CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–13 of 13 results for author: <span class="mathjax">Franz, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Franz%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Franz, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Franz%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Franz, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02551">arXiv:2406.02551</a> <span> [<a href="https://arxiv.org/pdf/2406.02551">pdf</a>, <a href="https://arxiv.org/format/2406.02551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schl%C3%B6mer%2C+H">Henning Schl枚mer</a>, <a href="/search/cond-mat?searchtype=author&query=Lange%2C+H">Hannah Lange</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Chalopin%2C+T">Thomas Chalopin</a>, <a href="/search/cond-mat?searchtype=author&query=Bojovi%C4%87%2C+P">Petar Bojovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Si Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/cond-mat?searchtype=author&query=Hilker%2C+T+A">Timon A. Hilker</a>, <a href="/search/cond-mat?searchtype=author&query=Grusdt%2C+F">Fabian Grusdt</a>, <a href="/search/cond-mat?searchtype=author&query=Bohrdt%2C+A">Annabelle Bohrdt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02551v2-abstract-short" style="display: inline;"> The simulation of high-temperature superconducting materials by implementing strongly correlated fermionic models in optical lattices is one of the major objectives in the field of analog quantum simulation. Here we show that local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox to study fundamental properties of both nickelate and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02551v2-abstract-full').style.display = 'inline'; document.getElementById('2406.02551v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02551v2-abstract-full" style="display: none;"> The simulation of high-temperature superconducting materials by implementing strongly correlated fermionic models in optical lattices is one of the major objectives in the field of analog quantum simulation. Here we show that local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox to study fundamental properties of both nickelate and cuprate high-temperature superconductors. On the one hand, we present a scheme to implement a mixed-dimensional (mixD) bilayer model that has been proposed to capture the essential pairing physics of pressurized bilayer nickelates. This allows for the long-sought realization of a state with long-range superconducting order in current lattice quantum simulation machines. In particular, we show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis. On the other hand, we demonstrate that control of local gates enables the observation of $d$-wave pairing order in the two-dimensional (single-layer) repulsive Fermi-Hubbard model through the simulation of a system with attractive interactions. Lastly, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments -- which is of particular interest for future studies of the enigmatic pseudogap phase appearing in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02551v2-abstract-full').style.display = 'none'; document.getElementById('2406.02551v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19322">arXiv:2405.19322</a> <span> [<a href="https://arxiv.org/pdf/2405.19322">pdf</a>, <a href="https://arxiv.org/format/2405.19322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Optical superlattice for engineering Hubbard couplings in quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chalopin%2C+T">Thomas Chalopin</a>, <a href="/search/cond-mat?searchtype=author&query=Bojovi%C4%87%2C+P">Petar Bojovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Bourgund%2C+D">Dominik Bourgund</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Si Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/cond-mat?searchtype=author&query=Hilker%2C+T">Timon Hilker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19322v1-abstract-short" style="display: inline;"> Quantum simulations of Hubbard models with ultracold atoms rely on the exceptional control of coherent motion provided by optical lattices. Here we demonstrate enhanced tunability using an optical superlattice in a fermionic quantum gas microscope. With our phase-stable bichromatic design, we achieve a precise control of tunneling and tilt throughout the lattice, as evidenced by long-lived coheren… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19322v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19322v1-abstract-full" style="display: none;"> Quantum simulations of Hubbard models with ultracold atoms rely on the exceptional control of coherent motion provided by optical lattices. Here we demonstrate enhanced tunability using an optical superlattice in a fermionic quantum gas microscope. With our phase-stable bichromatic design, we achieve a precise control of tunneling and tilt throughout the lattice, as evidenced by long-lived coherent double-well oscillations and next-nearest-neighbor quantum walks in a staggered configuration. We furthermore present correlated quantum walks of two particles initiated through a resonant pair-breaking mechanism. Finally, we engineer tunable spin couplings through local offsets and create a spin ladder with ferromagnetic and antiferromagnetic couplings along the rungs and legs, respectively. Our work underscores the high potential of optical superlattices for engineering, simulating, and detecting strongly correlated many-body quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19322v1-abstract-full').style.display = 'none'; document.getElementById('2405.19322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14156">arXiv:2312.14156</a> <span> [<a href="https://arxiv.org/pdf/2312.14156">pdf</a>, <a href="https://arxiv.org/format/2312.14156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Formation of stripes in a mixed-dimensional cold-atom Fermi-Hubbard system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bourgund%2C+D">Dominik Bourgund</a>, <a href="/search/cond-mat?searchtype=author&query=Chalopin%2C+T">Thomas Chalopin</a>, <a href="/search/cond-mat?searchtype=author&query=Bojovi%C4%87%2C+P">Petar Bojovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Schl%C3%B6mer%2C+H">Henning Schl枚mer</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Si Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Hirthe%2C+S">Sarah Hirthe</a>, <a href="/search/cond-mat?searchtype=author&query=Bohrdt%2C+A">Annabelle Bohrdt</a>, <a href="/search/cond-mat?searchtype=author&query=Grusdt%2C+F">Fabian Grusdt</a>, <a href="/search/cond-mat?searchtype=author&query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/cond-mat?searchtype=author&query=Hilker%2C+T+A">Timon A. Hilker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14156v1-abstract-short" style="display: inline;"> The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in cuprates. While experimentally both phases are found in close proximity, numerical studies on the related Fermi-Hubbard model have long been investigating whether stripes precede, compete or coexist with superconductivity. Such stripes are characterised by interleaved charge and spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14156v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14156v1-abstract-full" style="display: none;"> The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in cuprates. While experimentally both phases are found in close proximity, numerical studies on the related Fermi-Hubbard model have long been investigating whether stripes precede, compete or coexist with superconductivity. Such stripes are characterised by interleaved charge and spin density wave ordering where fluctuating lines of dopants separate domains of opposite antiferromagnetic order. Here we show first signatures of stripes in a cold-atom Fermi-Hubbard quantum simulator. By engineering a mixed-dimensional system, we increase their typical energy scales to the spin exchange energy, enabling us to access the interesting crossover temperature regime where stripes begin to form. We observe extended, attractive correlations between hole dopants and find an increased probability to form larger structures akin to stripes. In the spin sector, we study correlation functions up to third order and find results consistent with stripe formation. These higher-order correlation measurements pave the way towards an improved microscopic understanding of the emergent properties of stripes and their relation to other competing phases. More generally, our approach has direct relevance for newly discovered high-temperature superconducting materials in which mixed dimensions play an essential role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14156v1-abstract-full').style.display = 'none'; document.getElementById('2312.14156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11312">arXiv:2310.11312</a> <span> [<a href="https://arxiv.org/pdf/2310.11312">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/4.0000216">10.1063/4.0000216 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angle-resolved photoelectron spectroscopy in a low energy electron microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Neuhaus%2C+A">Alexander Neuhaus</a>, <a href="/search/cond-mat?searchtype=author&query=Dreher%2C+P">Pascal Dreher</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCtz%2C+F">Florian Sch眉tz</a>, <a href="/search/cond-mat?searchtype=author&query=Marchetto%2C+H">Helder Marchetto</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Torsten Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Heringdorf%2C+F+M+z">Frank-J. Meyer zu Heringdorf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11312v1-abstract-short" style="display: inline;"> Spectroscopic photoemission microscopy is a well-established method to investigate the electronic structure of surfaces. In modern photoemission microscopes the electron optics allows imaging of the image plane, momentum plane, or dispersive plane, depending on the lens setting. Furthermore, apertures allow filtering of energy-, real-, and momentum space. Here, we describe how a standard spectrosc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11312v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11312v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11312v1-abstract-full" style="display: none;"> Spectroscopic photoemission microscopy is a well-established method to investigate the electronic structure of surfaces. In modern photoemission microscopes the electron optics allows imaging of the image plane, momentum plane, or dispersive plane, depending on the lens setting. Furthermore, apertures allow filtering of energy-, real-, and momentum space. Here, we describe how a standard spectroscopic and low energy electron microscope can be equipped with an additional slit at the entrance of the already present hemispherical analyzer to enable an angle- and energy resolved photoemission mode with micrometer spatial selectivity. We apply a photogrammetric calibration to correct for image distortions of the projective system behind the analyzer and present spectra recorded on Au(111) as a benchmark. Our approach makes data acquisition in energy-momentum space more efficient, which is a necessity for laser-based pump-probe photoemission microscopy with femtosecond time resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11312v1-abstract-full').style.display = 'none'; document.getElementById('2310.11312v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript has been peer-reviewed and is currently undergoing revision</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Struct. Dyn. 10, 064304 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14474">arXiv:2207.14474</a> <span> [<a href="https://arxiv.org/pdf/2207.14474">pdf</a>, <a href="https://arxiv.org/format/2207.14474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134212">10.1103/PhysRevB.106.134212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pair localization in dipolar systems with tunable positional disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Braemer%2C+A">Adrian Braemer</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rttner%2C+M">Martin G盲rttner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14474v2-abstract-short" style="display: inline;"> Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered usi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14474v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14474v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14474v2-abstract-full" style="display: none;"> Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade effect,we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings, arising from power-law interactions between randomly positioned spins. Using established spectral and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive physical picture consistent with our numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14474v2-abstract-full').style.display = 'none'; document.getElementById('2207.14474v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 main figures, 1 supplementary figure, close to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 134212 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14216">arXiv:2207.14216</a> <span> [<a href="https://arxiv.org/pdf/2207.14216">pdf</a>, <a href="https://arxiv.org/format/2207.14216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent pair localization in a many-body quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&query=Braemer%2C+A">Adrian Braemer</a>, <a href="/search/cond-mat?searchtype=author&query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&query=Signoles%2C+A">Adrien Signoles</a>, <a href="/search/cond-mat?searchtype=author&query=Thaicharoen%2C+N">Nithiwadee Thaicharoen</a>, <a href="/search/cond-mat?searchtype=author&query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&query=Salzinger%2C+A">Andr茅 Salzinger</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rttner%2C+M">Martin G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14216v2-abstract-short" style="display: inline;"> Understanding how closed quantum systems dynamically approach thermal equilibrium presents a major unresolved problem in statistical physics. Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis. However, in the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14216v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14216v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14216v2-abstract-full" style="display: none;"> Understanding how closed quantum systems dynamically approach thermal equilibrium presents a major unresolved problem in statistical physics. Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis. However, in the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales, as in spin glasses or many-body localized systems. In general, particularly in long-range interacting quantum systems, the specific nature of the disorder necessary for the emergence of a prethermal, metastable state--distinctly separating the timescales of initial relaxation and subsequent slow thermalization--remains an open question. We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator. We observe a drastic change in the late-time magnetization when increasing disorder strength. The data is well described by models based on pairs of strongly interacting spins, which are treated as thermal for weak disorder and isolated for strong disorder. Our results indicate a crossover into a pair-localized prethermal regime in a closed quantum system of thousands of spins in the critical case where the exponent of the power law interaction matches the spatial dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14216v2-abstract-full').style.display = 'none'; document.getElementById('2207.14216v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09590">arXiv:2201.09590</a> <span> [<a href="https://arxiv.org/pdf/2201.09590">pdf</a>, <a href="https://arxiv.org/format/2201.09590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.123201">10.1103/PhysRevLett.131.123201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Many-Body Dynamics in an Ultracold Rydberg-Excited Atomic Mott Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bharti%2C+V">V. Bharti</a>, <a href="/search/cond-mat?searchtype=author&query=Sugawa%2C+S">S. Sugawa</a>, <a href="/search/cond-mat?searchtype=author&query=Mizoguchi%2C+M">M. Mizoguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Kunimi%2C+M">M. Kunimi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=de+L%C3%A9s%C3%A9leuc%2C+S">S. de L茅s茅leuc</a>, <a href="/search/cond-mat?searchtype=author&query=Tomita%2C+T">T. Tomita</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Ohmori%2C+K">K. Ohmori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09590v1-abstract-short" style="display: inline;"> We report the observation and control of ultrafast non-equilibrium many-body electron dynamics in Rydberg-excited spatially-ordered ultracold atoms created from a three-dimensional unity-filling atomic Mott insulator. By implementing time-domain Ramsey interferometry with attosecond precision in our Rydberg atomic system, we observe picosecond-scale ultrafast many-body dynamics that is essentially… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09590v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09590v1-abstract-full" style="display: none;"> We report the observation and control of ultrafast non-equilibrium many-body electron dynamics in Rydberg-excited spatially-ordered ultracold atoms created from a three-dimensional unity-filling atomic Mott insulator. By implementing time-domain Ramsey interferometry with attosecond precision in our Rydberg atomic system, we observe picosecond-scale ultrafast many-body dynamics that is essentially governed by the emergence and evolution of many-body correlations between long-range interacting atoms in an optical lattice. We analyze our observations with different theoretical approaches and find that quantum fluctuations have to be included beyond semi-classical descriptions to describe the observed dynamics. Our Rydberg lattice platform combined with an ultrafast approach, which is robust against environmental noises, opens the door for simulating strongly-correlated electron dynamics by long-range van der Waals interaction and resonant dipole-dipole interaction to the charge-overlapping regime in synthetic ultracold atomic crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09590v1-abstract-full').style.display = 'none'; document.getElementById('2201.09590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 123201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.14459">arXiv:2107.14459</a> <span> [<a href="https://arxiv.org/pdf/2107.14459">pdf</a>, <a href="https://arxiv.org/format/2107.14459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.020303">10.1103/PRXQuantum.3.020303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave-engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Scholl%2C+P">P. Scholl</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+H+J">H. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Bornet%2C+G">G. Bornet</a>, <a href="/search/cond-mat?searchtype=author&query=Wallner%2C+F">F. Wallner</a>, <a href="/search/cond-mat?searchtype=author&query=Barredo%2C+D">D. Barredo</a>, <a href="/search/cond-mat?searchtype=author&query=Lahaye%2C+T">T. Lahaye</a>, <a href="/search/cond-mat?searchtype=author&query=Browaeys%2C+A">A. Browaeys</a>, <a href="/search/cond-mat?searchtype=author&query=Henriet%2C+L">L. Henriet</a>, <a href="/search/cond-mat?searchtype=author&query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&query=Hainaut%2C+C">C. Hainaut</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Geier%2C+S">S. Geier</a>, <a href="/search/cond-mat?searchtype=author&query=Tebben%2C+A">A. Tebben</a>, <a href="/search/cond-mat?searchtype=author&query=Salzinger%2C+A">A. Salzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">G. Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.14459v2-abstract-short" style="display: inline;"> We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics, such as the implementation of the Heisenberg model in square arrays, and the study of spin transport in 1D. We fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14459v2-abstract-full').style.display = 'inline'; document.getElementById('2107.14459v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.14459v2-abstract-full" style="display: none;"> We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics, such as the implementation of the Heisenberg model in square arrays, and the study of spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms, and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvements. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens exciting prospects in the field of quantum simulation, quantum information processing and quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14459v2-abstract-full').style.display = 'none'; document.getElementById('2107.14459v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 main figures, 2 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X Quantum vol. 3, p. 020303 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13314">arXiv:2107.13314</a> <span> [<a href="https://arxiv.org/pdf/2107.13314">pdf</a>, <a href="https://arxiv.org/format/2107.13314">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L100201">10.1103/PhysRevB.105.L100201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semiclassical simulations predict glassy dynamics for disordered Heisenberg models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schultzen%2C+P">Philipp Schultzen</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rttner%2C+M">Martin G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13314v1-abstract-short" style="display: inline;"> We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13314v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13314v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13314v1-abstract-full" style="display: none;"> We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r^6$ power-law interactions and positional disorder. Using the semi-classical discrete truncated Wigner approximation (dTWA) method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian. Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and integrability of the Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13314v1-abstract-full').style.display = 'none'; document.getElementById('2107.13314v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01597">arXiv:2105.01597</a> <span> [<a href="https://arxiv.org/pdf/2105.01597">pdf</a>, <a href="https://arxiv.org/format/2105.01597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd9547">10.1126/science.abd9547 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Hamiltonian Engineering of an Isolated Many-Body Spin System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&query=Thaicharoen%2C+N">Nithiwadee Thaicharoen</a>, <a href="/search/cond-mat?searchtype=author&query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&query=Grimshandl%2C+D">David Grimshandl</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01597v1-abstract-short" style="display: inline;"> Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiting vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01597v1-abstract-full').style.display = 'inline'; document.getElementById('2105.01597v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01597v1-abstract-full" style="display: none;"> Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiting vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. Applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semi-classical simulation. Synthesising a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of non-equilibrium dynamics in a single experimental setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01597v1-abstract-full').style.display = 'none'; document.getElementById('2105.01597v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00349">arXiv:2104.00349</a> <span> [<a href="https://arxiv.org/pdf/2104.00349">pdf</a>, <a href="https://arxiv.org/format/2104.00349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L020201">10.1103/PhysRevB.105.L020201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glassy quantum dynamics of disordered Ising spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schultzen%2C+P">Philipp Schultzen</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Geier%2C+S">Sebastian Geier</a>, <a