CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 59 results for author: <span class="mathjax">Kostrzewa, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Kostrzewa%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kostrzewa, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kostrzewa%2C+B&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kostrzewa, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08852">arXiv:2411.08852</a> <span> [<a href="https://arxiv.org/pdf/2411.08852">pdf</a>, <a href="https://arxiv.org/format/2411.08852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Strange and charm quark contributions to the muon anomalous magnetic moment in lattice QCD with twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kalntis%2C+N">N. Kalntis</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08852v1-abstract-short" style="display: inline;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08852v1-abstract-full" style="display: none;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the quark mass parameters that are close and/or include the isospin symmetric QCD point of interest. After computing the small corrections necessary to precisely match this point, and carrying out an extrapolation to the continuum limit based on the data at lattice spacings $a \simeq 0.049, 0.057, 0.068, 0.080$~fm and spatial lattice sizes up to $L \simeq 7.6$~fm, we obtain $a_渭^{\rm HVP}(s) = (53.57 \pm 0.63) \times 10^{-10}$ and $a_渭^{\rm HVP}(c) = (14.56 \pm 0.13) \times 10^{-10}$, for the quark-connected strange and charm contributions, respectively. Our findings agree well with the corresponding results by other lattice groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'none'; document.getElementById('2411.08852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 18 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08529">arXiv:2405.08529</a> <span> [<a href="https://arxiv.org/pdf/2405.08529">pdf</a>, <a href="https://arxiv.org/format/2405.08529">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion and in the kaon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Chacon%2C+L+A+R">Luis Alberto Rodriguez Chacon</a>, <a href="/search/hep-lat?searchtype=author&query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=wenger%2C+U">Urs wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08529v1-abstract-short" style="display: inline;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08529v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08529v1-abstract-full" style="display: none;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum decomposition at the physical point. We find that the total momentum fraction carried by quarks is 0.532(56) and 0.618(32) and by gluons 0.388(49) and 0.408(61) in the pion and in the kaon, respectively, in the $\overline{\mathrm{MS}}$ scheme and at the renormalization scale of 2 GeV. Having computed both the quark and gluon contributions in the continuum limit, we find that the momentum sum is 0.926(68) for the pion and 1.046(90) for the kaon, verifying the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'none'; document.getElementById('2405.08529v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05404">arXiv:2403.05404</a> <span> [<a href="https://arxiv.org/pdf/2403.05404">pdf</a>, <a href="https://arxiv.org/format/2403.05404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Inclusive hadronic decay rate of the $蟿$ lepton from lattice QCD: the $\bar u s$ flavour channel and the Cabibbo angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05404v2-abstract-short" style="display: inline;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05404v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05404v2-abstract-full" style="display: none;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospin-breaking corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by using the Hansen-Lupo-Tantalo method [1] that we have already successfully applied in [2] to compute the inclusive decay rate of the process $蟿\mapsto X_{ud} 谓_蟿$ in the $\bar u d$ flavour channel. By combining our first-principles theoretical results with the presently-available experimental data we extract the CKM matrix element $\vert V_{us}\vert$, the Cabibbo angle, with a $0.9$\% accuracy, dominated by the experimental error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'none'; document.getElementById('2403.05404v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table. Version accepted by PRL, expanded technical discussion moved to an appendix, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05774">arXiv:2309.05774</a> <span> [<a href="https://arxiv.org/pdf/2309.05774">pdf</a>, <a href="https://arxiv.org/format/2309.05774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05774v2-abstract-short" style="display: inline;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$>3.6. Convergence to the gro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05774v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05774v2-abstract-full" style="display: none;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$>3.6. Convergence to the ground state matrix elements is assessed using multi-state fits. We study the momentum dependence of the three form factors and check the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD). We show that in the continuum limit, the PCAC and PPD relations are satisfied. We also show that the Goldberger-Treimann relation is approximately fulfilled and determine the Goldberger-Treiman discrepancy. We find for the nucleon axial charge $g_A$=1.245(28)(14), for the axial radius $\langle r^2_A \rangle$=0.339(48)(06) fm$^2$, for the pion-nucleon coupling constant $g_{蟺NN} \equiv \lim_{Q^2 \rightarrow -m_蟺^2} G_{蟺NN}(Q^2)$=13.25(67)(69) and for $G_P(0.88m_渭^2)\equiv g_P^*$=8.99(39)(49). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'none'; document.getElementById('2309.05774v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 32 pages, 39 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12458">arXiv:2308.12458</a> <span> [<a href="https://arxiv.org/pdf/2308.12458">pdf</a>, <a href="https://arxiv.org/format/2308.12458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094514">10.1103/PhysRevD.108.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Transition Form Factor from Twisted-Mass Lattice QCD and the Hadronic Light-by-Light $蟺^0$-pole Contribution to the Muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Burri%2C+S">S. Burri</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">G. Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">F. Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12458v2-abstract-short" style="display: inline;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor para… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12458v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12458v2-abstract-full" style="display: none;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor parameterized using a model-independent conformal expansion valid for arbitrary space-like kinematics and compare it with experimental measurements of the single-virtual form factor, the two-photon decay width, and the slope parameter. We then use the transition form factors to compute the pion-pole contribution to the hadronic light-by-light scattering in the muon $g-2$, finding $a_渭^{蟺^0\text{-pole}} = 56.7(3.2) \times 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'none'; document.getElementById('2308.12458v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, 4 tables, updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, 094514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12493">arXiv:2212.12493</a> <span> [<a href="https://arxiv.org/pdf/2212.12493">pdf</a>, <a href="https://arxiv.org/format/2212.12493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the R-ratio smeared with Gaussian kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12493v1-abstract-short" style="display: inline;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice cal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12493v1-abstract-full" style="display: none;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice calculations and with the muon $g-2$ experiment. In this talk we discuss the results of our first-principles lattice study of $R(E)$. By using a recently proposed method for extracting smeared spectral densities from Euclidean lattice correlators, we have calculated $R(E)$ convoluted with Gaussian kernels of different widths $蟽$ and central energies up to $2.5$ GeV. Our theoretical results have been compared with the KNT19 [1] compilation of experimental results smeared with the same Gaussian kernels and a tension (about three standard deviations) has been observed for $蟽\sim 600$ MeV and central energies around the $蟻$-resonance peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'none'; document.getElementById('2212.12493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8th-13th August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10490">arXiv:2212.10490</a> <span> [<a href="https://arxiv.org/pdf/2212.10490">pdf</a>, <a href="https://arxiv.org/format/2212.10490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Short \& intermediate distance HVP contributions to muon g-2: SM (lattice) prediction versus $e^+e^-$ annihilation data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10490v1-abstract-short" style="display: inline;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10490v1-abstract-full" style="display: none;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of the muon anomalous magnetic moment, $a_渭$. Results for $a_渭^{\rm LO-HVP,W}$ and $a_渭^{\rm LO-HVP,SD}$, besides representing a step forward to a complete lattice computation of $a_渭^{\rm LO-HVP}$ and a useful benchmark among lattice groups, are compared here with their dispersive counterparts based on experimental data for $e^+e^-$ into hadrons. The comparison confirms the tension in $a_渭^{\rm LO-HVP,W}$, already noted in 2020 by the BMW Collaboration, while showing no tension in $a_渭^{\rm LO-HVP,SD}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'none'; document.getElementById('2212.10490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at ICHEP 2022 (6-13 July 2022, Bologna - Italy) - Results here are almost final - Contribution accepted for publication on PoS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10300">arXiv:2212.10300</a> <span> [<a href="https://arxiv.org/pdf/2212.10300">pdf</a>, <a href="https://arxiv.org/format/2212.10300">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pseudoscalar-pole