CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–9 of 9 results for author: <span class="mathjax">Zantout, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Zantout%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zantout, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zantout%2C+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zantout, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00962">arXiv:2410.00962</a> <span> [<a href="https://arxiv.org/pdf/2410.00962">pdf</a>, <a href="https://arxiv.org/format/2410.00962">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Multi-orbital two-particle self-consistent approach -- strengths and limitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Profe%2C+J+B">Jonas B. Profe</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+J">Jiawei Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00962v4-abstract-short" style="display: inline;"> Extending many-body numerical techniques which are powerful in the context of simple model calculations to the realm of realistic material simulations can be a challenging task. Realistic systems often involve multiple active orbitals, which increases the complexity and numerical cost because of the large local Hilbert space and the large number of interaction terms or sign-changing off-diagonal G… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00962v4-abstract-full').style.display = 'inline'; document.getElementById('2410.00962v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00962v4-abstract-full" style="display: none;"> Extending many-body numerical techniques which are powerful in the context of simple model calculations to the realm of realistic material simulations can be a challenging task. Realistic systems often involve multiple active orbitals, which increases the complexity and numerical cost because of the large local Hilbert space and the large number of interaction terms or sign-changing off-diagonal Green's functions. The two-particle self-consistent approach (TPSC) is one such many-body numerical technique, for which multi-orbital extensions have proven to be involved due to the substantially more complex structure of the local interaction tensor. In this paper we extend earlier multi-orbital generalizations of TPSC by setting up two different variants of a fully self-consistent theory for TPSC in multi-orbital systems. We first investigate the strengths and limitations of the approach analytically and then benchmark both variants against dynamical mean-field theory (DMFT) and D-TRILEX results. We find that the exact behavior of the system can be faithfully reproduced in the weak-coupling regime, while at stronger couplings the performance of the two TPSC variants strongly depends on details of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00962v4-abstract-full').style.display = 'none'; document.getElementById('2410.00962v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01400">arXiv:2211.01400</a> <span> [<a href="https://arxiv.org/pdf/2211.01400">pdf</a>, <a href="https://arxiv.org/format/2211.01400">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.235101">10.1103/PhysRevB.107.235101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved effective vertices in the multi-orbital Two-Particle Self-Consistent method from Dynamical Mean-Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Backes%2C+S">Steffen Backes</a>, <a href="/search/cond-mat?searchtype=author&query=Razpopov%2C+A">Aleksandar Razpopov</a>, <a href="/search/cond-mat?searchtype=author&query=Lessnich%2C+D">Dominik Lessnich</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01400v2-abstract-short" style="display: inline;"> In this work we present a multi-orbital form of the Two-Particle Self-Consistent approach (TPSC), here the effective local and static irreducible interaction vertices are determined by means of the Dynamical Mean-Field Theory (DMFT). This approach replaces the approximate ansatz equations for the double occupations $\langle n^{}_{伪,蟽}n^{}_{尾,蟽'}\rangle$ by sampling them directly for the same model… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01400v2-abstract-full').style.display = 'inline'; document.getElementById('2211.01400v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01400v2-abstract-full" style="display: none;"> In this work we present a multi-orbital form of the Two-Particle Self-Consistent approach (TPSC), here the effective local and static irreducible interaction vertices are determined by means of the Dynamical Mean-Field Theory (DMFT). This approach replaces the approximate ansatz equations for the double occupations $\langle n^{}_{伪,蟽}n^{}_{尾,蟽'}\rangle$ by sampling them directly for the same model using DMFT. Compared to the usual Hartree-Fock like ansatz, this leads to more accurate local vertices in the weakly correlated regime, and provides access to stronger correlated systems that were previously out of reach. This approach is extended by replacing the local component of the TPSC self-energy by the DMFT impurity self-energy, which results in an improved self-energy that incorporates strong local correlations but retains a non-trivial momentum-dependence. We find that this combination of TPSC and DMFT provides a significant improvement over the multi-orbital formulation of multi-orbital TPSC, as it allows to determine the components of the spin vertex without artificial symmetry assumptions, and opens the possibility to include the transversal particle-hole channel. The new approach is also able to remove unphysical divergences in the charge vertices in TPSC. We find a general trend that lower temperatures can be accessed in the calculation. Benchmarking single-particle quantities such as the local spectral function with other many-body methods we find significant improvement in the more strongly correlated regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01400v2-abstract-full').style.display = 