CINXE.COM

Quantum computing - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Quantum computing - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d2f0e61d-40c5-4127-8111-b9ff7e2654d2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quantum_computing","wgTitle":"Quantum computing","wgCurRevisionId":1258679333,"wgRevisionId":1258679333,"wgArticleId":25220,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 Russian-language sources (ru)","CS1 maint: bot: original URL status unknown","Wikipedia articles needing page number citations from May 2020","Articles with short description","Short description is different from Wikidata","Use American English from February 2023","All Wikipedia articles written in American English","Use dmy dates from February 2021","Articles containing potentially dated statements from 2023","All articles containing potentially dated statements", "Commons category link is on Wikidata","Pages displaying short descriptions of redirect targets via Module:Annotated link","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Commons link is locally defined","Quantum computing","Models of computation","Quantum cryptography","Information theory","Computational complexity theory","Classes of computers","Theoretical computer science","Open problems","Computer-related introductions in 1980","Supercomputers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Quantum_computing","wgRelevantArticleId":25220,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Quantum_computers","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true, "wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgInternalRedirectTargetUrl":"/wiki/Quantum_computing","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q17995793","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/1200px-Bloch_sphere.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1271"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/800px-Bloch_sphere.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="847"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/640px-Bloch_sphere.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="678"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Quantum computing - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Quantum_computing"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quantum_computing&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quantum_computing"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quantum_computing rootpage-Quantum_computing skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+computing" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+computing" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+computing" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+computing" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_information_processing" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Quantum_information_processing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Quantum information processing</span> </div> </a> <button aria-controls="toc-Quantum_information_processing-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Quantum information processing subsection</span> </button> <ul id="toc-Quantum_information_processing-sublist" class="vector-toc-list"> <li id="toc-Quantum_information" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_information"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Quantum information</span> </div> </a> <ul id="toc-Quantum_information-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unitary_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unitary_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Unitary operators</span> </div> </a> <ul id="toc-Unitary_operators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_parallelism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_parallelism"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Quantum parallelism</span> </div> </a> <ul id="toc-Quantum_parallelism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_programming" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_programming"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Quantum programming</span> </div> </a> <ul id="toc-Quantum_programming-sublist" class="vector-toc-list"> <li id="toc-Gate_array" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Gate_array"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.1</span> <span>Gate array</span> </div> </a> <ul id="toc-Gate_array-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Measurement-based_quantum_computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Measurement-based_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.2</span> <span>Measurement-based quantum computing</span> </div> </a> <ul id="toc-Measurement-based_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Adiabatic_quantum_computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Adiabatic_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.3</span> <span>Adiabatic quantum computing</span> </div> </a> <ul id="toc-Adiabatic_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neuromorphic_quantum_computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Neuromorphic_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.4</span> <span>Neuromorphic quantum computing</span> </div> </a> <ul id="toc-Neuromorphic_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topological_quantum_computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Topological_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.5</span> <span>Topological quantum computing</span> </div> </a> <ul id="toc-Topological_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_Turing_machine" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Quantum_Turing_machine"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.6</span> <span>Quantum Turing machine</span> </div> </a> <ul id="toc-Quantum_Turing_machine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Noisy_intermediate-scale_quantum_computing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Noisy_intermediate-scale_quantum_computing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.7</span> <span>Noisy intermediate-scale quantum computing</span> </div> </a> <ul id="toc-Noisy_intermediate-scale_quantum_computing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quantum_cryptography_and_cybersecurity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_cryptography_and_cybersecurity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Quantum cryptography and cybersecurity</span> </div> </a> <ul id="toc-Quantum_cryptography_and_cybersecurity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Communication" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Communication"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Communication</span> </div> </a> <ul id="toc-Communication-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algorithms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Algorithms"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Algorithms</span> </div> </a> <button aria-controls="toc-Algorithms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Algorithms subsection</span> </button> <ul id="toc-Algorithms-sublist" class="vector-toc-list"> <li id="toc-Simulation_of_quantum_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simulation_of_quantum_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Simulation of quantum systems</span> </div> </a> <ul id="toc-Simulation_of_quantum_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Post-quantum_cryptography" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Post-quantum_cryptography"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Post-quantum cryptography</span> </div> </a> <ul id="toc-Post-quantum_cryptography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Search_problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Search_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Search problems</span> </div> </a> <ul id="toc-Search_problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_annealing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_annealing"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Quantum annealing</span> </div> </a> <ul id="toc-Quantum_annealing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Machine_learning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Machine_learning"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Machine learning</span> </div> </a> <ul id="toc-Machine_learning-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Engineering" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Engineering</span> </div> </a> <button aria-controls="toc-Engineering-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Engineering subsection</span> </button> <ul id="toc-Engineering-sublist" class="vector-toc-list"> <li id="toc-Challenges" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Challenges"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Challenges</span> </div> </a> <ul id="toc-Challenges-sublist" class="vector-toc-list"> <li id="toc-Decoherence" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Decoherence"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1.1</span> <span>Decoherence</span> </div> </a> <ul id="toc-Decoherence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quantum_supremacy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_supremacy"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Quantum supremacy</span> </div> </a> <ul id="toc-Quantum_supremacy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Skepticism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Skepticism"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Skepticism</span> </div> </a> <ul id="toc-Skepticism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_realizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physical_realizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Physical realizations</span> </div> </a> <ul id="toc-Physical_realizations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Potential_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Potential_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Potential applications</span> </div> </a> <ul id="toc-Potential_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Theory</span> </div> </a> <button aria-controls="toc-Theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theory subsection</span> </button> <ul id="toc-Theory-sublist" class="vector-toc-list"> <li id="toc-Computability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computability"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Computability</span> </div> </a> <ul id="toc-Computability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complexity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Complexity</span> </div> </a> <ul id="toc-Complexity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Textbooks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Textbooks"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Textbooks</span> </div> </a> <ul id="toc-Textbooks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Academic_papers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Academic_papers"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Academic papers</span> </div> </a> <ul id="toc-Academic_papers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quantum computing</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 36 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-36" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">36 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Kwantumberekening" title="Kwantumberekening – Afrikaans" lang="af" hreflang="af" data-title="Kwantumberekening" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%88%D8%B3%D8%A8%D8%A9_%D9%83%D9%85%D9%88%D9%85%D9%8A%D8%A9" title="حوسبة كمومية – Arabic" lang="ar" hreflang="ar" data-title="حوسبة كمومية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Computaci%C3%B3n_cu%C3%A1ntica" title="Computación cuántica – Asturian" lang="ast" hreflang="ast" data-title="Computación cuántica" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%95%E0%A7%8B%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%A8%E0%A7%8D%E0%A6%9F%E0%A6%BE%E0%A6%AE_%E0%A6%95%E0%A6%AE%E0%A7%8D%E0%A6%AA%E0%A6%BF%E0%A6%89%E0%A6%9F%E0%A6%BF%E0%A6%82" title="কোয়ান্টাম কম্পিউটিং – Bangla" lang="bn" hreflang="bn" data-title="কোয়ান্টাম কম্পিউটিং" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Kvantno_ra%C4%8Dunarstvo" title="Kvantno računarstvo – Bosnian" lang="bs" hreflang="bs" data-title="Kvantno računarstvo" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q70894304 mw-list-item" title=""><a href="https://ca.wikipedia.org/wiki/Computaci%C3%B3_qu%C3%A0ntica" title="Computació quàntica – Catalan" lang="ca" hreflang="ca" data-title="Computació quàntica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kvantedatabehandling" title="Kvantedatabehandling – Danish" lang="da" hreflang="da" data-title="Kvantedatabehandling" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Quantenrechner" title="Quantenrechner – German" lang="de" hreflang="de" data-title="Quantenrechner" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el badge-Q70894304 mw-list-item" title=""><a href="https://el.wikipedia.org/wiki/%CE%9A%CE%B2%CE%B1%CE%BD%CF%84%CE%B9%CE%BA%CE%AE_%CF%80%CE%BB%CE%B7%CF%81%CE%BF%CF%86%CE%BF%CF%81%CE%B9%CE%BA%CE%AE" title="Κβαντική πληροφορική – Greek" lang="el" hreflang="el" data-title="Κβαντική πληροφορική" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Computaci%C3%B3n_cu%C3%A1ntica" title="Computación cuántica – Spanish" lang="es" hreflang="es" data-title="Computación cuántica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo badge-Q70894304 mw-list-item" title=""><a href="https://eo.wikipedia.org/wiki/Kvantumkomputiko" title="Kvantumkomputiko – Esperanto" lang="eo" hreflang="eo" data-title="Kvantumkomputiko" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Konputazio_kuantiko" title="Konputazio kuantiko – Basque" lang="eu" hreflang="eu" data-title="Konputazio kuantiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D8%A7%DB%8C%D8%A7%D9%86%D8%B4_%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D9%88%D9%85%DB%8C" title="رایانش کوانتومی – Persian" lang="fa" hreflang="fa" data-title="رایانش کوانتومی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Informatique_quantique" title="Informatique quantique – French" lang="fr" hreflang="fr" data-title="Informatique quantique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/R%C3%ADomhaireacht_chandamach" title="Ríomhaireacht chandamach – Irish" lang="ga" hreflang="ga" data-title="Ríomhaireacht chandamach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko badge-Q70894304 mw-list-item" title=""><a href="https://ko.wikipedia.org/wiki/%EC%96%91%EC%9E%90_%EC%BB%B4%ED%93%A8%ED%8C%85" title="양자 컴퓨팅 – Korean" lang="ko" hreflang="ko" data-title="양자 컴퓨팅" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Komputasi_kuantum" title="Komputasi kuantum – Indonesian" lang="id" hreflang="id" data-title="Komputasi kuantum" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Ukucikiza_ngohoyana" title="Ukucikiza ngohoyana – Zulu" lang="zu" hreflang="zu" data-title="Ukucikiza ngohoyana" data-language-autonym="IsiZulu" data-language-local-name="Zulu" class="interlanguage-link-target"><span>IsiZulu</span></a></li><li class="interlanguage-link interwiki-it badge-Q70894304 mw-list-item" title=""><a href="https://it.wikipedia.org/wiki/Computazione_quantistica" title="Computazione quantistica – Italian" lang="it" hreflang="it" data-title="Computazione quantistica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he badge-Q70894304 mw-list-item" title=""><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%97%D7%A9%D7%95%D7%91_%D7%A7%D7%95%D7%95%D7%A0%D7%98%D7%99" title="מחשוב קוונטי – Hebrew" lang="he" hreflang="he" data-title="מחשוב קוונטי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D1%8B%D0%BD_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80" title="Квантын компьютер – Mongolian" lang="mn" hreflang="mn" data-title="Квантын компьютер" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl badge-Q70894304 mw-list-item" title=""><a href="https://nl.wikipedia.org/wiki/Kwantum_rekenen" title="Kwantum rekenen – Dutch" lang="nl" hreflang="nl" data-title="Kwantum rekenen" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja badge-Q70894304 mw-list-item" title=""><a href="https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%83%86%E3%82%A3%E3%83%B3%E3%82%B0" title="量子コンピューティング – Japanese" lang="ja" hreflang="ja" data-title="量子コンピューティング" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Computa%C3%A7%C3%A3o_qu%C3%A2ntica" title="Computação quântica – Portuguese" lang="pt" hreflang="pt" data-title="Computação quântica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Machkhana_anta%C3%B1iqiy" title="Machkhana antañiqiy – Quechua" lang="qu" hreflang="qu" data-title="Machkhana antañiqiy" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-simple badge-Q70894304 mw-list-item" title=""><a href="https://simple.wikipedia.org/wiki/Quantum_computation" title="Quantum computation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Quantum computation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BD%D0%BE_%D1%80%D0%B0%D1%87%D1%83%D0%BD%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%BE" title="Квантно рачунарство – Serbian" lang="sr" hreflang="sr" data-title="Квантно рачунарство" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kvanttilaskenta" title="Kvanttilaskenta – Finnish" lang="fi" hreflang="fi" data-title="Kvanttilaskenta" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kvantber%C3%A4kning" title="Kvantberäkning – Swedish" lang="sv" hreflang="sv" data-title="Kvantberäkning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%81%E0%AE%B5%E0%AE%BE%E0%AE%A3%E0%AF%8D%E0%AE%9F%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A9%E0%AE%BF%E0%AE%AF%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="குவாண்டக் கணினியியல் – Tamil" lang="ta" hreflang="ta" data-title="குவாண்டக் கணினியியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%95%E0%B1%8D%E0%B0%B5%E0%B0%BE%E0%B0%82%E0%B0%9F%E0%B0%82_%E0%B0%95%E0%B0%82%E0%B0%AA%E0%B1%8D%E0%B0%AF%E0%B1%82%E0%B0%9F%E0%B0%BF%E0%B0%82%E0%B0%97%E0%B1%8D" title="క్వాంటం కంప్యూటింగ్ – Telugu" lang="te" hreflang="te" data-title="క్వాంటం కంప్యూటింగ్" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-uk badge-Q70893996 mw-list-item" title=""><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D1%96_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F" title="Квантові обчислення – Ukrainian" lang="uk" hreflang="uk" data-title="Квантові обчислення" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%D9%88%D8%A7%D9%86%D9%B9%D9%85_%DA%A9%D9%85%D9%BE%DB%8C%D9%88%D9%B9%D9%86%DA%AF" title="کوانٹم کمپیوٹنگ – Urdu" lang="ur" hreflang="ur" data-title="کوانٹم کمپیوٹنگ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90i%E1%BB%87n_to%C3%A1n_l%C6%B0%E1%BB%A3ng_t%E1%BB%AD" title="Điện toán lượng tử – Vietnamese" lang="vi" hreflang="vi" data-title="Điện toán lượng tử" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E9%81%8B%E7%AE%97" title="量子運算 – Cantonese" lang="yue" hreflang="yue" data-title="量子運算" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q70894304 mw-list-item" title=""><a href="https://zh.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E8%AE%A1%E7%AE%97" title="量子计算 – Chinese" lang="zh" hreflang="zh" data-title="量子计算" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17995793#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_computing" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Quantum_computing" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_computing"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Quantum_computing"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Quantum_computing" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Quantum_computing" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;oldid=1258679333" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Quantum_computing&amp;id=1258679333&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_computing"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_computing"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Quantum_computing&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Quantum_computing&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Quantum_computing" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Quantum_computing" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Portal:Quantum_computing" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17995793" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Quantum_computers&amp;redirect=no" class="mw-redirect" title="Quantum computers">Quantum computers</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Computer hardware technology that uses quantum mechanics</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Bloch_sphere.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/220px-Bloch_sphere.svg.png" decoding="async" width="220" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/330px-Bloch_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/440px-Bloch_sphere.svg.png 2x" data-file-width="238" data-file-height="252" /></a><figcaption><a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a> representation of a qubit. The state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/259aaac5393082d769c30b0b58fd0fafe4032d8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.251ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle }"></span> is a point on the surface of the sphere, partway between the poles, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>.