contributions to the muon $g-2$ at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10300v1-abstract-short" style="display: inline;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10300v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10300v1-abstract-full" style="display: none;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have access to a broad range of (space-like) photon four-momenta and therefore produce form factor data complementary to the experimentally accessible single-virtual direction, which directly leads to an estimate of the pion- and $畏$-pole components of the muon $g-2$. For the pion, our result for the $g-2$ contribution in the continuum is comparable with previous lattice and data-driven determinations, with combined relative uncertainties below $10\%$. For the $畏$ meson, we report on a preliminary determination from a single lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'none'; document.getElementById('2212.10300v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10138">arXiv:2212.10138</a> <span> [<a href="https://arxiv.org/pdf/2212.10138">pdf</a>, <a href="https://arxiv.org/ps/2212.10138">ps</a>, <a href="https://arxiv.org/format/2212.10138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice gauge ensembles and data management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bali%2C+G">Gunnar Bali</a>, <a href="/search/hep-lat?searchtype=author&query=Bignell%2C+R">Ryan Bignell</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Kotov%2C+A+Y">Andrey Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&query=Kuramashi%2C+Y">Yoshinobu Kuramashi</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R">Robert Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Schmidt%2C+C">Christian Schmidt</a>, <a href="/search/hep-lat?searchtype=author&query=S%C3%B6ldner%2C+W">Wolfgang S枚ldner</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10138v1-abstract-short" style="display: inline;"> The generation of ensembles of gauge configurations is a considerable expense. The preservation and curation of these ensembles constitutes a valuable shared resource for the lattice field theory community. The organizers of Lattice 2022 dedicated a parallel session to the presentation of gauge ensembles and their generation, plans for ensemble publication and data management/storage activities of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10138v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10138v1-abstract-full" style="display: none;"> The generation of ensembles of gauge configurations is a considerable expense. The preservation and curation of these ensembles constitutes a valuable shared resource for the lattice field theory community. The organizers of Lattice 2022 dedicated a parallel session to the presentation of gauge ensembles and their generation, plans for ensemble publication and data management/storage activities of different collaborations. A summary of the twelve contributions is presented here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10138v1-abstract-full').style.display = 'none'; document.getElementById('2212.10138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8-13 August, 2022, Bonn, Germany, 23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)203 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09340">arXiv:2212.09340</a> <span> [<a href="https://arxiv.org/pdf/2212.09340">pdf</a>, <a href="https://arxiv.org/format/2212.09340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Time windows of the muon HVP from twisted-mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09340v1-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09340v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09340v1-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavours tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD} = 69.27\,(34) \cdot 10^{-10}$, in agreement with the dispersive determination based on experimental $e^+ e^-$ data. For the intermediate window we get instead $a_渭^{\rm W} = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with recent determinations by other lattice collaborations, but disagrees with the dispersive determination at the level of $3.6\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'none'; document.getElementById('2212.09340v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08467">arXiv:2212.08467</a> <span> [<a href="https://arxiv.org/pdf/2212.08467">pdf</a>, <a href="https://arxiv.org/format/2212.08467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241901">10.1103/PhysRevLett.130.241901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the energy-smeared R-ratio on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08467v2-abstract-short" style="display: inline;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08467v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08467v2-abstract-full" style="display: none;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV. Our theoretical results are compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of $R$-ratio experimental measurements with the same kernels and, by centring the Gaussians in the region around the $蟻$-resonance peak, a tension of about three standard deviations is observed. From the phenomenological perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections and this might affect the observed tension. From the methodological perspective, our calculation demonstrates that it is possible to study the $R$-ratio in Gaussian energy bins on the lattice at the level of accuracy required in order to perform precision tests of the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'none'; document.getElementById('2212.08467v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication on PRL. Results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07057">arXiv:2212.07057</a> <span> [<a href="https://arxiv.org/pdf/2212.07057">pdf</a>, <a href="https://arxiv.org/format/2212.07057">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Disconnected contribution to the LO HVP term of muon g-2 from ETMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07057v1-abstract-short" style="display: inline;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07057v1-abstract-full" style="display: none;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses approximately tuned to their physical value. We take the continuum limit employing three lattice spacings at about 0.08, 0.07 and 0.06 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'none'; document.getElementById('2212.07057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 7 tables, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06704">arXiv:2212.06704</a> <span> [<a href="https://arxiv.org/pdf/2212.06704">pdf</a>, <a href="https://arxiv.org/format/2212.06704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054509">10.1103/PhysRevD.108.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $畏\rightarrow 纬^* 纬^*$ transition form factor and the hadronic light-by-light $畏$-pole contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06704v2-abstract-short" style="display: inline;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06704v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06704v2-abstract-full" style="display: none;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment $a_渭= (g-2)/2$ of the muon. From the form factor calculation we extract the partial decay width $螕(畏\rightarrow 纬纬) = 323(85)_\text{stat}(22)_\text{syst}$ eV and the slope parameter $b_畏=1.19(36)_\text{stat}(16)_\text{syst}$ GeV${}^{-2}$. For the $畏$-pole contribution to $a_渭$ we obtain $a_渭^{畏-\text{pole}} = 13.2(5.2)_\text{stat}(1.3)_\text{syst} \cdot 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'none'; document.getElementById('2212.06704v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108 (2023) 054509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06635">arXiv:2212.06635</a> <span> [<a href="https://arxiv.org/pdf/2212.06635">pdf</a>, <a href="https://arxiv.org/format/2212.06635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass ensemble generation on GPU machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06635v1-abstract-short" style="display: inline;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QU… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06635v1-abstract-full" style="display: none;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QUDA's multigrid solver for poorly conditioned light quark monomials as well as the multi-shift solver for the non-degenerate strange and charm sector in $N_f=2+1+1$ simulations using twisted mass clover fermions, comparing the efficiency of state-of-the-art simulations on CPU and GPU machines. We also take a look at the performance-portability question through preliminary tests of our HMC on a machine based on AMD's MI250 GPU, finding good performance after a very minor additional porting effort. Finally, we conclude that we should be able to achieve GPU utilisation factors acceptable for the current generation of (pre-)exascale supercomputers with subtantial efficiency improvements and real time speedups compared to just running on CPUs. At the same time, we find that future challenges will require different approaches and, most importantly, a very significant investment of personnel for software development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'none'; document.getElementById('2212.06635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05743">arXiv:2210.05743</a> <span> [<a href="https://arxiv.org/pdf/2210.05743">pdf</a>, <a href="https://arxiv.org/format/2210.05743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon transverse quark spin densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05743v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05743v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum limit. Besides isovector densities we also include results for the tensor charge for each quark flavor using the ensemble with $a\sim 0.08$~fm for which we include the disconnected contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'none'; document.getElementById('2210.05743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, talk presented at the 39th International Symposium on Lattice Field Theory, LATTICE2022 8th-13th August, 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15084">arXiv:2206.15084</a> <span> [<a href="https://arxiv.org/pdf/2206.15084">pdf</a>, <a href="https://arxiv.org/format/2206.15084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.074506">10.1103/PhysRevD.107.