href="/search/cond-mat?searchtype=author&query=Salzinger%2C+A">Andre Salzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tebben%2C+A">Annika Tebben</a>, <a href="/search/cond-mat?searchtype=author&query=Hainaut%2C+C">Cl茅ment Hainaut</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">Gerhard Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rttner%2C+M">Martin G盲rttner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00349v2-abstract-short" style="display: inline;"> We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $伪\geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $尾= d/伪$ in the thermodynamic limit. Numerically, we confirm that glassy behav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00349v2-abstract-full').style.display = 'inline'; document.getElementById('2104.00349v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00349v2-abstract-full" style="display: none;"> We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $伪\geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $尾= d/伪$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00349v2-abstract-full').style.display = 'none'; document.getElementById('2104.00349v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11959">arXiv:1909.11959</a> <span> [<a href="https://arxiv.org/pdf/1909.11959">pdf</a>, <a href="https://arxiv.org/format/1909.11959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.011011">10.1103/PhysRevX.11.011011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glassy dynamics in a disordered Heisenberg quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Signoles%2C+A">A. Signoles</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">T. Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Alves%2C+R+F">R. Ferracini Alves</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A4rttner%2C+M">M. G盲rttner</a>, <a href="/search/cond-mat?searchtype=author&query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/cond-mat?searchtype=author&query=Z%C3%BCrn%2C+G">G. Z眉rn</a>, <a href="/search/cond-mat?searchtype=author&query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11959v3-abstract-short" style="display: inline;"> Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11959v3-abstract-full').style.display = 'inline'; document.getElementById('1909.11959v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11959v3-abstract-full" style="display: none;"> Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11959v3-abstract-full').style.display = 'none'; document.getElementById('1909.11959v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 011011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.06679">arXiv:1806.06679</a> <span> [<a href="https://arxiv.org/pdf/1806.06679">pdf</a>, <a href="https://arxiv.org/format/1806.06679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-018-0605-1">10.1038/s41586-018-0605-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Space-borne Bose-Einstein condensation for precision interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Becker%2C+D">Dennis Becker</a>, <a href="/search/cond-mat?searchtype=author&query=Lachmann%2C+M+D">Maike D. Lachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Seidel%2C+S+T">Stephan T. Seidel</a>, <a href="/search/cond-mat?searchtype=author&query=Ahlers%2C+H">Holger Ahlers</a>, <a href="/search/cond-mat?searchtype=author&query=Dinkelaker%2C+A+N">Aline N. Dinkelaker</a>, <a href="/search/cond-mat?searchtype=author&query=Grosse%2C+J">Jens Grosse</a>, <a href="/search/cond-mat?searchtype=author&query=Hellmig%2C+O">Ortwin Hellmig</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%BCntinga%2C+H">Hauke M眉ntinga</a>, <a href="/search/cond-mat?searchtype=author&query=Schkolnik%2C+V">Vladimir Schkolnik</a>, <a href="/search/cond-mat?searchtype=author&query=Wendrich%2C+T">Thijs Wendrich</a>, <a href="/search/cond-mat?searchtype=author&query=Wenzlawski%2C+A">Andr茅 Wenzlawski</a>, <a href="/search/cond-mat?searchtype=author&query=Weps%2C+B">Benjamin Weps</a>, <a href="/search/cond-mat?searchtype=author&query=Corgier%2C+R">Robin Corgier</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%BCdtke%2C+D">Daniel L眉dtke</a>, <a href="/search/cond-mat?searchtype=author&query=Franz%2C+T">Tobias Franz</a>, <a href="/search/cond-mat?searchtype=author&query=Gaaloul%2C+N">Naceur Gaaloul</a>, <a href="/search/cond-mat?searchtype=author&query=Herr%2C+W">Waldemar Herr</a>, <a href="/search/cond-mat?searchtype=author&query=Popp%2C+M">Manuel Popp</a>, <a href="/search/cond-mat?searchtype=author&query=Amri%2C+S">Sirine Amri</a>, <a href="/search/cond-mat?searchtype=author&query=Duncker%2C+H">Hannes Duncker</a>, <a href="/search/cond-mat?searchtype=author&query=Erbe%2C+M">Maik Erbe</a>, <a href="/search/cond-mat?searchtype=author&query=Kohfeldt%2C+A">Anja Kohfeldt</a>, <a href="/search/cond-mat?searchtype=author&query=Kubelka-Lange%2C+A">Andr茅 Kubelka-Lange</a>, <a href="/search/cond-mat?searchtype=author&query=Braxmaier%2C+C">Claus Braxmaier</a>, <a href="/search/cond-mat?searchtype=author&query=Charron%2C+E">Eric Charron</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.06679v1-abstract-short" style="display: inline;"> Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06679v1-abstract-full').style.display = 'inline'; document.getElementById('1806.06679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.06679v1-abstract-full" style="display: none;"> Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interferometry employing Bragg scattering of BECs during the six-minute space flight. In this letter, we focus on the phase transition and the collective dynamics of BECs, whose impact is magnified by the extended free-fall time. Our experiments demonstrate a high reproducibility of the manipulation of BECs on the atom chip reflecting the exquisite control features and the robustness of our experiment. These properties are crucial to novel protocols for creating quantum matter with designed collective excitations at the lowest kinetic energy scales close to femtokelvins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06679v1-abstract-full').style.display = 'none'; document.getElementById('1806.06679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>