'none'; document.getElementById('2211.01400v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 235101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08098">arXiv:2008.08098</a> <span> [<a href="https://arxiv.org/pdf/2008.08098">pdf</a>, <a href="https://arxiv.org/format/2008.08098">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.202000399">10.1002/andp.202000399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Particle Self-Consistent method for the multi-orbital Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Backes%2C+S">Steffen Backes</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08098v3-abstract-short" style="display: inline;"> One of the most challenging problems in solid state systems is the microscopic analysis of electronic correlations. A paramount minimal model that encodes correlation effects is the Hubbard Hamiltonian, which -- albeit its simplicity -- is exactly solvable only in a few limiting cases and approximate many-body methods are required for its solution. In this review we present an overview on the non-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08098v3-abstract-full').style.display = 'inline'; document.getElementById('2008.08098v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08098v3-abstract-full" style="display: none;"> One of the most challenging problems in solid state systems is the microscopic analysis of electronic correlations. A paramount minimal model that encodes correlation effects is the Hubbard Hamiltonian, which -- albeit its simplicity -- is exactly solvable only in a few limiting cases and approximate many-body methods are required for its solution. In this review we present an overview on the non-perturbative Two-Particle Self-Consistent method (TPSC) which was originally introduced to describe the electronic properties of the single-band Hubbard model. We introduce here a detailed derivation of the multi-orbital generalization of TPSC and discuss particular features of the method on exemplary interacting models in comparison to dynamical mean-field theory results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08098v3-abstract-full').style.display = 'none'; document.getElementById('2008.08098v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ANNALEN DER PHYSIK (2021) 2000399 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01638">arXiv:2003.01638</a> <span> [<a href="https://arxiv.org/pdf/2003.01638">pdf</a>, <a href="https://arxiv.org/format/2003.01638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.035109">10.1103/PhysRevB.102.035109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local correlations in Iron Pnictides and Chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bhattacharyya%2C+S">Shinibali Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&query=Bj%C3%B6rnson%2C+K">Kristofer Bj枚rnson</a>, <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Steffensen%2C+D">Daniel Steffensen</a>, <a href="/search/cond-mat?searchtype=author&query=Fanfarillo%2C+L">Laura Fanfarillo</a>, <a href="/search/cond-mat?searchtype=author&query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Hirschfeld%2C+P+J">P. J. Hirschfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01638v2-abstract-short" style="display: inline;"> Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically been described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01638v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01638v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01638v2-abstract-full" style="display: none;"> Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically been described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01638v2-abstract-full').style.display = 'none'; document.getElementById('2003.01638v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 Pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 035109 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04102">arXiv:2001.04102</a> <span> [<a href="https://arxiv.org/pdf/2001.04102">pdf</a>, <a href="https://arxiv.org/format/2001.04102">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-020-00277-3">10.1038/s41535-020-00277-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deconfinement of Mott Localized Electrons into Topological and Spin-Orbit Coupled Dirac Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pizarro%2C+J+M">Jos茅 M. Pizarro</a>, <a href="/search/cond-mat?searchtype=author&query=Adler%2C+S">Severino Adler</a>, <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Mertz%2C+T">Thomas Mertz</a>, <a href="/search/cond-mat?searchtype=author&query=Barone%2C+P">Paolo Barone</a>, <a href="/search/cond-mat?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&query=Sangiovanni%2C+G">Giorgio Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&query=Wehling%2C+T+O">Tim O. Wehling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04102v2-abstract-short" style="display: inline;"> The interplay of electronic correlations, spin-orbit coupling and topology holds promise for the realization of exotic states of quantum matter. Models of strongly interacting electrons on honeycomb lattices have revealed rich phase diagrams featuring unconventional quantum states including chiral superconductivity and correlated quantum spin Hall insulators intertwining with complex magnetic orde… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04102v2-abstract-full').style.display = 'inline'; document.getElementById('2001.04102v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04102v2-abstract-full" style="display: none;"> The interplay of electronic correlations, spin-orbit coupling and topology holds promise for the realization of exotic states of quantum matter. Models of strongly interacting electrons on honeycomb lattices have revealed rich phase diagrams featuring unconventional quantum states including chiral superconductivity and correlated quantum spin Hall insulators intertwining with complex magnetic order. Material realizations of these electronic states are however scarce or inexistent. In this work, we propose and show that stacking 1T-TaSe$_{2}$ into bilayers can deconfine electrons from a deep Mott insulating state in the monolayer to a system of correlated Dirac fermions subject to sizable spin-orbit coupling in the bilayer. 