CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 277 results for author: <span class="mathjax">Alexandrou, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Alexandrou, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Alexandrou%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Alexandrou, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08852">arXiv:2411.08852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08852">pdf</a>, <a href="https://arxiv.org/format/2411.08852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Strange and charm quark contributions to the muon anomalous magnetic moment in lattice QCD with twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kalntis%2C+N">N. Kalntis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08852v1-abstract-short" style="display: inline;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08852v1-abstract-full" style="display: none;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the quark mass parameters that are close and/or include the isospin symmetric QCD point of interest. After computing the small corrections necessary to precisely match this point, and carrying out an extrapolation to the continuum limit based on the data at lattice spacings $a \simeq 0.049, 0.057, 0.068, 0.080$~fm and spatial lattice sizes up to $L \simeq 7.6$~fm, we obtain $a_渭^{\rm HVP}(s) = (53.57 \pm 0.63) \times 10^{-10}$ and $a_渭^{\rm HVP}(c) = (14.56 \pm 0.13) \times 10^{-10}$, for the quark-connected strange and charm contributions, respectively. Our findings agree well with the corresponding results by other lattice groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'none'; document.getElementById('2411.08852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 18 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14370">arXiv:2408.14370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14370">pdf</a>, <a href="https://arxiv.org/format/2408.14370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14370v1-abstract-short" style="display: inline;"> We give a brief overview of recent progress in lattice QCD simulations that is enabling precision studies of the three-dimensional structure of the nucleon. We present results on nucleon charges and second Mellin moments of parton distribution functions and generalized parton distributions, highlighting results obtained at the continuum limit using only gauge ensembles simulated with physical quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14370v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14370v1-abstract-full" style="display: none;"> We give a brief overview of recent progress in lattice QCD simulations that is enabling precision studies of the three-dimensional structure of the nucleon. We present results on nucleon charges and second Mellin moments of parton distribution functions and generalized parton distributions, highlighting results obtained at the continuum limit using only gauge ensembles simulated with physical quark masses. The tensor charge and transversity moments are determined with controlled systematics and used to extract nucleon transverse density distributions. We also discuss progress towards the direct evaluation of generalized parton distributions in lattice QCD and the impact they are having on phenomenology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14370v1-abstract-full').style.display = 'none'; document.getElementById('2408.14370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, Invited Talk at 7th International Workshop on &#34;Transverse phenomena in hard processes and the transverse structure of the proton (Transversity2024)&#34;, 3-7 June 2024, Trieste, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03893">arXiv:2408.03893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03893">pdf</a>, <a href="https://arxiv.org/format/2408.03893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.094514">10.1103/PhysRevD.110.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of pion-nucleon contributions to nucleon matrix elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03893v2-abstract-short" style="display: inline;"> We investigate contributions of excited states to nucleon matrix elements computed in lattice QCD by employing, in addition to the standard nucleon interpolating operator, pion-nucleon ($蟺$-$N$) operators. We solve a generalized eigenvalue problem (GEVP) to obtain an optimal interpolating operator that minimizes overlap with the $蟺$-$N$ states. We derive a variant of the standard application of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03893v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03893v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03893v2-abstract-full" style="display: none;"> We investigate contributions of excited states to nucleon matrix elements computed in lattice QCD by employing, in addition to the standard nucleon interpolating operator, pion-nucleon ($蟺$-$N$) operators. We solve a generalized eigenvalue problem (GEVP) to obtain an optimal interpolating operator that minimizes overlap with the $蟺$-$N$ states. We derive a variant of the standard application of the GEVP method, which allows for constructing 3-point correlation functions using the optimized interpolating operator without requiring the computationally demanding combination that includes $蟺$-$N$ operators in both sink and source. We extract nucleon matrix elements using two twisted mass fermion ensembles, one ensemble generated using pion mass of 346 MeV and one ensemble tuned to reproduce the physical value of the pion mass. Especially, we determine the isoscalar and isovector scalar, pseudoscalar, vector, axial, and tensor matrix elements. We include results obtained using a range of kinematic setups, including momentum in the sink. Our results using this variational approach are compared with previous results obtained using the same ensembles and multi-state fits without GEVP improvement. We find that for the physical mass point ensemble, the improvement, in terms of suppression of excited states using this method, is most significant for the case of the matrix elements of the isovector axial and pseudoscalar currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03893v2-abstract-full').style.display = 'none'; document.getElementById('2408.03893v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 39 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 094514 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08529">arXiv:2405.08529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08529">pdf</a>, <a href="https://arxiv.org/format/2405.08529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion and in the kaon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chacon%2C+L+A+R">Luis Alberto Rodriguez Chacon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=wenger%2C+U">Urs wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08529v1-abstract-short" style="display: inline;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08529v1-abstract-full" style="display: none;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum decomposition at the physical point. We find that the total momentum fraction carried by quarks is 0.532(56) and 0.618(32) and by gluons 0.388(49) and 0.408(61) in the pion and in the kaon, respectively, in the $\overline{\mathrm{MS}}$ scheme and at the renormalization scale of 2 GeV. Having computed both the quark and gluon contributions in the continuum limit, we find that the momentum sum is 0.926(68) for the pion and 1.046(90) for the kaon, verifying the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'none'; document.getElementById('2405.08529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03588">arXiv:2404.03588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03588">pdf</a>, <a href="https://arxiv.org/format/2404.03588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $\bar b \bar b u d$ and $\bar b \bar b u s$ tetraquarks from lattice QCD using symmetric correlation matrices with both local and scattering interpolating operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pflaumer%2C+M">Martin Pflaumer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Marc Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03588v2-abstract-short" style="display: inline;"> We study the $\bar b \bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ as well as the $\bar b \bar b u s$ tetraquark with quantum numbers $J^P = 1^+$ using lattice QCD. We improve on existing work by including both local and scattering interpolating operators on both sides of the correlation functions and use symmetric correlation matrices. This allows not only a reliable determination&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03588v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03588v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03588v2-abstract-full" style="display: none;"> We study the $\bar b \bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ as well as the $\bar b \bar b u s$ tetraquark with quantum numbers $J^P = 1^+$ using lattice QCD. We improve on existing work by including both local and scattering interpolating operators on both sides of the correlation functions and use symmetric correlation matrices. This allows not only a reliable determination of the energies of QCD-stable tetraquark ground states, but also of low-lying excited states, which are meson-meson scattering states. The latter is particularly important for future finite-volume scattering analyses. Here, we perform chiral and continuum extrapolations of just the ground-state energies, for which finite-volume effects are expected to be small. Our resulting tetraquark binding energies, $-100 \pm 10\:^{+36}_{-51}\:\:{\rm MeV}$ for $\bar b \bar b u d$ and $-30 \pm 3\:^{+11}_{-31}\:\:{\rm MeV}$ for $\bar b \bar b u s$, are consistent with other recent lattice-QCD predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03588v2-abstract-full').style.display = 'none'; document.getElementById('2404.03588v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures; version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 054510 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05404">arXiv:2403.05404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05404">pdf</a>, <a href="https://arxiv.org/format/2403.05404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Inclusive hadronic decay rate of the $蟿$ lepton from lattice QCD: the $\bar u s$ flavour channel and the Cabibbo angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05404v2-abstract-short" style="display: inline;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05404v2-abstract-full" style="display: none;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospin-breaking corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by using the Hansen-Lupo-Tantalo method [1] that we have already successfully applied in [2] to compute the inclusive decay rate of the process $蟿\mapsto X_{ud} 谓_蟿$ in the $\bar u d$ flavour channel. By combining our first-principles theoretical results with the presently-available experimental data we extract the CKM matrix element $\vert V_{us}\vert$, the Cabibbo angle, with