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15084v3-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15084v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15084v3-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD}({\rm ETMC}) = 69.27\,(34) \cdot 10^{-10}$, which is consistent with the recent dispersive value of $a_渭^{\rm SD}(e^+ e^-) = 68.4\,(5) \cdot 10^{-10}$ [2]. In the case of the intermediate window we get the value $a_渭^{\rm W}({\rm ETMC}) = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with the result $a_渭^{\rm W}({\rm BMW}) = 236.7\,(1.4) \cdot 10^{-10}$ [3] by the BMW collaboration as well as with the recent determination by the CLS/Mainz group of $a_渭^{\rm W}({\rm CLS}) = 237.30\,(1.46) \cdot 10^{-10}$ [4]. However, it is larger than the dispersive result of $a_渭^{\rm W}(e^+ e^-) = 229.4\,(1.4) \cdot 10^{-10}$ [2] by approximately $3.6$ standard deviations. The tension increases to approximately $4.5$ standard deviations if we average our ETMC result with those by BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a possible deviation of the $e^+ e^-$ cross section data with respect to Standard Model predictions in the low and intermediate energy regions, but not in the high energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'none'; document.getElementById('2206.15084v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">78 pages, 22 figures, 14 tables. Analysis improved with more data and fits, presentation reorganized, more material in appendices, fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09871">arXiv:2202.09871</a> <span> [<a href="https://arxiv.org/pdf/2202.09871">pdf</a>, <a href="https://arxiv.org/format/2202.09871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054504">10.1103/PhysRevD.107.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First moments of the nucleon transverse quark spin densities using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Spanoudes%2C+G">G. Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09871v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09871v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09871v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment of transversely polarized quarks in an unpolarized nucleon shows an interesting distortion, which can be traced back to the sharp falloff of the transversity generalized form factor $\bar{B}_{Tn0}(t)$. The isovector tensor anomalous magnetic moment is determined to be $魏_T=1.051(94)$, which confirms a negative and large Boer-Mulders function, $h_1^{\perp}$, in the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'none'; document.getElementById('2202.09871v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02551">arXiv:2201.02551</a> <span> [<a href="https://arxiv.org/pdf/2201.02551">pdf</a>, <a href="https://arxiv.org/format/2201.02551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass gauge ensembles at physical values of the light, strange and charm quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02551v1-abstract-short" style="display: inline;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02551v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02551v1-abstract-full" style="display: none;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation effort that aims to enabling studies of finite size and discretization effects. We work within the twisted mass discretization which is free of odd-discretization effects at maximal twist and present our tuning procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'none'; document.getElementById('2201.02551v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, The 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03586">arXiv:2112.03586</a> <span> [<a href="https://arxiv.org/pdf/2112.03586">pdf</a>, <a href="https://arxiv.org/format/2112.03586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0519">10.22323/1.396.0519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion-pole contribution to HLbL from twisted mass lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03586v3-abstract-short" style="display: inline;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'inline'; document.getElementById('2112.03586v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03586v3-abstract-full" style="display: none;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point. We present first results for our estimate of the pion-pole contribution with kinematic setup for the pion at rest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'none'; document.getElementById('2112.03586v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory - Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14710">arXiv:2111.14710</a> <span> [<a href="https://arxiv.org/pdf/2111.14710">pdf</a>, <a href="https://arxiv.org/format/2111.14710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Gradient flow scale-setting with $N_f=2+1+1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Labus%2C+P">Peter Labus</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14710v1-abstract-short" style="display: inline;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14710v1-abstract-full" style="display: none;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of the lattice spacing and the scale is set through the PDG value of the pion decay constant, yielding $w_0=0.17383(63)$ fm, $\sqrt{t_0}=0.14436(61)$ fm and $t_0/w_0=0.11969(62)$ fm. Finally, fixing the kaon mass to its isosymmetric value, we determine the ratio of the kaon and pion leptonic decay constants to be $f_K/f_蟺=1.1995(44)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'none'; document.getElementById('2111.14710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2104.06747</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00288">arXiv:2111.00288</a> <span> [<a href="https://arxiv.org/pdf/2111.00288">pdf</a>, <a href="https://arxiv.org/format/2111.00288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD results for the topological up-quark mass contribution: too small to rescue the $m_u=0$ solution to the strong CP problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00288v2-abstract-short" style="display: inline;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'inline'; document.getElementById('2111.00288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00288v2-abstract-full" style="display: none;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct lattice computation of this topological mass contribution, using gauge configurations generated by the Extended Twisted Mass collaboration. We use the Iwasaki gauge action, Wilson twisted mass fermions at maximal twist, and dynamical up, down, strange and charm quarks. Our result for the topological mass contribution is an order of magnitude too small to account for the phenomenologically required up-quark mass. This rules out the "massless" up-quark solution to the strong CP problem, in accordance with previous results relying on $蠂$PT fits to lattice data. The talk is based on [Alexandrou et al., PRL 125, 232001 (2020)], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'none'; document.getElementById('2111.00288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5347 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04588">arXiv:2110.04588</a> <span> [<a href="https://arxiv.org/pdf/2110.04588">pdf</a>, <a href="https://arxiv.org/format/2110.04588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Determination of the light, strange and charm quark masses using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&query=Todaro%2C+A">A. Todaro</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04588v1-abstract-short" style="display: inline;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The pre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04588v1-abstract-full" style="display: none;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The presentation is based on the work of Ref. [1], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'none'; document.getElementById('2110.04588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 38th International Symposium on Lattice Field Theory, Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology, 26-30 Jul. 2021; 8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10692">arXiv:2109.10692</a> <span> [<a href="https://arxiv.org/pdf/2109.10692">pdf</a>, <a href="https://arxiv.org/format/2109.10692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.252001">10.1103/PhysRevLett.127.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion from $N_f=2+1+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10692v1-abstract-short" style="display: inline;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10692v1-abstract-full" style="display: none;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$, $\avgx_s=0.059(13)$, $\avgx_c=0.019(05)$, and $\avgx_g=0.52(11)$ for the separate contributions, respectively, whose sum saturates the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'none'; document.getElementById('2109.10692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13408">arXiv:2104.13408</a> <span> [<a href="https://arxiv.org/pdf/2104.13408">pdf</a>, <a href="https://arxiv.org/format/2104.13408">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074515">10.1103/PhysRevD.104.074515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark masses using twisted mass fermion gauge ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&query=Papadiofantous%2C+E">E. Papadiofantous</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&query=Todaro%2C+A">A. Todaro</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13408v3-abstract-short" style="display: inline;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that corr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'inline'; document.getElementById('2104.13408v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13408v3-abstract-full" style="display: none;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that correspond to pion masses in the range from 350 MeV to the physical value, while the strange and charm quark masses are tuned approximately to their physical values. We use several quantities to set the scale in order to check for finite lattice spacing effects and in the continuum limit we get compatible results. The quark mass renormalization is carried out non-perturbatively using the RI'-MOM method converted into the $\overline{\rm MS}$ scheme. For the determination of the quark masses we use physical observables from both the meson and the baryon sectors, obtaining $m_{ud} = 3.636(66)(^{+60}_{-57})$~MeV and $m_s = 98.7(2.4)(^{+4.0}_{-3.2})$~MeV in the $\overline{\rm MS}(2\,{\rm GeV})$ scheme and $m_c = 1036(17)(^{+15}_{-8})$~MeV in the $\overline{\rm MS}(3\,{\rm GeV})$ scheme, where the first errors are statistical and the second ones are combinations of systematic errors. For the quark mass ratios we get $m_s / m_{ud} = 27.17(32)(^{+56}_{-38})$ and $m_c / m_s = 11.48(12)(^{+25}_{-19})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'none'; document.getElementById('2104.13408v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 23 figures, 24 tables. One reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06747">arXiv:2104.06747</a> <span> [<a href="https://arxiv.org/pdf/2104.06747">pdf</a>, <a href="https://arxiv.org/format/2104.06747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074520">10.1103/PhysRevD.104.074520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ratio of kaon and pion leptonic decay constants with $N_f = 2 + 1 + 1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Labus%2C+P">P. Labus</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">M. Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06747v3-abstract-short" style="display: inline;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'inline'; document.getElementById('2104.06747v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06747v3-abstract-full" style="display: none;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $\sim 0.068$ to $\sim 0.092$ fm with linear lattice size up to $L \sim 5.5$~fm. The scale is set by the PDG value of the pion decay constant, $f_蟺^{isoQCD} = 130.4~(2)$ MeV, at the isoQCD pion point, $M_蟺^{isoQCD} = 135.0~(2)$ MeV, obtaining for the gradient-flow (GF) scales the values $w_0 = 0.17383~(63)$ fm, $\sqrt{t_0} = 0.14436~(61)$ fm and $t_0 / w_0 = 0.11969~(62)$ fm. The data are analyzed within the framework of SU(2) Chiral Perturbation Theory (ChPT) without resorting to the use of renormalized quark masses. At the isoQCD kaon point $M_K^{isoQCD} = 494.2~(4)$ MeV we get $(f_K / f_蟺)^{isoQCD} = 1.1995~(44)$, where the error includes both statistical and systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ and for the first-row CKM unitarity are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'none'; document.getElementById('2104.06747v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 14 figures, 12 tables. Version to appear in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13342">arXiv:2011.13342</a> <span> [<a href="https://arxiv.org/pdf/2011.13342">pdf</a>, <a href="https://arxiv.org/format/2011.13342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034509">10.1103/PhysRevD.103.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Leontiou%2C+T">T. Leontiou</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13342v1-abstract-short" style="display: inline;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13342v1-abstract-full" style="display: none;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'none'; document.getElementById('2011.13342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages and 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034509 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03035">arXiv:2008.03035</a> <span> [<a href="https://arxiv.org/pdf/2008.03035">pdf</a>, <a href="https://arxiv.org/format/2008.03035">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09206-5">10.1140/epjc/s10052-021-09206-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of two and three physical pions at maximal isospin from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03035v3-abstract-short" style="display: inline;"> We present the first direct $N_f=2$ lattice QCD computation of two- and three-$蟺^+$ scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03035v3-abstract-full').style.display = 'inline'; document.getElementById('2008.03035v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03035v3-abstract-full" style="display: none;"> We present the first direct $N_f=2$ lattice QCD computation of two- and three-$蟺^+$ scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the phenomenological fits in $s$- and $d$-wave, and obtain $M_蟺a_0 = -0.0481(86)$ at the physical point from a direct computation. In the three-particle sector, we observe reasonable agreement at threshold to the leading order chiral expansion, i.e.\@ a mildly attractive three-particle contact term. In contrast, we observe that the energy-dependent part of the three-particle quasilocal scattering quantity is not well described by leading order ChPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03035v3-abstract-full').style.display = 'none'; document.getElementById('2008.03035v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13805">arXiv:2006.13805</a> <span> [<a href="https://arxiv.org/pdf/2006.13805">pdf</a>, <a href="https://arxiv.org/format/2006.13805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136449">10.1016/j.physletb.2021.136449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $蟻$-resonance with physical pion mass from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Mai%2C+M">Maxim Mai</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13805v1-abstract-short" style="display: inline;"> We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion mass, we determine the universal parameters of the rho-resonance. We carefully investigate systematic uncertainties by determining energy eigenvalues us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13805v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13805v1-abstract-full" style="display: none;"> We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion mass, we determine the universal parameters of the rho-resonance. We carefully investigate systematic uncertainties by determining energy eigenvalues using different methods and by comparing inverse amplitude method and Breit-Wigner type parametrizations. Overall, we find mass 786(20) MeV and width 180(6) MeV, including statistical and systematic uncertainties. In stark disagreement with the previous Nf=2 extrapolations from higher than physical pion mass results, our mass value is in good agreement with experiment, while the width is slightly too high. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13805v1-abstract-full').style.display = 'none'; document.getElementById('2006.13805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">raw data available in data repository: https://github.com/urbach/datarhonf2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10472">arXiv:2004.10472</a> <span> [<a href="https://arxiv.org/pdf/2004.10472">pdf</a>, <a href="https://arxiv.org/format/2004.10472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-020-00205-w">10.1140/epja/s10050-020-00205-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the generalised eigenvalue method and its relation to Prony and generalised pencil of function methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fischer%2C+M">Matthias Fischer</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Ostmeyer%2C+J">Johann Ostmeyer</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10472v1-abstract-short" style="display: inline;"> We discuss the relation of three methods to determine energy levels in lattice QCD simulations: the generalised eigenvalue, the Prony and the generalised pencil of function methods. All three can be understood as special cases of a generalised eigenvalue problem. We show analytically that the leading corrections to an energy $E_l$ in all three methods due to unresolved states decay asymptotically… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10472v1-abstract-full').style.display = 'inline'; document.getElementById('2004.10472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10472v1-abstract-full" style="display: none;"> We discuss the relation of three methods to determine energy levels in lattice QCD simulations: the generalised eigenvalue, the Prony and the generalised pencil of function methods. All three can be understood as special cases of a generalised eigenvalue problem. We show analytically that the leading corrections to an energy $E_l$ in all three methods due to unresolved states decay asymptotically exponentially like $\exp(-(E_{n}-E_l)t)$. Using synthetic data we show that these corrections behave as expected also in practice. We propose a novel combination of the generalised eigenvalue and the Prony method, denoted as GEVM/PGEVM, which helps to increase the energy gap $E_{n}-E_l$. We illustrate its usage and performance using lattice QCD examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10472v1-abstract-full').style.display = 'none'; document.getElementById('2004.10472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07802">arXiv:2002.07802</a> <span> [<a href="https://arxiv.org/pdf/2002.07802">pdf</a>, <a href="https://arxiv.org/format/2002.07802">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.232001">10.1103/PhysRevLett.125.232001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ruling Out the Massless Up-Quark Solution to the Strong CP Problem by Computing the Topological Mass Contribution with Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07802v3-abstract-short" style="display: inline;"> The infamous strong CP problem in particle physics can in principle be solved by a massless up quark. In particular, it was hypothesized that topological effects could substantially contribute to the observed nonzero up-quark mass without reintroducing CP violation. Alternatively to previous work using fits to chiral perturbation theory, in this Letter, we bound the strength of the topological mas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07802v3-abstract-full').style.display = 'inline'; document.getElementById('2002.07802v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07802v3-abstract-full" style="display: none;"> The infamous strong CP problem in particle physics can in principle be solved by a massless up quark. In particular, it was hypothesized that topological effects could substantially contribute to the observed nonzero up-quark mass without reintroducing CP violation. Alternatively to previous work using fits to chiral perturbation theory, in this Letter, we bound the strength of the topological mass contribution with direct lattice QCD simulations, by computing the dependence of the pion mass on the dynamical strange-quark mass. We find that the size of the topological mass contribution is inconsistent with the massless up-quark solution to the strong CP problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07802v3-abstract-full').style.display = 'none'; document.getElementById('2002.07802v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 232001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09116">arXiv:2001.09116</a> <span> [<a href="https://arxiv.org/pdf/2001.09116">pdf</a>, <a href="https://arxiv.org/format/2001.09116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quark masses and decay constants in $N_f=2+1+1$ isoQCD with Wilson clover twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Extended+Twisted+Mass+Collaboration"> Extended Twisted Mass Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Fiorenza%2C+E">Enrico Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09116v2-abstract-short" style="display: inline;"> We present a preliminary study of the pion, kaon and D-meson masses and decay constants in isosymmetric QCD, as well as a preliminary result for the light-quark renormalized mass. The analysis is based on the gauge ensembles produced by ETMC with $N_f=2+1+1$ flavours of Wilson-clover twisted mass quarks, spanning a range of lattice spacings from $\sim0.10$ to $0.07$ fm and include configurations a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09116v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09116v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09116v2-abstract-full" style="display: none;"> We present a preliminary study of the pion, kaon and D-meson masses and decay constants in isosymmetric QCD, as well as a preliminary result for the light-quark renormalized mass. The analysis is based on the gauge ensembles produced by ETMC with $N_f=2+1+1$ flavours of Wilson-clover twisted mass quarks, spanning a range of lattice spacings from $\sim0.10$ to $0.07$ fm and include configurations at the physical pion point on lattices with linear size up to $L~\sim~5.6$~fm <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09116v2-abstract-full').style.display = 'none'; document.getElementById('2001.09116v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China. Extended acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10706">arXiv:1908.10706</a> <span> [<a href="https://arxiv.org/pdf/1908.10706">pdf</a>, <a href="https://arxiv.org/format/1908.10706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034519">10.1103/PhysRevD.101.034519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moments of nucleon generalized parton distributions from lattice QCD simulations at physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Lauer%2C+C">C. Lauer</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10706v3-abstract-short" style="display: inline;"> We present results for the moments of nucleon isovector vector and axial generalised parton distribution functions computed within lattice QCD. Three ensembles of maximally twisted mass clover-improved fermions simulated with a physical value of the pion mass are analyzed. Two of these ensembles are generated using two degenerate light quarks. A third ensemble is used having, in addition to the li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10706v3-abstract-full').style.display = 'inline'; document.getElementById('1908.10706v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10706v3-abstract-full" style="display: none;"> We present results for the moments of nucleon isovector vector and axial generalised parton distribution functions computed within lattice QCD. Three ensembles of maximally twisted mass clover-improved fermions simulated with a physical value of the pion mass are analyzed. Two of these ensembles are generated using two degenerate light quarks. A third ensemble is used having, in addition to the light quarks, strange and charm quarks in the sea. A careful analysis of the convergence to the ground state is carried out that is shown to be essential for extracting the correct nucleon matrix elements. This allows a controlled determination of the unpolarised, helicity and tensor second Mellin moments. The vector and axial-vector generalised form factors are also computed as a function of the momentum transfer square up to about 1 GeV$^2$. The three ensembles allow us to check for unquenching effects and to assess lattice finite volume effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10706v3-abstract-full').style.display = 'none'; document.getElementById('1908.10706v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version. Typos corrected, references and figures added. 22 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034519 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01237">arXiv:1907.01237</a> <span> [<a href="https://arxiv.org/pdf/1907.01237">pdf</a>, <a href="https://arxiv.org/format/1907.01237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-020-00057-4">10.1140/epja/s10050-020-00057-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: The $蟻$-resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Metsch%2C+B">Bernard Metsch</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01237v2-abstract-short" style="display: inline;"> We present an investigation of the Rho-meson from Nf=2+1+1 flavour lattice QCD. The calculation is performed based on gauge configuration ensembles produced by the ETM collaboration with three lattice spacing values and pion masses ranging from 230 MeV to 500 MeV. Applying the L眉scher method phase shift curves are determined for all ensembles separately. Assuming a Breit-Wigner form, the Rho-meson… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01237v2-abstract-full').style.display = 'inline'; document.getElementById('1907.01237v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01237v2-abstract-full" style="display: none;"> We present an investigation of the Rho-meson from Nf=2+1+1 flavour lattice QCD. The calculation is performed based on gauge configuration ensembles produced by the ETM collaboration with three lattice spacing values and pion masses ranging from 230 MeV to 500 MeV. Applying the L眉scher method phase shift curves are determined for all ensembles separately. Assuming a Breit-Wigner form, the Rho-meson mass and width are determined by a fit to these phase shift curves. Mass and width combined are then extrapolated to the chiral limit, while lattice artefacts are not detectable within our statistical uncertainties. For the Rho-meson mass extrapolated to the physical point we find good agreement with experiment. The corresponding decay width differs by about two standard deviations from the experimental value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01237v2-abstract-full').style.display = 'none'; document.getElementById('1907.01237v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, matching published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.A 56 (2020) 2, 61 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00191">arXiv:1904.00191</a> <span> [<a href="https://arxiv.org/pdf/1904.00191">pdf</a>, <a href="https://arxiv.org/format/1904.00191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Meson-meson scattering lengths at maximum isospin from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00191v3-abstract-short" style="display: inline;"> We summarize our lattice QCD determinations of the pion-pion, pion-kaon and kaon-kaon s-wave scattering lengths at maximal isospin with a particular focus on the extrapolation to the physical point and the usage of next-to-leading order chiral perturbation theory to do so. We employ data at three values of the lattice spacing and pion masses ranging from around 230 MeV to around 450 MeV, applying… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00191v3-abstract-full').style.display = 'inline'; document.getElementById('1904.00191v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00191v3-abstract-full" style="display: none;"> We summarize our lattice QCD determinations of the pion-pion, pion-kaon and kaon-kaon s-wave scattering lengths at maximal isospin with a particular focus on the extrapolation to the physical point and the usage of next-to-leading order chiral perturbation theory to do so. We employ data at three values of the lattice spacing and pion masses ranging from around 230 MeV to around 450 MeV, applying Luescher's finite volume method to compute the scattering lengths. We find that leading order chiral perturbation theory is surprisingly close to our data even in the kaon-kaon case for our entire range of pion masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00191v3-abstract-full').style.display = 'none'; document.getElementById('1904.00191v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, Presented at the 9th International Workshop on Chiral Dynamics, Sept. 17-21, 2018, Duke University, Durham, NC, USA , submitted to PoS, (C18-09-17.6). Funding acknowledgements added in v2 replacement, comma added in abstract. In v3 replacement, corrected typo in equation 6.2 which was referring to the pion-kaon reduced mass instead of the pion mass</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.09872">arXiv:1901.09872</a> <span> [<a href="https://arxiv.org/pdf/1901.09872">pdf</a>, <a href="https://arxiv.org/format/1901.09872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.061802">10.1103/PhysRevLett.123.061802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical Generation of Elementary Fermion Mass: First Lattice Evidence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Capitani%2C+S">Stefano Capitani</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.09872v2-abstract-short" style="display: inline;"> Using lattice simulations we demonstrate from first principles the existence of a non-perturbative mechanism for elementary particle mass generation in models with gauge fields, fermions and scalars, if an exact invariance forbids power divergent fermion masses and fermionic chiral symmetries broken at UV scale are maximally restored. We show that in the Nambu-Goldstone phase a fermion mass term,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09872v2-abstract-full').style.display = 'inline'; document.getElementById('1901.09872v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.09872v2-abstract-full" style="display: none;"> Using lattice simulations we demonstrate from first principles the existence of a non-perturbative mechanism for elementary particle mass generation in models with gauge fields, fermions and scalars, if an exact invariance forbids power divergent fermion masses and fermionic chiral symmetries broken at UV scale are maximally restored. We show that in the Nambu-Goldstone phase a fermion mass term, unrelated to the Yukawa operator, is dynamically generated. In models with electro-weak interactions