CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 195 results for author: <span class="mathjax">Yang, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Yang%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01298">arXiv:2412.01298</a> <span> [<a href="https://arxiv.org/pdf/2412.01298">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced solid solution hardening by off-center substitutional solute atoms in 伪-Ti </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zi-Han Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shuo Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Q">Qing-Miao Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01298v1-abstract-short" style="display: inline;"> Most recently, some substitutional solute atoms in 伪-Ti have been predicted to occupy unexpectedly the low-symmetry (LS) positions away from the high-symmetry (HS) lattice site, which was speculated to result in enhanced solid solution hardening (SSH). In the present work, the SSH induced by the LS off-center solute atom is evaluated within the framework of continuum elasticity theory, in comparis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01298v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01298v1-abstract-full" style="display: none;"> Most recently, some substitutional solute atoms in 伪-Ti have been predicted to occupy unexpectedly the low-symmetry (LS) positions away from the high-symmetry (HS) lattice site, which was speculated to result in enhanced solid solution hardening (SSH). In the present work, the SSH induced by the LS off-center solute atom is evaluated within the framework of continuum elasticity theory, in comparison with that induced by its HS lattice-site counterpart. The interaction energy and force between the solute atom and the basal/prismatic edge/screw <a> dislocations in 伪-Ti solid solution are calculated with the elastic dipole model, with which the strength increments induced by the solute atoms are evaluated with the Labusch model. We show that, in general, the LS solute atom interacts much more strongly with the dislocations than its HS counterpart does. The calculated interaction energies suggest that the LS solute atom forms atmosphere above/below the slip plane of the basal <a> dislocations but on the slip plane of the prismatic <a> dislocations regardless of the dislocation types (edge or screw). The strength increments caused by most of the LS solute atoms are more than an order of magnitude higher than those by their HS counterparts. The SSH effect induced by the LS solute atom is mainly determined by the strength of the Jahn-Teller splitting of the d-orbitals of the solute atom, dissimilar to that induced by HS solute atom where the atomic size mismatch dominates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01298v1-abstract-full').style.display = 'none'; document.getElementById('2412.01298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07774">arXiv:2411.07774</a> <span> [<a href="https://arxiv.org/pdf/2411.07774">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> API Phonons: Python Interfaces for Phonon Transport Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Quan%2C+G">Guanda Quan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Te-Huan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07774v1-abstract-short" style="display: inline;"> API Phonons is a Python software package to predict the transport dynamics of heat-carrying phonons. Using the powerful syntax of Python, this package provides modules and functions interfacing between different packages for atomistic simulations, lattice dynamics, and phonon-phonon interaction calculations including LAMMPS, Quippy, Phonopy, and ShengBTE. API Phonons enabled complex phonon calcula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07774v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07774v1-abstract-full" style="display: none;"> API Phonons is a Python software package to predict the transport dynamics of heat-carrying phonons. Using the powerful syntax of Python, this package provides modules and functions interfacing between different packages for atomistic simulations, lattice dynamics, and phonon-phonon interaction calculations including LAMMPS, Quippy, Phonopy, and ShengBTE. API Phonons enabled complex phonon calculations, including (1) extracting harmonic and anharmonic force constants from arbitrary interatomic potentials, which can be used as inputs for solving Boltzmann transport equations; (2) predicting thermal conductivity using Kubo's linear response theory, which captures both quasiparticle transport and inter-band coherent transport; and (3) modeling of ultrafast pump-probe thermal responses using a Green's function approach based on mode-resolved phonon properties for studying ballistic, hydrodynamic, and diffusive transport dynamics. The package provides a flexible, easy-to-use, and extensive platform for modeling phonon transport physics through Python programming. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07774v1-abstract-full').style.display = 'none'; document.getElementById('2411.07774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21775">arXiv:2410.21775</a> <span> [<a href="https://arxiv.org/pdf/2410.21775">pdf</a>, <a href="https://arxiv.org/format/2410.21775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Inherent circular dichroism of phonons in magnetic Weyl semimetal Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y+-">Y. -Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Steigleder%2C+M">M. Steigleder</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X+-">X. -G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T+-">T. -T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dressel%2C+M">M. Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21775v1-abstract-short" style="display: inline;"> We investigated the infrared-active phonons in ferromagnetic Weyl semimetal Co3Sn3S3 using optical spectroscopy. Below the Curie temperature (T~175~K), we observed asymmetric Fano lineshapes of phonons peaks in the optical conductivities, reflecting the presence of electron-phonon coupling (EPC). Additionally, the detected phonon signals by the polar Kerr rotation and the ellipticity spectroscopy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21775v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21775v1-abstract-full" style="display: none;"> We investigated the infrared-active phonons in ferromagnetic Weyl semimetal Co3Sn3S3 using optical spectroscopy. Below the Curie temperature (T~175~K), we observed asymmetric Fano lineshapes of phonons peaks in the optical conductivities, reflecting the presence of electron-phonon coupling (EPC). Additionally, the detected phonon signals by the polar Kerr rotation and the ellipticity spectroscopy indicate the circular dichroism (CD) of phonons. We attribute the CD of phonons to their distinct couplings with charge excitations on the tilted Weyl nodal rings in two circularly polarized channels. Our findings provide experimental evidence that, without external fields, phonons can also become circularly polarized by coupling with the electronic topology. Since the magnetic exchange splitting gradually shifts the topological bands in Co3Sn2S2, the CD of phonons exhibits significant temperature dependence, hinting at a promising approach for manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21775v1-abstract-full').style.display = 'none'; document.getElementById('2410.21775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20146">arXiv:2410.20146</a> <span> [<a href="https://arxiv.org/pdf/2410.20146">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Analytical Green's Function of Multidimensional Boltzmann Transport Equation for Modeling Hydrodynamic Second Sound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Te-Huan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20146v2-abstract-short" style="display: inline;"> Hydrodynamic second sound can be generated by heat pulses when the phonon-phonon interaction is dominantly momentum conserving, and the propagation of the temperature field becomes wavelike rather than diffusive. While the Boltzmann transport equation (BTE) has been widely applied to study phonon dynamics and thermal transport at the nanoscale, modeling the hydrodynamic transport regime remains ch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20146v2-abstract-full').style.display = 'inline'; document.getElementById('2410.20146v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20146v2-abstract-full" style="display: none;"> Hydrodynamic second sound can be generated by heat pulses when the phonon-phonon interaction is dominantly momentum conserving, and the propagation of the temperature field becomes wavelike rather than diffusive. While the Boltzmann transport equation (BTE) has been widely applied to study phonon dynamics and thermal transport at the nanoscale, modeling the hydrodynamic transport regime remains challenging. The widely used relaxation time approximation (RTA) treats all phonon interactions as resistive without considering momentum conservation, resulting in the absence of phonon hydrodynamics. Rigorously solving BTE by inverting the full scattering matrix, however, is extremely computationally demanding and has been only applied to model one-dimensional temperature variations. Here, we present an analytical Green's function formalism for solving multidimensional Boltzmann transport equation (BTE) using phonon properties from first-principles calculations. This formalism involves Callaway's scattering approximation with separate relaxation times for momentum-conserving and momentum-destroying scattering events. The Green's function captures phonon dynamics in a wide range of temperature, spatial, and temporal scales, and successfully reproduces the transition from ballistic, hydrodynamic, to diffusive transport regimes. Our method avoids the computationally demanding inversion of large scattering matrices and shows good accuracies in predicting the temperature oscillation in ultrafast pump-probe characterizations with different geometries of thermal excitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20146v2-abstract-full').style.display = 'none'; document.getElementById('2410.20146v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15382">arXiv:2410.15382</a> <span> [<a href="https://arxiv.org/pdf/2410.15382">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.3c00558">10.1021/acsami.3c00558 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The twisting dynamics of large lattice mismatch van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liao%2C+M">Mengzhou Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Silva%2C+A">Andrea Silva</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Nicolini%2C+P">Paolo Nicolini</a>, <a href="/search/cond-mat?searchtype=author&query=Claerbout%2C+V+E+P">Victor E. P. Claerbout</a>, <a href="/search/cond-mat?searchtype=author&query=Kramer%2C+D">Denis Kramer</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Polcar%2C+T">Tomas Polcar</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15382v1-abstract-short" style="display: inline;"> Van der Waals (vdW) homo-/hetero-structures are ideal systems for studying interfacial tribological properties such as structural superlubricity. Previous studies concentrated on the mechanism of translational motion in vdW interfaces. However, detailed mechanisms and general properties of the rotational motion are barely explored. Here, we combine experiments and simulations to reveal the twistin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15382v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15382v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15382v1-abstract-full" style="display: none;"> Van der Waals (vdW) homo-/hetero-structures are ideal systems for studying interfacial tribological properties such as structural superlubricity. Previous studies concentrated on the mechanism of translational motion in vdW interfaces. However, detailed mechanisms and general properties of the rotational motion are barely explored. Here, we combine experiments and simulations to reveal the twisting dynamics of the MoS$_2$/graphite heterostructure. Unlike the translational friction falling into the superlubricity regime with no twist angle dependence, the dynamic rotational resistances highly depend on twist angles. Our results show that the periodic rotational resistance force originates from structural potential energy changes during the twisting. The structural potential energy of MoS$_2$/graphite heterostructure increases monotonically from0 to 30 degrees twist angles, and the estimated relative energy barrier is (1.43 +/- 0.36) x 10 J/m. The formation of Moir茅 superstructures in the graphene layer is the key to controlling the structural potential energy of the MoS$_2$/graphene heterostructure. Our results suggest that in twisting 2D heterostructures, even if the interface sliding friction is negligible, the evolving potential energy change results in a non-vanishing rotational resistance force. The structural change of the heterostructure can be an additional pathway for energy dissipation in the rotational motion, further enhancing the rotational friction force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15382v1-abstract-full').style.display = 'none'; document.getElementById('2410.15382v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ACS Appl. Mater. Interfaces 2023, 15, 15, 19616-19623</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10992">arXiv:2410.10992</a> <span> [<a href="https://arxiv.org/pdf/2410.10992">pdf</a>, <a href="https://arxiv.org/format/2410.10992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Absence of Phonon Softening across a Charge Density Wave Transition due to Quantum Fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yubi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Kongruengkit%2C+T">Terawit Kongruengkit</a>, <a href="/search/cond-mat?searchtype=author&query=Salinas%2C+A+C">Andrea Capa Salinas</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Runqing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Quan%2C+Y">Yujie Quan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fanghao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pokharel%2C+G">Ganesh Pokharel</a>, <a href="/search/cond-mat?searchtype=author&query=Kautzsch%2C+L">Linus Kautzsch</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+S">Sai Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Harter%2C+J+W">John W. Harter</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+B">Bolin Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10992v1-abstract-short" style="display: inline;"> Kagome metals have emerged as a frontier in condensed matter physics due to their potential to host exotic quantum states. Among these, CsV3Sb5 has attracted significant attention for the unusual coexistence of charge density wave (CDW) order and superconductivity, presenting an ideal system for exploring novel electronic and phononic phenomena. The nature of CDW formation in CsV3Sb5 has sparked c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10992v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10992v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10992v1-abstract-full" style="display: none;"> Kagome metals have emerged as a frontier in condensed matter physics due to their potential to host exotic quantum states. Among these, CsV3Sb5 has attracted significant attention for the unusual coexistence of charge density wave (CDW) order and superconductivity, presenting an ideal system for exploring novel electronic and phononic phenomena. The nature of CDW formation in CsV3Sb5 has sparked considerable debate. Previous studies have suggested that the underlying mechanism driving the CDW transition in CsV3Sb5 is distinct from conventional ones, such as electron-phonon coupling and Fermi surface nesting. In this study, we examine the origin of the CDW state via ab initio finite-temperature simulations of the lattice dynamics associated with CDW structures in CsV3Sb5. Through a comparative study of CsV3Sb5 and 2H-NbSe2, we demonstrate that the experimental absence of phonon softening in CsV3Sb5 and the presence of a weakly first order transition can be attributed to quantum zero-point motion of the lattice, which leads to smearing of the CDW landscape and effectively stabilizes the pristine structure even below the CDW transition temperature. We argue that this surprising behavior could cause coexistence of pristine and CDW structures across the transition and lead to a weak first-order transition. We