a $0.9$\% accuracy, dominated by the experimental error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'none'; document.getElementById('2403.05404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table. Version accepted by PRL, expanded technical discussion moved to an appendix, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04080">arXiv:2401.04080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04080">pdf</a>, <a href="https://arxiv.org/format/2401.04080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Generalized form factors of the pion and kaon using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04080v1-abstract-short" style="display: inline;"> We present an update on our lattice calculations of the Mellin moments of PDFs and GPDs for the pion and kaon, using momentum-boosted meson states. In particular, we focus on the calculation of the scalar and tensor local operators, and the vector operator with up to three-covariant derivatives. The corresponding matrix elements allow us to extract the scalar and tensor charges, as well as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04080v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04080v1-abstract-full" style="display: none;"> We present an update on our lattice calculations of the Mellin moments of PDFs and GPDs for the pion and kaon, using momentum-boosted meson states. In particular, we focus on the calculation of the scalar and tensor local operators, and the vector operator with up to three-covariant derivatives. The corresponding matrix elements allow us to extract the scalar and tensor charges, as well as $\langle x^n \rangle$ with $n=1,2,3$. In addition, we introduce momentum transfer between the initial and final meson state that leads to the scalar, vector, and tensor form factors, and the generalized form factors up to three covariant derivatives. The above results are obtained using two ensembles of maximally twisted mass fermions with clover improvement with two degenerate light, a strange, and a charm quark $(N_f=2+1+1)$ at lattice spacings of 0.093 fm and 0.081 fm. The pion mass of the ensembles is about 260 MeV. We study excited-states effects by analyzing four values of the source-sink time separation (1.12 - 1.67 fm). We also examine discretization and volume effects. The lattice data are renormalized non-perturbatively, and the results are presented in the MS scheme at a scale of 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04080v1-abstract-full').style.display = 'none'; document.getElementById('2401.04080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, Contribution to The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02365">arXiv:2401.02365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02365">pdf</a>, <a href="https://arxiv.org/format/2401.02365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Towards the determination of the 3-dimensional structure of the proton using lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02365v2-abstract-short" style="display: inline;"> State-of-the-art lattice QCD simulations enable the evaluation of nucleon form factors and Mellin moments with controlled systematics, yielding results with unprecedented accuracy. At the same time, new theoretical approaches are allowing the direct computation of nucleon generalized parton distributions. We review recent lattice QCD results on these quantities that are paving the way for extracti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02365v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02365v2-abstract-full" style="display: none;"> State-of-the-art lattice QCD simulations enable the evaluation of nucleon form factors and Mellin moments with controlled systematics, yielding results with unprecedented accuracy. At the same time, new theoretical approaches are allowing the direct computation of nucleon generalized parton distributions. We review recent lattice QCD results on these quantities that are paving the way for extracting a wealth of information on the 3-dimensional structure of the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02365v2-abstract-full').style.display = 'none'; document.getElementById('2401.02365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Two figures updated and typos corrected. 8 pages and 7 figures. Invited talk at the 16th edition of the &#34;International Conference on Meson-Nucleon Physics and the Structure of the Nucleon&#34; (MENU 2023), October 16-20, 2023, Institute for Nuclear Physics of the Johannes Gutenberg University of Mainz, Germany. arXiv admin note: text overlap with arXiv:2309.05774</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15737">arXiv:2312.15737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15737">pdf</a>, <a href="https://arxiv.org/format/2312.15737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Investigation of two-particle contributions to nucleon matrix elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15737v2-abstract-short" style="display: inline;"> We investigate contributions of excited states to nucleon matrix elements by studying the two- and three-point functions using nucleon and pion-nucleon interpolating fields. This study is carried out using twisted mass fermion ensembles with pion masses 346 MeV and 131 MeV. We compare the results obtained using these two ensembles and show preliminary results for nucleon charges. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15737v2-abstract-full" style="display: none;"> We investigate contributions of excited states to nucleon matrix elements by studying the two- and three-point functions using nucleon and pion-nucleon interpolating fields. This study is carried out using twisted mass fermion ensembles with pion masses 346 MeV and 131 MeV. We compare the results obtained using these two ensembles and show preliminary results for nucleon charges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15737v2-abstract-full').style.display = 'none'; document.getElementById('2312.15737v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 40th International Symposium on Lattice Field Theory - Lattice2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02925">arXiv:2312.02925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02925">pdf</a>, <a href="https://arxiv.org/format/2312.02925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.151902">10.1103/PhysRevLett.132.151902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shallow Bound States and Hints for Broad Resonances with Quark Content $\bar{b}\bar{c}ud$ in $B$-$\bar{D}$ and $B^*$-$\bar{D}$ Scattering from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pflaumer%2C+M">Martin Pflaumer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Marc Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02925v3-abstract-short" style="display: inline;"> We present the first determination of the energy dependence of the $B$-$\bar{D}$ and $B^*$-$\bar{D}$ isospin-0, $S$-wave scattering amplitudes both below and above the thresholds using lattice QCD, which allows us to investigate rigorously whether mixed bottom-charm $\bar{b}\bar{c}ud$ tetraquarks exist as bound states or resonances. The scattering phase shifts are obtained using L眉scher&#39;s method f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02925v3-abstract-full').style.display = 'inline'; document.getElementById('2312.02925v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02925v3-abstract-full" style="display: none;"> We present the first determination of the energy dependence of the $B$-$\bar{D}$ and $B^*$-$\bar{D}$ isospin-0, $S$-wave scattering amplitudes both below and above the thresholds using lattice QCD, which allows us to investigate rigorously whether mixed bottom-charm $\bar{b}\bar{c}ud$ tetraquarks exist as bound states or resonances. The scattering phase shifts are obtained using L眉scher&#39;s method from the energy spectra in two different volumes. To ensure that no relevant energy level is missed, we use large, symmetric $7 \times 7$ and $8 \times 8$ correlation matrices that include, at both source and sink, $B^{(*)}$-$\bar{D}$ scattering operators with the lowest three or four possible back-to-back momenta in addition to local $\bar{b}\bar{c}ud$ operators. We fit the energy dependence of the extracted scattering phase shifts using effective-range expansions. We observe sharp peaks in the $B^{(*)}$-$\bar{D}$ scattering rates close to the thresholds, which are associated with shallow bound states, either genuine or virtual, a few MeV or less below the $B^{(*)}$-$\bar{D}$ thresholds. In addition, we find hints for resonances with masses of order $100$ MeV above the thresholds and decay widths of order $200$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02925v3-abstract-full').style.display = 'none'; document.getElementById('2312.02925v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 10 pages of references and supplemental material. Added estimates of bound-state probabilities and improved calculation of bound-state mass uncertainties</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 151902 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01389">arXiv:2310.01389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01389">pdf</a>, <a href="https://arxiv.org/format/2310.01389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Gluon PDF of the proton using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01389v1-abstract-short" style="display: inline;"> In this paper, we present lattice QCD results for the $x$-dependence of the unpolarized gluon PDF for the proton. We use one ensemble of $N_f=2+1+1$ maximally twisted mass fermions with a clover improvement, and the Iwasaki improved gluon action. The quark masses are tuned to produce a pion with a mass of 260 MeV. The ensemble has a lattice spacing of $a=0.093$ fm and a spatial extent of 3 fm. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01389v1-abstract-full').style.display = 'inline'; document.getElementById('2310.01389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01389v1-abstract-full" style="display: none;"> In this paper, we present lattice QCD results for the $x$-dependence of the unpolarized gluon PDF for the proton. We use one ensemble of $N_f=2+1+1$ maximally twisted mass fermions with a clover improvement, and the Iwasaki improved gluon action. The quark masses are tuned to produce a pion with a mass of 260 MeV. The ensemble has a lattice spacing of $a=0.093$ fm and a spatial extent of 3 fm. We employ the pseudo-distribution approach, which relies on matrix elements of non-local operators that couple to momentum-boosted hadrons. In this work, we use five values of the momentum boost between 0 and 1.67 GeV. The gluon field strength tensors of the non-local operator are connected with straight Wilson lines of varying length $z$. The light-cone Ioffe time distribution (ITD) is extracted utilizing data with $z$ up to 0.56 fm and a quadratic parametrization in terms of the Ioffe time at fixed values of $z$. We explore systematic effects, such as the effect of the stout smearing for the gluon operator, excited states effects, and the dependence on the maximum value of $z$ entering the fits to obtain the gluon PDF. Also, for the first time, the mixing with the quark singlet PDFs is eliminated using matrix elements with non-local quark operators that were previously analyzed within the quasi-PDF framework on the same ensemble. Here, we expand the data set for the quark singlet and reanalyze within the pseudo-PDFs method eliminating the corresponding mixing in the gluon PDF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01389v1-abstract-full').style.display = 'none'; document.getElementById('2310.01389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05774">arXiv:2309.05774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05774">pdf</a>, <a href="https://arxiv.org/format/2309.05774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05774v2-abstract-short" style="display: inline;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the gro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05774v2-abstract-full" style="display: none;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the ground state matrix elements is assessed using multi-state fits. We study the momentum dependence of the three form factors and check the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD). We show that in the continuum limit, the PCAC and PPD relations are satisfied. We also show that the Goldberger-Treimann relation is approximately fulfilled and determine the Goldberger-Treiman discrepancy. We find for the nucleon axial charge $g_A$=1.245(28)(14), for the axial radius $\langle r^2_A \rangle$=0.339(48)(06) fm$^2$, for the pion-nucleon coupling constant $g_{蟺NN} \equiv \lim_{Q^2 \rightarrow -m_蟺^2} G_{蟺NN}(Q^2)$=13.25(67)(69) and for $G_P(0.88m_渭^2)\equiv g_P^*$=8.99(39)(49). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'none'; document.getElementById('2309.05774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 32 pages, 39 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04401">arXiv:2309.04401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04401">pdf</a>, <a href="https://arxiv.org/format/2309.04401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Low-lying baryon masses using twisted mass fermions ensembles at the physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christou%2C+G">Georgios Christou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04401v2-abstract-short" style="display: inline;"> We investigate the low-lying baryon spectrum using three $N_f$=2+1+1 ensembles simulated with physical values of the quark masses and lattice spacings of 0.080, 0.069, and 0.057 fm. The ensembles are generated using twisted mass clover-improved fermions and the Iwasaki gauge action. The spatial length is kept approximately the same at about 5.1 fm to 5.5 fm fulfilling the condition $m_蟺L$&gt; 3.6. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04401v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04401v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04401v2-abstract-full" style="display: none;"> We investigate the low-lying baryon spectrum using three $N_f$=2+1+1 ensembles simulated with physical values of the quark masses and lattice spacings of 0.080, 0.069, and 0.057 fm. The ensembles are generated using twisted mass clover-improved fermions and the Iwasaki gauge action. The spatial length is kept approximately the same at about 5.1 fm to 5.5 fm fulfilling the condition $m_蟺L$&gt; 3.6. We investigate isospin splitting within isospin multiples and verify that for most cases the isospin splitting for these lattice spacing is consistent with zero. In the couple of cases, for which there is a non-zero value, in the continuum limit, the mass splitting goes to zero. The baryon masses are extrapolated to the continuum limit using the three $N_f$=2+1+1 ensembles and are compared to other recent lattice QCD results. For the strange and charm quark masses, we find, respectively, $m_s$(2 GeV)=99.2(2.7) MeV and $m_c$(3 GeV)=1.015(39) GeV. The values predicted for the masses of the doubly charmed $螢_{cc}^\star$, $惟_{cc}$ and $惟_{cc}^\star$ baryons are 3.676(55) GeV, 3.703(51) GeV and 3.803(50) GeV, respectively, and for the triply charmed $惟_{ccc}$ baryon is 4.785(71) GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04401v2-abstract-full').style.display = 'none'; document.getElementById('2309.04401v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 15 pages, 18 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12458">arXiv:2308.12458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12458">pdf</a>, <a href="https://arxiv.org/format/2308.12458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094514">10.1103/PhysRevD.108.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Transition Form Factor from Twisted-Mass Lattice QCD and the Hadronic Light-by-Light $蟺^0$-pole Contribution to the Muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">S. Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">G. Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">F. Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12458v2-abstract-short" style="display: inline;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor para&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12458v2-abstract-full" style="display: none;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor parameterized using a model-independent conformal expansion valid for arbitrary space-like kinematics and compare it with experimental measurements of the single-virtual form factor, the two-photon decay width, and the slope parameter. We then use the transition form factors to compute the pion-pole contribution to the hadronic light-by-light scattering in the muon $g-2$, finding $a_渭^{蟺^0\text{-pole}} = 56.7(3.2) \times 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'none'; document.getElementById('2308.12458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, 4 tables, updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, 094514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12846">arXiv:2307.12846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12846">pdf</a>, <a href="https://arxiv.org/format/2307.12846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.034509">10.1103/PhysRevD.109.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic Nucleon-Pion scattering amplitudes in the $螖$ channel at physical pion mass from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12846v2-abstract-short" style="display: inline;"> We present an investigation of pion-nucleon elastic scattering in the $I\,(J^P) = \frac{3}{2}\,(\frac{3}{2}^+)$ channel using lattice QCD with degenerate up and down, strange and charm quarks with masses tuned to their physical values. We use an ensemble of twisted mass fermions with box size $L = 5.1\,\mathrm{fm}$ and lattice spacing $a = 0.08\,\mathrm{fm}$ and we consider the $蟺N$ system in rest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12846v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12846v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12846v2-abstract-full" style="display: none;"> We present an investigation of pion-nucleon elastic scattering in the $I\,(J^P) = \frac{3}{2}\,(\frac{3}{2}^+)$ channel using lattice QCD with degenerate up and down, strange and charm quarks with masses tuned to their physical values. We use an ensemble of twisted mass fermions with box size $L = 5.1\,\mathrm{fm}$ and lattice spacing $a = 0.08\,\mathrm{fm}$ and we consider the $蟺N$ system in rest and moving frames up to total momentum $\vec{P}^2 = 3\,(2蟺/L)^2$ = 0.17 GeV$^2$. We take into account the finite volume symmetries and $S$- and $P$-wave mixing, and use the L眉scher formalism to simultaneously constrain the $J = 1/2,\,\ell = 0$ and $J = 3/2,\,\ell = 1$ scattering amplitudes. We estimate the $螖$ resonance pole in the $P$-wave channel as well as the $S$-wave isospin-3/2 scattering length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12846v2-abstract-full').style.display = 'none'; document.getElementById('2307.12846v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures, 10 tables; v2 matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D109 (2024) 3, 034509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03236">arXiv:2307.03236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03236">pdf</a>, <a href="https://arxiv.org/format/2307.03236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.037001">10.1103/PRXQuantum.5.037001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tavernelli%2C+I">Ivano Tavernelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Arunachalam%2C+S">Srinivasan Arunachalam</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borras%2C+K">Kerstin Borras</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Carrazza%2C+S">Stefano Carrazza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Crippa%2C+A">Arianna Crippa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Croft%2C+V">Vincent Croft</a>, <a href="/search/hep-lat?searchtype=author&amp;query=de+Putter%2C+R">Roland de Putter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delgado%2C+A">Andrea Delgado</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dunjko%2C+V">Vedran Dunjko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egger%2C+D+J">Daniel J. Egger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fernandez-Combarro%2C+E">Elias Fernandez-Combarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fuchs%2C+E">Elina Fuchs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gonzalez-Cuadra%2C+D">Daniel Gonzalez-Cuadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grossi%2C+M">Michele Grossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Halimeh%2C+J+C">Jad C. Halimeh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holmes%2C+Z">Zoe Holmes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuhn%2C+S">Stefan Kuhn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lacroix%2C+D">Denis Lacroix</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lewis%2C+R">Randy Lewis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucchesi%2C+D">Donatella Lucchesi</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03236v1-abstract-short" style="display: inline;"> Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits enables the execution of small scale but representative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03236v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03236v1-abstract-full" style="display: none;"> Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits enables the execution of small scale but representative applications on quantum computers. In particular, the high-energy physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problems. This concerns, on the theoretical side, the exploration of models which are very hard or even impossible to address with classical techniques and, on the experimental side, the enormous data challenge of newly emerging experiments, such as the upgrade of the Large Hadron Collider. In this roadmap paper, led by CERN, DESY and IBM, we provide the status of high-energy physics quantum computations and give examples for theoretical and experimental target benchmark applications, which can be addressed in the near future. Having the IBM 100 x 100 challenge in mind, where possible, we also provide resource estimates for the examples given using error mitigated quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03236v1-abstract-full').style.display = 'none'; document.getElementById('2307.03236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 037001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11824">arXiv:2305.11824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11824">pdf</a>, <a href="https://arxiv.org/format/2305.11824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.114503">10.1103/PhysRevD.108.