</figcaption></figure> <p>A <b>quantum computer</b> is a <a href="/wiki/Computer" title="Computer">computer</a> that exploits <a href="/wiki/Quantum_mechanical" class="mw-redirect" title="Quantum mechanical">quantum mechanical</a> phenomena. On small scales, physical matter exhibits properties of <a href="/wiki/Wave-particle_duality" class="mw-redirect" title="Wave-particle duality">both particles and waves</a>, and quantum computing leverages this behavior using specialized hardware. <a href="/wiki/Classical_physics" title="Classical physics">Classical physics</a> cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations <a href="/wiki/Exponential_growth" title="Exponential growth">exponentially</a> faster<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> than any modern "classical" computer. Theoretically a large-scale quantum computer could <a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">break some widely used encryption schemes</a> and aid physicists in performing <a href="/wiki/Quantum_simulator" title="Quantum simulator">physical simulations</a>; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications. </p><p>The basic <a href="/wiki/Unit_of_information" class="mw-redirect" title="Unit of information">unit of information</a> in quantum computing, the <a href="/wiki/Qubit" title="Qubit">qubit</a> (or "quantum bit"), serves the same function as the <a href="/wiki/Bit" title="Bit">bit</a> in classical computing. However, unlike a classical bit, which can be in one of two states (a <a href="/wiki/Binary_number" title="Binary number">binary</a>), a qubit can exist in a <a href="/wiki/Quantum_superposition" title="Quantum superposition">superposition</a> of its two "basis" states, which loosely means that it is in both states simultaneously. When <a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">measuring</a> a qubit, the result is a <a href="/wiki/Born_rule" title="Born rule">probabilistic output</a> of a classical bit. If a quantum computer manipulates the qubit in a particular way, <a href="/wiki/Wave_interference" title="Wave interference">wave interference</a> effects can amplify the desired measurement results. The design of <a href="/wiki/Quantum_algorithms" class="mw-redirect" title="Quantum algorithms">quantum algorithms</a> involves creating procedures that allow a quantum computer to perform calculations efficiently and quickly. </p><p>Quantum computers are not yet practical for real work. Physically engineering high-quality qubits has proven challenging. If a physical qubit is not sufficiently <a href="/wiki/Isolated_system" title="Isolated system">isolated</a> from its environment, it suffers from <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">quantum decoherence</a>, introducing <a href="/wiki/Noise_(signal_processing)" title="Noise (signal processing)">noise</a> into calculations. National governments have invested heavily in experimental research that aims to develop scalable qubits with longer coherence times and lower error rates. Example implementations include <a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">superconductors</a> (which isolate an <a href="/wiki/Electrical_current" class="mw-redirect" title="Electrical current">electrical current</a> by eliminating <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">electrical resistance</a>) and <a href="/wiki/Trapped_ion_quantum_computer" class="mw-redirect" title="Trapped ion quantum computer">ion traps</a> (which confine a single <a href="/wiki/Atom" title="Atom">atomic particle</a> using <a href="/wiki/Electromagnetic_fields" class="mw-redirect" title="Electromagnetic fields">electromagnetic fields</a>). </p><p>In principle, a classical computer can solve the same computational problems as a quantum computer, given enough time. Quantum advantage comes in the form of <a href="/wiki/Time_complexity" title="Time complexity">time complexity</a> rather than <a href="/wiki/Computability" title="Computability">computability</a>, and <a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">quantum complexity theory</a> shows that some quantum algorithms are exponentially more efficient than the best-known classical algorithms. A large-scale quantum computer could in theory solve computational problems unsolvable by a classical computer in any reasonable amount of time. This concept of extra ability has been called "<a href="/wiki/Quantum_supremacy" title="Quantum supremacy">quantum supremacy</a>". While such claims have drawn significant attention to the discipline, near-term practical use cases remain limited. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For a chronological guide, see <a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline of quantum computing and communication</a>.</div> <p>For many years, the fields of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> and <a href="/wiki/Computer_science" title="Computer science">computer science</a> formed distinct academic communities.<sup id="cite_ref-FOOTNOTEAaronson2013132_2-0" class="reference"><a href="#cite_note-FOOTNOTEAaronson2013132-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Modern_quantum_theory" class="mw-redirect" title="Modern quantum theory">Modern quantum theory</a> developed in the 1920s to explain the <a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">wave–particle duality</a> observed at atomic scales,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Digital_computers" class="mw-redirect" title="Digital computers">digital computers</a> emerged in the following decades to replace <a href="/wiki/Human_computers" class="mw-redirect" title="Human computers">human computers</a> for tedious calculations.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Both disciplines had practical applications during <a href="/wiki/World_War_II" title="World War II">World War II</a>; computers played a major role in <a href="/wiki/World_War_II_cryptography" title="World War II cryptography">wartime cryptography</a>,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and quantum physics was essential for <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear physics</a> used in the <a href="/wiki/Manhattan_Project" title="Manhattan Project">Manhattan Project</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>As <a href="/wiki/Physicists" class="mw-redirect" title="Physicists">physicists</a> applied quantum mechanical models to computational problems and swapped digital <a href="/wiki/Bit" title="Bit">bits</a> for <a href="/wiki/Qubits" class="mw-redirect" title="Qubits">qubits</a>, the fields of quantum mechanics and computer science began to converge. In 1980, <a href="/wiki/Paul_Benioff" title="Paul Benioff">Paul Benioff</a> introduced the <a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">quantum Turing machine</a>, which uses quantum theory to describe a simplified computer.<sup id="cite_ref-The_computer_as_a_physical_system_7-0" class="reference"><a href="#cite_note-The_computer_as_a_physical_system-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> When digital computers became faster, physicists faced an <a href="/wiki/Exponential_time" class="mw-redirect" title="Exponential time">exponential</a> increase in overhead when <a href="/wiki/Simulating_quantum_dynamics" class="mw-redirect" title="Simulating quantum dynamics">simulating quantum dynamics</a>,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> prompting <a href="/wiki/Yuri_Manin" title="Yuri Manin">Yuri Manin</a> and <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> to independently suggest that hardware based on quantum phenomena might be more efficient for computer simulation.<sup id="cite_ref-manin1980vychislimoe_9-0" class="reference"><a href="#cite_note-manin1980vychislimoe-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTENielsenChuang2010214_11-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang2010214-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> In a 1984 paper, <a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Charles Bennett</a> and <a href="/wiki/Gilles_Brassard" title="Gilles Brassard">Gilles Brassard</a> applied quantum theory to <a href="/wiki/Cryptography" title="Cryptography">cryptography</a> protocols and demonstrated that quantum key distribution could enhance <a href="/wiki/Information_security" title="Information security">information security</a>.<sup id="cite_ref-bb84_12-0" class="reference"><a href="#cite_note-bb84-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-personal_13-0" class="reference"><a href="#cite_note-personal-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a> then emerged for solving <a href="/wiki/Oracle_machine" title="Oracle machine">oracle problems</a>, such as <a href="/wiki/Deutsch%27s_algorithm" class="mw-redirect" title="Deutsch&#39;s algorithm">Deutsch's algorithm</a> in 1985,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> the <a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani algorithm</a> in 1993,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Simon%27s_algorithm" class="mw-redirect" title="Simon&#39;s algorithm">Simon's algorithm</a> in 1994.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> These algorithms did not solve practical problems, but demonstrated mathematically that one could gain more information by querying a <a href="/wiki/Black_box" title="Black box">black box</a> with a quantum state in <a href="/wiki/Quantum_superposition" title="Quantum superposition">superposition</a>, sometimes referred to as <i>quantum parallelism</i>.<sup id="cite_ref-FOOTNOTENielsenChuang201030-32_17-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201030-32-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png/200px-Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png" decoding="async" width="200" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png/300px-Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png/400px-Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png 2x" data-file-width="759" data-file-height="977" /></a><figcaption><a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a> (pictured here in 2017) showed in 1994 that a scalable quantum computer would be able to break <a href="/wiki/RSA_encryption" class="mw-redirect" title="RSA encryption">RSA encryption</a>.</figcaption></figure> <p><a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a> built on these results with <a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">his 1994 algorithm</a> for breaking the widely used <a href="/wiki/RSA_(cryptosystem)" title="RSA (cryptosystem)">RSA</a> and <a href="/wiki/Diffie%E2%80%93Hellman" class="mw-redirect" title="Diffie–Hellman">Diffie–Hellman</a> encryption protocols,<sup id="cite_ref-FOOTNOTEShor1994_18-0" class="reference"><a href="#cite_note-FOOTNOTEShor1994-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> which drew significant attention to the field of quantum computing. In 1996, <a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's algorithm</a> established a quantum speedup for the widely applicable <a href="/wiki/Unstructured_data" title="Unstructured data">unstructured</a> search problem.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTENielsenChuang20107_20-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang20107-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> The same year, <a href="/wiki/Seth_Lloyd" title="Seth Lloyd">Seth Lloyd</a> proved that quantum computers could simulate quantum systems without the exponential overhead present in classical simulations,<sup id="cite_ref-273.5278.1073_21-0" class="reference"><a href="#cite_note-273.5278.1073-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> validating Feynman's 1982 conjecture.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>Over the years, <a href="/wiki/Experimental_physics" title="Experimental physics">experimentalists</a> have constructed small-scale quantum computers using <a href="/wiki/Trapped_ion_quantum_computer" class="mw-redirect" title="Trapped ion quantum computer">trapped ions</a> and superconductors.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019164–169_23-0" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019164–169-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> In 1998, a two-qubit quantum computer demonstrated the feasibility of the technology,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and subsequent experiments have increased the number of qubits and reduced error rates.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019164–169_23-1" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019164–169-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2019, <a href="/wiki/Google_AI" title="Google AI">Google AI</a> and <a href="/wiki/NASA" title="NASA">NASA</a> announced that they had achieved <a href="/wiki/Quantum_supremacy" title="Quantum supremacy">quantum supremacy</a> with a 54-qubit machine, performing a computation that is impossible for any classical computer.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-1910.11333_27-0" class="reference"><a href="#cite_note-1910.11333-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> However, the validity of this claim is still being actively researched.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>In December 2023, physicists, for the first time, reported the entanglement of individual molecules, which may have significant applications in quantum computing.<sup id="cite_ref-PHYS-20231207_31-0" class="reference"><a href="#cite_note-PHYS-20231207-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_information_processing">Quantum information processing</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=2" title="Edit section: Quantum information processing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction to quantum mechanics</a></div> <p><a href="/wiki/Computer_engineer" class="mw-redirect" title="Computer engineer">Computer engineers</a> typically describe a <a href="/wiki/Modern_computer" class="mw-redirect" title="Modern computer">modern computer</a>'s operation in terms of <a href="/wiki/Classical_electrodynamics" class="mw-redirect" title="Classical electrodynamics">classical electrodynamics</a>. Within these "classical" computers, some components (such as <a href="/wiki/Semiconductors" class="mw-redirect" title="Semiconductors">semiconductors</a> and <a href="/wiki/Random_number_generators" class="mw-redirect" title="Random number generators">random number generators</a>) may rely on quantum behavior, but these components are not <a href="/wiki/Isolated_system" title="Isolated system">isolated</a> from their environment, so any <a href="/wiki/Quantum_information" title="Quantum information">quantum information</a> quickly <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">decoheres</a>. While <a href="/wiki/Programmers" class="mw-redirect" title="Programmers">programmers</a> may depend on <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> when designing a <a href="/wiki/Randomized_algorithm" title="Randomized algorithm">randomized algorithm</a>, quantum mechanical notions like superposition and <a href="/wiki/Quantum_interference" class="mw-redirect" title="Quantum interference">interference</a> are largely irrelevant for <a href="/wiki/Program_analysis" title="Program analysis">program analysis</a>. </p><p><a href="/wiki/Quantum_program" class="mw-redirect" title="Quantum program">Quantum programs</a>, in contrast, rely on precise control of <a href="/wiki/Quantum_coherence" class="mw-redirect" title="Quantum coherence">coherent</a> quantum systems. Physicists <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">describe these systems mathematically</a> using <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>. <a href="/wiki/Complex_number" title="Complex number">Complex numbers</a> model <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitudes</a>, <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vectors</a> model <a href="/wiki/Quantum_state" title="Quantum state">quantum states</a>, and <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> model the operations that can be performed on these states. Programming a quantum computer is then a matter of <a href="/wiki/Function_composition_(computer_science)" title="Function composition (computer science)">composing</a> operations in such a way that the resulting program computes a useful result in theory and is implementable in practice. </p><p>As physicist <a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Charlie Bennett</a> describes the relationship between quantum and classical computers,<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>A classical computer is a quantum computer&#160;... so we shouldn't be asking about "where do quantum speedups come from?" We should say, "well, all computers are quantum.&#160;... Where do classical slowdowns come from?"</p></blockquote> <div class="mw-heading mw-heading3"><h3 id="Quantum_information">Quantum information</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=3" title="Edit section: Quantum information"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Just as the bit is the basic concept of classical information theory, the <i><a href="/wiki/Qubit" title="Qubit">qubit</a></i> is the fundamental unit of <a href="/wiki/Quantum_information" title="Quantum information">quantum information</a>. The same term <i>qubit</i> is used to refer to an abstract mathematical model and to any physical system that is represented by that model. A classical bit, by definition, exists in either of two physical states, which can be denoted 0 and 1. A qubit is also described by a state, and two states often written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> serve as the quantum counterparts of the classical states 0 and 1. However, the quantum states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> belong to a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, meaning that they can be multiplied by constants and added together, and the result is again a valid quantum state. Such a combination is known as a <i>superposition</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>.<sup id="cite_ref-FOOTNOTENielsenChuang201013_33-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201013-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEMermin200717_34-0" class="reference"><a href="#cite_note-FOOTNOTEMermin200717-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>A two-dimensional <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vector</a> mathematically represents a qubit state. Physicists typically use <a href="/wiki/Dirac_notation" class="mw-redirect" title="Dirac notation">Dirac notation</a> for quantum mechanical <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span> <span class="gloss-quot">'</span><span class="gloss-text">ket <a href="/wiki/Psi_(Greek)" title="Psi (Greek)">psi</a></span><span class="gloss-quot">'</span> for a vector labeled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> . Because a qubit is a two-state system, any qubit state takes the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha |0\rangle +\beta |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha |0\rangle +\beta |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10ab241f89535b2255509d41f39bfbbed35830b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.088ex; height:2.843ex;" alt="{\displaystyle \alpha |0\rangle +\beta |1\rangle }"></span> , where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> are the standard <i>basis states</i>,<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> are the <i><a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitudes</a>,</i> which are in general <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a>.<sup id="cite_ref-FOOTNOTEMermin200717_34-1" class="reference"><a href="#cite_note-FOOTNOTEMermin200717-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> If either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> is zero, the qubit is effectively a classical bit; when both are nonzero, the qubit is in superposition. Such a <a href="/wiki/Quantum_state_vector" class="mw-redirect" title="Quantum state vector">quantum state vector</a> acts similarly to a (classical) <a href="/wiki/Probability_vector" title="Probability vector">probability vector</a>, with one key difference: unlike probabilities, probability <em>amplitudes</em> are not necessarily positive numbers.<sup id="cite_ref-FOOTNOTEAaronson2013110_37-0" class="reference"><a href="#cite_note-FOOTNOTEAaronson2013110-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Negative amplitudes allow for destructive wave interference. </p><p>When a qubit is <a href="/wiki/Quantum_measurement" class="mw-redirect" title="Quantum measurement">measured</a> in the <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a>, the result is a classical bit. The <a href="/wiki/Born_rule" title="Born rule">Born rule</a> describes the <a href="/wiki/Norm-squared" class="mw-redirect" title="Norm-squared">norm-squared</a> correspondence between amplitudes and probabilities—when measuring a qubit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha |0\rangle +\beta |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha |0\rangle +\beta |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10ab241f89535b2255509d41f39bfbbed35830b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.088ex; height:2.843ex;" alt="{\displaystyle \alpha |0\rangle +\beta |1\rangle }"></span>, the state <a href="/wiki/Wave_function_collapse" title="Wave function collapse">collapses</a> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\alpha |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\alpha |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa34618537661f2d4d710cc26e8afe891f50f7b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.836ex; height:3.343ex;" alt="{\displaystyle |\alpha |^{2}}"></span>, or to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\beta |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\beta |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4caecb560883af3b9c0c3a1d0e13aae75f121d0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.68ex; height:3.343ex;" alt="{\displaystyle |\beta |^{2}}"></span>. Any valid qubit state has coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18cd7473cdb894839d10852890517b1fb687c73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.617ex; height:3.343ex;" alt="{\displaystyle |\alpha |^{2}+|\beta |^{2}=1}"></span>. As an example, measuring the qubit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/{\sqrt {2}}|0\rangle +1/{\sqrt {2}}|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/{\sqrt {2}}|0\rangle +1/{\sqrt {2}}|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d1003ac2c368cb0f7535b4902062b29af36df3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.115ex; height:3.176ex;" alt="{\displaystyle 1/{\sqrt {2}}|0\rangle +1/{\sqrt {2}}|1\rangle }"></span> would produce either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> with equal probability. </p><p>Each additional qubit doubles the <a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">dimension</a> of the <a href="/wiki/State_space_(physics)" class="mw-redirect" title="State space (physics)">state space</a>.