further discuss experimental implications and use the simulation to interpret coherent phonon spectroscopy results in single crystalline CsV3Sb5. These findings not only refine our fundamental understanding of CDW transitions, but also highlight the surprising role of quantum effects in influencing macroscopic properties of relatively heavy-element materials like CsV3Sb5. Our results provide crucial insights into the formation mechanism of CDW materials that exhibit little to no phonon softening, including cuprates, aiding in the understanding of the CDW phase in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10992v1-abstract-full').style.display = 'none'; document.getElementById('2410.10992v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10201">arXiv:2410.10201</a> <span> [<a href="https://arxiv.org/pdf/2410.10201">pdf</a>, <a href="https://arxiv.org/format/2410.10201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ad7ac0">10.1088/1361-648X/ad7ac0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental progress in Eu(Al,Ga)$_4$ topological antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">Shang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shiroka%2C+T">Toni Shiroka</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">Ming Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10201v1-abstract-short" style="display: inline;"> The non-trivial magnetic and electronic phases occurring in topological magnets are often entangled, thus leading to a variety of exotic physical properties. Recently, the BaAl$_4$-type compounds have been extensively investigated to elucidate the topological features appearing in their real- and momentum spaces. In particular, the topological Hall effect and the spin textures, typical of the cent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10201v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10201v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10201v1-abstract-full" style="display: none;"> The non-trivial magnetic and electronic phases occurring in topological magnets are often entangled, thus leading to a variety of exotic physical properties. Recently, the BaAl$_4$-type compounds have been extensively investigated to elucidate the topological features appearing in their real- and momentum spaces. In particular, the topological Hall effect and the spin textures, typical of the centrosymmetric Eu(Al,Ga)$_4$ family, have stimulated extensive experimental and theoretical research. In this topical review, we discuss the latest findings regarding the Eu(Al,Ga)$_4$ topological antiferromagnets and related materials, arising from a vast array of experimental techniques. We show that Eu(Al,Ga)$_4$ represents a suitable platform to explore the interplay between lattice-, charge-, and spin degrees of freedom, and associated emergent phenomena. Finally, we address some key questions open to future investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10201v1-abstract-full').style.display = 'none'; document.getElementById('2410.10201v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 38 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 37, 013002 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16209">arXiv:2405.16209</a> <span> [<a href="https://arxiv.org/pdf/2405.16209">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Analytical photoresponses of Schottky contact MoS2 phototransistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+J">Jianyong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yumeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yizhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+Z">Zhentao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+M">Maosong Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xinhan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Khaleghi%2C+S+S+M">Seyed Saleh Mousavi Khaleghi</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+F">Fuxing Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Weida Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xuejiao Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Dan%2C+Y">Yaping Dan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16209v1-abstract-short" style="display: inline;"> High-gain photodetectors based on two-dimensional (2D) semiconductors, in particular those in photoconductive mode, have been extensively investigated in the past decade. However, the classical photoconductive theory was derived on two misplaced assumptions. In this work, we established an explicit analytical device model for Schottky contact MoS2 phototransistors that fits well with experimental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16209v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16209v1-abstract-full" style="display: none;"> High-gain photodetectors based on two-dimensional (2D) semiconductors, in particular those in photoconductive mode, have been extensively investigated in the past decade. However, the classical photoconductive theory was derived on two misplaced assumptions. In this work, we established an explicit analytical device model for Schottky contact MoS2 phototransistors that fits well with experimental data. From the fitting results, we found that the Richardson constant of the MoS2 Schottky contact is temperature dependent, indicating that the Schottky contacts for the 2D material is best described by the mixed thermionic emission and diffusion model. Based on this device model, we further established an analytical photoresponse for the few-layer MoS2 phototransistors, from which we found the voltage distribution on the two Schottky contacts and the channel, and extracted the minority carrier recombination lifetimes. The lifetimes are comparable with the values found from transient photoluminescence measurements, which therefore validates our analytical photoresponses for Schottky contact 2D semiconducting phototransistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16209v1-abstract-full').style.display = 'none'; document.getElementById('2405.16209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07464">arXiv:2405.07464</a> <span> [<a href="https://arxiv.org/pdf/2405.07464">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Atomic-scale tunable phonon transport at tailored grain boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaowang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gadre%2C+C+A">Chaitanya A. Gadre</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Runqing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+W">Wanjuan Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Bin%2C+X">Xing Bin</a>, <a href="/search/cond-mat?searchtype=author&query=Addiego%2C+C">Christopher Addiego</a>, <a href="/search/cond-mat?searchtype=author&query=Aoki%2C+T">Toshihiro Aoki</a>, <a href="/search/cond-mat?searchtype=author&query=Quan%2C+Y">Yujie Quan</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+W">Wei-Tao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C">Chaojie Du</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+M">Mingjie Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+X">Xingxu Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ong%2C+S+P">Shyue Ping Ong</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+B">Bolin Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+P">Penghui Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+X">Xiaoqing Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07464v1-abstract-short" style="display: inline;"> Manipulating thermal properties in materials has been of fundamental importance for advancing innovative technologies. Heat carriers such as phonons are impeded by breaking crystal symmetry or periodicity. Notable methods of impeding the phonon propagation include varying the density of defects, interfaces, and nanostructures, as well as changing composition. However, a robust link between the ind… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07464v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07464v1-abstract-full" style="display: none;"> Manipulating thermal properties in materials has been of fundamental importance for advancing innovative technologies. Heat carriers such as phonons are impeded by breaking crystal symmetry or periodicity. Notable methods of impeding the phonon propagation include varying the density of defects, interfaces, and nanostructures, as well as changing composition. However, a robust link between the individual nanoscale defect structures, phonon states, and macroscopic thermal conductivity is lacking. Here we reveal from nanoscale structure-phonon mechanisms on how the grain boundary (GB) tilt and twist angles fundamentally drive the changes in atom rearrangements, exotic vibrational states, and finally macroscopic heat transport at different bicrystal strontium titanate GBs using emerging atomic resolution vibrational spectroscopy. The 10 deg and 22 deg tilt GBs exhibit reduced phonon populations by 54% and 16% compared to the bulk value, respectively, consistent with measured thermal conductivities. A tiny twist angle further introduces a fine and local tunning of thermal conductivity by introducing twist induced defects periodically embedded with the tilt induced GB defects. Our results demonstrate that varying the tilt angle coarsely modifies the phonon population along entire GB while varying the twist angle incurs a finer adjustment at periodic locations on the GB. Our study offers a systematic approach to understanding and manipulating cross GB thermal transport of arbitrary GBs predictably and precisely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07464v1-abstract-full').style.display = 'none'; document.getElementById('2405.07464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05158">arXiv:2404.05158</a> <span> [<a href="https://arxiv.org/pdf/2404.05158">pdf</a>, <a href="https://arxiv.org/ps/2404.05158">ps</a>, <a href="https://arxiv.org/format/2404.05158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum and Classical Two-photon Interference of Single Photons with Ultralong Coherence Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Manman Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hanqing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+X">Xiaogang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Renfu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chengyong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05158v1-abstract-short" style="display: inline;"> Two-photon interference (TPI) is a fundamental phenomenon in quantum optics and plays a crucial role in quantum information science and technology. TPI is commonly considered as quantum interference with an upper bound of $100\%$ for both the TPI visibility and the beat visibility in contrast to its classical counterpart with a maximum visibility of $50\%$. However, this is not always the case. He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05158v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05158v1-abstract-full" style="display: none;"> Two-photon interference (TPI) is a fundamental phenomenon in quantum optics and plays a crucial role in quantum information science and technology. TPI is commonly considered as quantum interference with an upper bound of $100\%$ for both the TPI visibility and the beat visibility in contrast to its classical counterpart with a maximum visibility of $50\%$. However, this is not always the case. Here we report a simultaneous observation of quantum and classical TPI of single photons with ultralong coherence time which is longer than the photon correlation time by five orders of magnitude. We observe a TPI visibility of $94.3\%\pm 0.2\%$ but a beat visibility of $50\%$. Besides an anti-bunching central dip due to single-photon statistics, we observe two bunching side peaks in cross-correlation curves for indistinguishable photons. Using either classical wave superposition theory or quantum field approach, we derive the same expressions for the cross-correlation functions which reproduce and explain the experiments well. We conclude that quantum TPI with a stream of single photons is equivalent to classical TPI, both of which are the fourth-order interference arising from the second-order interference occurring on the time scale of photon coherence time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05158v1-abstract-full').style.display = 'none'; document.getElementById('2404.05158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12845">arXiv:2403.12845</a> <span> [<a href="https://arxiv.org/pdf/2403.12845">pdf</a>, <a href="https://arxiv.org/ps/2403.12845">ps</a>, <a href="https://arxiv.org/format/2403.12845">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.205409">10.1103/PhysRevB.109.205409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant electrode effect on tunneling magnetoresistance and electroresistance in van der Waals intrinsic multiferroic tunnel junctions using VS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zhi Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ruixia Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+C">Cheng Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wentian Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaohong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12845v2-abstract-short" style="display: inline;"> Van der Waals multiferroic tunnel junctions (vdW-MFTJs) with multiple nonvolatile resistive states are highly suitable for new physics and next-generation storage electronics. However, currently reported vdW-MFTJs are based on two types of materials, i.e., vdW ferromagnetic and ferroelectric materials, forming a multiferroic system. This undoubtedly introduces additional interfaces, increasing the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12845v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12845v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12845v2-abstract-full" style="display: none;"> Van der Waals multiferroic tunnel junctions (vdW-MFTJs) with multiple nonvolatile resistive states are highly suitable for new physics and next-generation storage electronics. However, currently reported vdW-MFTJs are based on two types of materials, i.e., vdW ferromagnetic and ferroelectric materials, forming a multiferroic system. This undoubtedly introduces additional interfaces, increasing the complexity of experimental preparation. Herein, we engineer vdW intrinsic MFTJs utilizing bilayer VS$_2$. By employing the nonequilibrium Green's function combined with density functional theory, we systematically investigate the influence of three types of electrodes (including non-vdW pure metal Ag/Au, vdW metallic 1T-MoS$_2$/2H-PtTe$_2$, and vdW ferromagnetic metallic Fe$_3$GaTe$_2$/Fe$_3$GeTe$_2$) on the electronic transport properties of VS$_2$-based intrinsic MFTJs. We demonstrate that these MFTJs manifest a giant electrode-dependent electronic transport characteristic effect. Comprehensively comparing these electrode pairs, the Fe$_3$GaTe$_2$/Fe$_3$GeTe$_2$ electrode combination exhibits optimal transport properties, the maximum TMR (TER) can reach 10949\% (69\%) and the minimum resistance-area product (RA) is 0.45 $惟$$渭$m$^{2}$, as well as the perfect spin filtering and negative differential resistance effects. More intriguingly, TMR (TER) can be further enhanced to 34000\% (380\%) by applying an external bias voltage (0.1 V), while RA can be reduced to 0.16 $惟$$渭$m$^{2}$ under the influence of biaxial stress (-3\%). Our proposed concept of designing vdW-MFTJs using intrinsic multiferroic materials points towards new avenues in experimental exploration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12845v2-abstract-full').style.display = 'none'; document.getElementById('2403.12845v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02553">arXiv:2403.02553</a> <span> [<a href="https://arxiv.org/pdf/2403.02553">pdf</a>, <a href="https://arxiv.org/format/2403.02553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Magnetocaloric Material Discovery: A Machine Learning Approach Using an Autogenerated Database by Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+J">Jiaoyue Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Runqing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Patra%2C+L">Lokanath Patra</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+B">Bolin Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02553v1-abstract-short" style="display: inline;"> Magnetic cooling based on the magnetocaloric effect is a promising solid-state refrigeration technology for a wide range of applications in different temperature ranges. Previous studies have mostly focused on near room temperature (300 K) and cryogenic temperature (< 10 K) ranges, while important applications such as hydrogen liquefaction call for efficient magnetic refrigerants for the intermedi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02553v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02553v1-abstract-full" style="display: none;"> Magnetic cooling based on the magnetocaloric effect is a promising solid-state refrigeration technology for a wide range of applications in different temperature ranges. Previous studies have mostly focused on near room temperature (300 K) and cryogenic temperature (< 10 K) ranges, while important applications such as hydrogen liquefaction call for efficient magnetic refrigerants for the intermediate temperature 10K to 100 K. For efficient use in this range, new magnetocaloric materials with matching Curie temperatures need to be discovered, while conventional experimental approaches are typically time-consuming and expensive. Here, we report a computational material discovery pipeline based on a materials database containing more than 6000 entries auto-generated by extracting reported material properties from literature using a large language model. We then use this database to train a machine learning model that can efficiently predict magnetocaloric properties of materials based on their chemical composition. We further verify the magnetocaloric properties of predicted compounds using ab initio atomistic spin dynamics simulations to close the loop for computational material discovery. Using this approach, we identify 11 new promising magnetocaloric materials for the target temperature range. Our work demonstrates the potential of combining large language models, machine learning, and ab initio simulations to efficiently discover new functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02553v1-abstract-full').style.display = 'none'; document.getElementById('2403.02553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16150">arXiv:2401.16150</a> <span> [<a href="https://arxiv.org/pdf/2401.16150">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sliding ferroelectric memories and synapses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiuzhen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+B">Biao Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yaxian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+Y">Yue Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhiheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+M">Mengze Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yalin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zitao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z">Zitian Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+C">Chenyang Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+X">Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Can Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16150v1-abstract-short" style="display: inline;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore's law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16150v1-abstract-full" style="display: none;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore's law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding its fundamental properties, functional devices based on sliding ferroelectrics, the key touchstone toward applications, remain elusive. Here, we demonstrate the rewritable, non-volatile memory devices at room-temperature utilizing a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer molybdenum disulfide. The 2D sliding ferroelectric memories (SFeMs) show superior performances with a large memory window of >8V, a high conductance ratio of above 106, a long retention time of >10 years, and a programming endurance greater than 104 cycles. Remarkably, flexible SFeMs are achieved with state-of-the-art performances competitive to their rigid counterparts and maintain their performances post bending over 103 cycles. Furthermore, synapse-specific Hebbian forms of plasticity and image recognition with a high accuracy of 97.81% are demonstrated based on flexible SFeMs. Our work demonstrates the sliding ferroelectric memories and synaptic plasticity on both rigid and flexible substrates, highlighting the great potential of sliding ferroelectrics for emerging technological applications in brain-inspired in-memory computing, edge intelligence and energy-efficient wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'none'; document.getElementById('2401.16150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05607">arXiv:2401.05607</a> <span> [<a href="https://arxiv.org/pdf/2401.05607">pdf</a>, <a href="https://arxiv.org/format/2401.05607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature Magnetic Thermal Switching by Suppressing Phonon-Magnon Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fanghao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Patra%2C+L">Lokanath Patra</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yubi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ouyang%2C+W">Wenkai Ouyang</a>, <a href="/search/cond-mat?searchtype=author&query=Sarte%2C+P">Paul Sarte</a>, <a href="/search/cond-mat?searchtype=author&query=Adajian%2C+S">Shantal Adajian</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+X">Xiangying Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Runqing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+T">Tengfei Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+B">Bolin Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05607v1-abstract-short" style="display: inline;"> Thermal switching materials, whose thermal conductivity can be controlled externally, show great potential in contemporary thermal management. Manipulating thermal transport properties through magnetic fields has been accomplished in materials that exhibit a high magnetoresistance. However, it is generally understood that the lattice thermal conductivity attributed to phonons is not significantly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05607v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05607v1-abstract-full" style="display: none;"> Thermal switching materials, whose thermal conductivity can be controlled externally, show great potential in contemporary thermal management. Manipulating thermal transport properties through magnetic fields has been accomplished in materials that exhibit a high magnetoresistance. However, it is generally understood that the lattice thermal conductivity attributed to phonons is not significantly impacted by the magnetic fields. In this study, we experimentally demonstrate the significant impact of phonon-magnon scattering on the thermal conductivity of the rare-earth metal gadolinium near room temperature, which can be controlled by a magnetic field to realize thermal switching. Using first-principles lattice dynamics and spin-lattice dynamics simulations, we attribute the observed change in phononic thermal conductivity to field-suppressed phonon-magnon scattering. This research suggests that phonon-magnon scattering in ferromagnetic materials is crucial for determining their thermal conductivity, opening the door to innovative magnetic-field-controlled thermal switching materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05607v1-abstract-full').style.display = 'none'; document.getElementById('2401.05607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04886">arXiv:2401.04886</a> <span> [<a href="https://arxiv.org/pdf/2401.04886">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhihao Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Q">Qiangqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Haoran Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04886v1-abstract-short" style="display: inline;"> More than half of the waste heat rejected into the environment has temperatures lower than 100 $^\circ C$, which accounts for nearly 85 PWh/year worldwide. Efficiently harvesting low-grade heat could be a promising step toward carbon neutrality. Recent developments of ionic thermoelectrics (i-TE) with giant thermopower have provoked intensive interest in using ions as energy and charge carriers fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04886v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04886v1-abstract-full" style="display: none;"> More than half of the waste heat rejected into the environment has temperatures lower than 100 $^\circ C$, which accounts for nearly 85 PWh/year worldwide. Efficiently harvesting low-grade heat could be a promising step toward carbon neutrality. Recent developments of ionic thermoelectrics (i-TE) with giant thermopower have provoked intensive interest in using ions as energy and charge carriers for efficient thermal energy harvesting. However, current literature primarily focuses on improving thermopower only, while the ion transport and thermodynamics affecting the efficiencies have been largely neglected. This review article clarifies the fundamentals of electrochemistry and thermodynamics for developing highly efficient i-TE devices. Two major types of i-TE devices, thermo-ionic capacitors (TIC) and thermogalvanic cells (TGC), are discussed in detail. The article analyzes the methods of enhancing ionic thermopower in the literature by taking an entropic point of view. We also derived modified thermoelectric factor Z for both TICs and TGCs that fully incorporate the dynamics of ion transport and electrochemical reactions. Recent developments of hybrid devices showing improved efficiencies, power density, and multifunctionality are reviewed. Finally, we comment on the remaining challenges and provide an outlook on future directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04886v1-abstract-full').style.display = 'none'; document.getElementById('2401.04886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This review article is accepted by ACS Energy Letters. (76 manuscript pages, 23 Figures.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15835">arXiv:2311.15835</a> <span> [<a href="https://arxiv.org/pdf/2311.15835">pdf</a>, <a href="https://arxiv.org/format/2311.15835">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface skyrmions and dual topological Hall effect in antiferromagnetic topological insulator EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Min Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xiangde Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yixiong Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+A">Ang Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yongjie Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+C">Changming Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+Y">Yong Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiang Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+D">Daifeng Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Ding Li</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yuyan Han</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y">Yaomin Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+G">Guolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jianhui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ning%2C+W">Wei Ning</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+M">Mingliang Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15835v1-abstract-short" style="display: inline;"> In this work, we synthesized single crystal of EuCd$_2$As$_2$, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below $T_N$ = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15835v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15835v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15835v1-abstract-full" style="display: none;"> In this work, we synthesized single crystal of EuCd$_2$As$_2$, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below $T_N$ = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the positive to negative and negative to positive magnetic field hysteresis branches emerges below 20~K. With magnetic force microscopy (MFM) images and numerical simulations, we attribute the dual topological Hall effect to the N茅el-type skyrmions stabilized by the interactions between topological surface states and magnetism, and the sign reversal in different hysteresis branches indicates potential coexistence of skyrmions and antiskyrmions. Our work uncovers a unique two-dimensional (2D) magnetism on the surface of intrinsic AFM TI, providing a promising platform for novel topological quantum states and AFM spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15835v1-abstract-full').style.display = 'none'; document.getElementById('2311.15835v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15834">arXiv:2311.15834</a> <span> [<a href="https://arxiv.org/pdf/2311.15834">pdf</a>, <a href="https://arxiv.org/format/2311.15834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L041113">10.1103/PhysRevB.109.L041113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-density wave transition in magnetic topological semimetal EuAl$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Le%2C+C+C">C. C. Le</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+P">P. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z+W">Z. W. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">T. Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y+M">Y. M. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J+P">J. P. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Dressel%2C+M">M. Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15834v1-abstract-short" style="display: inline;"> The interplay among topology, charge-density wave (CDW), and magnetism can give rise to a plethora of exotic quantum phenomena. Recently, a group of magnetic topological semimetals with tetragonal lattices and CDW order were found to exhibit anomalous magnetic instability, helical spin ordering, and the presence of skyrmions. However, the underlying mechanism responsible for these observations rem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15834v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15834v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15834v1-abstract-full" style="display: none;"> The interplay among topology, charge-density wave (CDW), and magnetism can give rise to a plethora of exotic quantum phenomena. Recently, a group of magnetic topological semimetals with tetragonal lattices and CDW order were found to exhibit anomalous magnetic instability, helical spin ordering, and the presence of skyrmions. However, the underlying mechanism responsible for these observations remains unclear. Here, we conducted a comprehensive investigation into the impact of CDW on the topological and magnetic properties of EuAl$_4$ using optical spectroscopy and the first-principles calculations. Through optical spectroscopy, we observed a partial gap (60~meV) on the Fermi surface and an enhanced mid-infrared absorption around 0.4~eV after the CDW transition. Magneto-optical spectroscopy and the first-principles calculations proved that, by affecting the band structure, the CDW order frustrates the antiferromagnetic interactions but strengthened the ferromagnetic ones, which can destabilize the magnetism. With lower symmetry in the CDW ordered state, carriers from the Weyl bands will mediate the anisotropic magnetic interactions promoting the formation of chiral spin textures. Conversely, without the CDW order, the counterpart EuGa$_4$ shows robust collinear antiferromagnetic order. Our findings uncover the pivotal role played by CDW order in arousing intricate magnetism in topological materials and provide valuable insights into controlling topological and magnetic properties through the manipulation of CDW orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15834v1-abstract-full').style.display = 'none'; document.getElementById('2311.15834v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16689">arXiv:2310.16689</a> <span> [<a href="https://arxiv.org/pdf/2310.16689">pdf</a>, <a href="https://arxiv.org/ps/2310.16689">ps</a>, <a href="https://arxiv.org/format/2310.16689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Critical-point anomalies in doped CeRhIn5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Roy%2C+R+M">Renjith Mathew Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+S">Sudip Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Roh%2C+S">Seulki Roh</a>, <a href="/search/cond-mat?searchtype=author&query=Shin%2C+S">Soohyeon Shin</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+T+B">Tae Beom Park</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+T">Tuson Park</a>, <a href="/search/cond-mat?searchtype=author&query=Dressel%2C+M">Martin Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16689v1-abstract-short" style="display: inline;"> The heavy-fermion compound CeRhIn$_5$ can be tuned through a quantum critical point, when In is partially replaced by Sn. This way additional charge carriers are introduced and the antiferromagnetic order is gradually suppressed to zero temperature. Here we investigate the temperature-dependent optical properties of CeRh(In$_{1-x}$Sn$_x$)$_5$ single crystals for $x = 4.4\%$, $6.9\%$ and $9.8\%$. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16689v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16689v1-abstract-full" style="display: none;"> The heavy-fermion compound CeRhIn$_5$ can be tuned through a quantum critical point, when In is partially replaced by Sn. This way additional charge carriers are introduced and the antiferromagnetic order is gradually suppressed to zero temperature. Here we investigate the temperature-dependent optical properties of CeRh(In$_{1-x}$Sn$_x$)$_5$ single crystals for $x = 4.4\%$, $6.9\%$ and $9.8\%$. With increasing Sn concentration the infrared conductivity reveals a clear enhancement of the $c$-$f$ hybridization strength. At low temperatures we observed a non-Fermi-liquid behavior in the frequency dependence of the scattering rate and effective mass in all three compounds. In addition, below a characteristic temperature $T^* \approx 10$ K, the temperature dependent resistivity $蟻(T)$ follows a $\log T$ behavior, typical for a non-Fermi liquid. The temperature-dependent magnetization also exhibits anomalous behavior below $T^*$. Our investigation reveal that below $T^*$ the system shows a pronounced non-Fermi-liquid behavior and $T^*$ monotonically increases as the quantum critical point is approached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16689v1-abstract-full').style.display = 'none'; document.getElementById('2310.16689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05335">arXiv:2310.05335</a> <span> [<a href="https://arxiv.org/pdf/2310.05335">pdf</a>, <a href="https://arxiv.org/ps/2310.05335">ps</a>, <a href="https://arxiv.org/format/2310.05335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The rotating excitons in two-dimensional materials: Valley Zeeman effect and chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yu Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xin-Jun Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jia-Pei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shao-Juan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ran-Bo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi-Qing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zi-Wu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05335v1-abstract-short" style="display: inline;"> We propose the rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left- and right-handed excitons at the +K and -K valleys, respectively. We find that angular moment… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05335v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05335v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05335v1-abstract-full" style="display: none;"> We propose the rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left- and right-handed excitons at the +K and -K valleys, respectively. We find that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g-factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many-body environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05335v1-abstract-full').style.display = 'none'; document.getElementById('2310.05335v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Welcome your comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14345">arXiv:2308.14345</a> <span> [<a href="https://arxiv.org/pdf/2308.14345">pdf</a>, <a href="https://arxiv.org/format/2308.14345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033140">10.1103/PhysRevResearch.5.033140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of disorder in the charge-density-wave state of Pd-intercalated ErTe$_3$ revealed by the electrodynamic response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Corasaniti%2C+M">M. Corasaniti</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Straquadine%2C+J+A+W">J. A. W. Straquadine</a>, <a href="/search/cond-mat?searchtype=author&query=Kapitulnik%2C+A">A. Kapitulnik</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Degiorgi%2C+L">L. Degiorgi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14345v1-abstract-short" style="display: inline;"> It is a general notion that disorder, introduced by either chemical substitution or intercalation as well as by electron-irradiation, is detrimental to the realisation of long-range charge-density-wave (CDW) order. We study the disorder-induced suppression of the in-plane CDW orders in the two-dimensional Pd-intercalated ErTe$_3$ compositions, by exploring the real part of the optical conductivity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14345v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14345v1-abstract-full" style="display: none;"> It is a general notion that disorder, introduced by either chemical substitution or intercalation as well as by electron-irradiation, is detrimental to the realisation of long-range charge-density-wave (CDW) order. We study the disorder-induced suppression of the in-plane CDW orders in the two-dimensional Pd-intercalated ErTe$_3$ compositions, by exploring the real part of the optical conductivity with light polarised along the in-plane $a$ and $c$ axes. Our findings reveal an anisotropic charge dynamics with respect to both incommensurate unidirectional CDW phases of ErTe$_3$, occurring within the $ac$-plane. The anisotropic optical response gets substantially washed out with Pd-intercalation, hand-in-hand with the suppression of both CDW orders. The spectral weight analysis though advances the scenario, for which the CDW phases evolve from a (partially) depleted Fermi surface already above their critical onset temperatures. We therefore argue that the long-range CDW orders of ErTe$_3$ tend to be progressively dwarfed by Pd-intercalation, which favours the presence of short-range CDW segments for both crystallographic directions persisting in a broad temperature ($T$) interval up to the normal state, and being suggestive of precursor effects of the CDW orders as well as possibly coexisting with superconductivity at low $T$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14345v1-abstract-full').style.display = 'none'; document.getElementById('2308.14345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033140 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14125">arXiv:2308.14125</a> <span> [<a href="https://arxiv.org/pdf/2308.14125">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202101532">10.1002/advs.202101532 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistence of Monoclinic Crystal Structure in Three-Dimensional Second-Order Topological Insulator Candidate 1T'-MoTe2 Thin Flake without Structural Phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y+H">Yan Hui Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiawei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yongchang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14125v1-abstract-short" style="display: inline;"> A van der Waals material, MoTe2 with a monoclinic 1T' crystal structure is a candidate for three-dimensional (3D) second-order topological insulators (SOTIs) hosting gapless hinge states and insulating surface states. However, due to the temperature-induced structural phase transition, the monoclinic 1T' structure of MoTe2 would be transformed into the orthorhombic Td structure as the temperature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14125v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14125v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14125v1-abstract-full" style="display: none;"> A van der Waals material, MoTe2 with a monoclinic 1T' crystal structure is a candidate for three-dimensional (3D) second-order topological insulators (SOTIs) hosting gapless hinge states and insulating surface states. However, due to the temperature-induced structural phase transition, the monoclinic 1T' structure of MoTe2 would be transformed into the orthorhombic Td structure as the temperature is lowered, which hinders the experimental verification and the electronic applications of the predicted SOTI state at low temperatures. Here, we present systematic Raman spectroscopy studies of the exfoliated MoTe2 thin flakes with variable thicknesses at different temperatures. As a spectroscopic signature of the orthorhombic Td structure of MoTe2, the out-of-plane vibration mode D at ~ 125 cm-1 is always visible below a certain temperature in the multilayer flakes thicker than ~ 27.7 nm, but vanishes in the temperature range from 80 K to 320 K when the flake thickness becomes lower than ~ 19.5 nm. The absence of the out-of-plane vibration mode D in the Raman spectra here demonstrates not only the disappearance of the monoclinic-to-orthorhombic phase transition but also the persistence of the monoclinic 1T' structure in the MoTe2 thin flakes thinner than ~ 19.5 nm at low temperatures down to 80 K, which may be caused by the high enough density of the holes introduced during the gold-enhanced exfoliation process and exposure to air. The MoTe2 thin flakes with the low-temperature monoclinic 1T' structure provide a material platform for realizing SOTI states in van der Waals materials at low temperatures, which paves the way for developing a new generation of electronic devices based on SOTIs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14125v1-abstract-full').style.display = 'none'; document.getElementById('2308.14125v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Science 9, 2101532 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12821">arXiv:2306.12821</a> <span> [<a href="https://arxiv.org/pdf/2306.12821">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.235420">10.1103/PhysRevB.107.235420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum matching and band-alignment type in van der Waals heterostructures: Interfacial effects and materials screening </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yue-Jiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yin-Ti Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+X">Xiao-Huan Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+X">Xiao-Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Nie-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+C">Chen-Dong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+R">Ru-Qian Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+P">Peng-Lai Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui-Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiang-Long Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xing-Qiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12821v1-abstract-short" style="display: inline;"> Momentum-matched type II van der Waals heterostructures (vdWHs) have been designed by assembling layered two-dimensional semiconductors (2DSs) with special band-structure combinations - that is, the valence band edge at the Gamma point (the Brillouin-zone center) for one 2DS and the conduction band edge at the Gamma point for the other [Ubrig et al., Nat. Mater. 19, 299 (2020)]. However, the band… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12821v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12821v1-abstract-full" style="display: none;"> Momentum-matched type II van der Waals heterostructures (vdWHs) have been designed by assembling layered two-dimensional semiconductors (2DSs) with special band-structure combinations - that is, the valence band edge at the Gamma point (the Brillouin-zone center) for one 2DS and the conduction band edge at the Gamma point for the other [Ubrig et al., Nat. Mater. 19, 299 (2020)]. However, the band offset sizes, band-alignment types, and whether momentum matched or not, all are affected by the interfacial effects between the component 2DSs, such as the quasichemical-bonding (QB) interaction between layers and the electrical dipole moment formed around the vdW interface. Here, based on density-functional theory calculations, first we probe the interfacial effects (including different QBs for valence and conduction bands, interface dipole, and, the synergistic effects of these two aspects) on band-edge evolution in energy and valley (location in the Brillouin zone) and the resulting changes in band alignment and momentum matching for a typical vdWH of monolayer InSe and bilayer WS2, in which the band edges of subsystems satisfy the special band-structure combination for a momentum-matched type II vdWH. Then, based on the conclusions of the studied interfacial effects, we propose a practical screening method for robust momentum-matched type II vdWHs. This practical screening method can also be applied to other band alignment types. Our current study opens a way for practical screening and designing of vdWHs with robust momentum-matching and band alignment type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12821v1-abstract-full').style.display = 'none'; document.getElementById('2306.12821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03473">arXiv:2305.03473</a> <span> [<a href="https://arxiv.org/pdf/2305.03473">pdf</a>, <a href="https://arxiv.org/ps/2305.03473">ps</a>, <a href="https://arxiv.org/format/2305.03473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Theory of all-coupling angulon for molecules rotating in many-body environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi-Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yu Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiao-Zhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ran-Bo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi-Qing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zi-Wu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03473v1-abstract-short" style="display: inline;"> The formation of angulon, stemming from the rotor (molecule or impurity) rotating in the quantum many-body field, adds a new member in the quasiparticle's family and has aroused intensively interests in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task both in theory and experiment. Here, we develop the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03473v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03473v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03473v1-abstract-full" style="display: none;"> The formation of angulon, stemming from the rotor (molecule or impurity) rotating in the quantum many-body field, adds a new member in the quasiparticle's family and has aroused intensively interests in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task both in theory and experiment. Here, we develop the all-coupling theory of the angulon by introducing an unitary transformation, where the renormalization of the rotational constants for different molecules in the helium nanodroplets are reproduced, getting excellent agreement with the collected experimental data during the past decades. Moreover, the strength of molecule-helium coupling and the effective radius of the solvation shell corotating along with the molecular rotor could be estimated qualitatively. This model not only provides the significant enlightenment for analyzing the rotational spectroscopy of molecules in the phononic environment, but also provides a new method to study the transfer of the phonon angular momentum in angulon frame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03473v1-abstract-full').style.display = 'none'; document.getElementById('2305.03473v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,1 figure.Comments and collaborations are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01604">arXiv:2305.01604</a> <span> [<a href="https://arxiv.org/pdf/2305.01604">pdf</a>, <a href="https://arxiv.org/format/2305.01604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2310002121">10.1073/pnas.2310002121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mao%2C+J">Jialin Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Griniasty%2C+I">Itay Griniasty</a>, <a href="/search/cond-mat?searchtype=author&query=Teoh%2C+H+K">Han Kheng Teoh</a>, <a href="/search/cond-mat?searchtype=author&query=Ramesh%2C+R">Rahul Ramesh</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rubing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Transtrum%2C+M+K">Mark K. Transtrum</a>, <a href="/search/cond-mat?searchtype=author&query=Sethna%2C+J+P">James P. Sethna</a>, <a href="/search/cond-mat?searchtype=author&query=Chaudhari%2C+P">Pratik