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative renormalization of asymmetric staple-shaped operators in twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarello%2C+J">Jacopo Tarello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11824v2-abstract-short" style="display: inline;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11824v2-abstract-full" style="display: none;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restricted within groups of four operators. We then present numerical results using the regularization independent momentum subtraction (RI/MOM) scheme to study the importance of mixing using one operator in particular, the $纬_0$ operator. Based on these results, we consider the short distance ratio (SDR) scheme, which is desirable in the absence of mixing. Finally, we investigate a variant of the RI/MOM scheme, where the renormalization factors are computed at short distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'none'; document.getElementById('2305.11824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12493">arXiv:2212.12493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12493">pdf</a>, <a href="https://arxiv.org/format/2212.12493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the R-ratio smeared with Gaussian kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12493v1-abstract-short" style="display: inline;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice cal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12493v1-abstract-full" style="display: none;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice calculations and with the muon $g-2$ experiment. In this talk we discuss the results of our first-principles lattice study of $R(E)$. By using a recently proposed method for extracting smeared spectral densities from Euclidean lattice correlators, we have calculated $R(E)$ convoluted with Gaussian kernels of different widths $蟽$ and central energies up to $2.5$ GeV. Our theoretical results have been compared with the KNT19 [1] compilation of experimental results smeared with the same Gaussian kernels and a tension (about three standard deviations) has been observed for $蟽\sim 600$ MeV and central energies around the $蟻$-resonance peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'none'; document.getElementById('2212.12493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8th-13th August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11399">arXiv:2212.11399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11399">pdf</a>, <a href="https://arxiv.org/format/2212.11399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Gluon PDF for the proton using the twisted mass formulation of lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11399v1-abstract-short" style="display: inline;"> We present results of the x-dependence of the unpolarized gluon PDF for the proton. We use an $N_f=2+1+1$ ensemble of maximally twisted mass fermions with clover improvement and the Iwasaki improved gluon action. The quark masses are tuned so that the pion mass is 260 MeV. We use a $32^3\times64$ lattice size with a lattice spacing $a=0.093$ fm giving a spatial extent of 3 fm. We employ the pseudo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11399v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11399v1-abstract-full" style="display: none;"> We present results of the x-dependence of the unpolarized gluon PDF for the proton. We use an $N_f=2+1+1$ ensemble of maximally twisted mass fermions with clover improvement and the Iwasaki improved gluon action. The quark masses are tuned so that the pion mass is 260 MeV. We use a $32^3\times64$ lattice size with a lattice spacing $a=0.093$ fm giving a spatial extent of 3 fm. We employ the pseudo-distribution approach and obtain the light-cone Ioffe time distribution (ITD) combining data for nucleon momentum boosts up to 1.67 GeV and Wilson line lengths, $z$, up to 0.56 fm. We explore systematic effects such as the dependence on the maximum value of $z$ entering the fits to obtain the gluon PDF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11399v1-abstract-full').style.display = 'none'; document.getElementById('2212.11399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10490">arXiv:2212.10490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10490">pdf</a>, <a href="https://arxiv.org/format/2212.10490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Short \&amp; intermediate distance HVP contributions to muon g-2: SM (lattice) prediction versus $e^+e^-$ annihilation data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10490v1-abstract-short" style="display: inline;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10490v1-abstract-full" style="display: none;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of the muon anomalous magnetic moment, $a_渭$. Results for $a_渭^{\rm LO-HVP,W}$ and $a_渭^{\rm LO-HVP,SD}$, besides representing a step forward to a complete lattice computation of $a_渭^{\rm LO-HVP}$ and a useful benchmark among lattice groups, are compared here with their dispersive counterparts based on experimental data for $e^+e^-$ into hadrons. The comparison confirms the tension in $a_渭^{\rm LO-HVP,W}$, already noted in 2020 by the BMW Collaboration, while showing no tension in $a_渭^{\rm LO-HVP,SD}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'none'; document.getElementById('2212.10490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at ICHEP 2022 (6-13 July 2022, Bologna - Italy) - Results here are almost final - Contribution accepted for publication on PoS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10300">arXiv:2212.10300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10300">pdf</a>, <a href="https://arxiv.org/format/2212.10300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pseudoscalar-pole contributions to the muon $g-2$ at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10300v1-abstract-short" style="display: inline;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10300v1-abstract-full" style="display: none;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have access to a broad range of (space-like) photon four-momenta and therefore produce form factor data complementary to the experimentally accessible single-virtual direction, which directly leads to an estimate of the pion- and $畏$-pole components of the muon $g-2$. For the pion, our result for the $g-2$ contribution in the continuum is comparable with previous lattice and data-driven determinations, with combined relative uncertainties below $10\%$. For the $畏$ meson, we report on a preliminary determination from a single lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'none'; document.getElementById('2212.10300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09340">arXiv:2212.09340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09340">pdf</a>, <a href="https://arxiv.org/format/2212.09340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Time windows of the muon HVP from twisted-mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09340v1-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09340v1-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavours tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD} = 69.27\,(34) \cdot 10^{-10}$, in agreement with the dispersive determination based on experimental $e^+ e^-$ data. For the intermediate window we get instead $a_渭^{\rm W} = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with recent determinations by other lattice collaborations, but disagrees with the dispersive determination at the level of $3.6\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'none'; document.getElementById('2212.09340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08467">arXiv:2212.08467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08467">pdf</a>, <a href="https://arxiv.org/format/2212.08467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241901">10.1103/PhysRevLett.130.241901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the energy-smeared R-ratio on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08467v2-abstract-short" style="display: inline;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08467v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08467v2-abstract-full" style="display: none;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV. Our theoretical results are compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of $R$-ratio experimental measurements with the same kernels and, by centring the Gaussians in the region around the $蟻$-resonance peak, a tension of about three standard deviations is observed. From the phenomenological perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections and this might affect the observed tension. From the methodological perspective, our calculation demonstrates that it is possible to study the $R$-ratio in Gaussian energy bins on the lattice at the level of accuracy required in order to perform precision tests of the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'none'; document.getElementById('2212.08467v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication on PRL. Results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07730">arXiv:2212.07730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07730">pdf</a>, <a href="https://arxiv.org/format/2212.07730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Non-perturbative renormalization of quark and gluon operators using a gauge-invariant scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Panagopoulos%2C+H">H. Panagopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamamoto%2C+S">S. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07730v1-abstract-short" style="display: inline;"> We present preliminary results for the renormalization functions (RFs) of a number of quark and gluon operators studied in lattice QCD using a gauge-invariant renormalization scheme (GIRS). GIRS is a variant of the coordinate-space renormalization prescription, in which Green&#39;s functions of gauge-invariant operators are calculated in position space. A novel aspect is that summations over different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07730v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07730v1-abstract-full" style="display: none;"> We present preliminary results for the renormalization functions (RFs) of a number of quark and gluon operators studied in lattice QCD using a gauge-invariant renormalization scheme (GIRS). GIRS is a variant of the coordinate-space renormalization prescription, in which Green&#39;s functions of gauge-invariant operators are calculated in position space. A novel aspect is that summations over different time slices of the positions of the operators are employed in order to reduce the statistical noise in lattice simulations. We test the reliability of this scheme by calculating RFs for the vector one-derivative quark bilinear operator, which enters the average momentum fraction of the nucleon. We use $N_f=4$ degenerate twisted mass clover-improved fermion ensembles of different volumes and lattice spacings. We also present first results of applying GIRS when operator mixing occurs: the mixing coefficients of the gluon and quark singlet energy-momentum tensor operators are evaluated by imposing appropriate renormalization conditions on the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07730v1-abstract-full').style.display = 'none'; document.getElementById('2212.07730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 3 tables, Talk at the 39th International Symposium on Lattice Field Theory, LATTICE2022, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07057">arXiv:2212.07057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07057">pdf</a>, <a href="https://arxiv.org/format/2212.07057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Disconnected contribution to the LO HVP term of muon g-2 from ETMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07057v1-abstract-short" style="display: inline;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07057v1-abstract-full" style="display: none;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses approximately tuned to their physical value. We take the continuum limit employing three lattice spacings at about 0.08, 0.07 and 0.06 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'none'; document.getElementById('2212.07057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 7 tables, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06704">arXiv:2212.06704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06704">pdf</a>, <a href="https://arxiv.org/format/2212.06704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054509">10.1103/PhysRevD.108.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $畏\rightarrow 纬^* 纬^*$ transition form factor and the hadronic light-by-light $畏$-pole contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06704v2-abstract-short" style="display: inline;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06704v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06704v2-abstract-full" style="display: none;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment $a_渭= (g-2)/2$ of the muon. From the form factor calculation we extract the partial decay width $螕(畏\rightarrow 纬纬) = 323(85)_\text{stat}(22)_\text{syst}$ eV and the slope parameter $b_畏=1.19(36)_\text{stat}(16)_\text{syst}$ GeV${}^{-2}$. For the $畏$-pole contribution to $a_渭$ we obtain $a_渭^{畏-\text{pole}} = 13.2(5.2)_\text{stat}(1.3)_\text{syst} \cdot 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'none'; document.getElementById('2212.06704v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108 (2023) 054509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00951">arXiv:2211.00951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00951">pdf</a>, <a href="https://arxiv.org/format/2211.00951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Antiheavy-Antiheavy-Light-Light Four-Quark Bound States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pflaumer%2C+M">Martin Pflaumer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Marc Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00951v1-abstract-short" style="display: inline;"> We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the $ \bar{b}\bar{b}us $ four-quark system with quantum numbers $ J^P=1^+ $ and the $ \bar{b}\bar{c}ud $ four-quark systems with $ I(J^P)=0(0^+) $ and $ I(J^P)=0(1^+) $ utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a boun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00951v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00951v1-abstract-full" style="display: none;"> We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the $ \bar{b}\bar{b}us $ four-quark system with quantum numbers $ J^P=1^+ $ and the $ \bar{b}\bar{c}ud $ four-quark systems with $ I(J^P)=0(0^+) $ and $ I(J^P)=0(1^+) $ utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for $ \bar{b}\bar{b}us $ with $ E_{\textrm{bind},\bar{b}\bar{b}us} = (-86 \pm 22 \pm 10)\,\textrm{MeV} $, but no indication for a bound state in both $ \bar{b}\bar{c}ud $ channels. Moreover, we show preliminary results for $ \bar{b}\bar{b}ud $ with $ I(J^P)=0(1^+) $, where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in $ E_{\textrm{bind},\bar{b}\bar{b}ud} =(-103 \pm 8 )\,\textrm{MeV} $. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00951v1-abstract-full').style.display = 'none'; document.getElementById('2211.00951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, talk given at &#34;The 39th International Symposium on Lattice Field Theory&#34;, 08th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09281">arXiv:2210.09281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09281">pdf</a>, <a href="https://arxiv.org/format/2210.09281">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD study of antiheavy-antiheavy-light-light tetraquarks based on correlation functions with scattering interpolating operators both at the source and at the sink </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Marc Wagner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pflaumer%2C+M">Martin Pflaumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09281v1-abstract-short" style="display: inline;"> We present first results of a recently started lattice QCD investigation of antiheavy-antiheavy-light-light tetraquark systems including scattering interpolating operators in correlation functions both at the source and at the sink. In particular, we discuss the importance of such scattering interpolating operators for a precise computation of the low-lying energy levels. We focus on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09281v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09281v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09281v1-abstract-full" style="display: none;"> We present first results of a recently started lattice QCD investigation of antiheavy-antiheavy-light-light tetraquark systems including scattering interpolating operators in correlation functions both at the source and at the sink. In particular, we discuss the importance of such scattering interpolating operators for a precise computation of the low-lying energy levels. We focus on the $\bar b \bar b u d$ four-quark system with quantum numbers $I(J^P) = 0(1^+)$, which has a ground state below the lowest meson-meson threshold. We carry out a scattering analysis using L眉scher&#39;s method to extrapolate the binding energy of the corresponding QCD-stable tetraquark to infinite spatial volume. Our calculation uses clover $u$, $d$ valence quarks and NRQCD $b$ valence quarks on gauge-link ensembles with HISQ sea quarks that were generated by the MILC collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09281v1-abstract-full').style.display = 'none'; document.getElementById('2210.09281v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, talk given at &#34;The 39th International Symposium on Lattice Field Theory&#34;, 08th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05743">arXiv:2210.05743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05743">pdf</a>, <a href="https://arxiv.org/format/2210.05743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon transverse quark spin densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05743v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05743v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum limit. Besides isovector densities we also include results for the tensor charge for each quark flavor using the ensemble with $a\sim 0.08$~fm for which we include the disconnected contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'none'; document.getElementById('2210.05743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, talk presented at the 39th International Symposium on Lattice Field Theory, LATTICE2022 8th-13th August, 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15084">arXiv:2206.15084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15084">pdf</a>, <a href="https://arxiv.org/format/2206.15084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.074506">10.1103/PhysRevD.107.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15084v3-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15084v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15084v3-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD}({\rm ETMC}) = 69.27\,(34) \cdot 10^{-10}$, which is consistent with the recent dispersive value of $a_渭^{\rm SD}(e^+ e^-) = 68.4\,(5) \cdot 10^{-10}$ [2]. In the case of the intermediate window we get the value $a_渭^{\rm W}({\rm ETMC}) = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with the result $a_渭^{\rm W}({\rm BMW}) = 236.7\,(1.4) \cdot 10^{-10}$ [3] by the BMW collaboration as well as with the recent determination by the CLS/Mainz group of $a_渭^{\rm W}({\rm CLS}) = 237.30\,(1.46) \cdot 10^{-10}$ [4]. However, it is larger than the dispersive result of $a_渭^{\rm W}(e^+ e^-) = 229.4\,(1.4) \cdot 10^{-10}$ [2] by approximately $3.6$ standard deviations. The tension increases to approximately $4.5$ standard deviations if we average our ETMC result with those by BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a possible deviation of the $e^+ e^-$ cross section data with respect to Standard Model predictions in the low and intermediate energy regions, but not in the high energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'none'; document.getElementById('2206.15084v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">78 pages, 22 figures, 14 tables. Analysis improved with more data and fits, presentation reorganized, more material in appendices, fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09871">arXiv:2202.09871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09871">pdf</a>, <a href="https://arxiv.org/format/2202.09871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054504">10.1103/PhysRevD.107.