<sup id="cite_ref-FOOTNOTEMermin200718_35-1" class="reference"><a href="#cite_note-FOOTNOTEMermin200718-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> As an example, the vector <span class="nowrap"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;00&#x27e9;</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;01&#x27e9;</span></span> represents a two-qubit state, a <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of the qubit <span class="nowrap">&#124;0&#x27e9;</span> with the qubit <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;0&#x27e9;</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;1&#x27e9;</span></span>. This vector inhabits a four-dimensional <a href="/wiki/Vector_space" title="Vector space">vector space</a> spanned by the basis vectors <span class="nowrap">&#124;00&#x27e9;</span>, <span class="nowrap">&#124;01&#x27e9;</span>, <span class="nowrap">&#124;10&#x27e9;</span>, and <span class="nowrap">&#124;11&#x27e9;</span>. The <a href="/wiki/Bell_state" title="Bell state">Bell state</a> <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;00&#x27e9;</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">√2</span></span>&#8288;</span><span class="nowrap">&#124;11&#x27e9;</span></span> is impossible to decompose into the tensor product of two individual qubits—the two qubits are <i><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled</a></i> because their probability amplitudes are <a href="/wiki/Correlated" class="mw-redirect" title="Correlated">correlated</a>. In general, the vector space for an <i>n</i>-qubit system is 2<sup><i>n</i></sup>-dimensional, and this makes it challenging for a classical computer to simulate a quantum one: representing a 100-qubit system requires storing 2<sup>100</sup> classical values. </p> <div class="mw-heading mw-heading3"><h3 id="Unitary_operators">Unitary operators<span class="anchor" id="gate-application"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=4" title="Edit section: Unitary operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Unitarity_(physics)" title="Unitarity (physics)">Unitarity (physics)</a></div> <p>The state of this one-qubit <a href="/wiki/Quantum_memory" title="Quantum memory">quantum memory</a> can be manipulated by applying <a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gates</a>, analogous to how classical memory can be manipulated with <a href="/wiki/Logic_gate" title="Logic gate">classical logic gates</a>. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X:={\begin{pmatrix}0&amp;1\\1&amp;0\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X:={\begin{pmatrix}0&amp;1\\1&amp;0\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7d92d08efa8ccef15f7593ccfdb140edef506d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.192ex; height:6.176ex;" alt="{\displaystyle X:={\begin{pmatrix}0&amp;1\\1&amp;0\end{pmatrix}}.}"></span> Mathematically, the application of such a logic gate to a quantum state vector is modelled with <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X|0\rangle =|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X|0\rangle =|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab196442d13e4f433213e12d3fe0f14dd94088e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.506ex; height:2.843ex;" alt="{\displaystyle X|0\rangle =|1\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X|1\rangle =|0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X|1\rangle =|0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/753cd0153c35b8d10551bf7fd9da25fb274edb6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.506ex; height:2.843ex;" alt="{\displaystyle X|1\rangle =|0\rangle }"></span>.</dd></dl> <p>The mathematics of single qubit gates can be extended to operate on multi-qubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit while leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle :={\begin{pmatrix}1\\0\\0\\0\end{pmatrix}};\quad |01\rangle :={\begin{pmatrix}0\\1\\0\\0\end{pmatrix}};\quad |10\rangle :={\begin{pmatrix}0\\0\\1\\0\end{pmatrix}};\quad |11\rangle :={\begin{pmatrix}0\\0\\0\\1\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle :={\begin{pmatrix}1\\0\\0\\0\end{pmatrix}};\quad |01\rangle :={\begin{pmatrix}0\\1\\0\\0\end{pmatrix}};\quad |10\rangle :={\begin{pmatrix}0\\0\\1\\0\end{pmatrix}};\quad |11\rangle :={\begin{pmatrix}0\\0\\0\\1\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55c7ee07f3a61799148cc67ebc11b82df3e3ca2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:65.126ex; height:12.509ex;" alt="{\displaystyle |00\rangle :={\begin{pmatrix}1\\0\\0\\0\end{pmatrix}};\quad |01\rangle :={\begin{pmatrix}0\\1\\0\\0\end{pmatrix}};\quad |10\rangle :={\begin{pmatrix}0\\0\\1\\0\end{pmatrix}};\quad |11\rangle :={\begin{pmatrix}0\\0\\0\\1\end{pmatrix}}.}"></span> The <a href="/wiki/Controlled_NOT_gate" title="Controlled NOT gate">controlled NOT (CNOT)</a> gate can then be represented using the following matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CNOT} :={\begin{pmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CNOT</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CNOT} :={\begin{pmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d17fcf6a57b6d3b886d9d5073032b1e7695518aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:27.735ex; height:12.509ex;" alt="{\displaystyle \operatorname {CNOT} :={\begin{pmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{pmatrix}}.}"></span> As a mathematical consequence of this definition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {CNOT} |00\rangle =|00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>CNOT</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {CNOT} |00\rangle =|00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed0a5336f1e26a22df63063316d4b0dbaf266328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.146ex; height:2.843ex;" alt="{\textstyle \operatorname {CNOT} |00\rangle =|00\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {CNOT} |01\rangle =|01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>CNOT</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {CNOT} |01\rangle =|01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b89c86631eaaf54086afc0199de442765d8aa72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.146ex; height:2.843ex;" alt="{\textstyle \operatorname {CNOT} |01\rangle =|01\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {CNOT} |10\rangle =|11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>CNOT</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {CNOT} |10\rangle =|11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41135fc98eb537e37245efa719378d9f726f5754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.146ex; height:2.843ex;" alt="{\textstyle \operatorname {CNOT} |10\rangle =|11\rangle }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {CNOT} |11\rangle =|10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>CNOT</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {CNOT} |11\rangle =|10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d5dd1790f487ed75a103c6d09e4aa61d6135bcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.146ex; height:2.843ex;" alt="{\textstyle \operatorname {CNOT} |11\rangle =|10\rangle }"></span>. In other words, the CNOT applies a NOT gate (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d80c41192705e1a6c6de1d65e16d7f70fbac391" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\textstyle X}"></span> from before) to the second qubit if and only if the first qubit is in the state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e02220355a0a3bf0dfe8884b3023a41b86f6cc14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\textstyle |1\rangle }"></span>. If the first qubit is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55f385865bf20d44afef7add01ed2679901e9c4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\textstyle |0\rangle }"></span>, nothing is done to either qubit. </p><p>In summary, quantum computation can be described as a network of quantum logic gates and measurements. However, any <a href="/wiki/Deferred_measurement_principle" title="Deferred measurement principle">measurement can be deferred</a> to the end of quantum computation, though this deferment may come at a computational cost, so most <a href="/wiki/Quantum_circuit" title="Quantum circuit">quantum circuits</a> depict a network consisting only of quantum logic gates and no measurements. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_parallelism">Quantum parallelism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=5" title="Edit section: Quantum parallelism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Quantum parallelism</i> is the heuristic that quantum computers can be thought of as evaluating a function for multiple input values simultaneously. This can be achieved by preparing a quantum system in a superposition of input states and applying a unitary transformation that encodes the function to be evaluated. The resulting state encodes the function's output values for all input values in the superposition, allowing for the computation of multiple outputs simultaneously. This property is key to the speedup of many quantum algorithms. However, "parallelism" in this sense is insufficient to speed up a computation, because the measurement at the end of the computation gives only one value. To be useful, a quantum algorithm must also incorporate some other conceptual ingredient.<sup id="cite_ref-FOOTNOTENielsenChuang201030–32_38-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201030–32-38"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEMermin200738–39_39-0" class="reference"><a href="#cite_note-FOOTNOTEMermin200738–39-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_programming">Quantum programming<span class="anchor" id="Models_of_computation_for_quantum_computing"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=6" title="Edit section: Quantum programming"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></div> <p>There are a number of <a href="/wiki/Model_of_computation" title="Model of computation">models of computation</a> for quantum computing, distinguished by the basic elements in which the computation is decomposed. </p> <div class="mw-heading mw-heading4"><h4 id="Gate_array">Gate array <span class="anchor" id="Quantum_circuit"></span><span class="anchor" id="Definition"></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=7" title="Edit section: Gate array"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Quantum_Toffoli_Gate_Implementation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quantum_Toffoli_Gate_Implementation.svg/250px-Quantum_Toffoli_Gate_Implementation.svg.png" decoding="async" width="250" height="66" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quantum_Toffoli_Gate_Implementation.svg/375px-Quantum_Toffoli_Gate_Implementation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quantum_Toffoli_Gate_Implementation.svg/500px-Quantum_Toffoli_Gate_Implementation.svg.png 2x" data-file-width="311" data-file-height="82" /></a><figcaption>A quantum circuit diagram implementing a <a href="/wiki/Toffoli_gate" title="Toffoli gate">Toffoli gate</a> from <a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">more primitive gates</a></figcaption></figure> <p>A <a href="/wiki/Quantum_circuit" title="Quantum circuit">quantum gate array</a> decomposes computation into a sequence of few-qubit <a href="/wiki/Quantum_gate" class="mw-redirect" title="Quantum gate">quantum gates</a>. A quantum computation can be described as a network of quantum logic gates and measurements. However, any measurement can be deferred to the end of quantum computation, though this deferment may come at a computational cost, so most quantum circuits depict a network consisting only of quantum logic gates and no measurements. </p><p>Any quantum computation (which is, in the above formalism, any <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrix</a> of size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}\times 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}\times 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/224a4a2c00116d57f7d93bd1116d1518837f1c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.602ex; height:2.343ex;" alt="{\displaystyle 2^{n}\times 2^{n}}"></span> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits) can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a <a href="/wiki/Quantum_logic_gate#Universal_quantum_gates" title="Quantum logic gate">universal gate set</a>, since a computer that can run such circuits is a <a href="/wiki/Universal_quantum_computer" class="mw-redirect" title="Universal quantum computer">universal quantum computer</a>. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the <a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay-Kitaev theorem</a>. Implementation of Boolean functions using the few-qubit quantum gates is presented here.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Measurement-based_quantum_computing">Measurement-based quantum computing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=8" title="Edit section: Measurement-based quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Measurement-based_quantum_computer" class="mw-redirect" title="Measurement-based quantum computer">measurement-based quantum computer</a> decomposes computation into a sequence of <a href="/wiki/Bell_state#Bell_state_measurement" title="Bell state">Bell state measurements</a> and single-qubit <a href="/wiki/Quantum_gate" class="mw-redirect" title="Quantum gate">quantum gates</a> applied to a highly entangled initial state (a <a href="/wiki/Cluster_state" title="Cluster state">cluster state</a>), using a technique called <a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Adiabatic_quantum_computing">Adiabatic quantum computing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=9" title="Edit section: Adiabatic quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">adiabatic quantum computer</a>, based on <a href="/wiki/Quantum_annealing" title="Quantum annealing">quantum annealing</a>, decomposes computation into a slow continuous transformation of an initial <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> into a final Hamiltonian, whose ground states contain the solution.<sup id="cite_ref-Das_2008_1061–1081_41-0" class="reference"><a href="#cite_note-Das_2008_1061–1081-41"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Neuromorphic_quantum_computing">Neuromorphic quantum computing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=10" title="Edit section: Neuromorphic quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Neuromorphic quantum computing (abbreviated as ‘n.quantum computing’) is an unconventional computing type of computing that uses <a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">neuromorphic computing</a> to perform quantum operations. It was suggested that quantum algorithms, which are algorithms that run on a realistic model of quantum computation, can be computed equally efficiently with neuromorphic quantum computing. Both, traditional quantum computing and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and do not follow the <a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">von Neumann architecture</a>. They both construct a system (a circuit) that represents the physical problem at hand and then leverage their respective physics properties of the system to seek the “minimum”. Neuromorphic quantum computing and quantum computing share similar physical properties during computation. </p> <div class="mw-heading mw-heading4"><h4 id="Topological_quantum_computing">Topological quantum computing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=11" title="Edit section: Topological quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">topological quantum computer</a> decomposes computation into the braiding of <a href="/wiki/Anyon" title="Anyon">anyons</a> in a 2D lattice.<sup id="cite_ref-Nayaketal2008_42-0" class="reference"><a href="#cite_note-Nayaketal2008-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Quantum_Turing_machine">Quantum Turing machine</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=12" title="Edit section: Quantum Turing machine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">quantum Turing machine</a> is the quantum analog of a <a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a>.<sup id="cite_ref-The_computer_as_a_physical_system_7-1" class="reference"><a href="#cite_note-The_computer_as_a_physical_system-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> All of these models of computation—quantum circuits,<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">one-way quantum computation</a>,<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> adiabatic quantum computation,<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> and topological quantum computation<sup id="cite_ref-FLW02_46-0" class="reference"><a href="#cite_note-FLW02-46"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup>—have been shown to be equivalent to the quantum Turing machine; given a perfect implementation of one such quantum computer, it can simulate all the others with no more than polynomial overhead. This equivalence need not hold for practical quantum computers, since the overhead of simulation may be too large to be practical. </p> <div class="mw-heading mw-heading4"><h4 id="Noisy_intermediate-scale_quantum_computing">Noisy intermediate-scale quantum computing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=13" title="Edit section: Noisy intermediate-scale quantum computing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Threshold_theorem" title="Threshold theorem">threshold theorem</a> shows how increasing the number of qubits can mitigate errors,<sup id="cite_ref-FOOTNOTENielsenChuang2010481_47-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang2010481-47"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> yet fully fault-tolerant quantum computing remains "a rather distant dream".<sup id="cite_ref-preskill2018_48-0" class="reference"><a href="#cite_note-preskill2018-48"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> According to some researchers, <i>noisy intermediate-scale quantum</i> (<a href="/wiki/NISQ" class="mw-redirect" title="NISQ">NISQ</a>) machines may have specialized uses in the near future, but <a href="/wiki/Noise_(signal_processing)" title="Noise (signal processing)">noise</a> in quantum gates limits their reliability.<sup id="cite_ref-preskill2018_48-1" class="reference"><a href="#cite_note-preskill2018-48"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Scientists at <a href="/wiki/Harvard_University" title="Harvard University">Harvard</a> University successfully created "quantum circuits" that correct errors more efficiently than alternative methods, which may potentially remove a major obstacle to practical quantum computers.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> The Harvard research team was supported by <a href="/wiki/Massachusetts_Institute_of_Technology" title="Massachusetts Institute of Technology">MIT</a>, <a href="/wiki/QuEra_Computing" class="mw-redirect" title="QuEra Computing">QuEra Computing</a>, <a href="/wiki/California_Institute_of_Technology" title="California Institute of Technology">Caltech</a>, and <a href="/wiki/Princeton_University" title="Princeton University">Princeton</a> University and funded by <a href="/wiki/DARPA" title="DARPA">DARPA</a>'s Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_cryptography_and_cybersecurity">Quantum cryptography and cybersecurity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=14" title="Edit section: Quantum cryptography and cybersecurity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Laser_optique.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Laser_optique.jpg/220px-Laser_optique.jpg" decoding="async" width="220" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Laser_optique.jpg/330px-Laser_optique.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Laser_optique.jpg/440px-Laser_optique.jpg 2x" data-file-width="510" data-file-height="450" /></a><figcaption>Example of a quantum cryptosystem layout</figcaption></figure> <p>Quantum computing has significant potential applications in the fields of cryptography and cybersecurity. Quantum cryptography, which relies on the principles of quantum mechanics, offers the possibility of secure communication channels that are resistant to eavesdropping. Quantum key distribution (QKD) protocols, such as BB84, enable the secure exchange of cryptographic keys between parties, ensuring the confidentiality and integrity of communication. Moreover, quantum random number generators (QRNGs) can produce high-quality random numbers, which are essential for secure encryption. </p><p>However, quantum computing also poses challenges to traditional cryptographic systems. Shor's algorithm, a quantum algorithm for integer factorization, could potentially break widely used public-key cryptography schemes like RSA, which rely on the difficulty of factoring large numbers. Post-quantum cryptography, which involves the development of cryptographic algorithms that are resistant to attacks by both classical and quantum computers, is an active area of research aimed at addressing this concern. </p><p>Ongoing research in quantum cryptography and post-quantum cryptography is crucial for ensuring the security of communication and data in the face of evolving quantum computing capabilities. Advances in these fields, such as the development of new QKD protocols, the improvement of QRNGs, and the standardization of post-quantum cryptographic algorithms, will play a key role in maintaining the integrity and confidentiality of information in the quantum era.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Communication">Communication</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=15" title="Edit section: Communication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div> <p><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a> enables new ways to transmit data securely; for example, <a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">quantum key distribution</a> uses entangled quantum states to establish secure <a href="/wiki/Cryptographic_keys" class="mw-redirect" title="Cryptographic keys">cryptographic keys</a>.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> When a sender and receiver exchange quantum states, they can guarantee that an <a href="/wiki/Adversary_(cryptography)" title="Adversary (cryptography)">adversary</a> does not intercept the message, as any unauthorized eavesdropper would disturb the delicate quantum system and introduce a detectable change.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> With appropriate <a href="/wiki/Cryptographic_protocols" class="mw-redirect" title="Cryptographic protocols">cryptographic protocols</a>, the sender and receiver can thus establish shared private information resistant to eavesdropping.