1T-TaSe$_{2}$ develops a Star-of-David (SoD) charge density wave pattern in each layer. When the SoD centers belonging to two adyacent layers are stacked in a honeycomb pattern, the system realizes a generalized Kane-Mele-Hubbard model in a regime where Dirac semimetallic states are subject to significant Mott-Hubbard interactions and spin-orbit coupling. At charge neutrality, the system is close to a quantum phase transition between a quantum spin Hall and an antiferromagnetic insulator. We identify a perpendicular electric field and the twisting angle as two knobs to control topology and spin-orbit coupling in the system. Their combination can drive it across hitherto unexplored grounds of correlated electron physics including a quantum tricritical point and an exotic first-order topological phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04102v2-abstract-full').style.display = 'none'; document.getElementById('2001.04102v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, Supplemental Material with 6 pages and 4 figures, hopping data files included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials, 5:79 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11853">arXiv:1906.11853</a> <span> [<a href="https://arxiv.org/pdf/1906.11853">pdf</a>, <a href="https://arxiv.org/format/1906.11853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.256401">10.1103/PhysRevLett.123.256401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of non-local correlations on the electronic structure of LiFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Backes%2C+S">Steffen Backes</a>, <a href="/search/cond-mat?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11853v3-abstract-short" style="display: inline;"> We investigate the role of non-local correlations in LiFeAs by exploring an ab-initio-derived multi-orbital Hubbard model for LiFeAs via the Two-Particle Self-Consistent (TPSC) approach. The multi-orbital formulation of TPSC approximates the irreducible interaction vertex to be an orbital-dependent constant, which is self-consistently determined from local spin and charge sum rules. Within this ap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11853v3-abstract-full').style.display = 'inline'; document.getElementById('1906.11853v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11853v3-abstract-full" style="display: none;"> We investigate the role of non-local correlations in LiFeAs by exploring an ab-initio-derived multi-orbital Hubbard model for LiFeAs via the Two-Particle Self-Consistent (TPSC) approach. The multi-orbital formulation of TPSC approximates the irreducible interaction vertex to be an orbital-dependent constant, which is self-consistently determined from local spin and charge sum rules. Within this approach, we disentangle the contribution of local and non-local correlations in LiFeAs and show that in the local approximation one recovers the dynamical-mean field theory (DMFT) result. The comparison of our theoretical results to most recent angular-resolved photoemission spectroscopy (ARPES) and de-Haas van Alphen (dHvA) data shows that non-local correlations in LiFeAs are decisive to describe the measured spectral function $A(\vec k,蠅)$, Fermi surface and scattering rates. These findings underline the importance of non-local correlations and benchmark different theoretical approaches for iron-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11853v3-abstract-full').style.display = 'none'; document.getElementById('1906.11853v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+6 pages, 3+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Lett. 123 (2019) 256401 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 256401 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02218">arXiv:1905.02218</a> <span> [<a href="https://arxiv.org/pdf/1905.02218">pdf</a>, <a href="https://arxiv.org/format/1905.02218">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.125111">10.1103/PhysRevB.100.125111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical Analysis of the Chern Number in the Interacting Haldane-Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mertz%2C+T">Thomas Mertz</a>, <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02218v2-abstract-short" style="display: inline;"> In the context of many-body interacting systems described by a topological Hamiltonian, we investigate the robustness of the Chern number with respect to different sources of error in the self-energy. In particular, we analyze the importance of non-local (momentum dependent) vs. local contributions to the self-energy and show that the local self-energy provides a qualitative description of the top… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02218v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02218v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02218v2-abstract-full" style="display: none;"> In the context of many-body interacting systems described by a topological Hamiltonian, we investigate the robustness of the Chern number with respect to different sources of error in the self-energy. In particular, we analyze the importance of non-local (momentum dependent) vs. local contributions to the self-energy and show that the local self-energy provides a qualitative description of the topological phase diagrams of many-body interacting systems, whereas the explicit momentum-dependence constitutes a correction to the exact location of the phase transition. For the latter, we propose a statistical analysis, on the basis of which we develop a stochastic upper bound for the uncertainty of the Chern number as a function of the amount of momentum-dependence of the self-energy. We apply this