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First moments of the nucleon transverse quark spin densities using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09871v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09871v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment of transversely polarized quarks in an unpolarized nucleon shows an interesting distortion, which can be traced back to the sharp falloff of the transversity generalized form factor $\bar{B}_{Tn0}(t)$. The isovector tensor anomalous magnetic moment is determined to be $魏_T=1.051(94)$, which confirms a negative and large Boer-Mulders function, $h_1^{\perp}$, in the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'none'; document.getElementById('2202.09871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06519">arXiv:2201.06519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06519">pdf</a>, <a href="https://arxiv.org/format/2201.06519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Proton generalized parton distributions from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06519v1-abstract-short" style="display: inline;"> Momentum and spatial distributions of quarks and gluons inside hadrons are typically encoded in the so-called generalized parton distributions (GPDs). GPDs are multi-dimensional quantities that are very challenging to extract, both experimentally and within lattice QCD. We present the first lattice results on the $x$-dependence of isovector unpolarized, helicity and transversity GPDs of the proton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06519v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06519v1-abstract-full" style="display: none;"> Momentum and spatial distributions of quarks and gluons inside hadrons are typically encoded in the so-called generalized parton distributions (GPDs). GPDs are multi-dimensional quantities that are very challenging to extract, both experimentally and within lattice QCD. We present the first lattice results on the $x$-dependence of isovector unpolarized, helicity and transversity GPDs of the proton, obtained from lattice QCD using an ensemble of $N_f=2+1+1$ maximally twisted mass fermions, with pion mass $M_蟺=260$ MeV and lattice spacing $a\simeq 0.093$ fm. Our calculations use the quasi-distribution formalism and the final distributions are presented in the MS-bar scheme at a renormalization scale of 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06519v1-abstract-full').style.display = 'none'; document.getElementById('2201.06519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited talk at the Hadron 2021 conference. 7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02551">arXiv:2201.02551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02551">pdf</a>, <a href="https://arxiv.org/format/2201.02551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass gauge ensembles at physical values of the light, strange and charm quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02551v1-abstract-short" style="display: inline;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02551v1-abstract-full" style="display: none;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation effort that aims to enabling studies of finite size and discretization effects. We work within the twisted mass discretization which is free of odd-discretization effects at maximal twist and present our tuning procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'none'; document.getElementById('2201.02551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, The 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09038">arXiv:2112.09038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09038">pdf</a>, <a href="https://arxiv.org/ps/2112.09038">ps</a>, <a href="https://arxiv.org/format/2112.09038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSCP.37.011013">10.7566/JPSCP.37.011013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron spin structure from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09038v1-abstract-short" style="display: inline;"> We present results on the spin carried by quarks and gluons in the nucleon using lattice QCD simulations with physical values of the light, strange and charm quark masses. We also discuss selective results on the x-dependence of parton distribution functions computed in lattice QCD employing the quasi-parton distribution approach and the large momentum effective theory. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09038v1-abstract-full" style="display: none;"> We present results on the spin carried by quarks and gluons in the nucleon using lattice QCD simulations with physical values of the light, strange and charm quark masses. We also discuss selective results on the x-dependence of parton distribution functions computed in lattice QCD employing the quasi-parton distribution approach and the large momentum effective theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09038v1-abstract-full').style.display = 'none'; document.getElementById('2112.09038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures. Invited talk, 24th International Spin Symposium, Matsue, Japan, 18-22 Oct. 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06750">arXiv:2112.06750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06750">pdf</a>, <a href="https://arxiv.org/format/2112.06750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors from $N_f$=2+1+1 twisted mass QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06750v1-abstract-short" style="display: inline;"> We present the nucleon axial and electromagnetic form factors using \Nf{2}{1}{1} ensembles of twisted mass fermions with clover improvement and with masses tuned to their physical values. Excited state effects are studied using several sink-source time separations in the range 0.8 fm - 1.6 fm, exponentially increasing statistics with the separation such that statistical errors remain approximately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06750v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06750v1-abstract-full" style="display: none;"> We present the nucleon axial and electromagnetic form factors using \Nf{2}{1}{1} ensembles of twisted mass fermions with clover improvement and with masses tuned to their physical values. Excited state effects are studied using several sink-source time separations in the range 0.8 fm - 1.6 fm, exponentially increasing statistics with the separation such that statistical errors remain approximately constant. In addition, quark loop disconnected diagrams are included in order to extract the isoscalar axial form factors and the proton and neutron electromagnetic form factors, as well as their strange-quark contributions. The radii and moments are extracted by modelling the $Q^2$ dependence, including using the so-called $z$-expansion. A preliminary assessment of lattice cut-off effects is presented using two lattice spacings directly at the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06750v1-abstract-full').style.display = 'none'; document.getElementById('2112.06750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 2 tables; proceedings of the 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04146">arXiv:2112.04146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04146">pdf</a>, <a href="https://arxiv.org/format/2112.04146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Elastic $蟺-N$ scattering in the $I=3/2$ channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiannakou%2C+K">Kyriakos Hadjiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">Antonino Todaro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04146v1-abstract-short" style="display: inline;"> We present our study of $蟺-N$ scattering in the iso-spin $I=3/2$ channel for the first time at the physical point. The calculation is performed using $N_f=2+1+1$ flavors of twisted mass fermions with clover improvement at physical pion mass. We compute energy levels for the rest frame and moving frames up to a total momentum of $|\vec{P}|=\sqrt{3} \,\frac{2蟺}{L}$, and for all the relevant ireducib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04146v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04146v1-abstract-full" style="display: none;"> We present our study of $蟺-N$ scattering in the iso-spin $I=3/2$ channel for the first time at the physical point. The calculation is performed using $N_f=2+1+1$ flavors of twisted mass fermions with clover improvement at physical pion mass. We compute energy levels for the rest frame and moving frames up to a total momentum of $|\vec{P}|=\sqrt{3} \,\frac{2蟺}{L}$, and for all the relevant ireducible representations of the lattice symmetry groups. We perform a phase-shift analysis including $s\,(\ell=0)$ and $p\,(\ell=1)$ wave phase shifts assuming a Breit-Wigner form and determine the parameters of the $螖$ resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04146v1-abstract-full').style.display = 'none'; document.getElementById('2112.04146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures; Proceedings of the 38th International Symposium on Lattice Field Theory - Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03989">arXiv:2112.03989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03989">pdf</a>, <a href="https://arxiv.org/format/2112.03989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> A lattice QCD determination of the neutron electric dipole moment at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Athenodorou%2C+A">Andreas Athenodorou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiannakou%2C+K">Kyriakos Hadjiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">Antonino Todaro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03989v2-abstract-short" style="display: inline;"> Results are presented on the neutron electric dipole moment using an ensemble of $N_f=2+1+1$ twisted mass clover-improved fermions with lattice spacing of $a\simeq 0.08$ fm and physical pion mass ($m_蟺\simeq 139$ MeV). The approach followed in this work is to compute the $CP$-odd electromagnetic form factor $F_3(Q^2\rightarrow0)$ at zero momentum transfer by expanding the action to leading order i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03989v2-abstract-full').style.display = 'inline'; document.getElementById('2112.03989v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03989v2-abstract-full" style="display: none;"> Results are presented on the neutron electric dipole moment using an ensemble of $N_f=2+1+1$ twisted mass clover-improved fermions with lattice spacing of $a\simeq 0.08$ fm and physical pion mass ($m_蟺\simeq 139$ MeV). The approach followed in this work is to compute the $CP$-odd electromagnetic form factor $F_3(Q^2\rightarrow0)$ at zero momentum transfer by expanding the action to leading order in $胃$. This gives rise to correlation functions that involve the topological charge, for which we employ a fermionic definition by means of spectral projectors. We include a comparison between the results using the fermionic and the gluonic definition, where for the latter we employ the gradient flow. We show that using spectral projectors leads to half the statistical uncertainty on the evaluation of $F_3(0)$. Using the fermionic definition, we find a value of $\lvert d_N\rvert = 0.0009(24)\,胃\, \rm{e}\cdot\rm{fm}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03989v2-abstract-full').style.display = 'none'; document.getElementById('2112.03989v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, proceeding for The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03953">arXiv:2112.03953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03953">pdf</a>, <a href="https://arxiv.org/format/2112.03953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Pion and kaon form factors using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03953v1-abstract-short" style="display: inline;"> We present a calculation of the scalar, vector and tensor pion and kaon form factors using one ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they produce a pion mass of about 265 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03953v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03953v1-abstract-full" style="display: none;"> We present a calculation of the scalar, vector and tensor pion and kaon form factors using one ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they produce a pion mass of about 265 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattice has a spatial extent of 3 fm. We use a rest frame, as well as a boosted frame to obtain the form factors for a wider and denser set of four-vector momentum transfer squared, $Q^2$. To assess and eliminate excited-states contamination, we analyze several values of the source-sink time separation within the range of 1.12 - 2.23 fm (1.12 - 1.67 fm) for the rest (boosted) frame. The $Q^2$ dependence of the form factors is parametrized using a monopole fit, which leads to the extraction of the corresponding radius, and the tensor anomalous magnetic moment for the tensor form factor. The results for these parametrizations are compared for the pion and kaon to assess the level of the SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03953v1-abstract-full').style.display = 'none'; document.getElementById('2112.03953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Proceedings of the 38th Annual International Symposium on Lattice Field Theory - LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03952">arXiv:2112.03952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03952">pdf</a>, <a href="https://arxiv.org/format/2112.03952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> $x$-dependence reconstruction of pion and kaon PDFs from Mellin moments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03952v1-abstract-short" style="display: inline;"> We present a calculation of the connected-diagram contributions to the first three non-trivial Mellin moments for the pion and kaon, extracted using local operators with up to 3 covariant derivatives. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f$=2+1+1) of maximally twisted mass fermions with clover improvement. The ensemble has a pion ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03952v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03952v1-abstract-full" style="display: none;"> We present a calculation of the connected-diagram contributions to the first three non-trivial Mellin moments for the pion and kaon, extracted using local operators with up to 3 covariant derivatives. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f$=2+1+1) of maximally twisted mass fermions with clover improvement. The ensemble has a pion mass $\sim$260 MeV, and a kaon mass $\sim$530 MeV. We reconstruct the $x$-dependence of the PDFs via fits to our results, and find that our lattice data favor a $(1-x)^2$-behavior in the large-$x$ region for both the pion and kaon PDFs. We integrate the reconstructed PDFs to extract the higher moments, $\langle x^n \rangle$, with $4 \leq n \leq 6$. Finally, we compare the pion and kaon PDFs, as well as the ratios of their Mellin moments, to address the effect of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03952v1-abstract-full').style.display = 'none'; document.getElementById('2112.03952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, Proceedings of the 38th Annual International Symposium on Lattice Field Theory - LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03586">arXiv:2112.03586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03586">pdf</a>, <a href="https://arxiv.org/format/2112.03586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0519">10.22323/1.396.0519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion-pole contribution to HLbL from twisted mass lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03586v3-abstract-short" style="display: inline;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'inline'; document.getElementById('2112.03586v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03586v3-abstract-full" style="display: none;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point. We present first results for our estimate of the pion-pole contribution with kinematic setup for the pion at rest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'none'; document.getElementById('2112.03586v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory - Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14710">arXiv:2111.14710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14710">pdf</a>, <a href="https://arxiv.org/format/2111.14710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Gradient flow scale-setting with $N_f=2+1+1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Labus%2C+P">Peter Labus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14710v1-abstract-short" style="display: inline;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14710v1-abstract-full" style="display: none;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of the lattice spacing and the scale is set through the PDG value of the pion decay constant, yielding $w_0=0.17383(63)$ fm, $\sqrt{t_0}=0.14436(61)$ fm and $t_0/w_0=0.11969(62)$ fm. Finally, fixing the kaon mass to its isosymmetric value, we determine the ratio of the kaon and pion leptonic decay constants to be $f_K/f_蟺=1.1995(44)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'none'; document.getElementById('2111.14710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2104.06747</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08551">arXiv:2111.08551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08551">pdf</a>, <a href="https://arxiv.org/format/2111.08551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Using classical bit-flip correction for error mitigation including 2-qubit correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuehn%2C+S">Stefan Kuehn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polykratis%2C+G">Georgios Polykratis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stornati%2C+P">Paolo Stornati</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+X">Xiaoyang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08551v3-abstract-short" style="display: inline;"> We present an error mitigation scheme which corrects readout errors on Noisy Intermediate-Scale Quantum (NISQ) computers [1,2]. After a short review of applying the method to one qubit, we proceed to discuss the case when correlations between different qubits occur. We demonstrate how the readout error can be mitigated in this case. By performing experiments on IBMQ hardware, we show that such cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08551v3-abstract-full').style.display = 'inline'; document.getElementById('2111.08551v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08551v3-abstract-full" style="display: none;"> We present an error mitigation scheme which corrects readout errors on Noisy Intermediate-Scale Quantum (NISQ) computers [1,2]. After a short review of applying the method to one qubit, we proceed to discuss the case when correlations between different qubits occur. We demonstrate how the readout error can be mitigated in this case. By performing experiments on IBMQ hardware, we show that such correlations do not have a strong effect on the results, justifying to neglect them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08551v3-abstract-full').style.display = 'none'; document.getElementById('2111.08551v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, Proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5352 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08135">arXiv:2111.08135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08135">pdf</a>, <a href="https://arxiv.org/format/2111.08135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.054502">10.1103/PhysRevD.105.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The scalar, vector and tensor form factors for the pion and kaon from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08135v1-abstract-short" style="display: inline;"> We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice QCD. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The corresponding pion and kaon masses are about 265 MeV and 530 MeV, respectively. The calculation is done in both rest and boosted frames obta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08135v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08135v1-abstract-full" style="display: none;"> We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice QCD. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The corresponding pion and kaon masses are about 265 MeV and 530 MeV, respectively. The calculation is done in both rest and boosted frames obtaining data for four-vector momentum transfer squared up to $-q^2=2.5$ GeV$^2$ for the pion and 3 GeV$^2$ for the kaon. The excited-states effects are studied by analyzing six values of the source-sink time separation for the rest frame ($1.12-2.23$ fm) and for four values for the boosted frame ($1.12-1.67$ fm). The lattice data are renormalized non-perturbatively and the results for the scheme- and scale-dependent scalar and tensor form factors are presented in the $\overline{\rm MS}$ scheme at a scale of 2 GeV. We apply different parametrizations to describe $q^2$-dependence of the form factors to extract the scalar, vector, and tensor radii, as well as the tensor anomalous magnetic moment. We compare the pion and kaon form factors to study SU(3) flavor symmetry breaking effects. By combining the data for the vector and tensor form factors we also obtain the lowest moment of the densities of transversely polarized quarks in the impact parameter space. Finally, we give an estimate for the average transverse shift in the $y$ direction for polarized quarks in the $x$ direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08135v1-abstract-full').style.display = 'none'; document.getElementById('2111.08135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 23 pages, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05026">arXiv:2111.05026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05026">pdf</a>, <a href="https://arxiv.org/format/2111.05026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Investigating the variance increase of readout error mitigation through classical bit-flip correction on IBM and Rigetti quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hartung%2C+T">Tobias Hartung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%BChn%2C+S">Stefan K眉hn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polykratis%2C+G">Georgios Polykratis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stornati%2C+P">Paolo Stornati</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+T">Tom Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05026v3-abstract-short" style="display: inline;"> Readout errors are among the most dominant errors on current noisy intermediate-scale quantum devices. Recently, an efficient and scaleable method for mitigating such errors has been developed, based on classical bit-flip correction. In this talk, we compare the performance of this method for