<sup id="cite_ref-bb84_12-1" class="reference"><a href="#cite_note-bb84-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>Modern <a href="/wiki/Fiber-optic_cables" class="mw-redirect" title="Fiber-optic cables">fiber-optic cables</a> can transmit quantum information over relatively short distances. Ongoing experimental research aims to develop more reliable hardware (such as quantum repeaters), hoping to scale this technology to long-distance <a href="/wiki/Quantum_networks" class="mw-redirect" title="Quantum networks">quantum networks</a> with end-to-end entanglement. Theoretically, this could enable novel technological applications, such as distributed quantum computing and enhanced <a href="/wiki/Quantum_sensing" class="mw-redirect" title="Quantum sensing">quantum sensing</a>.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Algorithms">Algorithms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=16" title="Edit section: Algorithms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Progress in finding <a href="/wiki/Quantum_algorithms" class="mw-redirect" title="Quantum algorithms">quantum algorithms</a> typically focuses on this quantum circuit model, though exceptions like the <a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">quantum adiabatic algorithm</a> exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.<sup id="cite_ref-zoo_59-0" class="reference"><a href="#cite_note-zoo-59"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>Quantum algorithms that offer more than a polynomial speedup over the best-known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing <a href="/wiki/Discrete_logarithm" title="Discrete logarithm">discrete logarithms</a>, solving <a href="/wiki/Pell%27s_equation" title="Pell&#39;s equation">Pell's equation</a>, and more generally solving the <a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">hidden subgroup problem</a> for <a href="/wiki/Abelian_group" title="Abelian group">abelian</a> finite groups.<sup id="cite_ref-zoo_59-1" class="reference"><a href="#cite_note-zoo-59"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> These algorithms depend on the primitive of the <a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">quantum Fourier transform</a>. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, but evidence suggests that this is unlikely.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Certain oracle problems like <a href="/wiki/Simon%27s_problem" title="Simon&#39;s problem">Simon's problem</a> and the <a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani problem</a> do give provable speedups, though this is in the <a href="/wiki/Quantum_complexity_theory#Quantum_query_complexity" title="Quantum complexity theory">quantum query model</a>, which is a restricted model where lower bounds are much easier to prove and doesn't necessarily translate to speedups for practical problems. </p><p>Other problems, including the simulation of quantum physical processes from chemistry and solid-state physics, the approximation of certain <a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomials</a>, and the <a href="/wiki/Quantum_algorithm_for_linear_systems_of_equations" class="mw-redirect" title="Quantum algorithm for linear systems of equations">quantum algorithm for linear systems of equations</a> have quantum algorithms appearing to give super-polynomial speedups and are <a href="/wiki/BQP" title="BQP">BQP</a>-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that <i>no quantum algorithm</i> gives a super-polynomial speedup, which is believed to be unlikely.<sup id="cite_ref-FOOTNOTENielsenChuang201042_61-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201042-61"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some quantum algorithms, like <a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's algorithm</a> and <a href="/wiki/Amplitude_amplification" title="Amplitude amplification">amplitude amplification</a>, give polynomial speedups over corresponding classical algorithms.<sup id="cite_ref-zoo_59-2" class="reference"><a href="#cite_note-zoo-59"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems.<sup id="cite_ref-FOOTNOTENielsenChuang20107_20-1" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang20107-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simulation_of_quantum_systems">Simulation of quantum systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=17" title="Edit section: Simulation of quantum systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_simulation" class="mw-redirect" title="Quantum simulation">Quantum simulation</a></div> <p>Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, <a href="/wiki/Quantum_simulator" title="Quantum simulator">quantum simulation</a> may be an important application of quantum computing.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a <a href="/wiki/Collider" title="Collider">collider</a>.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> In June 2023, IBM computer scientists reported that a quantum computer produced better results for a physics problem than a conventional supercomputer.<sup id="cite_ref-NYT-20230614_64-0" class="reference"><a href="#cite_note-NYT-20230614-64"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-NAT-20230614_65-0" class="reference"><a href="#cite_note-NAT-20230614-65"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p><p>About 2% of the annual global energy output is used for <a href="/wiki/Nitrogen_fixation" title="Nitrogen fixation">nitrogen fixation</a> to produce <a href="/wiki/Ammonia" title="Ammonia">ammonia</a> for the <a href="/wiki/Haber_process" title="Haber process">Haber process</a> in the agricultural fertilizer industry (even though naturally occurring organisms also produce ammonia). Quantum simulations might be used to understand this process and increase the energy efficiency of production.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> It is expected that an early use of quantum computing will be modeling that improves the efficiency of the Haber–Bosch process<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> by the mid-2020s<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> although some have predicted it will take longer.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Post-quantum_cryptography">Post-quantum cryptography</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=18" title="Edit section: Post-quantum cryptography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></div> <p>A notable application of quantum computation is for <a href="/wiki/Cryptanalysis" title="Cryptanalysis">attacks</a> on cryptographic systems that are currently in use. <a href="/wiki/Integer_factorization" title="Integer factorization">Integer factorization</a>, which underpins the security of <a href="/wiki/Public_key_cryptography" class="mw-redirect" title="Public key cryptography">public key cryptographic</a> systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> (e.g., products of two 300-digit primes).<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> By comparison, a quantum computer could solve this problem exponentially faster using Shor's algorithm to find its factors.<sup id="cite_ref-FOOTNOTENielsenChuang2010216_71-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang2010216-71"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> This ability would allow a quantum computer to break many of the <a href="/wiki/Cryptography" title="Cryptography">cryptographic</a> systems in use today, in the sense that there would be a <a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">polynomial time</a> (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular <a href="/wiki/Asymmetric_Algorithms" class="mw-redirect" title="Asymmetric Algorithms">public key ciphers</a> are based on the difficulty of factoring integers or the <a href="/wiki/Discrete_logarithm" title="Discrete logarithm">discrete logarithm</a> problem, both of which can be solved by Shor's algorithm. In particular, the <a href="/wiki/RSA_(algorithm)" class="mw-redirect" title="RSA (algorithm)">RSA</a>, <a href="/wiki/Diffie%E2%80%93Hellman" class="mw-redirect" title="Diffie–Hellman">Diffie–Hellman</a>, and <a href="/wiki/Elliptic_curve_Diffie%E2%80%93Hellman" class="mw-redirect" title="Elliptic curve Diffie–Hellman">elliptic curve Diffie–Hellman</a> algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security. </p><p>Identifying cryptographic systems that may be secure against quantum algorithms is an actively researched topic under the field of <i>post-quantum cryptography</i>.<sup id="cite_ref-pqcrypto_survey_72-0" class="reference"><a href="#cite_note-pqcrypto_survey-72"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the <a href="/wiki/McEliece_cryptosystem" title="McEliece cryptosystem">McEliece cryptosystem</a> based on a problem in <a href="/wiki/Coding_theory" title="Coding theory">coding theory</a>.<sup id="cite_ref-pqcrypto_survey_72-1" class="reference"><a href="#cite_note-pqcrypto_survey-72"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Lattice-based_cryptography" title="Lattice-based cryptography">Lattice-based cryptosystems</a> are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a> <a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">hidden subgroup problem</a>, which would break many lattice based cryptosystems, is a well-studied open problem.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> It has been proven that applying Grover's algorithm to break a <a href="/wiki/Symmetric-key_algorithm" title="Symmetric-key algorithm">symmetric (secret key) algorithm</a> by brute force requires time equal to roughly 2<sup><i>n</i>/2</sup> invocations of the underlying cryptographic algorithm, compared with roughly 2<sup><i>n</i></sup> in the classical case,<sup id="cite_ref-bennett_1997_76-0" class="reference"><a href="#cite_note-bennett_1997-76"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128 has against classical brute-force search (see <i><a href="/wiki/Key_size#Effect_of_quantum_computing_attacks_on_key_strength" title="Key size">Key size</a></i>). </p> <div class="mw-heading mw-heading3"><h3 id="Search_problems">Search problems<span class="anchor" id="Quantum_search"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=19" title="Edit section: Search problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's algorithm</a></div> <p>The most well-known example of a problem that allows for a polynomial quantum speedup is <i>unstructured search</i>, which involves finding a marked item out of a list of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> items in a database. This can be solved by Grover's algorithm using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O({\sqrt {n}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O({\sqrt {n}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5526ab1252c0f682bbe07c0ad67c0f29de5522b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.913ex; height:3.009ex;" alt="{\displaystyle O({\sqrt {n}})}"></span> queries to the database, quadratically fewer than the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6becc31c61ad3420a1e4ee9e39c28baf73bda24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.882ex; height:2.843ex;" alt="{\displaystyle \Omega (n)}"></span> queries required for classical algorithms. In this case, the advantage is not only provable but also optimal: it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups. Many examples of provable quantum speedups for query problems are based on Grover's algorithm, including <a href="/wiki/BHT_algorithm" title="BHT algorithm">Brassard, Høyer, and Tapp's algorithm</a> for finding collisions in two-to-one functions,<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>Problems that can be efficiently addressed with Grover's algorithm have the following properties:<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>There is no searchable structure in the collection of possible answers,</li> <li>The number of possible answers to check is the same as the number of inputs to the algorithm, and</li> <li>There exists a Boolean function that evaluates each input and determines whether it is the correct answer.</li></ol> <p>For problems with all these properties, the running time of Grover's algorithm on a quantum computer scales as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can be applied<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> is a <a href="/wiki/Boolean_satisfiability_problem" title="Boolean satisfiability problem">Boolean satisfiability problem</a>, where the <i>database</i> through which the algorithm iterates is that of all possible answers. An example and possible application of this is a <a href="/wiki/Password_cracking" title="Password cracking">password cracker</a> that attempts to guess a password. Breaking <a href="/wiki/Symmetric-key_algorithm" title="Symmetric-key algorithm">symmetric ciphers</a> with this algorithm is of interest to government agencies.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_annealing">Quantum annealing<span class="anchor" id="Quantum_annealing_and_adiabatic_optimization"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=20" title="Edit section: Quantum annealing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a> relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which slowly evolves to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process. <span class="anchor" id="Computational_biology"></span>Adiabatic optimization may be helpful for solving <a href="/wiki/Computational_biology" title="Computational biology">computational biology</a> problems.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Machine_learning">Machine learning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=21" title="Edit section: Machine learning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></div> <p>Since quantum computers can produce outputs that classical computers cannot produce efficiently, and since quantum computation is fundamentally linear algebraic, some express hope in developing quantum algorithms that can speed up <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> tasks.<sup id="cite_ref-preskill2018_48-2" class="reference"><a href="#cite_note-preskill2018-48"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, the <a href="/wiki/HHL_Algorithm" class="mw-redirect" title="HHL Algorithm">HHL Algorithm</a>, named after its discoverers Harrow, Hassidim, and Lloyd, is believed to provide speedup over classical counterparts.<sup id="cite_ref-preskill2018_48-3" class="reference"><a href="#cite_note-preskill2018-48"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Quantum_algorithm_for_solving_linear_systems_of_equations_by_Harrow_et_al._85-0" class="reference"><a href="#cite_note-Quantum_algorithm_for_solving_linear_systems_of_equations_by_Harrow_et_al.-85"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Some research groups have recently explored the use of quantum annealing hardware for training <a href="/wiki/Boltzmann_machine" title="Boltzmann machine">Boltzmann machines</a> and <a href="/wiki/Deep_neural_networks" class="mw-redirect" title="Deep neural networks">deep neural networks</a>.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="anchor" id="Computer-aided_drug_design_and_generative_chemistry"></span> Deep generative chemistry models emerge as powerful tools to expedite <a href="/wiki/Drug_discovery" title="Drug discovery">drug discovery</a>. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome in the future by quantum computers. Quantum computers are naturally good for solving complex quantum many-body problems<sup id="cite_ref-273.5278.1073_21-1" class="reference"><a href="#cite_note-273.5278.1073-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> and thus may be instrumental in applications involving quantum chemistry. Therefore, one can expect that quantum-enhanced generative models<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> including quantum GANs<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> may eventually be developed into ultimate generative chemistry algorithms. </p> <div class="mw-heading mw-heading2"><h2 id="Engineering">Engineering<span class="anchor" id="Developing_physical_quantum_computers"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=22" title="Edit section: Engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_(39188583425).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg/220px-A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg" decoding="async" width="220" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg/330px-A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg/440px-A_Wafer_of_the_Latest_D-Wave_Quantum_Computers_%2839188583425%29.jpg 2x" data-file-width="5158" data-file-height="3522" /></a><figcaption>A <a href="/wiki/Wafer_(electronics)" title="Wafer (electronics)">wafer</a> of <a href="/wiki/Adiabatic_quantum_computer" class="mw-redirect" title="Adiabatic quantum computer">adiabatic quantum computers</a></figcaption></figure> <p>As of 2023,<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Quantum_computing&amp;action=edit">&#91;update&#93;</a></sup> classical computers outperform quantum computers for all real-world applications. While current quantum computers may speed up solutions to particular mathematical problems, they give no computational advantage for practical tasks. Scientists and engineers are exploring multiple technologies for quantum computing hardware and hope to develop scalable quantum architectures, but serious obstacles remain.<sup id="cite_ref-good-for-nothing_91-0" class="reference"><a href="#cite_note-good-for-nothing-91"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CACM_92-0" class="reference"><a href="#cite_note-CACM-92"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Challenges">Challenges</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=23" title="Edit section: Challenges"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of technical challenges in building a large-scale quantum computer.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> Physicist <a href="/wiki/David_P._DiVincenzo" class="mw-redirect" title="David P. DiVincenzo">David DiVincenzo</a> has listed <a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo&#39;s criteria">these requirements</a> for a practical quantum computer:<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Physically scalable to increase the number of qubits</li> <li>Qubits that can be initialized to arbitrary values</li> <li>Quantum gates that are faster than <a href="/wiki/Decoherence" class="mw-redirect" title="Decoherence">decoherence</a> time</li> <li>Universal gate set</li> <li>Qubits that can be read easily.</li></ul> <p>Sourcing parts for quantum computers is also very difficult. <a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting quantum computers</a>, like those constructed by <a href="/wiki/Google" title="Google">Google</a> and <a href="/wiki/IBM" title="IBM">IBM</a>, need <a href="/wiki/Helium-3" title="Helium-3">helium-3</a>, a <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear</a> research byproduct, and special <a href="/wiki/Superconducting" class="mw-redirect" title="Superconducting">superconducting</a> cables made only by the Japanese company Coax Co.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p><p>The control of multi-qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This has led to the development of <a href="/w/index.php?title=Quantum_controllers&amp;action=edit&amp;redlink=1" class="new" title="Quantum controllers (page does not exist)">quantum controllers</a> that enable interfacing with the qubits. Scaling these systems to support a growing number of qubits is an additional challenge.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Decoherence">Decoherence<span class="anchor" id="Quantum_decoherence"></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=24" title="Edit section: Decoherence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time <i>T</i><sub>2</sub> (for <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">NMR</a> and <a href="/wiki/MRI" class="mw-redirect" title="MRI">MRI</a> technology, also called the <i>dephasing time</i>), typically range between nanoseconds and seconds at low temperature.<sup id="cite_ref-DiVincenzo_1995_97-0" class="reference"><a href="#cite_note-DiVincenzo_1995-97"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> Currently, some quantum computers require their qubits to be cooled to 20 millikelvin (usually using a <a href="/wiki/Dilution_refrigerator" title="Dilution refrigerator">dilution refrigerator</a><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup>) in order to prevent significant decoherence.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> A 2020 study argues that <a href="/wiki/Ionizing_radiation" title="Ionizing radiation">ionizing radiation</a> such as <a href="/wiki/Cosmic_rays" class="mw-redirect" title="Cosmic rays">cosmic rays</a> can nevertheless cause certain systems to decohere within milliseconds.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p><p>As a result, time-consuming tasks may render some quantum algorithms inoperable, as attempting to maintain the state of qubits for a long enough duration will eventually corrupt the superpositions.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p><p>These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical <a href="/wiki/Pulse_shaping" title="Pulse shaping">pulse shaping</a>. Error rates are typically proportional to the ratio of operating time to decoherence time; hence any operation must be completed much more quickly than the decoherence time. </p><p>As described by the <a href="/wiki/Threshold_theorem" title="Threshold theorem">threshold theorem</a>, if the error rate is small enough, it is thought to be possible to use <a href="/wiki/Quantum_error_correction" title="Quantum error correction">quantum error correction</a> to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often-cited figure for the required error rate in each gate for fault-tolerant computation is 10<sup>−3</sup>, assuming the noise is depolarizing. </p><p>Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between <i>L</i> and <i>L</i><sup>2</sup>, where <i>L</i> is the number of digits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of <i>L</i>. For a 1000-bit number, this implies a need for about 10<sup>4</sup> bits without error correction.