Chaudhari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01604v3-abstract-short" style="display: inline;"> We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training. By examining the underlying high-dimensional probabilistic models, we reveal that the training process explores an effectively low-dimensional manifold. Networks with a wide range of architectures, sizes, trained using different optimization methods, regularization technique… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01604v3-abstract-full').style.display = 'inline'; document.getElementById('2305.01604v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01604v3-abstract-full" style="display: none;"> We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training. By examining the underlying high-dimensional probabilistic models, we reveal that the training process explores an effectively low-dimensional manifold. Networks with a wide range of architectures, sizes, trained using different optimization methods, regularization techniques, data augmentation techniques, and weight initializations lie on the same manifold in the prediction space. We study the details of this manifold to find that networks with different architectures follow distinguishable trajectories but other factors have a minimal influence; larger networks train along a similar manifold as that of smaller networks, just faster; and networks initialized at very different parts of the prediction space converge to the solution along a similar manifold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01604v3-abstract-full').style.display = 'none'; document.getElementById('2305.01604v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the National Academy of Sciences 121.12 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14728">arXiv:2304.14728</a> <span> [<a href="https://arxiv.org/pdf/2304.14728">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.205112">10.1103/PhysRevB.108.205112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glass-like Cross-plane Thermal Conductivity of Kagome Metals RbV3Sb5 and CsV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pang%2C+Y">Yu Pang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Zeyu Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xuanhui Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jie Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14728v2-abstract-short" style="display: inline;"> This work reports the thermal conductivity of RbV3Sb5 and CsV3Sb5 with three-dimensional charge density wave phase transitions from 80 K to 400 K measured by pump-probe thermoreflectance techniques. The in-plane (basal plane) thermal conductivities are found moderate, i.e., 12 W/mK of RbV3Sb5 and 8.8 W/mK of CsV3Sb5 at 300 K. Low cross-plane (stacking direction) thermal conductivities are observed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14728v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14728v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14728v2-abstract-full" style="display: none;"> This work reports the thermal conductivity of RbV3Sb5 and CsV3Sb5 with three-dimensional charge density wave phase transitions from 80 K to 400 K measured by pump-probe thermoreflectance techniques. The in-plane (basal plane) thermal conductivities are found moderate, i.e., 12 W/mK of RbV3Sb5 and 8.8 W/mK of CsV3Sb5 at 300 K. Low cross-plane (stacking direction) thermal conductivities are observed, with 0.72 W/mK of RbV3Sb5 and 0.49 W/mK of CsV3Sb5 at 300 K. A unique glass-like temperature dependence in the cross-plane thermal conductivity is observed, which decreases monotonically even lower than the Cahill-Pohl limit as the temperature decreases below the phase transition point TCDW. This temperature dependence is found to obey the hopping transport picture. In addition, a peak in cross-plane thermal conductivity is observed at TCDW as a fingerprint of the modulated structural distortion along the stacking direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14728v2-abstract-full').style.display = 'none'; document.getElementById('2304.14728v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B, 108, 205112 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07043">arXiv:2304.07043</a> <span> [<a href="https://arxiv.org/pdf/2304.07043">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46626-9">10.1038/s41467-024-46626-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The discovery of three-dimensional Van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zeping Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+X">Xiao-Sheng Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+X">Xianghao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+C">Congming Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengcheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Chunhui Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+H">Haifeng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhenrong Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Junhao Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07043v2-abstract-short" style="display: inline;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07043v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07043v2-abstract-full" style="display: none;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'none'; document.getElementById('2304.07043v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15.1 (2024): 2313 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05662">arXiv:2303.05662</a> <span> [<a href="https://arxiv.org/pdf/2303.05662">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Single-Step Synthesis of Shape-Controlled Polymeric Particles using Initiated Chemical Vapor Deposition in Liquid Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jain%2C+A">Apoorva Jain</a>, <a href="/search/cond-mat?searchtype=author&query=Pal%2C+S">Soumyamouli Pal</a>, <a href="/search/cond-mat?searchtype=author&query=Abbott%2C+N+L">Nicholas L. Abbott</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05662v1-abstract-short" style="display: inline;"> The ability to synthesize shape-controlled polymer particles will benefit a wide range of applications including targeted drug delivery and metamaterials with reconfigurable structures, but existing synthesis approaches are commonly multistep and limited to a narrow size/shape range. Using a novel single-step synthesis technique, a variety of shapes including nanospheres, hemispherical micro-domes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05662v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05662v1-abstract-full" style="display: none;"> The ability to synthesize shape-controlled polymer particles will benefit a wide range of applications including targeted drug delivery and metamaterials with reconfigurable structures, but existing synthesis approaches are commonly multistep and limited to a narrow size/shape range. Using a novel single-step synthesis technique, a variety of shapes including nanospheres, hemispherical micro-domes, orientation-controlled microgels, microspheres, spheroids, and micro-discs were obtained. The shape-controlled particles were synthesized by polymerizing divinylbenzene (DVB) via initiated chemical vapor deposition (iCVD) in nematic liquid crystals (LC). iCVD continuously and precisely delivered vapor-phase reactants, thus avoiding disruption of the LC structure, a critical limitation in past LC-templated polymerization. That shape controllability was further enabled by leveraging LC as a real-time display of the polymerization conditions and progression, using a custom in-situ long-focal range microscope. Detailed image analysis unraveled key mechanisms in polymer synthesis in LC. Poor solubilization by nematic LC led to the formation of pDVB nanospheres, distinct from microspheres obtained in isotropic solvents. The nanospheres precipitated to the LC-solid interface and further aggregated into microgel clusters with controlled orientation that was guided by the LC molecular alignment. On further polymerization, microgel clusters phase separated to form microspheres, spheroids, and unique disc-shaped particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05662v1-abstract-full').style.display = 'none'; document.getElementById('2303.05662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06147">arXiv:2302.06147</a> <span> [<a href="https://arxiv.org/pdf/2302.06147">pdf</a>, <a href="https://arxiv.org/format/2302.06147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystal Toolkit: A Web App Framework to Improve Usability and Accessibility of Materials Science Research Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Horton%2C+M">Matthew Horton</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jimmy-Xuan Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Burns%2C+J">Jordan Burns</a>, <a href="/search/cond-mat?searchtype=author&query=Cohen%2C+O">Orion Cohen</a>, <a href="/search/cond-mat?searchtype=author&query=Chabbey%2C+F">Fran莽ois Chabbey</a>, <a href="/search/cond-mat?searchtype=author&query=Ganose%2C+A+M">Alex M. Ganose</a>, <a href="/search/cond-mat?searchtype=author&query=Guha%2C+R">Rishabh Guha</a>, <a href="/search/cond-mat?searchtype=author&query=Huck%2C+P">Patrick Huck</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+H">Hamming Howard Li</a>, <a href="/search/cond-mat?searchtype=author&query=McDermott%2C+M">Matthew McDermott</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+J">Joseph Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Moore%2C+G">Guy Moore</a>, <a href="/search/cond-mat?searchtype=author&query=Munro%2C+J">Jason Munro</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Donnell%2C+C">Cody O'Donnell</a>, <a href="/search/cond-mat?searchtype=author&query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&query=Petretto%2C+G">Guido Petretto</a>, <a href="/search/cond-mat?searchtype=author&query=Riebesell%2C+J">Janosh Riebesell</a>, <a href="/search/cond-mat?searchtype=author&query=Wetizner%2C+S">Steven Wetizner</a>, <a href="/search/cond-mat?searchtype=author&query=Wander%2C+B">Brook Wander</a>, <a href="/search/cond-mat?searchtype=author&query=Winston%2C+D">Donald Winston</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ruoxi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeltmann%2C+S">Steven Zeltmann</a>, <a href="/search/cond-mat?searchtype=author&query=Jain%2C+A">Anubhav Jain</a>, <a href="/search/cond-mat?searchtype=author&query=Persson%2C+K+A">Kristin A. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06147v2-abstract-short" style="display: inline;"> Crystal Toolkit is an open source tool for viewing, analyzing and transforming crystal structures, molecules and other common forms of materials science data in an interactive way. It is intended to help beginners rapidly develop web-based apps to explore their own data or to help developers make their research algorithms accessible to a broader audience of scientists who might not have any traini… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06147v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06147v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06147v2-abstract-full" style="display: none;"> Crystal Toolkit is an open source tool for viewing, analyzing and transforming crystal structures, molecules and other common forms of materials science data in an interactive way. It is intended to help beginners rapidly develop web-based apps to explore their own data or to help developers make their research algorithms accessible to a broader audience of scientists who might not have any training in computer programming and who would benefit from graphical interfaces. Crystal Toolkit comes with a library of ready-made components that can be assembled to make complex web apps: simulation of powder and single crystalline diffraction patterns, convex hull phase diagrams, Pourbaix diagrams, electronic band structures, analysis of local chemical environments and symmetry, and more. Crystal Toolkit is now powering the Materials Project website frontend, providing user-friendly access to its database of computed materials properties. In the future, it is hoped that new visualizations might be prototyped using Crystal Toolkit to help explore new forms of data being generated by the materials science community, and that this in turn can help new materials scientists develop intuition for how their data behaves and the insights that might be found within. Crystal Toolkit will remain a work-in-progress and is open to contributions from the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06147v2-abstract-full').style.display = 'none'; document.getElementById('2302.06147v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04984">arXiv:2301.04984</a> <span> [<a href="https://arxiv.org/pdf/2301.04984">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced coevolution of transport properties and lattice stability in CaK(Fe1-xNix)4As4 (x= 0.04 and 0) superconductors with and without spin-vortex crystal state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+S">Sijin Long</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanchun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaodong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04984v1-abstract-short" style="display: inline;"> Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.04 and 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04984v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04984v1-abstract-full" style="display: none;"> Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.04 and 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse of tetragonal (h-cT and f-cT) phases, by the complementary measurements of high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction. We identify the three critical pressures, P1 that is the turn-on critical pressure of the h-cT phase transition and it coincides with the critical pressure for the sign change of Hall coefficient from positive to negative, a manifestation of the Fermi surface reconstruction, P2 that is the turn-off pressures of the h-cT phase transition, and P3 that is the critical pressure of the f-cT phase transition. By comparing the high-pressure results measured from the two kinds of samples, we find a distinct left-shift of the P1 for the doped sample, at the pressure of which its SVC state is fully suppressed, however the P2 and the P3 remain the same as that of the undoped one. Our results not only provide a consistent understanding on the results reported before, but also demonstrate the importance of the Fe-As bonding in stabilizing the superconductivity of the iron pnictide superconductors through the pressure window. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04984v1-abstract-full').style.display = 'none'; document.getElementById('2301.04984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108(2023)054415 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04898">arXiv:2301.04898</a> <span> [<a href="https://arxiv.org/pdf/2301.04898">pdf</a>, <a href="https://arxiv.org/format/2301.04898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aca8c5">10.1088/1367-2630/aca8c5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical fingerprints of the electronic band reconstruction in van der Waals magnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Corasaniti%2C+M">M. Corasaniti</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">C. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Degiorgi%2C+L">L. Degiorgi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04898v1-abstract-short" style="display: inline;"> We report a broadband study of the charge dynamics in the van der Waals (vdW) magnetic materials 2H-$M_x$TaS$_2$ ($M$ = Mn and Co), which span the onset of both long-range antiferromagnetic (AFM) and ferromagnetic (FM) order, depending on the intercalation $M$ and its concentration $x$. We discover a spectral weight ($SW$) shift from high to low energy scales for FM compositions, while reversely… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04898v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04898v1-abstract-full" style="display: none;"> We report a broadband study of the charge dynamics in the van der Waals (vdW) magnetic materials 2H-$M_x$TaS$_2$ ($M$ = Mn and Co), which span the onset of both long-range antiferromagnetic (AFM) and ferromagnetic (FM) order, depending on the intercalation $M$ and its concentration $x$. We discover a spectral weight ($SW$) shift from high to low energy scales for FM compositions, while reversely $SW$ is removed from low towards high spectral energies for AFM compounds. This maps the related reconstruction of the electronic band structure along the crossover from the FM to AFM order, which restores an occupation balance in the density of states between spin majority and minority bands of the intercalated 3$d$ elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04898v1-abstract-full').style.display = 'none'; document.getElementById('2301.04898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 Figures, Supplementary Material provided by the Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New. J. Phys. 24, 123018 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13737">arXiv:2212.13737</a> <span> [<a href="https://arxiv.org/pdf/2212.13737">pdf</a>, <a href="https://arxiv.org/ps/2212.13737">ps</a>, <a href="https://arxiv.org/format/2212.13737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0140911">10.1063/5.0140911 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mobile defects as mediated states for charge-carrier trapping in metal halide perovskites quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiao-Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Ping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yu Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shao-Juan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ran-Bo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi-Qing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zi-Wu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13737v1-abstract-short" style="display: inline;"> The migration motion of defects in metal halide perovskites quantum dots (MHPQDs) results in charge-carrier trapping become more complicated. We study two-step trapping mediated by mobile defects between the ground state of MHPQDs and a fixed-depth defect using a full-configuration defect method, where all possible trapping processes mediated by these mobile defects could be reproduced and the fas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13737v1-abstract-full').style.display = 'inline'; document.getElementById('2212.13737v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13737v1-abstract-full" style="display: none;"> The migration motion of defects in metal halide perovskites quantum dots (MHPQDs) results in charge-carrier trapping become more complicated. We study two-step trapping mediated by mobile defects between the ground state of MHPQDs and a fixed-depth defect using a full-configuration defect method, where all possible trapping processes mediated by these mobile defects could be reproduced and the fastest channels among them are picked out. We find that these two-step trapping processes could keep more one order of magnitude faster than these direct ones as mobile defect with the appropriate localization strength, which implies that these indirect trapping should play the crucial rule to determine the non-radiative recombination losses. These results provide the significant explanation for studying non-radiation processes of carriers in the presence of the migration defects in recent experiments. Moreover, this model will be available to analyze some key performance related defects in electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13737v1-abstract-full').style.display = 'none'; document.getElementById('2212.13737v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05175">arXiv:2212.05175</a> <span> [<a href="https://arxiv.org/pdf/2212.05175">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0138060">10.1063/5.0138060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine learning reconstruction of depth-dependent thermal conductivity profile from pump-probe thermoreflectance signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Zeyu Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Pang%2C+Y">Yu Pang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05175v2-abstract-short" style="display: inline;"> Characterizing materials with spatially varying thermal conductivities is significant to unveil the structure-property relation for a wide range of functional materials, such as chemical-vapor-deposited diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal conductivity microscopy based on time/frequency-domain th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05175v2-abstract-full').style.display = 'inline'; document.getElementById('2212.05175v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05175v2-abstract-full" style="display: none;"> Characterizing materials with spatially varying thermal conductivities is significant to unveil the structure-property relation for a wide range of functional materials, such as chemical-vapor-deposited diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal conductivity microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of thermal conductivity profile, measuring depth-dependent thermal conductivity remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K(z) directly from frequency-domain phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression (KRR) can reconstruct K(z) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K(z) distributions such as the pre-assumed exponential profile of chemical-vapor-deposited (CVD) diamonds and Gaussian profile of ion-irradiated materials, but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performances of reconstructing K(z) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump-probe thermoreflectance is an effective way for depth-dependent thermal property mapping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05175v2-abstract-full').style.display = 'none'; document.getElementById('2212.05175v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 122, 142201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13861">arXiv:2209.13861</a> <span> [<a href="https://arxiv.org/pdf/2209.13861">pdf</a>, <a href="https://arxiv.org/ps/2209.13861">ps</a>, <a href="https://arxiv.org/format/2209.13861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.094306">10.1103/PhysRevB.107.094306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic theory of Raman scattering for the rotational organic cation in metal halide perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yu Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi-Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jia-Pei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiao-Zhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ran-Bo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi-Qing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zi-Wu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13861v1-abstract-short" style="display: inline;"> A gap exists in microscopic understanding the dynamic properties of the rotational organic cation (ROC) in the inorganic framework of the metal halide perovskites (MHP) to date. Herein, we develop a microscopic theory of Raman scattering for the ROC in MHP based on the angular momentum of a ROC exchanging with that of the photon and phonon. We systematically present the selection rules for the ang… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13861v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13861v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13861v1-abstract-full" style="display: none;"> A gap exists in microscopic understanding the dynamic properties of the rotational organic cation (ROC) in the inorganic framework of the metal halide perovskites (MHP) to date. Herein, we develop a microscopic theory of Raman scattering for the ROC in MHP based on the angular momentum of a ROC exchanging with that of the photon and phonon. We systematically present the selection rules for the angular momentum transfer among three lowest rotational levels. We find that the phonon angular momentum that arising from the inorganic framework and its specific values could be directly manifested by Stokes (or anti-Stokes) shift. Moreover, the initial orientation of the ROC and its preferentially rotational directions could be judged in Raman spectra. This study lays the theoretical foundation for the high-precision resolution and manipulation of molecular rotation immersed in many-body environment by Raman technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13861v1-abstract-full').style.display = 'none'; document.getElementById('2209.13861v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02918">arXiv:2209.02918</a> <span> [<a href="https://arxiv.org/pdf/2209.02918">pdf</a>, <a href="https://arxiv.org/format/2209.02918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> High-throughput optical absorption spectra for inorganic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R+X">Ruo Xi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Horton%2C+M+K">Matthew K. Horton</a>, <a href="/search/cond-mat?searchtype=author&query=Munro%2C+J">Jason Munro</a>, <a href="/search/cond-mat?searchtype=author&query=Persson%2C+K+A">Kristin A. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02918v2-abstract-short" style="display: inline;"> An optical absorption spectrum constitutes one of the most fundamental material characteristics, with relevant applications ranging from material identification to energy harvesting and optoelectronics. However, the database of both experimental and computational spectra is currently lacking. In this study, we designed a computational workflow for the optical absorption spectrum and integrated the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02918v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02918v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02918v2-abstract-full" style="display: none;"> An optical absorption spectrum constitutes one of the most fundamental material characteristics, with relevant applications ranging from material identification to energy harvesting and optoelectronics. However, the database of both experimental and computational spectra is currently lacking. In this study, we designed a computational workflow for the optical absorption spectrum and integrated the simulated spectra into the Materials Project. Using density-functional theory, we computed the frequency-dependent dielectric function and the corresponding absorption coefficient for more than 1000 solid compounds of varying crystal structure and chemistry. The computed spectra show excellent agreement, as quantified by a high value of the Pearson correlation, with experimental results when applying the band gap correction from the HSE functional. The demonstrated calculated accuracy in the spectra suggests that the workflow can be applied in screening studies for materials with specific optical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02918v2-abstract-full').style.display = 'none'; document.getElementById('2209.02918v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11219">arXiv:2208.11219</a> <span> [<a href="https://arxiv.org/pdf/2208.11219">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04790">10.1021/acs.nanolett.2c04790 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast optical nanoscopy of carrier dynamics in silicon nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jingang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rundi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Rho%2C+Y">Yoonsoo Rho</a>, <a href="/search/cond-mat?searchtype=author&query=Ci%2C+P">Penghong Ci</a>, <a href="/search/cond-mat?searchtype=author&query=Eliceiri%2C+M">Matthew Eliceiri</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+H+K">Hee K. Park</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Junqiao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Grigoropoulos%2C+C+P">Costas P. Grigoropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11219v2-abstract-short" style="display: inline;"> Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11219v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11219v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11219v2-abstract-full" style="display: none;"> Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe optical nanoscopy in the visible-near-infrared spectral region to characterize the carrier dynamics in silicon nanostructures. By coupling experiments with the point-dipole model, we resolve the size-dependent photoexcited carrier lifetime in individual silicon nanowires. We further demonstrate local carrier decay time mapping in silicon nanostructures with a sub-50 nm spatial resolution. Our study enables the nanoimaging of ultrafast carrier kinetics, which will find promising applications in the future design of a broad range of electronic, photonic, and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11219v2-abstract-full').style.display = 'none'; document.getElementById('2208.11219v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09376">arXiv:2208.09376</a> <span> [<a href="https://arxiv.org/pdf/2208.09376">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ballistic Thermal Transport at Sub-10 nm Laser-Induced Hot Spots in GaN Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+D">Dezhao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Q">Qiangsheng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zeyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shen Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Y">Yanan Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09376v1-abstract-short" style="display: inline;"> Gallium nitride (GaN) is a typical wide-bandgap semiconductor with a critical role in a wide range of electronic applications. Ballistic thermal transport at nanoscale hotspots will greatly reduce the performance of a device when its characteristic length reaches the nanometer scale, due to heat dissipation. In this work, we developed a tip-enhanced Raman thermometry approach to study ballistic th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09376v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09376v1-abstract-full" style="display: none;"> Gallium nitride (GaN) is a typical wide-bandgap semiconductor with a critical role in a wide range of electronic applications. Ballistic thermal transport at nanoscale hotspots will greatly reduce the performance of a device when its characteristic length reaches the nanometer scale, due to heat dissipation. In this work, we developed a tip-enhanced Raman thermometry approach to study ballistic thermal transport within the range of 10 nm in GaN, simultaneously achieving laser heating and measuring the local temperature. The Raman results showed that the temperature increase from an Au-coated tip-focused hotspot was up to two times higher (40 K) than that in a bare tip-focused region (20 K). To further investigate the possible mechanisms behind this temperature difference, we performed electromagnetic simulations to generate a highly focused heating field, and observed a highly localized optical penetration, within a range of 10 nm. The phonon mean free path (MFP) of the GaN substrate could thus be determined by comparing the numerical simulation results with the experimentally measured temperature increase which was in good agreement with the average MFP weighted by the mode-specific thermal conductivity, as calculated from first-principles simulations. Our results demonstrate that the phonon MFP of a material can be rapidly predicted through a combination of experiments and simulations, which can find wide application in the thermal management of GaN-based electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09376v1-abstract-full').style.display = 'none'; document.getElementById('2208.09376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07164">arXiv:2208.07164</a> <span> [<a href="https://arxiv.org/pdf/2208.07164">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.2c01673">10.1021/acsnano.2c01673 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanomechanical Resonators: Toward Atomic Scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+B">Bo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengcheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jiankai Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zuheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Eichler%2C+A">Alexander Eichler</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xu-Qian Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jaesung Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Dash%2C+A">Aneesh Dash</a>, <a href="/search/cond-mat?searchtype=author&query=More%2C+S">Swapnil More</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Song Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+H">Hao Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Naik%2C+A">Akshay Naik</a>, <a href="/search/cond-mat?searchtype=author&query=Bachtold%2C+A">Adrian Bachtold</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+P+X+-">Philip X. -L. Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zenghui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07164v3-abstract-short" style="display: inline;"> The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to new grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking fea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07164v3-abstract-full').style.display = 'inline'; document.getElementById('2208.07164v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07164v3-abstract-full" style="display: none;"> The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to new grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes, and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained efforts have been devoted to creating mechanical devices toward the ultimate limit of miniaturization--genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07164v3-abstract-full').style.display = 'none'; document.getElementById('2208.07164v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13272">arXiv:2207.13272</a> <span> [<a href="https://arxiv.org/pdf/2207.13272">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38763-4">10.1038/s41467-023-38763-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+N">Ni Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+S">Sijin Long</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13272v2-abstract-short" style="display: inline;"> The strange metal (SM) state, characterized by a linear-in-temperature resistivity, is often seen in the normal state of high temperature superconductors. It is believed that the SM state is one of the keys to understand the underlying mechanism of high-Tc superconductivity. Here we report the first observation of the concurrent breakdown of the SM normal state and superconductivity at a pressure-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13272v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13272v2-abstract-full" style="display: none;"> The strange metal (SM) state, characterized by a linear-in-temperature resistivity, is often seen in the normal state of high temperature superconductors. It is believed that the SM state is one of the keys to understand the underlying mechanism of high-Tc superconductivity. Here we report the first observation of the concurrent breakdown of the SM normal state and superconductivity at a pressure-induced quantum critical point in an iron-pnictide superconductor, Ca10(Pt4As8)((Fe0.97Pt0.03)2As2)5. We find that, upon suppressing the superconducting state by applying pressure, the power exponent changes from 1 to 2, and the corresponding coefficient A, the slope of the temperature-linear resistivity per FeAs layer, gradually diminishes. At a critical pressure (12.5 GPa), A and Tc go to zero concurrently,where a quantum phase transition (QPT) from a superconducting state with a SM normal state to a non-superconducting Fermi liquid state takes place. Scaling analysis on the results obtained from the pressurized 1048 superconductor reveals that A and Tc have a positive relation, which exhibits a similarity with that is seen in other chemically-doped unconventional superconductors, regardless of the type of the tuning method (doping or pressurizing), the crystal structure, the bulk or film superconductors and the nature of dopant. These results suggest that there is a simple but powerful organizational principle of connecting the SM normal state with the high-Tc superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13272v2-abstract-full').style.display = 'none'; document.getElementById('2207.13272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14 (2023) 3116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08676">arXiv:2207.08676</a> <span> [<a href="https://arxiv.org/pdf/2207.08676">pdf</a>, <a href="https://arxiv.org/ps/2207.08676">ps</a>, <a href="https://arxiv.org/format/2207.08676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Heating anomaly of cold interfacial water under irradiation of mid-infrared pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+L">Liu-Ye Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei-Zhou Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08676v1-abstract-short" style="display: inline;"> The mid-infrared heating of interfacial water with different initial temperatures is studied using non-equilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360-3380 $cm^{-1}$ the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08676v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08676v1-abstract-full" style="display: none;"> The mid-infrared heating of interfacial water with different initial temperatures is studied using non-equilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360-3380 $cm^{-1}$ the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phenomenon is the enhanced transition efficiency of the asymmetric OH stretching vibration due to the specific oriented configuration of water molecules at lower initial temperatures. The understanding of the anomalous phenomenon clarifies the sensitivity of the interfacial properties of water molecules to the temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08676v1-abstract-full').style.display = 'none'; document.getElementById('2207.08676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08672">arXiv:2207.08672</a> <span> [<a href="https://arxiv.org/pdf/2207.08672">pdf</a>, <a href="https://arxiv.org/ps/2207.08672">ps</a>, <a href="https://arxiv.org/format/2207.08672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultra-efficient mid-infrared energy absorption by water confined in carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei-Zhou Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huo%2C+P">Pei-Ying Huo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi-Lin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08672v1-abstract-short" style="display: inline;"> The energy absorption on nanometer scale is vital for many bio and chemical systems. We report here that a two times amplification in absorption efficiency can be achieved by water molecules confined in carbon nanotubes with small radius, compared with situations in normal bulk water, under irradiations of short mid-infrared pulses. The effect of confinement due to a (6,6) carbon nanotube is found… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08672v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08672v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08672v1-abstract-full" style="display: none;"> The energy absorption on nanometer scale is vital for many bio and chemical systems. We report here that a two times amplification in absorption efficiency can be achieved by water molecules confined in carbon nanotubes with small radius, compared with situations in normal bulk water, under irradiations of short mid-infrared pulses. The effect of confinement due to a (6,6) carbon nanotube is found to be very robust, equivalent to that of a 5 $V/nm$ static electric field. These findings are instructive not only for designing high-efficiency nano devices but also for understanding behaviours in biological channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08672v1-abstract-full').style.display = 'none'; document.getElementById('2207.08672v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10025">arXiv:2205.10025</a> <span> [<a href="https://arxiv.org/pdf/2205.10025">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2023.05.006">10.1016/j.scib.2023.05.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum oscillations in field-induced correlated insulators of a moir茅 superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fanfan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yiru Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+G">Gen Long</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10025v2-abstract-short" style="display: inline;"> We report an observation of quantum oscillations (QOs) in the correlated insulators with valley anisotropy of twisted double bilayer graphene (TDBG). The anomalous QOs are best captured in the magneto resistivity oscillations of the insulators at v = -2, with a period of 1/B and an oscillation amplitude as high as 150 k惟. The QOs can survive up to ~10 K, and above 12 K, the insulating behaviors ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10025v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10025v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10025v2-abstract-full" style="display: none;"> We report an observation of quantum oscillations (QOs) in the correlated insulators with valley anisotropy of twisted double bilayer graphene (TDBG). The anomalous QOs are best captured in the magneto resistivity oscillations of the insulators at v = -2, with a period of 1/B and an oscillation amplitude as high as 150 k惟. The QOs can survive up to ~10 K, and above 12 K, the insulating behaviors are dominant. The QOs of the insulator are strongly D dependent: the carrier density extracted from the 1/B periodicity decreases almost linearly with D from -0.7 to -1.1 V/nm, suggesting a reduced Fermi surface; the effective mass from Lifshitz-Kosevich analysis depends nonlinearly on D, reaching a minimal value of 0.1 me at D = ~ -1.0 V/nm. Similar observations of QOs are also found at v = 2, as well as in other devices without graphite gate. We interpret the D sensitive QOs of the correlated insulators in the picture of band inversion. By reconstructing an inverted band model with the measured effective mass and Fermi surface, the density of state at the gap, calculated from thermal broadened Landau levels, agrees qualitatively with the observed QOs in the insulators. While more theoretical understandings are needed in the future to fully account for the anomalous QOs in this moir茅 system, our study suggests that TDBG is an excellent platform to discover exotic phases where correlation and topology are at play. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10025v2-abstract-full').style.display = 'none'; document.getElementById('2205.10025v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09720">arXiv:2203.09720</a> <span> [<a href="https://arxiv.org/pdf/2203.09720">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwac077">10.1093/nsr/nwac077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-by-Layer Epitaxy of Multilayer MoS2 Wafers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qinqin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaomei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+D">Depeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yutuo Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Z">Zheng Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yanchong Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+H+Y+X">Hua Yu Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09720v1-abstract-short" style="display: inline;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and cur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09720v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09720v1-abstract-full" style="display: none;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer5,16-18. However, achieving high-quality multilayer MoS2 wafers remains a challenge. Here we report the growth of high quality multilayer MoS2 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to 6. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements on device performances were found in thicker-layer field effect transistors (FETs), as expected. For example, the average field-effect mobility (渭FE) at room temperature (RT) can increase from ~80 cm2V-1s-1 for monolayer to ~110/145 cm2V-1s-1 for bilayer/trilayer devices. The highest RT 渭FE=234.7 cm2V-1s-1 and a record-high on-current densities of 1.704 mA渭m-1 at Vds=2 V were also achieved in trilayer MoS2 FETs with a high on/off ratio exceeding 107. Our work hence moves a step closer to practical applications of 2D MoS2 in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'none'; document.getElementById('2203.09720v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Natl. Sci. Rev. 9, nwac077 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07538">arXiv:2202.07538</a> <span> [<a href="https://arxiv.org/pdf/2202.07538">pdf</a>, <a href="https://arxiv.org/ps/2202.07538">ps</a>, <a href="https://arxiv.org/format/2202.07538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orientated energy absorption from mid-infrared laser pulses in constrained water systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei-Zhou Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huo%2C+P">Pei-Ying Huo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07538v1-abstract-short" style="display: inline;"> The energy acquisition based on resonant excitations are of great importance in chemical and biological systems. Here, the intramolecular resonant absorption of polarized mid-infrared pulses by bulk water and surface water is investigated using molecular dynamics simulation. The consequent heating based on the OH stretching vibrations is found to be very prompt, achieving more than 100 K temperatu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07538v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07538v1-abstract-full" style="display: none;"> The energy acquisition based on resonant excitations are of great importance in chemical and biological systems. Here, the intramolecular resonant absorption of polarized mid-infrared pulses by bulk water and surface water is investigated using molecular dynamics simulation. The consequent heating based on the OH stretching vibrations is found to be very prompt, achieving more than 100 K temperature jump under irradiation of a pulse with 1 ps width and maximum intensity of 0.5 V/nm. A general anisotropic phenomenon is manifested as a result of preferential resonant excitation of symmetric or asymmetric OH stretching vibration, depending on the relationships between the orientations of water molecules and the polarized direction of the pulse. In the case of water molecules with the preferred dipole orientation, constrained by applied static electric field or spacial confinement, parallel to the polarized direction of the pulses, the energy absorption is dominated by the symmetric stretching mode (around 99 THz), while in the perpendicular case, the asymmetric stretching mode (around 101 THz) is more efficient. Since orientated water molecules are prevalent in chemical and biological systems, these findings concerning orientation-dependent excitation of intramolecular vibrations are of special significance to understood the energy absorption and transition in relevant biochemical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07538v1-abstract-full').style.display = 'none'; document.getElementById('2202.07538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12111">arXiv:2201.12111</a> <span> [<a href="https://arxiv.org/pdf/2201.12111">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A new spatial-scan thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+P">Puqing Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Dihui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Zeyu Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ban%2C+H">Heng Ban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12111v1-abstract-short" style="display: inline;"> In-plane thermal conductivities of small-scale samples are hard to measure, especially for the lowly conductive ones and those lacking in-plane symmetry (i.e., transversely anisotropic materials). State-of-the-art pump-probe techniques including both the time-domain and the frequency-domain thermoreflectance (TDTR and FDTR) are advantageous in measuring the thermal conductivity of small-scale samp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12111v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12111v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12111v1-abstract-full" style="display: none;"> In-plane thermal conductivities of small-scale samples are hard to measure, especially for the lowly conductive ones and those lacking in-plane symmetry (i.e., transversely anisotropic materials). State-of-the-art pump-probe techniques including both the time-domain and the frequency-domain thermoreflectance (TDTR and FDTR) are advantageous in measuring the thermal conductivity of small-scale samples, and various advanced TDTR and FDTR techniques have been developed to measure transversely anisotropic materials. However, the measurable in-plane thermal conductivity (k_in) is usually limited to be >10 W/(m K). In this work, a new spatial-scan thermoreflectance (SSTR) method has been developed to measure a broad range of k_in of millimeter-scale small samples, including those lacking in-plane symmetry, extending the current limit of the measurable k_in to as low as 1 W/(m K). This SSTR method establishes a new scheme of measurements using the optimized laser spot size and modulation frequency and a new scheme of data processing, enabling measurements of in-plane thermal conductivity tensors of a broad range of k_in values with both high accuracy and ease of operation. Some details such as the requirement on the sample geometry, the effect of the transducer layer, and the effect of heat loss are also discussed. As a verification, the k_in of some transversely isotropic reference samples with a wide range of k_in values including fused silica, sapphire, silicon, and highly ordered pyrolytic graphite (HOPG) have been measured using this new SSTR method. The measured k_in agree perfectly well with the literature values with a typical uncertainty of 5%. As a demonstration of the unique capability of this method, the in-plane thermal conductivity tensor of x-cut quartz, an in-plane anisotropic material, has also been measured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12111v1-abstract-full').style.display = 'none'; document.getElementById('2201.12111v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures, patent-pending technique</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04153">arXiv:2201.04153</a> <span> [<a href="https://arxiv.org/pdf/2201.04153">pdf</a>, <a href="https://arxiv.org/format/2201.04153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2022.08.005">10.1016/j.scib.2022.08.