IBM&#39;s and Rigetti&#39;s quantum devices, demonstrating how the method improves the noisy measurements of obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05026v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05026v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05026v3-abstract-full" style="display: none;"> Readout errors are among the most dominant errors on current noisy intermediate-scale quantum devices. Recently, an efficient and scaleable method for mitigating such errors has been developed, based on classical bit-flip correction. In this talk, we compare the performance of this method for IBM&#39;s and Rigetti&#39;s quantum devices, demonstrating how the method improves the noisy measurements of observables obtained on the quantum hardware. Moreover, we examine the variance amplification to the data after applying of our mitigation procedure, which is common to all mitigation strategies. We derive a new expression for the variance of the mitigated Pauli operators in terms of the corrected expectation values and the noisy variances.Our hardware results show good agreement with the theoretical prediction, and we demonstrate that the increase of the variance due to the mitigation procedure is only moderate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05026v3-abstract-full').style.display = 'none'; document.getElementById('2111.05026v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, Proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5351 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03226">arXiv:2111.03226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03226">pdf</a>, <a href="https://arxiv.org/format/2111.03226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Generalized parton distributions of the proton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03226v1-abstract-short" style="display: inline;"> Generalized parton distributions (GPDs) are among the most fundamental quantities for describing the internal structure of hadrons. In this work, we present results on isovector GPDs of the proton obtained within lattice Quantum Chromodynamics. We use the quasi-distribution formalism and perform the calculations on an ensemble of $N_f = 2 + 1 + 1$ twisted mass fermions, with pion mass $M_蟺=260$~Me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03226v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03226v1-abstract-full" style="display: none;"> Generalized parton distributions (GPDs) are among the most fundamental quantities for describing the internal structure of hadrons. In this work, we present results on isovector GPDs of the proton obtained within lattice Quantum Chromodynamics. We use the quasi-distribution formalism and perform the calculations on an ensemble of $N_f = 2 + 1 + 1$ twisted mass fermions, with pion mass $M_蟺=260$~MeV and lattice spacing $a\simeq 0.093$~fm. Results are presented for unpolarized, helicity, and transversity GPDs at zero and nonzero skewness with controlled statistical uncertainties. Comparisons with their forward limit show qualitative features anticipated from model calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03226v1-abstract-full').style.display = 'none'; document.getElementById('2111.03226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk at the 38th International Symposium on Lattice Field Theory (LATTICE 2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00288">arXiv:2111.00288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00288">pdf</a>, <a href="https://arxiv.org/format/2111.00288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD results for the topological up-quark mass contribution: too small to rescue the $m_u=0$ solution to the strong CP problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00288v2-abstract-short" style="display: inline;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'inline'; document.getElementById('2111.00288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00288v2-abstract-full" style="display: none;"> A vanishing Yukawa coupling of the up quark could in principle solve the strong CP problem. To render this solution consistent with current algebra results, the up quark must receive an alternative mass contribution that conserves CP symmetry. Such a contribution could be provided by QCD through non-perturbative topological effects, including instantons. In this talk, we present the first direct lattice computation of this topological mass contribution, using gauge configurations generated by the Extended Twisted Mass collaboration. We use the Iwasaki gauge action, Wilson twisted mass fermions at maximal twist, and dynamical up, down, strange and charm quarks. Our result for the topological mass contribution is an order of magnitude too small to account for the phenomenologically required up-quark mass. This rules out the &#34;massless&#34; up-quark solution to the strong CP problem, in accordance with previous results relying on $蠂$PT fits to lattice data. The talk is based on [Alexandrou et al., PRL 125, 232001 (2020)], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00288v2-abstract-full').style.display = 'none'; document.getElementById('2111.00288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5347 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04588">arXiv:2110.04588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04588">pdf</a>, <a href="https://arxiv.org/format/2110.04588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Determination of the light, strange and charm quark masses using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">A. Todaro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04588v1-abstract-short" style="display: inline;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04588v1-abstract-full" style="display: none;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The presentation is based on the work of Ref. [1], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'none'; document.getElementById('2110.04588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 38th International Symposium on Lattice Field Theory, Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology, 26-30 Jul. 2021; 8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10692">arXiv:2109.10692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10692">pdf</a>, <a href="https://arxiv.org/format/2109.10692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.252001">10.1103/PhysRevLett.127.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion from $N_f=2+1+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10692v1-abstract-short" style="display: inline;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10692v1-abstract-full" style="display: none;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$, $\avgx_s=0.059(13)$, $\avgx_c=0.019(05)$, and $\avgx_g=0.52(11)$ for the separate contributions, respectively, whose sum saturates the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'none'; document.getElementById('2109.10692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10789">arXiv:2108.10789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10789">pdf</a>, <a href="https://arxiv.org/format/2108.10789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034501">10.1103/PhysRevD.105.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transversity GPDs of the proton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10789v2-abstract-short" style="display: inline;"> We present the first calculation of the $x$-dependence of the isovector transversity generalized parton distributions (GPDs) for the proton within lattice QCD. We compute the matrix elements with non-local operators containing a Wilson line. The calculation implements the Breit symmetric frame. The proton momenta are chosen as $0.83,\,1.25,\,1.67$ GeV, and the values of the momentum transfer squar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10789v2-abstract-full').style.display = 'inline'; document.getElementById('2108.10789v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10789v2-abstract-full" style="display: none;"> We present the first calculation of the $x$-dependence of the isovector transversity generalized parton distributions (GPDs) for the proton within lattice QCD. We compute the matrix elements with non-local operators containing a Wilson line. The calculation implements the Breit symmetric frame. The proton momenta are chosen as $0.83,\,1.25,\,1.67$ GeV, and the values of the momentum transfer squared are $0.69,\,1.02$ GeV$^2$. These combinations include cases with zero and nonzero skewness. The calculation is performed using one ensemble of two degenerate-mass light, a strange and a charm quark of maximally twisted mass fermions with a clover term. The lattice results are renormalized non-perturbatively and finally matched to the light-cone GPDs using one-loop perturbation theory within the framework of large momentum effective theory. The final GPDs are given in the $\overline{\rm MS}$ scheme at a scale of 2 GeV. In addition to the individual GPDs, we form the combination of the transversity GPDs that is related to the transverse spin structure of the proton. Finally, we extract the lowest two moments of GPDs and draw a number of important qualitative conclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10789v2-abstract-full').style.display = 'none'; document.getElementById('2108.10789v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures, version accepted in Phys. Rev. D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.16065">arXiv:2106.16065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.16065">pdf</a>, <a href="https://arxiv.org/format/2106.16065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.054503">10.1103/PhysRevD.104.054503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flavor decomposition of the nucleon unpolarized, helicity and transversity parton distribution functions from lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">Floriano Manigrasso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.16065v1-abstract-short" style="display: inline;"> We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twisted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16065v1-abstract-full').style.display = 'inline'; document.getElementById('2106.16065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.16065v1-abstract-full" style="display: none;"> We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twisted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state dominance, the Fourier transform procedure and convergence with the momentum boost. We find non-zero results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton distribution and in particular the strange quark contributions that are poorly known provide valuable input to the structure of the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16065v1-abstract-full').style.display = 'none'; document.getElementById('2106.16065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages and 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 054503 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandrou%2C+C&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10