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> With error correction, the figure would rise to about 10<sup>7</sup> bits. Computation time is about <i>L</i><sup>2</sup> or about 10<sup>7</sup> steps and at 1<span class="nowrap">&#160;</span>MHz, about 10 seconds. However, the encoding and error-correction overheads increase the size of a real fault-tolerant quantum computer by several orders of magnitude. Careful estimates<sup id="cite_ref-:1_103-0" class="reference"><a href="#cite_note-:1-103"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_104-0" class="reference"><a href="#cite_note-:2-104"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> show that at least 3<span class="nowrap">&#160;</span>million physical qubits would factor 2,048-bit integer in 5 months on a fully error-corrected trapped-ion quantum computer. In terms of the number of physical qubits, to date, this remains the lowest estimate<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> for practically useful integer factorization problem sizing 1,024-bit or larger. </p><p>Another approach to the stability-decoherence problem is to create a <a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">topological quantum computer</a> with <a href="/wiki/Anyon" title="Anyon">anyons</a>, <a href="/wiki/Quasi-particle" class="mw-redirect" title="Quasi-particle">quasi-particles</a> used as threads, and relying on <a href="/wiki/Braid_theory" class="mw-redirect" title="Braid theory">braid theory</a> to form stable logic gates.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_supremacy">Quantum supremacy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=25" title="Edit section: Quantum supremacy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physicist <a href="/wiki/John_Preskill" title="John Preskill">John Preskill</a> coined the term <i>quantum supremacy</i> to describe the engineering feat of demonstrating that a programmable quantum device can solve a problem beyond the capabilities of state-of-the-art classical computers.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> The problem need not be useful, so some view the quantum supremacy test only as a potential future benchmark.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> </p><p>In October 2019, Google AI Quantum, with the help of NASA, became the first to claim to have achieved quantum supremacy by performing calculations on the <a href="/wiki/Sycamore_processor" title="Sycamore processor">Sycamore quantum computer</a> more than 3,000,000 times faster than they could be done on <a href="/wiki/Summit_(supercomputer)" title="Summit (supercomputer)">Summit</a>, generally considered the world's fastest computer.<sup id="cite_ref-1910.11333_27-1" class="reference"><a href="#cite_note-1910.11333-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> This claim has been subsequently challenged: IBM has stated that Summit can perform samples much faster than claimed,<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> and researchers have since developed better algorithms for the sampling problem used to claim quantum supremacy, giving substantial reductions to the gap between Sycamore and classical supercomputers<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> and even beating it.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> </p><p>In December 2020, a group at <a href="/wiki/University_of_Science_and_Technology_of_China" title="University of Science and Technology of China">USTC</a> implemented a type of <a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a> on 76 photons with a <a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">photonic quantum computer</a>, <a href="/wiki/Jiuzhang_(quantum_computer)" title="Jiuzhang (quantum computer)">Jiuzhang</a>, to demonstrate quantum supremacy.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds.<sup id="cite_ref-:6_125-0" class="reference"><a href="#cite_note-:6-125"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> </p><p>Claims of quantum supremacy have generated hype around quantum computing,<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup> but they are based on contrived benchmark tasks that do not directly imply useful real-world applications.<sup id="cite_ref-good-for-nothing_91-1" class="reference"><a href="#cite_note-good-for-nothing-91"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup> </p><p>In January 2024, a study published in <i>Physical Review Letters</i> provided direct verification of quantum supremacy experiments by computing exact amplitudes for experimentally generated bitstrings using a new-generation Sunway supercomputer, demonstrating a significant leap in simulation capability built on a multiple-amplitude tensor network contraction algorithm. This development underscores the evolving landscape of quantum computing, highlighting both the progress and the complexities involved in validating quantum supremacy claims.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Skepticism">Skepticism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=26" title="Edit section: Skepticism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Despite high hopes for quantum computing, significant progress in hardware, and optimism about future applications, a 2023 <a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a> spotlight article summarized current quantum computers as being "For now, [good for] absolutely nothing".<sup id="cite_ref-good-for-nothing_91-2" class="reference"><a href="#cite_note-good-for-nothing-91"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> The article elaborated that quantum computers are yet to be more useful or efficient than conventional computers in any case, though it also argued that in the long term such computers are likely to be useful. A 2023 <a href="/wiki/Communications_of_the_ACM" title="Communications of the ACM">Communications of the ACM</a> article<sup id="cite_ref-CACM_92-1" class="reference"><a href="#cite_note-CACM-92"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> found that current quantum computing algorithms are "insufficient for practical quantum advantage without significant improvements across the software/hardware stack". It argues that the most promising candidates for achieving speedup with quantum computers are "small-data problems", for example in chemistry and materials science. However, the article also concludes that a large range of the potential applications it considered, such as machine learning, "will not achieve quantum advantage with current quantum algorithms in the foreseeable future", and it identified I/O constraints that make speedup unlikely for "big data problems, unstructured linear systems, and database search based on Grover's algorithm". </p><p>This state of affairs can be traced to several current and long-term considerations. </p> <ul><li>Conventional computer hardware and algorithms are not only optimized for practical tasks, but are still improving rapidly, particularly <a href="/wiki/GPU" class="mw-redirect" title="GPU">GPU</a> accelerators.</li> <li>Current quantum computing hardware generates only a limited amount of <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entanglement</a> before getting overwhelmed by noise.</li> <li>Quantum algorithms provide speedup over conventional algorithms only for some tasks, and matching these tasks with practical applications proved challenging. Some promising tasks and applications require resources far beyond those available today.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup> In particular, processing large amounts of non-quantum data is a challenge for quantum computers.<sup id="cite_ref-CACM_92-2" class="reference"><a href="#cite_note-CACM-92"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup></li> <li>Some promising algorithms have been "dequantized", i.e., their non-quantum analogues with similar complexity have been found.</li> <li>If <a href="/wiki/Quantum_error_correction" title="Quantum error correction">quantum error correction</a> is used to scale quantum computers to practical applications, its overhead may undermine speedup offered by many quantum algorithms.<sup id="cite_ref-CACM_92-3" class="reference"><a href="#cite_note-CACM-92"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup></li> <li>Complexity analysis of algorithms sometimes makes abstract assumptions that do not hold in applications. For example, input data may not already be available encoded in quantum states, and "oracle functions" used in Grover's algorithm often have internal structure that can be exploited for faster algorithms.</li></ul> <p>In particular, building computers with large numbers of qubits may be futile if those qubits are not connected well enough and cannot maintain sufficiently high degree of entanglement for a long time. When trying to outperform conventional computers, quantum computing researchers often look for new tasks that can be solved on quantum computers, but this leaves the possibility that efficient non-quantum techniques will be developed in response, as seen for Quantum supremacy demonstrations. Therefore, it is desirable to prove lower bounds on the complexity of best possible non-quantum algorithms (which may be unknown) and show that some quantum algorithms asymptomatically improve upon those bounds. </p><p>Some researchers have expressed skepticism that scalable quantum computers could ever be built, typically because of the issue of maintaining coherence at large scales, but also for other reasons. </p><p><a href="/wiki/Bill_Unruh" class="mw-redirect" title="Bill Unruh">Bill Unruh</a> doubted the practicality of quantum computers in a paper published in 1994.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Paul_Davies" title="Paul Davies">Paul Davies</a> argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the <a href="/wiki/Holographic_principle" title="Holographic principle">holographic principle</a>.<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup> Skeptics like <a href="/wiki/Gil_Kalai" title="Gil Kalai">Gil Kalai</a> doubt that quantum supremacy will ever be achieved.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup> Physicist <a href="/wiki/Mikhail_Dyakonov" title="Mikhail Dyakonov">Mikhail Dyakonov</a> has expressed skepticism of quantum computing as follows: </p> <dl><dd>"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10<sup>300</sup>... Could we ever learn to control the more than 10<sup>300</sup> continuously variable parameters defining the quantum state of such a system? My answer is simple. <i>No, never.</i>"<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Physical_realizations">Physical realizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=27" title="Edit section: Physical realizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/List_of_proposed_quantum_registers" title="List of proposed quantum registers">List of proposed quantum registers</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IBM_Q_system_(Fraunhofer_2).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/260px-IBM_Q_system_%28Fraunhofer_2%29.jpg" decoding="async" width="260" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/390px-IBM_Q_system_%28Fraunhofer_2%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/IBM_Q_system_%28Fraunhofer_2%29.jpg/520px-IBM_Q_system_%28Fraunhofer_2%29.jpg 2x" data-file-width="5166" data-file-height="3584" /></a><figcaption><a href="/wiki/IBM_Q_System_One" title="IBM Q System One">Quantum System One</a>, a quantum computer by <a href="/wiki/IBM" title="IBM">IBM</a> from 2019 with 20 superconducting qubits<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>A practical quantum computer must use a physical system as a programmable quantum register.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup> Researchers are exploring several technologies as candidates for reliable qubit implementations.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019127_140-0" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019127-140"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Superconductors" class="mw-redirect" title="Superconductors">Superconductors</a> and <a href="/wiki/Trapped_ion" class="mw-redirect" title="Trapped ion">trapped ions</a> are some of the most developed proposals, but experimentalists are considering other hardware possibilities as well.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019114_141-0" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019114-141"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup> </p><p>The first quantum logic gates were implemented with <a href="/wiki/Trapped_ion" class="mw-redirect" title="Trapped ion">trapped ions</a> and prototype general purpose machines with up to 20 qubits have been realized. However, the technology behind these devices combines complex vacuum equipment, lasers, microwave and radio frequency equipment making full scale processors difficult to integrate with standard computing equipment. Moreover, the trapped ion system itself has engineering challenges to overcome.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019119_142-0" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019119-142"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> </p><p>The largest commercial systems are based on <a href="/wiki/Superconductor" class="mw-redirect" title="Superconductor">superconductor</a> devices and have scaled to 2000 qubits. However, the error rates for larger machines have been on the order of 5%. Technologically these devices are all cryogenic and scaling to large numbers of qubits requires wafer-scale integration, a serious engineering challenge by itself.<sup id="cite_ref-FOOTNOTEGrumblingHorowitz2019126_143-0" class="reference"><a href="#cite_note-FOOTNOTEGrumblingHorowitz2019126-143"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup> </p><p>Research efforts to create stabler qubits for quantum computing include topological quantum computer approaches. For example, <a href="/wiki/Microsoft_Azure_Quantum" title="Microsoft Azure Quantum">Microsoft</a> is working on a computer based on the quantum properties of two-dimensional quasiparticles called <a href="/wiki/Anyons" class="mw-redirect" title="Anyons">anyons</a>.<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Potential_applications">Potential applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=28" title="Edit section: Potential applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With focus on business management's point of view, the potential applications of quantum computing into four major categories are cybersecurity, data analytics and artificial intelligence, optimization and simulation, and data management and searching.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup> </p><p>Investment in quantum computing research has increased in the public and private sectors.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup> As one consulting firm summarized,<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>...<span class="nowrap">&#160;</span>investment dollars are pouring in, and quantum-computing start-ups are proliferating.<span class="nowrap">&#160;</span>... While quantum computing promises to help businesses solve problems that are beyond the reach and speed of conventional <a href="/wiki/High-performance_computers" class="mw-redirect" title="High-performance computers">high-performance computers</a>, use cases are largely experimental and hypothetical at this early stage.</p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Theory">Theory<span class="anchor" id="Relation_to_computability_and_complexity_theory"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=29" title="Edit section: Theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Computability">Computability<span class="anchor" id="Computability_theory"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=30" title="Edit section: Computability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></div> <p>Any <a href="/wiki/Computational_problem" title="Computational problem">computational problem</a> solvable by a classical computer is also solvable by a quantum computer.<sup id="cite_ref-FOOTNOTENielsenChuang201029_151-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201029-151"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup> Intuitively, this is because it is believed that all physical phenomena, including the operation of classical computers, can be described using <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, which underlies the operation of quantum computers. </p><p>Conversely, any problem solvable by a quantum computer is also solvable by a classical computer. It is possible to simulate both quantum and classical computers manually with just some paper and a pen, if given enough time. More formally, any quantum computer can be simulated by a <a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a>. In other words, quantum computers provide no additional power over classical computers in terms of <a href="/wiki/Computability" title="Computability">computability</a>. This means that quantum computers cannot solve <a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable problems</a> like the <a href="/wiki/Halting_problem" title="Halting problem">halting problem</a>, and the existence of quantum computers does not disprove the <a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a>.<sup id="cite_ref-FOOTNOTENielsenChuang2010126_152-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang2010126-152"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Complexity">Complexity<span class="anchor" id="Quantum_complexity_theory"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=31" title="Edit section: Complexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></div> <p>While quantum computers cannot solve any problems that classical computers cannot already solve, it is suspected that they can solve certain problems faster than classical computers. For instance, it is known that quantum computers can efficiently <a href="/wiki/Integer_factorization" title="Integer factorization">factor integers</a>, while this is not believed to be the case for classical computers. </p><p>The class of <a href="/wiki/Computational_problem" title="Computational problem">problems</a> that can be efficiently solved by a quantum computer with bounded error is called <a href="/wiki/BQP" title="BQP">BQP</a>, for "bounded error, quantum, polynomial time". More formally, BQP is the class of problems that can be solved by a polynomial-time quantum Turing machine with an error probability of at most 1/3. As a class of probabilistic problems, BQP is the quantum counterpart to <a href="/wiki/Bounded-error_probabilistic_polynomial" class="mw-redirect" title="Bounded-error probabilistic polynomial">BPP</a> ("bounded error, probabilistic, polynomial time"), the class of problems that can be solved by polynomial-time <a href="/wiki/Probabilistic_Turing_machine" title="Probabilistic Turing machine">probabilistic Turing machines</a> with bounded error.<sup id="cite_ref-FOOTNOTENielsenChuang201041_153-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201041-153"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup> It is known that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {BPP\subseteq BQP}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">P</mi> <mi mathvariant="sans-serif">P</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">Q</mi> <mi mathvariant="sans-serif">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {BPP\subseteq BQP}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59af787cd2b2478c3c326d722fbffbc7839c1abe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.366ex; height:2.343ex;" alt="{\displaystyle {\mathsf {BPP\subseteq BQP}}}"></span> and is widely suspected that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {BQP\subsetneq BPP}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">Q</mi> <mi mathvariant="sans-serif">P</mi> <mo>&#x228A;<!-- ⊊ --></mo> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">P</mi> <mi mathvariant="sans-serif">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {BQP\subsetneq BPP}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/106869205d6945f52c45f002a693dfb27d54574c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.366ex; height:2.676ex;" alt="{\displaystyle {\mathsf {BQP\subsetneq BPP}}}"></span>, which intuitively would mean that quantum computers are more powerful than classical computers in terms of <a href="/wiki/Time_complexity" title="Time complexity">time complexity</a>.<sup id="cite_ref-FOOTNOTENielsenChuang2010201_154-0" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang2010201-154"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:BQP_complexity_class_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BQP_complexity_class_diagram.svg/220px-BQP_complexity_class_diagram.svg.png" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BQP_complexity_class_diagram.svg/330px-BQP_complexity_class_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BQP_complexity_class_diagram.svg/440px-BQP_complexity_class_diagram.svg.png 2x" data-file-width="518" data-file-height="414" /></a><figcaption>The suspected relationship of BQP to several classical complexity classes<sup id="cite_ref-FOOTNOTENielsenChuang201042_61-1" class="reference"><a href="#cite_note-FOOTNOTENielsenChuang201042-61"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The exact relationship of BQP to <a href="/wiki/P_(complexity)" title="P (complexity)">P</a>, <a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a>, and <a href="/wiki/PSPACE_(complexity)" class="mw-redirect" title="PSPACE (complexity)">PSPACE</a> is not known. However, it is known that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {P\subseteq BQP\subseteq PSPACE}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">P</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">Q</mi> <mi mathvariant="sans-serif">P</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi mathvariant="sans-serif">P</mi> <mi mathvariant="sans-serif">S</mi> <mi mathvariant="sans-serif">P</mi> <mi mathvariant="sans-serif">A</mi> <mi mathvariant="sans-serif">C</mi> <mi mathvariant="sans-serif">E</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {P\subseteq BQP\subseteq PSPACE}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e30ec0b4e850418f5478e8a8e91fd2ccb20d0ebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.115ex; height:2.343ex;" alt="{\displaystyle {\mathsf {P\subseteq BQP\subseteq PSPACE}}}"></span>; that is, all problems that can be efficiently solved by a deterministic classical computer can also be efficiently solved by a quantum computer, and all problems that can be efficiently solved by a quantum computer can also be solved by a deterministic classical computer with polynomial space resources. It is further suspected that BQP is a strict superset of P, meaning there are problems that are efficiently solvable by quantum computers that are not efficiently solvable by deterministic classical computers. For instance, integer factorization and the <a href="/wiki/Discrete_logarithm_problem" class="mw-redirect" title="Discrete logarithm problem">discrete logarithm problem</a> are known to be in BQP and are suspected to be outside of P. On the relationship of BQP to NP, little is known beyond the fact that some NP problems that are believed not to be in P are also in BQP (integer factorization and the discrete logarithm problem are both in NP, for example). It is suspected that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {NP\nsubseteq BQP}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">N</mi> <mi mathvariant="sans-serif">P</mi> <mo>&#x2288;<!