103/PhysRevLett.108.013002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction enhanced imaging of individual atoms embedded in dense atomic gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnter%2C+G">G. G眉nter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert-de-Saint-Vincent%2C+M">M. Robert-de-Saint-Vincent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schempp%2C+H">H. Schempp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+C+S">C. S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.5443v1-abstract-short" style="display: inline;"> We propose a new all-optical method to image individual atoms within dense atomic gases. The scheme exploits interaction induced shifts on highly polarizable excited states, which can be spatially resolved via an electromagnetically induced transparency resonance. We focus in particular on imaging strongly interacting many-body states of Rydberg atoms embedded in an ultracold gas of ground state a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.5443v1-abstract-full').style.display = 'inline'; document.getElementById('1106.5443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.5443v1-abstract-full" style="display: none;"> We propose a new all-optical method to image individual atoms within dense atomic gases. The scheme exploits interaction induced shifts on highly polarizable excited states, which can be spatially resolved via an electromagnetically induced transparency resonance. We focus in particular on imaging strongly interacting many-body states of Rydberg atoms embedded in an ultracold gas of ground state atoms. Using a realistic model we show that it is possible to image individual impurity atoms with enhanced sensitivity and high resolution despite photon shot noise and atomic density fluctuations. This new imaging scheme is ideally suited to equilibrium and dynamical studies of complex many-body phenomena involving strongly interacting atoms. As an example we study blockade effects and correlations in the distribution of Rydberg atoms optically excited from a dense gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.5443v1-abstract-full').style.display = 'none'; document.getElementById('1106.5443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages plus supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.3700">arXiv:0705.3700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0705.3700">pdf</a>, <a href="https://arxiv.org/ps/0705.3700">ps</a>, <a href="https://arxiv.org/format/0705.3700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.99.090601">10.1103/PhysRevLett.99.090601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Survival Probabilities in Coherent Exciton Transfer with Trapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Muelken%2C+O">Oliver Muelken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blumen%2C+A">Alexander Blumen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amthor%2C+T">Thomas Amthor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giese%2C+C">Christian Giese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reetz-Lamour%2C+M">Markus Reetz-Lamour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidemueller%2C+M">Matthias Weidemueller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.3700v2-abstract-short" style="display: inline;"> In the quest for signatures of coherent transport we consider exciton trapping in the continuous-time quantum walk framework. The survival probability displays different decay domains, related to distinct regions of the spectrum of the Hamiltonian. For linear systems and at intermediate times the decay obeys a power-law, in contrast to the corresponding exponential decay found in incoherent cont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.3700v2-abstract-full').style.display = 'inline'; document.getElementById('0705.3700v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.3700v2-abstract-full" style="display: none;"> In the quest for signatures of coherent transport we consider exciton trapping in the continuous-time quantum walk framework. The survival probability displays different decay domains, related to distinct regions of the spectrum of the Hamiltonian. For linear systems and at intermediate times the decay obeys a power-law, in contrast to the corresponding exponential decay found in incoherent continuous-time random walk situations. To differentiate between the coherent and incoherent mechanisms, we present an experimental protocol based on a frozen Rydberg gas structured by optical dipole traps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.3700v2-abstract-full').style.display = 'none'; document.getElementById('0705.3700v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 99, 090601 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0510120">arXiv:cond-mat/0510120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0510120">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0510120">ps</a>, <a href="https://arxiv.org/format/cond-mat/0510120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2007.03.118">10.1016/j.nuclphysa.2007.03.118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doorway states and the Bose-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Salgueiro%2C+A+N">A. N. Salgueiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chi-Yong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piza%2C+A+F+R+d+T">A. F. R. de Toledo Piza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0510120v3-abstract-short" style="display: inline;"> We introduce an efficient method to solve the Mott-Hubbard model. The Schr枚dinger equation is solved by the successive construction of doorway states. The ground state wavefunction derived by this method contains all relevant many-body correlations introduced by the hamiltonian, but the dimensionality of the Hilbert space is greatly reduced. We apply the doorway method to obtain the chemical poten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510120v3-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0510120v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0510120v3-abstract-full" style="display: none;"> We introduce an efficient method to solve the Mott-Hubbard model. The Schr枚dinger equation is solved by the successive construction of doorway states. The ground state wavefunction derived by this method contains all relevant many-body correlations introduced by the hamiltonian, but the dimensionality of the Hilbert space is greatly reduced. We apply the doorway method to obtain the chemical potential, the on-site fluctuations and the visibility of the interference pattern arising from atoms in a one-dimensional periodic lattice. Excellent agreement with exact numerical calculations as well as recent experimental observations is found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510120v3-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0510120v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Shortened version published in Nuclear Physics A, Volume 790, Issues 1-4, 15 June 2007, Pages 780c-783c </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9902072">arXiv:physics/9902072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/9902072">pdf</a>, <a href="https://arxiv.org/ps/physics/9902072">ps</a>, <a href="https://arxiv.org/format/physics/9902072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical dipole traps for neutral atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grimm%2C+R">Rudolf Grimm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+Y+B">Yurii B. Ovchinnikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9902072v1-abstract-short" style="display: inline;"> The subject of this review are atom traps based on optical dipole forces in laser fields, along with their unique features as storage devices at ultralow energies. The basic physics of the dipole interaction is discussed, and the experimental background of dipole trapping experiments is explained. Specific trapping schemes and experiments are presented, where the wide range of applications of di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9902072v1-abstract-full').style.display = 'inline'; document.getElementById('physics/9902072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9902072v1-abstract-full" style="display: none;"> The subject of this review are atom traps based on optical dipole forces in laser fields, along with their unique features as storage devices at ultralow energies. The basic physics of the dipole interaction is discussed, and the experimental background of dipole trapping experiments is explained. Specific trapping schemes and experiments are presented, where the wide range of applications of dipole traps is explored considering particular examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9902072v1-abstract-full').style.display = 'none'; document.getElementById('physics/9902072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review Article, to appear in Advances in Atomic, Molecular and Optical Physics; REVTeX, 39 pages, 21 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in Atomic, Molecular and Optical Physics Vol. 42, 95-170 (2000) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10