analysis to the Haldane-Hubbard model and discuss the implications of our results for a general class of many-body interacting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02218v2-abstract-full').style.display = 'none'; document.getElementById('1905.02218v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 125111 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.09645">arXiv:1806.09645</a> <span> [<a href="https://arxiv.org/pdf/1806.09645">pdf</a>, <a href="https://arxiv.org/format/1806.09645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.235105">10.1103/PhysRevB.98.235105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Energy Dispersion in the Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mertz%2C+T">Thomas Mertz</a>, <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.09645v1-abstract-short" style="display: inline;"> We introduce the concept of self-energy dispersion as an error bound on local theories and apply it to the two-dimensional Hubbard model on the square lattice at half-filling. Since the self-energy has no single-particle analog and is not directly measurable in experiments, its general behavior as a function of momentum is an open question. In this article we benchmark the momentum dependence with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09645v1-abstract-full').style.display = 'inline'; document.getElementById('1806.09645v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.09645v1-abstract-full" style="display: none;"> We introduce the concept of self-energy dispersion as an error bound on local theories and apply it to the two-dimensional Hubbard model on the square lattice at half-filling. Since the self-energy has no single-particle analog and is not directly measurable in experiments, its general behavior as a function of momentum is an open question. In this article we benchmark the momentum dependence with the Two-Particle Self-Consistent approach together with analytical and numerical considerations and we show that through the addition of a local single-particle potential to the Hubbard model the self-energy can be flattened, such that it is essentially described by only a frequency-dependent term. We use this observation to motivate that local theories, such as the dynamical mean-field theory, should be expected to give very accurate results in the presence of a potential of this kind. Finally, we propose a simple energy argument as an estimator for the crossover from non-local to local self-energies, which can be computed even by local theories such as dynamical mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09645v1-abstract-full').style.display = 'none'; document.getElementById('1806.09645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 235105 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.09630">arXiv:1711.09630</a> <span> [<a href="https://arxiv.org/pdf/1711.09630">pdf</a>, <a href="https://arxiv.org/format/1711.09630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.014530">10.1103/PhysRevB.97.014530 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in correlated BEDT-TTF molecular conductors: critical temperatures and gap symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zantout%2C+K">Karim Zantout</a>, <a href="/search/cond-mat?searchtype=author&query=Altmeyer%2C+M">Michaela Altmeyer</a>, <a href="/search/cond-mat?searchtype=author&query=Backes%2C+S">Steffen Backes</a>, <a href="/search/cond-mat?searchtype=author&query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.09630v2-abstract-short" style="display: inline;"> Starting from an {\it ab initio}-derived two-site dimer Hubbard hamiltonian on a triangular lattice, we calculate the superconducting gap functions and critical temperatures for representative $魏$-(BEDT-TTF)$_2$X superconductors by solving the linearized Eliashberg equation using the Two-Particle Self-Consistent approach (TPSC) extended to multi-site problems. Such an extension allows for the incl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09630v2-abstract-full').style.display = 'inline'; document.getElementById('1711.09630v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.09630v2-abstract-full" style="display: none;"> Starting from an {\it ab initio}-derived two-site dimer Hubbard hamiltonian on a triangular lattice, we calculate the superconducting gap functions and critical temperatures for representative $魏$-(BEDT-TTF)$_2$X superconductors by solving the linearized Eliashberg equation using the Two-Particle Self-Consistent approach (TPSC) extended to multi-site problems. Such an extension allows for the inclusion of molecule degrees of freedom in the description of these systems. We present both, benchmarking results for the half-filled dimer model as well as detailed investigations for the 3/4-filled molecule model. Remarkably, we find in the latter model that the phase boundary between the two most competing gap symmetries discussed in the context of these materials -d$_{xy}$ and the recently proposed eight-node gap s+d$_{x^2-y^2}$ symmetry- is located within the regime of realistic model parameters and is especially sensitive to the degree of in-plane anisotropy in the materials as well as to the value of the on-site Hubbard repulsion. We show that these results provide a more complete and accurate description of the superconducting properties of $魏$-(BEDT-TTF)$_2$X than previous Random Phase Approximation (RPA) calculations and, in particular, we discuss predicted critical temperatures in comparison to experiments. Finally, our findings suggest that it may be even easier to experimentally switch between the two pairing symmetries as previously anticipated by invoking pressure, chemical doping or disorder effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09630v2-abstract-full').style.display = 'none'; document.getElementById('1711.09630v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 014530 (2018) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>