weak boson masses are also generated opening new scenarios for beyond the Standard Model physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09872v2-abstract-full').style.display = 'none'; document.getElementById('1901.09872v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 061802 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08787">arXiv:1812.08787</a> <span> [<a href="https://arxiv.org/pdf/1812.08787">pdf</a>, <a href="https://arxiv.org/format/1812.08787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.034511">10.1103/PhysRevD.99.034511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility and $畏'$ meson mass from $N_f=2$ lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08787v2-abstract-short" style="display: inline;"> In this paper we explore the computation of topological susceptibility and $畏'$ meson mass in $N_f=2$ flavor QCD using lattice techniques with physical value of the pion mass as well as larger pion mass values. We observe that the physical point can be reached without a significant increase in the statistical noise. The mass of the $畏'$ meson can be obtained from both fermionic two point functions… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08787v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08787v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08787v2-abstract-full" style="display: none;"> In this paper we explore the computation of topological susceptibility and $畏'$ meson mass in $N_f=2$ flavor QCD using lattice techniques with physical value of the pion mass as well as larger pion mass values. We observe that the physical point can be reached without a significant increase in the statistical noise. The mass of the $畏'$ meson can be obtained from both fermionic two point functions and topological charge density correlation functions, giving compatible results. With the pion mass dependence of the $畏'$ mass being flat we arrive at $M_{畏'}= 772(18)\ \mathrm{MeV}$ without an explicit continuum limit. For the topological susceptibility we observe a linear dependence on $M_蟺^2$, however, with an additional constant stemming from lattice artifacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08787v2-abstract-full').style.display = 'none'; document.getElementById('1812.08787v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures; matching version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 034511 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10327">arXiv:1811.10327</a> <span> [<a href="https://arxiv.org/pdf/1811.10327">pdf</a>, <a href="https://arxiv.org/format/1811.10327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Non-perturbative generation of elementary fermion masses: a numerical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Capitani%2C+S">Stefano Capitani</a>, <a href="/search/hep-lat?searchtype=author&query=de+Divitiis%2C+G+M">Giulia Maria de Divitiis</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10327v1-abstract-short" style="display: inline;"> In this talk we present a numerical lattice study of an SU(3) gauge model where an SU(2) doublet of non-Abelian strongly interacting fermions is coupled to a complex scalar field doublet via a Yukawa and a Wilson-like term. The model enjoys an exact symmetry, acting on all fields, which prevents UV power divergent fermion mass corrections, despite the presence of these two chiral breaking operator… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10327v1-abstract-full').style.display = 'inline'; document.getElementById('1811.10327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10327v1-abstract-full" style="display: none;"> In this talk we present a numerical lattice study of an SU(3) gauge model where an SU(2) doublet of non-Abelian strongly interacting fermions is coupled to a complex scalar field doublet via a Yukawa and a Wilson-like term. The model enjoys an exact symmetry, acting on all fields, which prevents UV power divergent fermion mass corrections, despite the presence of these two chiral breaking operators in the Lagrangian. In the phase where the scalar potential is non-degenerate and fermions are massless, the bare Yukawa coupling can be set at a critical value at which chiral fermion transformations become symmetries of the theory. Numerical simulations in the Nambu-Goldstone phase of the critical theory, for which the renormalized Yukawa coupling by construction vanishes, give evidence for non-perturbative generation of a UV finite fermion mass term in the effective action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10327v1-abstract-full').style.display = 'none'; document.getElementById('1811.10327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, Proceedings of The 36th Annual International Symposium on Lattice Field Theory, July 22-28, 2018, East Lansing, Michigan, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09743">arXiv:1810.09743</a> <span> [<a href="https://arxiv.org/pdf/1810.09743">pdf</a>, <a href="https://arxiv.org/format/1810.09743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014508">10.1103/PhysRevD.99.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\langle x\rangle$ and $\langle x^2\rangle$ of the pion PDF from Lattice QCD with $N_f=2+1+1$ dynamical quark flavours </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Oehm%2C+M">M. Oehm</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">F. Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Zafeiropoulos%2C+S">S. Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09743v2-abstract-short" style="display: inline;"> Using Nf=2+1+1 lattice QCD, we determine the fermionic connected contributions to the second and third moment of the pion PDF. Based on gauge configurations from the European Twisted Mass Collaboration, chiral and continuum extrapolations are performed using pion masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are investigated using different vo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09743v2-abstract-full').style.display = 'inline'; document.getElementById('1810.09743v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09743v2-abstract-full" style="display: none;"> Using Nf=2+1+1 lattice QCD, we determine the fermionic connected contributions to the second and third moment of the pion PDF. Based on gauge configurations from the European Twisted Mass Collaboration, chiral and continuum extrapolations are performed using pion masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are investigated using different volumes. In order to avoid mixing under renormalisation for the third moment, we use an operator with two non-zero spatial components of momentum. Momenta are injected using twisted boundary conditions. Our final values read $\langle x\rangle=0.2075(106)$ and $\langle x^2\rangle=0.163(33)$, determined at 2 GeV in the $\overline{MS}$-scheme and with systematic and statistical uncertainties summend in quadrature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09743v2-abstract-full').style.display = 'none'; document.getElementById('1810.09743v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, matching the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014508 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.08886">arXiv:1809.08886</a> <span> [<a href="https://arxiv.org/pdf/1809.08886">pdf</a>, <a href="https://arxiv.org/format/1809.08886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114511">10.1103/PhysRevD.98.114511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: $I=3/2$ $蟺K$ Scattering Length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.08886v2-abstract-short" style="display: inline;"> In this paper we report on results for the s-wave scattering length of the $蟺$-$K$ system in the $I=3/2$ channel from $N_f=2+1+1$ Lattice QCD. The calculation is based on gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about $230$ to $450\,\text{MeV}$ at three values of the lattice spacing. Our main result reads… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08886v2-abstract-full').style.display = 'inline'; document.getElementById('1809.08886v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.08886v2-abstract-full" style="display: none;"> In this paper we report on results for the s-wave scattering length of the $蟺$-$K$ system in the $I=3/2$ channel from $N_f=2+1+1$ Lattice QCD. The calculation is based on gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about $230$ to $450\,\text{MeV}$ at three values of the lattice spacing. Our main result reads $M_蟺\,a_0^{3/2,\text{phys}} = -0.059(2)$. Using chiral perturbation theory we are also able to estimate $M_蟺\,a_0^{1/2,\text{phys}} = 0.163(3)$. The error includes statistical and systematic uncertainties, and for the latter in particular errors from the chiral and continuum extrapolations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08886v2-abstract-full').style.display = 'none'; document.getElementById('1809.08886v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 6 figures, 15 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114511 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00495">arXiv:1807.00495</a> <span> [<a href="https://arxiv.org/pdf/1807.00495">pdf</a>, <a href="https://arxiv.org/format/1807.00495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.054518">10.1103/PhysRevD.98.054518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating twisted mass fermions at physical light, strange and charm quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Charalambous%2C+P">Panagiotis Charalambous</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Mangin-Brinet%2C+M">Mariane Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00495v1-abstract-short" style="display: inline;"> We present the QCD simulation of the first gauge ensemble of two degenerate light quarks, a strange and a charm quark with all quark masses tuned to their physical values within the twisted mass fermion formulation. Results for the pseudoscalar masses and decay constants confirm that the produced ensemble is indeed at the physical parameters of the theory. This conclusion is corroborated by a comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00495v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00495v1-abstract-full" style="display: none;"> We present the QCD simulation of the first gauge ensemble of two degenerate light quarks, a strange and a charm quark with all quark masses tuned to their physical values within the twisted mass fermion formulation. Results for the pseudoscalar masses and decay constants confirm that the produced ensemble is indeed at the physical parameters of the theory. This conclusion is corroborated by a complementary analysis in the baryon sector. We examine cutoff and isospin breaking effects and demonstrate that they are suppressed through the presence of a clover term in the action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00495v1-abstract-full').style.display = 'none'; document.getElementById('1807.00495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 054518 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09579">arXiv:1712.09579</a> <span> [<a href="https://arxiv.org/pdf/1712.09579">pdf</a>, <a href="https://arxiv.org/ps/1712.09579">ps</a>, <a href="https://arxiv.org/format/1712.09579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817502003">10.1051/epjconf/201817502003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of an ensemble of $N_f=2+1+1$ twisted mass clover-improved fermions at physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Charalambous%2C+P">Panagiotis Charalambous</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09579v1-abstract-short" style="display: inline;"> We present a general strategy aimed at generating $N_f=2+1+1$ configurations with quarks at their physical mass using maximally twisted mass fermions to ensure automatic $O(a)$ improvement, in the presence of a clover term tuned to reduce the charged to neutral pion mass difference. The target system, for the moment, is a lattice of size $64^3 \times 128$ with a lattice spacing $a\sim 0.08$ fm. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09579v1-abstract-full').style.display = 'inline'; document.getElementById('1712.09579v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09579v1-abstract-full" style="display: none;"> We present a general strategy aimed at generating $N_f=2+1+1$ configurations with quarks at their physical mass using maximally twisted mass fermions to ensure automatic $O(a)$ improvement, in the presence of a clover term tuned to reduce the charged to neutral pion mass difference. The target system, for the moment, is a lattice of size $64^3 \times 128$ with a lattice spacing $a\sim 0.08$ fm. We show preliminary results on the pion and kaon mass and decay constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09579v1-abstract-full').style.display = 'none'; document.getElementById('1712.09579v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 17-165 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10956">arXiv:1710.10956</a> <span> [<a href="https://arxiv.org/pdf/1710.10956">pdf</a>, <a href="https://arxiv.org/format/1710.10956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508009">10.1051/epjconf/201817508009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing a non-perturbative mechanism for elementary fermion mass generation: lattice setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Capitani%2C+S">Stefano Capitani</a>, <a href="/search/hep-lat?searchtype=author&query=de+Divitiis%2C+G+M">Giulia Maria de Divitiis</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10956v1-abstract-short" style="display: inline;"> In this contribution we lay down a lattice setup that allows for the non-perturbative study of a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via a Yukawa and an "irrelevant" Wilson-like term. Using naive fermions in quenched approximation and based on the renormalized Ward identities induced b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10956v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10956v1-abstract-full" style="display: none;"> In this contribution we lay down a lattice setup that allows for the non-perturbative study of a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via a Yukawa and an "irrelevant" Wilson-like term. Using naive fermions in quenched approximation and based on the renormalized Ward identities induced by purely fermionic chiral transformations, lattice observables are discussed that enable: a) in the Wigner phase, the determinations of the critical Yukawa coupling value where the purely fermionic chiral transformation become a symmetry up to lattice artifacts; b) in the Nambu-Goldstone phase of the resulting critical theory, a stringent test of the actual generation of a fermion mass term of non-perturbative origin. A soft twisted fermion mass term is introduced to circumvent the problem of exceptional configurations, and observables are then calculated in the limit of vanishing twisted mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10956v1-abstract-full').style.display = 'none'; document.getElementById('1710.10956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain. arXiv admin note: text overlap with arXiv:1611.03997</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10401">arXiv:1710.10401</a> <span> [<a href="https://arxiv.org/pdf/1710.10401">pdf</a>, <a href="https://arxiv.org/format/1710.10401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.014508">10.1103/PhysRevD.97.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The pion vector form factor from Lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10401v1-abstract-short" style="display: inline;"> We present an investigation of the electromagnetic pion form factor, $F_蟺(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($\lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N_f = 2$ twisted-mass quarks at maximal twist including a clover term. Momentum is injected using non-periodic boundary conditions and the calculations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10401v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10401v1-abstract-full" style="display: none;"> We present an investigation of the electromagnetic pion form factor, $F_蟺(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($\lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N_f = 2$ twisted-mass quarks at maximal twist including a clover term. Momentum is injected using non-periodic boundary conditions and the calculations are carried out at a fixed lattice spacing ($a \simeq 0.09$ fm) and with pion masses equal to its physical value, 240 MeV and 340 MeV. Our data are successfully analyzed using Chiral Perturbation Theory at next-to-leading order in the light-quark mass. For each pion mass two different lattice volumes are used to take care of finite size effects. Our final result for the squared charge radius is $\langle r^2 \rangle_蟺= 0.443~(29)$ fm$^2$, where the error includes several sources of systematic errors except the uncertainty related to discretization effects. The corresponding value of the SU(2) chiral low-energy constant $\overline{\ell}_6$ is equal to $\overline{\ell}_6 = 16.2 ~ (1.0)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10401v1-abstract-full').style.display = 'none'; document.getElementById('1710.10401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 014508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10216">arXiv:1710.10216</a> <span> [<a href="https://arxiv.org/pdf/1710.10216">pdf</a>, <a href="https://arxiv.org/format/1710.10216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508008">10.1051/epjconf/201817508008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing a non-perturbative mechanism for elementary fermion mass generation: numerical results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Capitani%2C+S">Stefano Capitani</a>, <a href="/search/hep-lat?searchtype=author&query=de+Divitiis%2C+G+M">Giulia Maria de Divitiis</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10216v1-abstract-short" style="display: inline;"> Based on a recent proposal according to which elementary particle masses could be generated by a non-perturbative dynamical phenomenon, alternative to the Higgs mechanism, we carry out lattice simulations of a model where a non-abelian strongly interacting fermion doublet is also coupled to a doublet of complex scalar fields via a Yukawa and an "irrelevant" Wilson-like term. In this pioneering stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10216v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10216v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10216v1-abstract-full" style="display: none;"> Based on a recent proposal according to which elementary particle masses could be generated by a non-perturbative dynamical phenomenon, alternative to the Higgs mechanism, we carry out lattice simulations of a model where a non-abelian strongly interacting fermion doublet is also coupled to a doublet of complex scalar fields via a Yukawa and an "irrelevant" Wilson-like term. In this pioneering study we use naive fermions and work in the quenched approximation. We present preliminary numerical results both in the Wigner and in the Nambu-Goldstone phase, focusing on the observables relevant to check the occurrence of the conjectured dynamical fermion mass generation effect in the continuum limit of the critical theory in its spontaneously broken phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10216v1-abstract-full').style.display = 'none'; document.getElementById('1710.10216v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.03698">arXiv:1710.03698</a> <span> [<a href="https://arxiv.org/pdf/1710.03698">pdf</a>, <a href="https://arxiv.org/format/1710.03698">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505025">10.1051/epjconf/201817505025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $畏^\prime$ meson at the physical point with $N_f=2$ Wilson twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.03698v2-abstract-short" style="display: inline;"> We present results for the eta prime meson and the topological susceptibility in two flavour lattice QCD. The results are obtained using Wilson twisted mass fermions at maximal twist with pion masses ranging from 340 MeV down to the physical point. A comparison to literature values is performed giving a handle on discretisation effects. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.03698v2-abstract-full" style="display: none;"> We present results for the eta prime meson and the topological susceptibility in two flavour lattice QCD. The results are obtained using Wilson twisted mass fermions at maximal twist with pion masses ranging from 340 MeV down to the physical point. A comparison to literature values is performed giving a handle on discretisation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03698v2-abstract-full').style.display = 'none'; document.getElementById('1710.03698v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lattice 2017 proceeding contribution</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08788">arXiv:1703.08788</a> <span> [<a href="https://arxiv.org/pdf/1703.08788">pdf</a>, <a href="https://arxiv.org/format/1703.08788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.099906">10.1103/PhysRevD.96.099906 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Kallidonis%2C+C">C. Kallidonis</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&query=Avil%C3%A8s-Casco%2C+A+V">A. Vaquero Avil猫s-Casco</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08788v3-abstract-short" style="display: inline;"> We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with $N_f=2$ flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08788v3-abstract-full').style.display = 'inline'; document.getElementById('1703.08788v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08788v3-abstract-full" style="display: none;"> We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with $N_f=2$ flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are $g_S^u = 5.20(42)(15)(12)$, $g_S^d = 4.27(26)(15)(12)$, $g_S^s=0.33(7)(1)(4)$, $g_S^c=0.062(13)(3)(5)$ and for the tensor charges $g_T^u = 0.782(16)(2)(13)$, $g_T^d = -0.219(10)(2)(13)$, $g_T^s=-0.00319(69)(2)(22)$, $g_T^c=-0.00263(269)(2)(37)$ in the $\overline{\rm MS}$ scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08788v3-abstract-full').style.display = 'none'; document.getElementById('1703.08788v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages and 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 099906 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04737">arXiv:1703.04737</a> <span> [<a href="https://arxiv.org/pdf/1703.04737">pdf</a>, <a href="https://arxiv.org/format/1703.04737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034510">10.1103/PhysRevD.96.034510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: isospin-1 $KK$ scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04737v2-abstract-short" style="display: inline;"> We present results for the interaction of two kaons at maximal isospin. The calculation is based on $N_f=2+1+1$ flavour gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about $230$ to $450\,\textrm{MeV}$ at three values of the lattice spacing. The elastic scattering length $a_0^{I=1}$ is calculated at several values of the bare strange and lig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04737v2-abstract-full').style.display = 'inline'; document.getElementById('1703.04737v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04737v2-abstract-full" style="display: none;"> We present results for the interaction of two kaons at maximal isospin. The calculation is based on $N_f=2+1+1$ flavour gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about $230$ to $450\,\textrm{MeV}$ at three values of the lattice spacing. The elastic scattering length $a_0^{I=1}$ is calculated at several values of the bare strange and light quark masses. We find $M_K a_0 = -0.385(16)_{\textrm{stat}} (^{+0}_{-12})_{m_s}(^{+0}_{-5})_{Z_P}(4)_{r_f}$ as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to $a_0 = -0.154(6)_{\textrm{stat}}(^{+0}_{-5})_{m_s} (^{+0}_{-2})_{Z_P}(2)_{r_f}\,\textrm{fm}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04737v2-abstract-full').style.display = 'none'; document.getElementById('1703.04737v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 18 tables, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.08961">arXiv:1701.08961</a> <span> [<a href="https://arxiv.org/pdf/1701.08961">pdf</a>, <a href="https://arxiv.org/format/1701.08961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Isospin-0 $蟺蟺$ scattering from twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">L. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">C. Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">C. Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">B. Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">M. Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.08961v1-abstract-short" style="display: inline;"> We present results for the isospin-0 $蟺蟺$ s-wave scattering length calculated in twisted mass lattice QCD. We use three $N_f = 2$ ensembles with unitary pion mass at its physical value, 240~MeV and 330~MeV respectively. We also use a large set of $N_f = 2 + 1 +1$ ensembles with unitary pion masses varying in the range of 230~MeV - 510~MeV at three different values of the lattice spacing. A mixed a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08961v1-abstract-full').style.display = 'inline'; document.getElementById('1701.08961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.08961v1-abstract-full" style="display: none;"> We present results for the isospin-0 $蟺蟺$ s-wave scattering length calculated in twisted mass lattice QCD. We use three $N_f = 2$ ensembles with unitary pion mass at its physical value, 240~MeV and 330~MeV respectively. We also use a large set of $N_f = 2 + 1 +1$ ensembles with unitary pion masses varying in the range of 230~MeV - 510~MeV at three different values of the lattice spacing. A mixed action approach with the Osterwalder-Seiler action in the valence sector is adopted to circumvent the complications arising from isospin symmetry breaking of the twisted mass quark action. Due to the relatively large lattice artefacts in the $N_f = 2 + 1 +1$ ensembles, we do not present the scattering lengths for these ensembles. Instead, taking the advantage of the many different pion masses of these ensembles, we qualitatively discuss the pion mass dependence of the scattering properties of this channel based on the results from the $N_f = 2 + 1 +1$ ensembles. The scattering length is computed for the $N_f = 2$ ensembles and the chiral extrapolation is performed. At the physical pion mass, our result $M_蟺a^\mathrm{I=0}_0 = 0.198(9)(6)$ agrees reasonably well with various experimental measurements and theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08961v1-abstract-full').style.display = 'none'; document.getElementById('1701.08961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, talk presented at the 34th annual International Symposium on Lattice Field Theory (Lattice2016), 24-30 July 2016, University of Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02061">arXiv:1612.02061</a> <span> [<a href="https://arxiv.org/pdf/1612.02061">pdf</a>, <a href="https://arxiv.org/format/1612.02061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.054516">10.1103/PhysRevD.96.054516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin-0 $蟺蟺$ s-wave scattering length from twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">L. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">C. Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">C. Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">B. Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">M. Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02061v3-abstract-short" style="display: inline;"> We present results for the isospin-0 $蟺蟺$ s-wave scattering length calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge configurations. We use three $N_f = 2$ ensembles with unitary (valence) pion mass at its physical value (250$\sim$MeV), at 240$\sim$MeV (320$\sim$MeV) and at 330$\sim$MeV (400$\sim$MeV), respectively. By using the stochastic Laplacian Heaviside quark sme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02061v3-abstract-full').style.display = 'inline'; document.getElementById('1612.02061v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02061v3-abstract-full" style="display: none;"> We present results for the isospin-0 $蟺蟺$ s-wave scattering length calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge configurations. We use three $N_f = 2$ ensembles with unitary (valence) pion mass at its physical value (250$\sim$MeV), at 240$\sim$MeV (320$\sim$MeV) and at 330$\sim$MeV (400$\sim$MeV), respectively. By using the stochastic Laplacian Heaviside quark smearing method, all quark propagation diagrams contributing to the isospin-0 $蟺蟺$ correlation function are computed with sufficient precision. The chiral extrapolation is performed to obtain the scattering length at the physical pion mass. Our result $M_蟺a^\mathrm{I=0}_0 = 0.198(9)(6)$ agrees reasonably well with various experimental measurements and theoretical predictions. Since we only use one lattice spacing, certain systematics uncertainties, especially those arising from unitary breaking, are not controlled in our result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02061v3-abstract-full').style.display = 'none'; document.getElementById('1612.02061v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 054516 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01449">arXiv:1612.01449</a> <span> [<a href="https://arxiv.org/pdf/1612.01449">pdf</a>, <a href="https://arxiv.org/format/1612.01449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion structure from twisted mass lattice QCD down to the physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Oehm%2C+M">Maximilian Oehm</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01449v1-abstract-short" style="display: inline;"> We present an investigation of pion structure based on ETMC $N_f=2$ and $N_f=2+1+1$ twisted mass configurations at maximal twist. We compute the first moment of the quark momentum fraction of the pion, $\langle x \rangle$ and the electromagnetic form factor, $F_蟺(Q^2)$. For the latter, momentum is injected using twisted boundary conditions and the calculation is carried out directly at the physica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01449v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01449v1-abstract-full" style="display: none;"> We present an investigation of pion structure based on ETMC $N_f=2$ and $N_f=2+1+1$ twisted mass configurations at maximal twist. We compute the first moment of the quark momentum fraction of the pion, $\langle x \rangle$ and the electromagnetic form factor, $F_蟺(Q^2)$. For the latter, momentum is injected using twisted boundary conditions and the calculation is carried out directly at the physical pion mass. We find that our data are consistent with vector meson dominance and experimental data in the region of small momentum transfer. For $\langle x \rangle$, we find that our chirally and continuum extrapolated result is compatible with its phenomenological value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01449v1-abstract-full').style.display = 'none'; document.getElementById('1612.01449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, presented at 34th annual International Symposium on Lattice Field Theory (LAT'16)</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Kostrzewa%2C+B&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>