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designing non-Hermitian real spectra through electrostatics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Russell Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+J+W">Jun Wei Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Tai%2C+T">Tommy Tai</a>, <a href="/search/cond-mat?searchtype=author&query=Koh%2C+J+M">Jin Ming Koh</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Linhu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Longhi%2C+S">Stefano Longhi</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+C+H">Ching Hua Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04153v3-abstract-short" style="display: inline;"> Non-hermiticity presents a vast newly opened territory that harbors new physics and applications such as lasing and sensing. However, only non-Hermitian systems with real eigenenergies are stable, and great efforts have been devoted in designing them through enforcing parity-time (PT) symmetry. In this work, we exploit a lesser-known dynamical mechanism for enforcing real-spectra, and develop a co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04153v3-abstract-full').style.display = 'inline'; document.getElementById('2201.04153v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04153v3-abstract-full" style="display: none;"> Non-hermiticity presents a vast newly opened territory that harbors new physics and applications such as lasing and sensing. However, only non-Hermitian systems with real eigenenergies are stable, and great efforts have been devoted in designing them through enforcing parity-time (PT) symmetry. In this work, we exploit a lesser-known dynamical mechanism for enforcing real-spectra, and develop a comprehensive and versatile approach for designing new classes of parent Hamiltonians with real spectra. Our design approach is based on a novel electrostatics analogy for modified non-Hermitian bulk-boundary correspondence, where electrostatic charge corresponds to density of states and electric fields correspond to complex spectral flow. As such, Hamiltonians of any desired spectra and state localization profile can be reverse-engineered, particularly those without any guiding symmetry principles. By recasting the diagonalization of non-Hermitian Hamiltonians as a Poisson boundary value problem, our electrostatics analogy also transcends the gain/loss-induced compounding of floating-point errors in traditional numerical methods, thereby allowing access to far larger system sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04153v3-abstract-full').style.display = 'none'; document.getElementById('2201.04153v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures. v2: corrected typographical errors in parameters and amended references. v3: added additional section to supplement and updated revisions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin, 2022, 67(18):1865-1873 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09928">arXiv:2112.09928</a> <span> [<a href="https://arxiv.org/pdf/2112.09928">pdf</a>, <a href="https://arxiv.org/format/2112.09928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5488/CMP.24.43602">10.5488/CMP.24.43602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigations on Cmc2$_1$-Si$_2$P$_2$X structures and physical properties by first-principles calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">X. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">F. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Q">Q. Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+M">M. Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09928v1-abstract-short" style="display: inline;"> The new structures, Cmc2$_1$-Si$_2$P$_2$X (X=S, Se, Te, and Po), are predicted, and their mechanical, electronic and optical properties are investigated with the density functional theory, by first principles calculations. The elastic constants of the four compounds are calculated by the stress-strain method. The calculations of the elastic stability criteria and phonon dispersion spectra imply th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09928v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09928v1-abstract-full" style="display: none;"> The new structures, Cmc2$_1$-Si$_2$P$_2$X (X=S, Se, Te, and Po), are predicted, and their mechanical, electronic and optical properties are investigated with the density functional theory, by first principles calculations. The elastic constants of the four compounds are calculated by the stress-strain method. The calculations of the elastic stability criteria and phonon dispersion spectra imply that they are mechanically and dynamically stable at zero pressure. The mechanical parameters, such as shear moduli $G$, bulk moduli $B$, Young's moduli $E$ and Poisson's ratios $v$ are evaluated by the Voigt-Reuss-Hill approach. The Cmc2$_1$-Si$_2$P$_2$X has the largest hardness due to the largest Young's modulus in the four compounds, and it is a covalent crystal. The anisotropies of their mechanical properties are also analyzed. The band structures and densities of states, which are calculated by using HSE06, show that Cmc2$_1$-Si$_2$P$_2$X compounds are indirect bandgap semiconductors, and the values of the band gaps decrease with increasing atomic number from S, Se, Te, to Po. In addition, the longitudinal sound velocity and transverse sound velocity for Cmc2$_1$-Si$_2$P$_2$X have been investigated. The dielectric constant, electron energy loss, refractive index, reflectivity, absorption and conductivity are analyzed to gain the optical properties of Si$_2$P$_2$X. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09928v1-abstract-full').style.display = 'none'; document.getElementById('2112.09928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> CONDENSED MATTER PHYSICS, 2021, vol. 24, No. 4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.08600">arXiv:2112.08600</a> <span> [<a href="https://arxiv.org/pdf/2112.08600">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30998-x">10.1038/s41467-022-30998-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+C">Cheng Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yiru Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.08600v1-abstract-short" style="display: inline;"> New phase of matter usually emerges when a given symmetry breaks spontaneously, which can involve charge, spin, and valley degree of freedoms. Here, we report an observation of new correlated insulators evolved from spin polarized states to valley polarized states in AB-BA stacked twisted double bilayer graphene (TDBG). The transition of the isospin polarization is a result of the competition betw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08600v1-abstract-full').style.display = 'inline'; document.getElementById('2112.08600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.08600v1-abstract-full" style="display: none;"> New phase of matter usually emerges when a given symmetry breaks spontaneously, which can involve charge, spin, and valley degree of freedoms. Here, we report an observation of new correlated insulators evolved from spin polarized states to valley polarized states in AB-BA stacked twisted double bilayer graphene (TDBG). The transition of the isospin polarization is a result of the competition between spin and valley, driven by the displacement field (D). At a high field |D| > 0.7 V/nm, we observe valley polarized correlated insulators with a big Zeeman g factor of ~10, both at v = 2 in the moir茅 conduction band and more surprisingly at v = -2 in the moir茅 valence band. At a medium field |D| < 0.6 V/nm, by contrast, it is a conventional spin polarized correlated insulator at v = 2 and a featureless metal at v = -2. Moreover, we observe a valley polarized Chern insulator with C = 2 emanating at v = 2 in the electron side and a valley polarized Fermi surface around v = -2 in the hole side. The valley Chern insulator with C = 2 is evident from a well quantized Hall conductance plateau at 2e^2/h and correspondingly a vanishing longitudinal component. The valley polarized Fermi surface is topologically trivial with C = 0, and it shows a series of quantized Landau levels with v_LL = 0, 1, 2, 3, 4 and others. These observations are in good agreements with our band and topology calculations. Our results demonstrate a feasible way to realize isospin control and to obtain new phases of matter in TDBG by the displacement field, and might benefit other twisted or non-twisted multilayer systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08600v1-abstract-full').style.display = 'none'; document.getElementById('2112.08600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 3292(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04924">arXiv:2111.04924</a> <span> [<a href="https://arxiv.org/pdf/2111.04924">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Active Water Pump Driven by Terahertz Electromagnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi-Lin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chun-Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04924v1-abstract-short" style="display: inline;"> The highly efficient, easy-to-implement, long-ranged and non-destructive way to realize active pumping has been still a great challenge. Here, using molecular dynamics simulations, terahertz electromagnetic wave (TEW) is firstly employed to stimulate an active pump for water transportation by biasedly irradiated in a (6,6) single-walled carbon nanotube (SWCNT) under no external pressure gradient.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04924v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04924v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04924v1-abstract-full" style="display: none;"> The highly efficient, easy-to-implement, long-ranged and non-destructive way to realize active pumping has been still a great challenge. Here, using molecular dynamics simulations, terahertz electromagnetic wave (TEW) is firstly employed to stimulate an active pump for water transportation by biasedly irradiated in a (6,6) single-walled carbon nanotube (SWCNT) under no external pressure gradient. It is found that an ultrafast conductivity (up to 9.5 /ns) through the pump around a characteristic frequency of 14 THz. The excellent pumping ability is attributed to the resonance coupling between the TEW and water molecules, in which water molecules can gain considerable energy continuously to break the binding of hydrogen bonds and the spatial symmetry. This proposed TEW-driven pump concept will offer a guide in polar molecule transport through artificial or biological nanochannels, particularly in a controllable, non-contact and large-scale process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04924v1-abstract-full').style.display = 'none'; document.getElementById('2111.04924v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00427">arXiv:2111.00427</a> <span> [<a href="https://arxiv.org/pdf/2111.00427">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2022.100627">10.1016/j.mtphys.2022.100627 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement Effect on Thermopower of Electrolytes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xin Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Te-Huan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ronggui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00427v2-abstract-short" style="display: inline;"> Ionic Seebeck effect of electrolytes has shown promising applications in harvesting energy from low-grade waste-heat sources with small temperature difference from the environment, which can power sensors and Internet-of-Things devices. Recent experiments have demonstrated giant thermopower (~ 10 mV/K) of electrolytes under confinement due to the overlapping of electric double layer (EDL). Nonethe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00427v2-abstract-full').style.display = 'inline'; document.getElementById('2111.00427v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00427v2-abstract-full" style="display: none;"> Ionic Seebeck effect of electrolytes has shown promising applications in harvesting energy from low-grade waste-heat sources with small temperature difference from the environment, which can power sensors and Internet-of-Things devices. Recent experiments have demonstrated giant thermopower (~ 10 mV/K) of electrolytes under confinement due to the overlapping of electric double layer (EDL). Nonetheless, there has been no consensus on the theory of the ionic Seebeck effect, especially whether the thermopower depends on ionic diffusivities, imposing confusion on the theoretical interpretation of experimental discovery on giant thermopower of confined electrolytes. This article presents a linear perturbative solution of Poisson-Nernst-Planck (PNP) equations to describe the ionic Seebeck effect of confined liquid electrolytes. We provide both analytical and numerical solutions to the PNP equations for closed systems and open systems connected to reservoirs of electrolytes. The analytical solution captured the confinement effect both along and perpendicular to the temperature gradient, and showed excellent agreement with numerically solved PNP equations for a wide range of EDL potentials, channel widths, and lengths. Finally, we show that for polyelectrolytes with largely mismatched diffusivities, thermopower can only be enhanced for closed system through confinement perpendicular to the temperature gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00427v2-abstract-full').style.display = 'none'; document.getElementById('2111.00427v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13720">arXiv:2110.13720</a> <span> [<a href="https://arxiv.org/pdf/2110.13720">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmatprotec.2021.117474">10.1016/j.jmatprotec.2021.117474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep DIC: Deep Learning-Based Digital Image Correlation for End-to-End Displacement and Strain Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">Ru Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+D">Danielle Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+P">Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13720v2-abstract-short" style="display: inline;"> Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, tradi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13720v2-abstract-full').style.display = 'inline'; document.getElementById('2110.13720v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13720v2-abstract-full" style="display: none;"> Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach--Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13720v2-abstract-full').style.display = 'none'; document.getElementById('2110.13720v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Materials Processing Technology (2021): 117474 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+R&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>