-- ⊈ --></mo> <mi mathvariant="sans-serif">B</mi> <mi mathvariant="sans-serif">Q</mi> <mi mathvariant="sans-serif">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {NP\nsubseteq BQP}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52b2cc3f547f6bad0a6b40df6a38349b52541c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.976ex; height:3.176ex;" alt="{\displaystyle {\mathsf {NP\nsubseteq BQP}}}"></span>; that is, it is believed that there are efficiently checkable problems that are not efficiently solvable by a quantum computer. As a direct consequence of this belief, it is also suspected that BQP is disjoint from the class of <a href="/wiki/NP-complete" class="mw-redirect" title="NP-complete">NP-complete</a> problems (if an NP-complete problem were in BQP, then it would follow from <a href="/wiki/NP-hard" class="mw-redirect" title="NP-hard">NP-hardness</a> that all problems in NP are in BQP).<sup id="cite_ref-BernVazi_155-0" class="reference"><a href="#cite_note-BernVazi-155"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=32" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Quantum_computing" class="extiw" title="commons:Category:Quantum computing">Quantum computing</a></span>.</div></div> </div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 21em;"> <ul><li><a href="/wiki/D-Wave_Systems" title="D-Wave Systems">D-Wave Systems</a>&#160;– Canadian quantum computing company</li> <li><a href="/wiki/Electronic_quantum_holography" title="Electronic quantum holography">Electronic quantum holography</a>&#160;– Information storage technology</li> <li><a href="/wiki/Glossary_of_quantum_computing" title="Glossary of quantum computing">Glossary of quantum computing</a></li> <li><a href="/wiki/IARPA" class="mw-redirect" title="IARPA">IARPA</a>&#160;– American government agency<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/IonQ" title="IonQ">IonQ</a>&#160;– US information technology company</li> <li><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List of emerging technologies</a>&#160;– New technologies actively in development</li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">List of quantum processors</a>&#160;– List of quantum computer components</li> <li><a href="/wiki/Magic_state_distillation" title="Magic state distillation">Magic state distillation</a>&#160;– Quantum computing algorithm</li> <li><a href="/wiki/Metacomputing" title="Metacomputing">Metacomputing</a>&#160;– Computing for the purpose of computing</li> <li><a href="/wiki/Natural_computing" title="Natural computing">Natural computing</a>&#160;– terminology introduced to encompass three classes of methods<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Optical_computing" title="Optical computing">Optical computing</a>&#160;– Computer that uses photons or light waves</li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a>&#160;– device which can be used to store or transfer information between independent qubits in a quantum computer<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Quantum_cognition" title="Quantum cognition">Quantum cognition</a>&#160;– Application of quantum theory mathematics to cognitive phenomena</li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a>&#160;– Metric for a quantum computer's capabilities</li> <li><a href="/wiki/Quantum_weirdness" title="Quantum weirdness">Quantum weirdness</a>&#160;– Unintuitive aspects of quantum mechanics</li> <li><a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Rigetti Computing</a>&#160;– American quantum computing company</li> <li><a href="/wiki/Supercomputer" title="Supercomputer">Supercomputer</a>&#160;– Type of extremely powerful computer</li> <li><a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">Theoretical computer science</a>&#160;– Subfield of computer science and mathematics</li> <li><a href="/wiki/Unconventional_computing" title="Unconventional computing">Unconventional computing</a>&#160;– Computing by new or unusual methods</li> <li><a href="/wiki/Valleytronics" title="Valleytronics">Valleytronics</a>&#160;– Experimental area in semiconductors</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=33" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">As used in this article, "exponentially faster" has a precise <a href="/wiki/Computational_complexity" title="Computational complexity">complexity theoretical</a> meaning. Usually, it means that as a function of input size in bits, the best known classical algorithm for a problem requires an <a href="/wiki/Exponential_growth" title="Exponential growth">exponentially growing</a> number of steps, while a quantum algorithm uses only a polynomial number of steps.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">The <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a> is also the <i>computational basis</i>.<sup id="cite_ref-FOOTNOTEMermin200718_35-0" class="reference"><a href="#cite_note-FOOTNOTEMermin200718-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=34" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-FOOTNOTEAaronson2013132-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAaronson2013132_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAaronson2013">Aaronson 2013</a>, p.&#160;132.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBhatta2020" class="citation journal cs1">Bhatta, Varun S. (10 May 2020). <a rel="nofollow" class="external text" href="https://www.currentscience.ac.in/Volumes/118/09/1365.pdf">"Plurality of Wave–Particle Duality"</a> <span class="cs1-format">(PDF)</span>. <i>Current Science</i>. <b>118</b> (9): 1365. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.18520%2Fcs%2Fv118%2Fi9%2F1365-1374">10.18520/cs/v118/i9/1365-1374</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0011-3891">0011-3891</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216143449">216143449</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Science&amp;rft.atitle=Plurality+of+Wave%E2%80%93Particle+Duality&amp;rft.volume=118&amp;rft.issue=9&amp;rft.pages=1365&amp;rft.date=2020-05-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216143449%23id-name%3DS2CID&amp;rft.issn=0011-3891&amp;rft_id=info%3Adoi%2F10.18520%2Fcs%2Fv118%2Fi9%2F1365-1374&amp;rft.aulast=Bhatta&amp;rft.aufirst=Varun+S.&amp;rft_id=https%3A%2F%2Fwww.currentscience.ac.in%2FVolumes%2F118%2F09%2F1365.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCeruzzi2012" class="citation book cs1">Ceruzzi, Paul E. (2012). <i>Computing: A Concise History</i>. <a href="/wiki/Cambridge,_Massachusetts" title="Cambridge, Massachusetts">Cambridge, Massachusetts</a>: MIT Press. pp.&#160;3, 46. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-31038-3" title="Special:BookSources/978-0-262-31038-3"><bdi>978-0-262-31038-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/796812982">796812982</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Computing%3A+A+Concise+History&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pages=3%2C+46&amp;rft.pub=MIT+Press&amp;rft.date=2012&amp;rft_id=info%3Aoclcnum%2F796812982&amp;rft.isbn=978-0-262-31038-3&amp;rft.aulast=Ceruzzi&amp;rft.aufirst=Paul+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodges2014" class="citation book cs1">Hodges, Andrew (2014). <i>Alan Turing: The Enigma</i>. Princeton, New Jersey: <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. p.&#160;xviii. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780691164724" title="Special:BookSources/9780691164724"><bdi>9780691164724</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Alan+Turing%3A+The+Enigma&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pages=xviii&amp;rft.pub=Princeton+University+Press&amp;rft.date=2014&amp;rft.isbn=9780691164724&amp;rft.aulast=Hodges&amp;rft.aufirst=Andrew&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMårtensson-Pendrill2006" class="citation journal cs1">Mårtensson-Pendrill, Ann-Marie (1 November 2006). "The Manhattan project—a part of physics history". <i>Physics Education</i>. <b>41</b> (6): 493–501. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006PhyEd..41..493M">2006PhyEd..41..493M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-9120%2F41%2F6%2F001">10.1088/0031-9120/41/6/001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9120">0031-9120</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120294023">120294023</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Education&amp;rft.atitle=The+Manhattan+project%E2%80%94a+part+of+physics+history&amp;rft.volume=41&amp;rft.issue=6&amp;rft.pages=493-501&amp;rft.date=2006-11-01&amp;rft_id=info%3Adoi%2F10.1088%2F0031-9120%2F41%2F6%2F001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120294023%23id-name%3DS2CID&amp;rft.issn=0031-9120&amp;rft_id=info%3Abibcode%2F2006PhyEd..41..493M&amp;rft.aulast=M%C3%A5rtensson-Pendrill&amp;rft.aufirst=Ann-Marie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-The_computer_as_a_physical_system-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-The_computer_as_a_physical_system_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-The_computer_as_a_physical_system_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenioff1980" class="citation journal cs1">Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". <i>Journal of Statistical Physics</i>. <b>22</b> (5): 563–591. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1980JSP....22..563B">1980JSP....22..563B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01011339">10.1007/bf01011339</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122949592">122949592</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Statistical+Physics&amp;rft.atitle=The+computer+as+a+physical+system%3A+A+microscopic+quantum+mechanical+Hamiltonian+model+of+computers+as+represented+by+Turing+machines&amp;rft.volume=22&amp;rft.issue=5&amp;rft.pages=563-591&amp;rft.date=1980&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122949592%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01011339&amp;rft_id=info%3Abibcode%2F1980JSP....22..563B&amp;rft.aulast=Benioff&amp;rft.aufirst=Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBulutaNori2009" class="citation journal cs1">Buluta, Iulia; Nori, Franco (2 October 2009). "Quantum Simulators". <i>Science</i>. <b>326</b> (5949): 108–111. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009Sci...326..108B">2009Sci...326..108B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1177838">10.1126/science.1177838</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19797653">19797653</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17187000">17187000</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Quantum+Simulators&amp;rft.volume=326&amp;rft.issue=5949&amp;rft.pages=108-111&amp;rft.date=2009-10-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17187000%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2009Sci...326..108B&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1177838&amp;rft_id=info%3Apmid%2F19797653&amp;rft.aulast=Buluta&amp;rft.aufirst=Iulia&amp;rft.au=Nori%2C+Franco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-manin1980vychislimoe-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-manin1980vychislimoe_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManin1980" class="citation book cs1 cs1-prop-foreign-lang-source">Manin, Yu. I. (1980). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5Bdjv%5D.zip"><i>Vychislimoe i nevychislimoe</i></a> &#91;<i>Computable and Noncomputable</i>&#93; (in Russian). Soviet Radio. pp.&#160;13–15. Archived from <a rel="nofollow" class="external text" href="http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5bdjv-fax%5d.zip">the original</a> on 10 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">4 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vychislimoe+i+nevychislimoe&amp;rft.pages=13-15&amp;rft.pub=Soviet+Radio&amp;rft.date=1980&amp;rft.aulast=Manin&amp;rft.aufirst=Yu.+I.&amp;rft_id=http%3A%2F%2Fpubl.lib.ru%2FARCHIVES%2FM%2FMANIN_Yuriy_Ivanovich%2FManin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%255bdjv-fax%255d.zip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1982" class="citation journal cs1">Feynman, Richard (June 1982). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190108115138/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf">"Simulating Physics with Computers"</a> <span class="cs1-format">(PDF)</span>. <i>International Journal of Theoretical Physics</i>. <b>21</b> (6/7): 467–488. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982IJTP...21..467F">1982IJTP...21..467F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02650179">10.1007/BF02650179</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124545445">124545445</a>. Archived from <a rel="nofollow" class="external text" href="https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 8 January 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">28 February</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Theoretical+Physics&amp;rft.atitle=Simulating+Physics+with+Computers&amp;rft.volume=21&amp;rft.issue=6%2F7&amp;rft.pages=467-488&amp;rft.date=1982-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124545445%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02650179&amp;rft_id=info%3Abibcode%2F1982IJTP...21..467F&amp;rft.aulast=Feynman&amp;rft.aufirst=Richard&amp;rft_id=https%3A%2F%2Fpeople.eecs.berkeley.edu%2F~christos%2Fclassics%2FFeynman.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang2010214-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang2010214_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;214.</span> </li> <li id="cite_note-bb84-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-bb84_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bb84_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennettBrassard1984" class="citation conference cs1"><a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Bennett, Charles H.</a>; <a href="/wiki/Gilles_Brassard" title="Gilles Brassard">Brassard, Gilles</a> (December 1984). <i>Quantum cryptography: Public key distribution and coin tossing</i>. IEEE International Conference on Computers, Systems &amp; Signal Processing. Bangalore, India. pp.&#160;175–179. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.06557">2003.06557</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2014.05.025">10.1016/j.tcs.2014.05.025</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Quantum+cryptography%3A+Public+key+distribution+and+coin+tossing&amp;rft.place=Bangalore%2C+India&amp;rft.pages=175-179&amp;rft.date=1984-12&amp;rft_id=info%3Aarxiv%2F2003.06557&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tcs.2014.05.025&amp;rft.aulast=Bennett&amp;rft.aufirst=Charles+H.&amp;rft.au=Brassard%2C+Gilles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-personal-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-personal_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrassard2005" class="citation book cs1">Brassard, G. (2005). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/1543949">"Brief history of quantum cryptography: A personal perspective"</a>. <i>IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005</i>. Awaji Island, Japan: IEEE. pp.&#160;19–23. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0604072">quant-ph/0604072</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FITWTPI.2005.1543949">10.1109/ITWTPI.2005.1543949</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7803-9491-9" title="Special:BookSources/978-0-7803-9491-9"><bdi>978-0-7803-9491-9</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16118245">16118245</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Brief+history+of+quantum+cryptography%3A+A+personal+perspective&amp;rft.btitle=IEEE+Information+Theory+Workshop+on+Theory+and+Practice+in+Information-Theoretic+Security%2C+2005&amp;rft.place=Awaji+Island%2C+Japan&amp;rft.pages=19-23&amp;rft.pub=IEEE&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0604072&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16118245%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FITWTPI.2005.1543949&amp;rft.isbn=978-0-7803-9491-9&amp;rft.aulast=Brassard&amp;rft.aufirst=G.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1543949&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutsch1985" class="citation journal cs1">Deutsch, D. (8 July 1985). "Quantum theory, the Church–Turing principle and the universal quantum computer". <i>Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences</i>. <b>400</b> (1818): 97–117. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985RSPSA.400...97D">1985RSPSA.400...97D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1985.0070">10.1098/rspa.1985.0070</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0080-4630">0080-4630</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1438116">1438116</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+A.+Mathematical+and+Physical+Sciences&amp;rft.atitle=Quantum+theory%2C+the+Church%E2%80%93Turing+principle+and+the+universal+quantum+computer&amp;rft.volume=400&amp;rft.issue=1818&amp;rft.pages=97-117&amp;rft.date=1985-07-08&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.1985.0070&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1438116%23id-name%3DS2CID&amp;rft.issn=0080-4630&amp;rft_id=info%3Abibcode%2F1985RSPSA.400...97D&amp;rft.aulast=Deutsch&amp;rft.aufirst=D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinVazirani1993" class="citation book cs1">Bernstein, Ethan; Vazirani, Umesh (1993). <a rel="nofollow" class="external text" href="http://portal.acm.org/citation.cfm?doid=167088.167097">"Quantum complexity theory"</a>. <i>Proceedings of the twenty-fifth annual ACM symposium on Theory of computing – STOC '93</i>. San Diego, California, United States: ACM Press. pp.&#160;11–20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F167088.167097">10.1145/167088.167097</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89791-591-5" title="Special:BookSources/978-0-89791-591-5"><bdi>978-0-89791-591-5</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:676378">676378</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+complexity+theory&amp;rft.btitle=Proceedings+of+the+twenty-fifth+annual+ACM+symposium+on+Theory+of+computing+%E2%80%93+STOC+%2793&amp;rft.place=San+Diego%2C+California%2C+United+States&amp;rft.pages=11-20&amp;rft.pub=ACM+Press&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A676378%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F167088.167097&amp;rft.isbn=978-0-89791-591-5&amp;rft.aulast=Bernstein&amp;rft.aufirst=Ethan&amp;rft.au=Vazirani%2C+Umesh&amp;rft_id=http%3A%2F%2Fportal.acm.org%2Fcitation.cfm%3Fdoid%3D167088.167097&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimon1994" class="citation book cs1">Simon, D. R. (1994). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/365701">"On the power of quantum computation"</a>. <i>Proceedings 35th Annual Symposium on Foundations of Computer Science</i>. Santa Fe, New Mexico, USA: IEEE Comput. Soc. Press. pp.&#160;116–123. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSFCS.1994.365701">10.1109/SFCS.1994.365701</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8186-6580-6" title="Special:BookSources/978-0-8186-6580-6"><bdi>978-0-8186-6580-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7457814">7457814</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+the+power+of+quantum+computation&amp;rft.btitle=Proceedings+35th+Annual+Symposium+on+Foundations+of+Computer+Science&amp;rft.place=Santa+Fe%2C+New+Mexico%2C+USA&amp;rft.pages=116-123&amp;rft.pub=IEEE+Comput.+Soc.+Press&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7457814%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FSFCS.1994.365701&amp;rft.isbn=978-0-8186-6580-6&amp;rft.aulast=Simon&amp;rft.aufirst=D.+R.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F365701&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang201030-32-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang201030-32_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;30-32.</span> </li> <li id="cite_note-FOOTNOTEShor1994-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEShor1994_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFShor1994">Shor 1994</a>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrover1996" class="citation conference cs1">Grover, Lov K. (1996). <i>A fast quantum mechanical algorithm for database search</i>. ACM symposium on Theory of computing. <a href="/wiki/Philadelphia" title="Philadelphia">Philadelphia</a>: ACM Press. pp.&#160;212–219. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9605043">quant-ph/9605043</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F237814.237866">10.1145/237814.237866</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89791-785-8" title="Special:BookSources/978-0-89791-785-8"><bdi>978-0-89791-785-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=A+fast+quantum+mechanical+algorithm+for+database+search&amp;rft.place=Philadelphia&amp;rft.pages=212-219&amp;rft.pub=ACM+Press&amp;rft.date=1996&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9605043&amp;rft_id=info%3Adoi%2F10.1145%2F237814.237866&amp;rft.isbn=978-0-89791-785-8&amp;rft.aulast=Grover&amp;rft.aufirst=Lov+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang20107-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENielsenChuang20107_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENielsenChuang20107_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;7.</span> </li> <li id="cite_note-273.5278.1073-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-273.5278.1073_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-273.5278.1073_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloyd1996" class="citation journal cs1">Lloyd, Seth (23 August 1996). "Universal Quantum Simulators". <i>Science</i>. <b>273</b> (5278): 1073–1078. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996Sci...273.1073L">1996Sci...273.1073L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.273.5278.1073">10.1126/science.273.5278.1073</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8688088">8688088</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43496899">43496899</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Universal+Quantum+Simulators&amp;rft.volume=273&amp;rft.issue=5278&amp;rft.pages=1073-1078&amp;rft.date=1996-08-23&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43496899%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1996Sci...273.1073L&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.273.5278.1073&amp;rft_id=info%3Apmid%2F8688088&amp;rft.aulast=Lloyd&amp;rft.aufirst=Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaoRomeroOlsonDegroote2019" class="citation journal cs1">Cao, Yudong; Romero, Jonathan; Olson, Jonathan P.; Degroote, Matthias; Johnson, Peter D.; et&#160;al. (9 October 2019). "Quantum Chemistry in the Age of Quantum Computing". <i>Chemical Reviews</i>. <b>119</b> (19): 10856–10915. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1812.09976">1812.09976</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.8b00803">10.1021/acs.chemrev.8b00803</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0009-2665">0009-2665</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31469277">31469277</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119417908">119417908</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Quantum+Chemistry+in+the+Age+of+Quantum+Computing&amp;rft.volume=119&amp;rft.issue=19&amp;rft.pages=10856-10915&amp;rft.date=2019-10-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119417908%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.8b00803&amp;rft_id=info%3Aarxiv%2F1812.09976&amp;rft.issn=0009-2665&amp;rft_id=info%3Apmid%2F31469277&amp;rft.aulast=Cao&amp;rft.aufirst=Yudong&amp;rft.au=Romero%2C+Jonathan&amp;rft.au=Olson%2C+Jonathan+P.&amp;rft.au=Degroote%2C+Matthias&amp;rft.au=Johnson%2C+Peter+D.&amp;rft.au=Kieferov%C3%A1%2C+M%C3%A1ria&amp;rft.au=Kivlichan%2C+Ian+D.&amp;rft.au=Menke%2C+Tim&amp;rft.au=Peropadre%2C+Borja&amp;rft.au=Sawaya%2C+Nicolas+P.+D.&amp;rft.au=Sim%2C+Sukin&amp;rft.au=Veis%2C+Libor&amp;rft.au=Aspuru-Guzik%2C+Al%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEGrumblingHorowitz2019164–169-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019164–169_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019164–169_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFGrumblingHorowitz2019">Grumbling &amp; Horowitz 2019</a>, pp.&#160;164–169.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuangGershenfeldKubinec1998" class="citation journal cs1">Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Markdoi (April 1998). "Experimental Implementation of Fast Quantum Searching". <i>Physical Review Letters</i>. <b>80</b> (15). <a href="/wiki/American_Physical_Society" title="American Physical Society">American Physical Society</a>: 3408–3411. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvL..80.3408C">1998PhRvL..80.3408C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.80.3408">10.1103/PhysRevLett.80.3408</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Experimental+Implementation+of+Fast+Quantum+Searching&amp;rft.volume=80&amp;rft.issue=15&amp;rft.pages=3408-3411&amp;rft.date=1998-04&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.80.3408&amp;rft_id=info%3Abibcode%2F1998PhRvL..80.3408C&amp;rft.aulast=Chuang&amp;rft.aufirst=Isaac+L.&amp;rft.au=Gershenfeld%2C+Neil&amp;rft.au=Kubinec%2C+Markdoi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolton" class="citation news cs1">Holton, William Coffeen. <a rel="nofollow" class="external text" href="https://www.britannica.com/technology/quantum-computer">"quantum computer"</a>. <i>Encyclopedia Britannica</i>. <a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a><span class="reference-accessdate">. Retrieved <span class="nowrap">4 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclopedia+Britannica&amp;rft.atitle=quantum+computer&amp;rft.aulast=Holton&amp;rft.aufirst=William+Coffeen&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Ftechnology%2Fquantum-computer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibney2019" class="citation journal cs1">Gibney, Elizabeth (23 October 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-019-03213-z">"Hello quantum world! Google publishes landmark quantum supremacy claim"</a>. <i>Nature</i>. <b>574</b> (7779): 461–462. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.574..461G">2019Natur.574..461G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-019-03213-z">10.1038/d41586-019-03213-z</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31645740">31645740</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Hello+quantum+world%21+Google+publishes+landmark+quantum+supremacy+claim&amp;rft.volume=574&amp;rft.issue=7779&amp;rft.pages=461-462&amp;rft.date=2019-10-23&amp;rft_id=info%3Apmid%2F31645740&amp;rft_id=info%3Adoi%2F10.1038%2Fd41586-019-03213-z&amp;rft_id=info%3Abibcode%2F2019Natur.574..461G&amp;rft.aulast=Gibney&amp;rft.aufirst=Elizabeth&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fd41586-019-03213-z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-1910.11333-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-1910.11333_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-1910.11333_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Lay summary: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinisBoixo2019" class="citation journal cs1">Martinis, John; Boixo, Sergio (23 October 2019). <a rel="nofollow" class="external text" href="https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html">"Quantum Supremacy Using a Programmable Superconducting Processor"</a>. <i>Nature</i>. <b>574</b> (7779). <a href="/wiki/Google_AI" title="Google AI">Google AI</a>: 505–510. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.11333">1910.11333</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.574..505A">2019Natur.574..505A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-019-1666-5">10.1038/s41586-019-1666-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31645734">31645734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:204836822">204836822</a><span class="reference-accessdate">. Retrieved <span class="nowrap">27 April</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+Supremacy+Using+a+Programmable+Superconducting+Processor&amp;rft.volume=574&amp;rft.issue=7779&amp;rft.pages=505-510&amp;rft.date=2019-10-23&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A204836822%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019Natur.574..505A&amp;rft_id=info%3Aarxiv%2F1910.11333&amp;rft_id=info%3Apmid%2F31645734&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-019-1666-5&amp;rft.aulast=Martinis&amp;rft.aufirst=John&amp;rft.au=Boixo%2C+Sergio&amp;rft_id=https%3A%2F%2Fai.googleblog.com%2F2019%2F10%2Fquantum-supremacy-using-programmable.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span><br />&#160;&#8226;&#32;Journal article: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAruteAryaBabbushBacon2019" class="citation journal cs1">Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; et&#160;al. (23 October 2019). "Quantum supremacy using a programmable superconducting processor". <i>Nature</i>. <b>574</b> (7779): 505–510. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.11333">1910.11333</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.574..505A">2019Natur.574..505A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-019-1666-5">10.1038/s41586-019-1666-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31645734">31645734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:204836822">204836822</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+supremacy+using+a+programmable+superconducting+processor&amp;rft.volume=574&amp;rft.issue=7779&amp;rft.pages=505-510&amp;rft.date=2019-10-23&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A204836822%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019Natur.574..505A&amp;rft_id=info%3Aarxiv%2F1910.11333&amp;rft_id=info%3Apmid%2F31645734&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-019-1666-5&amp;rft.aulast=Arute&amp;rft.aufirst=Frank&amp;rft.au=Arya%2C+Kunal&amp;rft.au=Babbush%2C+Ryan&amp;rft.au=Bacon%2C+Dave&amp;rft.au=Bardin%2C+Joseph+C.&amp;rft.au=Barends%2C+Rami&amp;rft.au=Biswas%2C+Rupak&amp;rft.au=Boixo%2C+Sergio&amp;rft.au=Brandao%2C+Fernando+G.+S.+L.&amp;rft.au=Buell%2C+David+A.&amp;rft.au=Burkett%2C+Brian&amp;rft.au=Chen%2C+Yu&amp;rft.au=Chen%2C+Zijun&amp;rft.au=Chiaro%2C+Ben&amp;rft.au=Collins%2C+Roberto&amp;rft.au=Courtney%2C+William&amp;rft.au=Dunsworsth%2C+Andrew&amp;rft.au=Farhi%2C+Edward&amp;rft.au=Foxen%2C+Brooks&amp;rft.au=Fowler%2C+Austin&amp;rft.au=Gidney%2C+Craig&amp;rft.au=Giustina%2C+Marissa&amp;rft.au=Graff%2C+Rob&amp;rft.au=Guerin%2C+Keith&amp;rft.au=Habegger%2C+Steve&amp;rft.au=Harrigan%2C+Matthew+P.&amp;rft.au=Hartmann%2C+Michael+J.&amp;rft.au=Ho%2C+Alan&amp;rft.au=Hoffman%2C+Markus&amp;rft.au=Huang%2C+Trent&amp;rft.au=Humble%2C+Travis+S.&amp;rft.au=Isakov%2C+Sergei+V.&amp;rft.au=Jeffery%2C+Evan&amp;rft.au=Jiang%2C+Zhang&amp;rft.au=Kafri%2C+Dvir&amp;rft.au=Kechedzhi%2C+Kostyantyn&amp;rft.au=Kelly%2C+Julian&amp;rft.au=Klimov%2C+Paul+V.&amp;rft.au=Knysh%2C+Sergey&amp;rft.au=Korotov%2C+Alexander&amp;rft.au=Kostritsa%2C+Fedor&amp;rft.au=Landhuis%2C+David&amp;rft.au=Lindmark%2C+Mike&amp;rft.au=Lucero%2C+Erik&amp;rft.au=Lyakh%2C+Dmitry&amp;rft.au=Mandr%C3%A0%2C+Salvatore&amp;rft.au=McClean%2C+Jarrod+R.&amp;rft.au=McEwen%2C+Matthew&amp;rft.au=Megrant%2C+Anthony&amp;rft.au=Mi%2C+Xiao&amp;rft.au=Michielsen%2C+Kristel&amp;rft.au=Mohseni%2C+Masoud&amp;rft.au=Mutus%2C+Josh&amp;rft.au=Naaman%2C+Ofer&amp;rft.au=Neeley%2C+Matthew&amp;rft.au=Neill%2C+Charles&amp;rft.au=Niu%2C+Murphy+Yuezhen&amp;rft.au=Ostby%2C+Eric&amp;rft.au=Petukhov%2C+Andre&amp;rft.au=Platt%2C+John+C.&amp;rft.au=Quintana%2C+Chris&amp;rft.au=Rieffel%2C+Eleanor+G.&amp;rft.au=Roushan%2C+Pedram&amp;rft.au=Rubin%2C+Nicholas+C.&amp;rft.au=Sank%2C+Daniel&amp;rft.au=Satzinger%2C+Kevin+J.&amp;rft.au=Smelyanskiy%2C+Vadim&amp;rft.au=Sung%2C+Kevin+J.&amp;rft.au=Trevithick%2C+Matthew+D.&amp;rft.au=Vainsencher%2C+Amit&amp;rft.au=Villalonga%2C+Benjamin&amp;rft.au=White%2C+Theodore&amp;rft.au=Yao%2C+Z.+Jamie&amp;rft.au=Yeh%2C+Ping&amp;rft.au=Zalcman%2C+Adam&amp;rft.au=Neven%2C+Hartmut&amp;rft.au=Martinis%2C+John+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2019" class="citation news cs1">Aaronson, Scott (30 October 2019). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html">"Opinion | Why Google's Quantum Supremacy Milestone Matters"</a>. <i>The New York Times</i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0362-4331">0362-4331</a><span class="reference-accessdate">. Retrieved <span class="nowrap">25 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Opinion+%7C+Why+Google%27s+Quantum+Supremacy+Milestone+Matters&amp;rft.date=2019-10-30&amp;rft.issn=0362-4331&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2019%2F10%2F30%2Fopinion%2Fgoogle-quantum-computer-sycamore.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPednault2019" class="citation web cs1">Pednault, Edwin (22 October 2019). <a rel="nofollow" class="external text" href="https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/">"On 'Quantum Supremacy'<span class="cs1-kern-right"></span>"</a>. <i>IBM Research Blog</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=IBM+Research+Blog&amp;rft.atitle=On+%27Quantum+Supremacy%27&amp;rft.date=2019-10-22&amp;rft.aulast=Pednault&amp;rft.aufirst=Edwin&amp;rft_id=https%3A%2F%2Fwww.ibm.com%2Fblogs%2Fresearch%2F2019%2F10%2Fon-quantum-supremacy%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPanZhang2021" class="citation arxiv cs1">Pan, Feng; Zhang, Pan (4 March 2021). "Simulating the Sycamore quantum supremacy circuits". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.03074">2103.03074</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Simulating+the+Sycamore+quantum+supremacy+circuits&amp;rft.date=2021-03-04&amp;rft_id=info%3Aarxiv%2F2103.03074&amp;rft.aulast=Pan&amp;rft.aufirst=Feng&amp;rft.au=Zhang%2C+Pan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-PHYS-20231207-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-PHYS-20231207_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStaff2023" class="citation news cs1">Staff (7 December 2023). <a rel="nofollow" class="external text" href="https://phys.org/news/2023-12-physicists-entangle-individual-molecules-hastening.html">"Physicists 'entangle' individual molecules for the first time, hastening possibilities for quantum computing"</a>. <i><a href="/wiki/Phys.org" title="Phys.org">Phys.org</a></i>. <a rel="nofollow" class="external text" href="https://archive.today/20231208152543/https://phys.org/news/2023-12-physicists-entangle-individual-molecules-hastening.html">Archived</a> from the original on 8 December 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">8 December</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.org&amp;rft.atitle=Physicists+%27entangle%27+individual+molecules+for+the+first+time%2C+hastening+possibilities+for+quantum+computing&amp;rft.date=2023-12-07&amp;rft.au=Staff&amp;rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2023-12-physicists-entangle-individual-molecules-hastening.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennett2020" class="citation audio-visual cs1"><a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Bennett, Charlie</a> (31 July 2020). <a rel="nofollow" class="external text" href="https://www.youtube.com/live/rslt-LwtDK4&amp;t=4102"><i>Information Is Quantum: How Physics Helped Explain the Nature of Information and What Can Be Done With It</i></a> (Videotape). Event occurs at 1:08:22 &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Information+Is+Quantum%3A+How+Physics+Helped+Explain+the+Nature+of+Information+and+What+Can+Be+Done+With+It&amp;rft.date=2020-07-31&amp;rft.aulast=Bennett&amp;rft.aufirst=Charlie&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Flive%2Frslt-LwtDK4%26t%3D4102&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang201013-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang201013_33-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;13.</span> </li> <li id="cite_note-FOOTNOTEMermin200717-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEMermin200717_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMermin200717_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMermin2007">Mermin 2007</a>, p.&#160;17.</span> </li> <li id="cite_note-FOOTNOTEMermin200718-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEMermin200718_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMermin200718_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMermin2007">Mermin 2007</a>, p.&#160;18.</span> </li> <li id="cite_note-FOOTNOTEAaronson2013110-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAaronson2013110_37-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAaronson2013">Aaronson 2013</a>, p.&#160;110.</span> </li> <li id="cite_note-FOOTNOTENielsenChuang201030–32-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang201030–32_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;30–32.</span> </li> <li id="cite_note-FOOTNOTEMermin200738–39-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMermin200738–39_39-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMermin2007">Mermin 2007</a>, pp.&#160;38–39.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurgalinBorzunov2021" class="citation book cs1">Kurgalin, Sergei; Borzunov, Sergei (2021). <i>Concise guide to quantum computing: algorithms, exercises, and implementations</i>. Texts in computer science. Cham: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-65054-4" title="Special:BookSources/978-3-030-65054-4"><bdi>978-3-030-65054-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Concise+guide+to+quantum+computing%3A+algorithms%2C+exercises%2C+and+implementations&amp;rft.place=Cham&amp;rft.series=Texts+in+computer+science&amp;rft.pub=Springer&amp;rft.date=2021&amp;rft.isbn=978-3-030-65054-4&amp;rft.aulast=Kurgalin&amp;rft.aufirst=Sergei&amp;rft.au=Borzunov%2C+Sergei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-Das_2008_1061–1081-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Das_2008_1061–1081_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDasChakrabarti2008" class="citation journal cs1">Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". <i><a href="/wiki/Reviews_of_Modern_Physics" title="Reviews of Modern Physics">Rev. Mod. Phys.</a></i> <b>80</b> (3): 1061–1081. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0801.2193">0801.2193</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008RvMP...80.1061D">2008RvMP...80.1061D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.563.9990">10.1.1.563.9990</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.80.1061">10.1103/RevModPhys.80.1061</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14255125">14255125</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rev.+Mod.+Phys.&amp;rft.atitle=Quantum+Annealing+and+Analog+Quantum+Computation&amp;rft.volume=80&amp;rft.issue=3&amp;rft.pages=1061-1081&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14255125%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2008RvMP...80.1061D&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.563.9990%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.80.1061&amp;rft_id=info%3Aarxiv%2F0801.2193&amp;rft.aulast=Das&amp;rft.aufirst=A.&amp;rft.au=Chakrabarti%2C+B.+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-Nayaketal2008-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nayaketal2008_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNayakSimonSternDas_Sarma2008" class="citation journal cs1">Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar (2008). "Nonabelian Anyons and Quantum Computation". <i>Reviews of Modern Physics</i>. <b>80</b> (3): 1083–1159. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0707.1889">0707.1889</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008RvMP...80.1083N">2008RvMP...80.1083N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.80.1083">10.1103/RevModPhys.80.1083</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119628297">119628297</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Nonabelian+Anyons+and+Quantum+Computation&amp;rft.volume=80&amp;rft.issue=3&amp;rft.pages=1083-1159&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2F0707.1889&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119628297%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.80.1083&amp;rft_id=info%3Abibcode%2F2008RvMP...80.1083N&amp;rft.aulast=Nayak&amp;rft.aufirst=Chetan&amp;rft.au=Simon%2C+Steven&amp;rft.au=Stern%2C+Ady&amp;rft.au=Das+Sarma%2C+Sankar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChi-Chih_Yao1993" class="citation book cs1">Chi-Chih Yao, A. (1993). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/366852">"Quantum circuit complexity"</a>. <i>Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science</i>. pp.&#160;352–361. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSFCS.1993.366852">10.1109/SFCS.1993.366852</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8186-4370-6" title="Special:BookSources/0-8186-4370-6"><bdi>0-8186-4370-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:195866146">195866146</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+circuit+complexity&amp;rft.btitle=Proceedings+of+1993+IEEE+34th+Annual+Foundations+of+Computer+Science&amp;rft.pages=352-361&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A195866146%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FSFCS.1993.366852&amp;rft.isbn=0-8186-4370-6&amp;rft.aulast=Chi-Chih+Yao&amp;rft.aufirst=A.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F366852&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaussendorfBrowneBriegel2003" class="citation journal cs1">Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J. (25 August 2003). "Measurement-based quantum computation on cluster states". <i>Physical Review A</i>. <b>68</b> (2): 022312. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0301052">quant-ph/0301052</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PhRvA..68b2312R">2003PhRvA..68b2312R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.68.022312">10.1103/PhysRevA.68.022312</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6197709">6197709</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Measurement-based+quantum+computation+on+cluster+states&amp;rft.volume=68&amp;rft.issue=2&amp;rft.pages=022312&amp;rft.date=2003-08-25&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0301052&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6197709%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.68.022312&amp;rft_id=info%3Abibcode%2F2003PhRvA..68b2312R&amp;rft.aulast=Raussendorf&amp;rft.aufirst=Robert&amp;rft.au=Browne%2C+Daniel+E.&amp;rft.au=Briegel%2C+Hans+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAharonovvan_DamKempeLandau2008" class="citation journal cs1">Aharonov, Dorit; van Dam, Wim; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded (1 January 2008). "Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation". <i>SIAM Review</i>. <b>50</b> (4): 755–787. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0405098">quant-ph/0405098</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008SIAMR..50..755A">2008SIAMR..50..755A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F080734479">10.1137/080734479</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-1445">0036-1445</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1503123">1503123</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Review&amp;rft.atitle=Adiabatic+Quantum+Computation+Is+Equivalent+to+Standard+Quantum+Computation&amp;rft.volume=50&amp;rft.issue=4&amp;rft.pages=755-787&amp;rft.date=2008-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1503123%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2008SIAMR..50..755A&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0405098&amp;rft.issn=0036-1445&amp;rft_id=info%3Adoi%2F10.1137%2F080734479&amp;rft.aulast=Aharonov&amp;rft.aufirst=Dorit&amp;rft.au=van+Dam%2C+Wim&amp;rft.au=Kempe%2C+Julia&amp;rft.au=Landau%2C+Zeph&amp;rft.au=Lloyd%2C+Seth&amp;rft.au=Regev%2C+Oded&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FLW02-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FLW02_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreedmanLarsenWang2002" class="citation journal cs1">Freedman, Michael H.; Larsen, Michael; Wang, Zhenghan (1 June 2002). "A Modular Functor Which is Universal for Quantum Computation". <i>Communications in Mathematical Physics</i>. <b>227</b> (3): 605–622. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0001108">quant-ph/0001108</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002CMaPh.227..605F">2002CMaPh.227..605F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs002200200645">10.1007/s002200200645</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0010-3616">0010-3616</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8990600">8990600</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Mathematical+Physics&amp;rft.atitle=A+Modular+Functor+Which+is+Universal+for+Quantum+Computation&amp;rft.volume=227&amp;rft.issue=3&amp;rft.pages=605-622&amp;rft.date=2002-06-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8990600%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2002CMaPh.227..605F&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0001108&amp;rft.issn=0010-3616&amp;rft_id=info%3Adoi%2F10.1007%2Fs002200200645&amp;rft.aulast=Freedman&amp;rft.aufirst=Michael+H.&amp;rft.au=Larsen%2C+Michael&amp;rft.au=Wang%2C+Zhenghan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang2010481-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang2010481_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;481.</span> </li> <li id="cite_note-preskill2018-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-preskill2018_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-preskill2018_48-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-preskill2018_48-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-preskill2018_48-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2018" class="citation journal cs1">Preskill, John (6 August 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">"Quantum Computing in the NISQ era and beyond"</a>. <i>Quantum</i>. <b>2</b>: 79. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.00862">1801.00862</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Quant...2...79P">2018Quant...2...79P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">10.22331/q-2018-08-06-79</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44098998">44098998</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=Quantum+Computing+in+the+NISQ+era+and+beyond&amp;rft.volume=2&amp;rft.pages=79&amp;rft.date=2018-08-06&amp;rft_id=info%3Aarxiv%2F1801.00862&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44098998%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2018-08-06-79&amp;rft_id=info%3Abibcode%2F2018Quant...2...79P&amp;rft.aulast=Preskill&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.22331%252Fq-2018-08-06-79&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBluvsteinEveredGeimLi2023" class="citation journal cs1">Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Ataides, J. Pablo Bonilla; Maskara, Nishad; Cong, Iris; Gao, Xun; Rodriguez, Pedro Sales (6 December 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">"Logical quantum processor based on reconfigurable atom arrays"</a>. <i>Nature</i>. <b>626</b> (7997): 58–65. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2312.03982">2312.03982</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06927-3">10.1038/s41586-023-06927-3</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830422">10830422</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38056497">38056497</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:266052773">266052773</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Logical+quantum+processor+based+on+reconfigurable+atom+arrays&amp;rft.volume=626&amp;rft.issue=7997&amp;rft.pages=58-65&amp;rft.date=2023-12-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A266052773%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06927-3&amp;rft_id=info%3Aarxiv%2F2312.03982&amp;rft.issn=1476-4687&amp;rft_id=info%3Apmid%2F38056497&amp;rft.aulast=Bluvstein&amp;rft.aufirst=Dolev&amp;rft.au=Evered%2C+Simon+J.&amp;rft.au=Geim%2C+Alexandra+A.&amp;rft.au=Li%2C+Sophie+H.&amp;rft.au=Zhou%2C+Hengyun&amp;rft.au=Manovitz%2C+Tom&amp;rft.au=Ebadi%2C+Sepehr&amp;rft.au=Cain%2C+Madelyn&amp;rft.au=Kalinowski%2C+Marcin&amp;rft.au=Hangleiter%2C+Dominik&amp;rft.au=Ataides%2C+J.+Pablo+Bonilla&amp;rft.au=Maskara%2C+Nishad&amp;rft.au=Cong%2C+Iris&amp;rft.au=Gao%2C+Xun&amp;rft.au=Rodriguez%2C+Pedro+Sales&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10830422&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreedberg_Jr.2023" class="citation web cs1">Freedberg Jr., Sydney J. (7 December 2023). <a rel="nofollow" class="external text" href="https://breakingdefense.sites.breakingmedia.com/2023/12/off-to-the-races-darpa-harvard-breakthrough-brings-quantum-computing-years-closer/">"<span class="cs1-kern-left"></span>'Off to the races': DARPA, Harvard breakthrough brings quantum computing years closer"</a>. <i>Breaking Defense</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 December</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Breaking+Defense&amp;rft.atitle=%27Off+to+the+races%27%3A+DARPA%2C+Harvard+breakthrough+brings+quantum+computing+years+closer&amp;rft.date=2023-12-07&amp;rft.aulast=Freedberg+Jr.&amp;rft.aufirst=Sydney+J.&amp;rft_id=https%3A%2F%2Fbreakingdefense.sites.breakingmedia.com%2F2023%2F12%2Foff-to-the-races-darpa-harvard-breakthrough-brings-quantum-computing-years-closer%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.darpa.mil/news-events/2023-12-06">"DARPA-Funded Research Leads to Quantum Computing Breakthrough"</a>. <i>darpa.mil</i>. 6 December 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 January</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=darpa.mil&amp;rft.atitle=DARPA-Funded+Research+Leads+to+Quantum+Computing+Breakthrough&amp;rft.date=2023-12-06&amp;rft_id=https%3A%2F%2Fwww.darpa.mil%2Fnews-events%2F2023-12-06&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoudhury2023" class="citation web cs1">Choudhury, Rizwan (30 December 2023). <a rel="nofollow" class="external text" href="https://interestingengineering.com/lists/top-7-innovation-stories-of-2023-interesting-engineering">"Top 7 innovation stories of 2023 – Interesting Engineering"</a>. <i>interestingengineering.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=interestingengineering.com&amp;rft.atitle=Top+7+innovation+stories+of+2023+%E2%80%93+Interesting+Engineering&amp;rft.date=2023-12-30&amp;rft.aulast=Choudhury&amp;rft.aufirst=Rizwan&amp;rft_id=https%3A%2F%2Finterestingengineering.com%2Flists%2Ftop-7-innovation-stories-of-2023-interesting-engineering&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPirandolaAndersenBanchiBerta2020" class="citation journal cs1">Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J.; Razavi, M.; Shamsul Shaari, J.; Tomamichel, M.; Usenko, V. C.; Vallone, G.; Villoresi, P.; Wallden, P. (2020). "Advances in quantum cryptography". <i>Advances in Optics and Photonics</i>. <b>12</b> (4): 1012–1236. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1906.01645">1906.01645</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020AdOP...12.1012P">2020AdOP...12.1012P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FAOP.361502">10.1364/AOP.361502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Optics+and+Photonics&amp;rft.atitle=Advances+in+quantum+cryptography&amp;rft.volume=12&amp;rft.issue=4&amp;rft.pages=1012-1236&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1906.01645&amp;rft_id=info%3Adoi%2F10.1364%2FAOP.361502&amp;rft_id=info%3Abibcode%2F2020AdOP...12.1012P&amp;rft.aulast=Pirandola&amp;rft.aufirst=S.&amp;rft.au=Andersen%2C+U.+L.&amp;rft.au=Banchi%2C+L.&amp;rft.au=Berta%2C+M.&amp;rft.au=Bunandar%2C+D.&amp;rft.au=Colbeck%2C+R.&amp;rft.au=Englund%2C+D.&amp;rft.au=Gehring%2C+T.&amp;rft.au=Lupo%2C+C.&amp;rft.au=Ottaviani%2C+C.&amp;rft.au=Pereira%2C+J.&amp;rft.au=Razavi%2C+M.&amp;rft.au=Shamsul+Shaari%2C+J.&amp;rft.au=Tomamichel%2C+M.&amp;rft.au=Usenko%2C+V.+C.&amp;rft.au=Vallone%2C+G.&amp;rft.au=Villoresi%2C+P.&amp;rft.au=Wallden%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPirandolaAndersenBanchiBerta2020" class="citation journal cs1">Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J. L.; Razavi, M.; Shamsul Shaari, J.; Tomamichel, M.; Usenko, V. C. (14 December 2020). "Advances in quantum cryptography". <i>Advances in Optics and Photonics</i>. <b>12</b> (4): 1017. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1906.01645">1906.01645</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020AdOP...12.1012P">2020AdOP...12.1012P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FAOP.361502">10.1364/AOP.361502</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1943-8206">1943-8206</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:174799187">174799187</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Optics+and+Photonics&amp;rft.atitle=Advances+in+quantum+cryptography&amp;rft.volume=12&amp;rft.issue=4&amp;rft.pages=1017&amp;rft.date=2020-12-14&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A174799187%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020AdOP...12.1012P&amp;rft_id=info%3Aarxiv%2F1906.01645&amp;rft.issn=1943-8206&amp;rft_id=info%3Adoi%2F10.1364%2FAOP.361502&amp;rft.aulast=Pirandola&amp;rft.aufirst=S.&amp;rft.au=Andersen%2C+U.+L.&amp;rft.au=Banchi%2C+L.&amp;rft.au=Berta%2C+M.&amp;rft.au=Bunandar%2C+D.&amp;rft.au=Colbeck%2C+R.&amp;rft.au=Englund%2C+D.&amp;rft.au=Gehring%2C+T.&amp;rft.au=Lupo%2C+C.&amp;rft.au=Ottaviani%2C+C.&amp;rft.au=Pereira%2C+J.+L.&amp;rft.au=Razavi%2C+M.&amp;rft.au=Shamsul+Shaari%2C+J.&amp;rft.au=Tomamichel%2C+M.&amp;rft.au=Usenko%2C+V.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuMaZhangLo2020" class="citation journal cs1">Xu, Feihu; Ma, Xiongfeng; Zhang, Qiang; Lo, Hoi-Kwong; Pan, Jian-Wei (26 May 2020). "Secure quantum key distribution with realistic devices". <i>Reviews of Modern Physics</i>. <b>92</b> (2): 025002&#45;3. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1903.09051">1903.09051</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020RvMP...92b5002X">2020RvMP...92b5002X</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.92.025002">10.1103/RevModPhys.92.025002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210942877">210942877</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Secure+quantum+key+distribution+with+realistic+devices&amp;rft.volume=92&amp;rft.issue=2&amp;rft.pages=025002%26%2345%3B3&amp;rft.date=2020-05-26&amp;rft_id=info%3Aarxiv%2F1903.09051&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210942877%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.92.025002&amp;rft_id=info%3Abibcode%2F2020RvMP...92b5002X&amp;rft.aulast=Xu&amp;rft.aufirst=Feihu&amp;rft.au=Ma%2C+Xiongfeng&amp;rft.au=Zhang%2C+Qiang&amp;rft.au=Lo%2C+Hoi-Kwong&amp;rft.au=Pan%2C+Jian-Wei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuMaoSakkWang2023" class="citation conference cs1">Xu, Guobin; Mao, Jianzhou; Sakk, Eric; Wang, Shuangbao Paul (22 March 2023). "An Overview of Quantum-Safe Approaches: Quantum Key Distribution and Post-Quantum Cryptography". <i>2023 57th Annual Conference on Information Sciences and Systems (CISS)</i>. <a href="/wiki/IEEE" class="mw-redirect" title="IEEE">IEEE</a>. p.&#160;3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FCISS56502.2023.10089619">10.1109/CISS56502.2023.10089619</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-6654-5181-9" title="Special:BookSources/978-1-6654-5181-9"><bdi>978-1-6654-5181-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=An+Overview+of+Quantum-Safe+Approaches%3A+Quantum+Key+Distribution+and+Post-Quantum+Cryptography&amp;rft.btitle=2023+57th+Annual+Conference+on+Information+Sciences+and+Systems+%28CISS%29&amp;rft.pages=3&amp;rft.pub=IEEE&amp;rft.date=2023-03-22&amp;rft_id=info%3Adoi%2F10.1109%2FCISS56502.2023.10089619&amp;rft.isbn=978-1-6654-5181-9&amp;rft.aulast=Xu&amp;rft.aufirst=Guobin&amp;rft.au=Mao%2C+Jianzhou&amp;rft.au=Sakk%2C+Eric&amp;rft.au=Wang%2C+Shuangbao+Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKozlowskiWehner2019" class="citation conference cs1">Kozlowski, Wojciech; Wehner, Stephanie (25 September 2019). "Towards Large-Scale Quantum Networks". <i>Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication</i>. ACM. pp.&#160;1–7. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1909.08396">1909.08396</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3345312.3345497">10.1145/3345312.3345497</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4503-6897-1" title="Special:BookSources/978-1-4503-6897-1"><bdi>978-1-4503-6897-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Towards+Large-Scale+Quantum+Networks&amp;rft.btitle=Proceedings+of+the+Sixth+Annual+ACM+International+Conference+on+Nanoscale+Computing+and+Communication&amp;rft.pages=1-7&amp;rft.pub=ACM&amp;rft.date=2019-09-25&amp;rft_id=info%3Aarxiv%2F1909.08396&amp;rft_id=info%3Adoi%2F10.1145%2F3345312.3345497&amp;rft.isbn=978-1-4503-6897-1&amp;rft.aulast=Kozlowski&amp;rft.aufirst=Wojciech&amp;rft.au=Wehner%2C+Stephanie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoBreumBorregaardIzumi2019" class="citation journal cs1">Guo, Xueshi; Breum, Casper R.; Borregaard, Johannes; Izumi, Shuro; Larsen, Mikkel V.; Gehring, Tobias; Christandl, Matthias; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L. (23 December 2019). "Distributed quantum sensing in a continuous-variable entangled network". <i>Nature Physics</i>. <b>16</b> (3): 281–284. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.09408">1905.09408</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-019-0743-x">10.1038/s41567-019-0743-x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-2473">1745-2473</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:256703226">256703226</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Distributed+quantum+sensing+in+a+continuous-variable+entangled+network&amp;rft.volume=16&amp;rft.issue=3&amp;rft.pages=281-284&amp;rft.date=2019-12-23&amp;rft_id=info%3Aarxiv%2F1905.09408&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A256703226%23id-name%3DS2CID&amp;rft.issn=1745-2473&amp;rft_id=info%3Adoi%2F10.1038%2Fs41567-019-0743-x&amp;rft.aulast=Guo&amp;rft.aufirst=Xueshi&amp;rft.au=Breum%2C+Casper+R.&amp;rft.au=Borregaard%2C+Johannes&amp;rft.au=Izumi%2C+Shuro&amp;rft.au=Larsen%2C+Mikkel+V.&amp;rft.au=Gehring%2C+Tobias&amp;rft.au=Christandl%2C+Matthias&amp;rft.au=Neergaard-Nielsen%2C+Jonas+S.&amp;rft.au=Andersen%2C+Ulrik+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-zoo-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-zoo_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-zoo_59-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-zoo_59-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordan2022" class="citation web cs1">Jordan, Stephen (14 October 2022) [22 April 2011]. <a rel="nofollow" class="external text" href="http://math.nist.gov/quantum/zoo/">"Quantum Algorithm Zoo"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180429014516/https://math.nist.gov/quantum/zoo/">Archived</a> from the original on 29 April 2018.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Quantum+Algorithm+Zoo&amp;rft.date=2022-10-14&amp;rft.aulast=Jordan&amp;rft.aufirst=Stephen&amp;rft_id=http%3A%2F%2Fmath.nist.gov%2Fquantum%2Fzoo%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronsonArkhipov2011" class="citation conference cs1"><a href="/wiki/Scott_Aaronson" title="Scott Aaronson">Aaronson, Scott</a>; Arkhipov, Alex (6 June 2011). "The computational complexity of linear optics". <i>Proceedings of the forty-third annual ACM symposium on Theory of computing</i>. <a href="/wiki/San_Jose,_California" title="San Jose, California">San Jose, California</a>: <a href="/wiki/Association_for_Computing_Machinery" title="Association for Computing Machinery">Association for Computing Machinery</a>. pp.&#160;333–342. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1011.3245">1011.3245</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1993636.1993682">10.1145/1993636.1993682</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4503-0691-1" title="Special:BookSources/978-1-4503-0691-1"><bdi>978-1-4503-0691-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=The+computational+complexity+of+linear+optics&amp;rft.btitle=Proceedings+of+the+forty-third+annual+ACM+symposium+on+Theory+of+computing&amp;rft.place=San+Jose%2C+California&amp;rft.pages=333-342&amp;rft.pub=Association+for+Computing+Machinery&amp;rft.date=2011-06-06&amp;rft_id=info%3Aarxiv%2F1011.3245&amp;rft_id=info%3Adoi%2F10.1145%2F1993636.1993682&amp;rft.isbn=978-1-4503-0691-1&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rft.au=Arkhipov%2C+Alex&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang201042-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENielsenChuang201042_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENielsenChuang201042_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;42.</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNorton2007" class="citation magazine cs1">Norton, Quinn (15 February 2007). <a rel="nofollow" class="external text" href="http://archive.wired.com/science/discoveries/news/2007/02/72734">"The Father of Quantum Computing"</a>. <i>Wired</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wired&amp;rft.atitle=The+Father+of+Quantum+Computing&amp;rft.date=2007-02-15&amp;rft.aulast=Norton&amp;rft.aufirst=Quinn&amp;rft_id=http%3A%2F%2Farchive.wired.com%2Fscience%2Fdiscoveries%2Fnews%2F2007%2F02%2F72734&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmbainis2014" class="citation web cs1">Ambainis, Andris (Spring 2014). <a rel="nofollow" class="external text" href="http://www.ias.edu/ias-letter/ambainis-quantum-computing">"What Can We Do with a Quantum Computer?"</a>. Institute for Advanced Study.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+Can+We+Do+with+a+Quantum+Computer%3F&amp;rft.pub=Institute+for+Advanced+Study&amp;rft.date=2014&amp;rft.aulast=Ambainis&amp;rft.aufirst=Andris&amp;rft_id=http%3A%2F%2Fwww.ias.edu%2Fias-letter%2Fambainis-quantum-computing&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20230614-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20230614_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChang2023" class="citation news cs1">Chang, Kenneth (14 June 2023). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html">"Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://archive.today/20230614151835/https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html">Archived</a> from the original on 14 June 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">15 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Quantum+Computing+Advance+Begins+New+Era%2C+IBM+Says+%E2%80%93+A+quantum+computer+came+up+with+better+answers+to+a+physics+problem+than+a+conventional+supercomputer.&amp;rft.date=2023-06-14&amp;rft.aulast=Chang&amp;rft.aufirst=Kenneth&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2023%2F06%2F14%2Fscience%2Fibm-quantum-computing.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-NAT-20230614-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-NAT-20230614_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKim,_Youngseok2023" class="citation journal cs1">Kim, Youngseok; et&#160;al. (14 June 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970">"Evidence for the utility of quantum computing before fault tolerance"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>618</b> (7965): 500–505. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Natur.618..500K">2023Natur.618..500K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06096-3">10.1038/s41586-023-06096-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266970">10266970</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37316724">37316724</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Evidence+for+the+utility+of+quantum+computing+before+fault+tolerance&amp;rft.volume=618&amp;rft.issue=7965&amp;rft.pages=500-505&amp;rft.date=2023-06-14&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10266970%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F37316724&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06096-3&amp;rft_id=info%3Abibcode%2F2023Natur.618..500K&amp;rft.au=Kim%2C+Youngseok&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10266970&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorello2018" class="citation audio-visual cs1"><a href="/wiki/Andrea_Morello" title="Andrea Morello">Morello, Andrea</a> (21 November 2018). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210215140237/https://www.youtube.com/watch?v=7susESgnDv8"><i>Lunch &amp; Learn: Quantum Computing</i></a>. <a href="/wiki/Sibos_(conference)" title="Sibos (conference)">Sibos TV</a>. Archived from the original on 15 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">4 February</span> 2021</span> &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lunch+%26+Learn%3A+Quantum+Computing&amp;rft.pub=Sibos+TV&amp;rft.date=2018-11-21&amp;rft.aulast=Morello&amp;rft.aufirst=Andrea&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7susESgnDv8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_AV_media" title="Template:Cite AV media">cite AV media</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuaneMcAfeeOliver2022" class="citation news cs1">Ruane, Jonathan; McAfee, Andrew; Oliver, William D. (1 January 2022). <a rel="nofollow" class="external text" href="https://hbr.org/2022/01/quantum-computing-for-business-leaders">"Quantum Computing for Business Leaders"</a>. <i>Harvard Business Review</i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0017-8012">0017-8012</a><span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Harvard+Business+Review&amp;rft.atitle=Quantum+Computing+for+Business+Leaders&amp;rft.date=2022-01-01&amp;rft.issn=0017-8012&amp;rft.aulast=Ruane&amp;rft.aufirst=Jonathan&amp;rft.au=McAfee%2C+Andrew&amp;rft.au=Oliver%2C+William+D.&amp;rft_id=https%3A%2F%2Fhbr.org%2F2022%2F01%2Fquantum-computing-for-business-leaders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuddeVolz2019" class="citation web cs1">Budde, Florian; Volz, Daniel (12 July 2019). <a rel="nofollow" class="external text" href="https://www.mckinsey.com/industries/chemicals/our-insights/the-next-big-thing-quantum-computings-potential-impact-on-chemicals">"Quantum computing and the chemical industry | McKinsey"</a>. <i>www.mckinsey.com</i>. McKinsey and Company<span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mckinsey.com&amp;rft.atitle=Quantum+computing+and+the+chemical+industry+%7C+McKinsey&amp;rft.date=2019-07-12&amp;rft.aulast=Budde&amp;rft.aufirst=Florian&amp;rft.au=Volz%2C+Daniel&amp;rft_id=https%3A%2F%2Fwww.mckinsey.com%2Findustries%2Fchemicals%2Four-insights%2Fthe-next-big-thing-quantum-computings-potential-impact-on-chemicals&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourzac2017" class="citation web cs1">Bourzac, Katherine (30 October 2017). <a rel="nofollow" class="external text" href="https://cen.acs.org/articles/95/i43/Chemistry-quantum-computings-killer-app.html">"Chemistry is quantum computing's killer app"</a>. <i>cen.acs.org</i>. American Chemical Society<span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=cen.acs.org&amp;rft.atitle=Chemistry+is+quantum+computing%27s+killer+app&amp;rft.date=2017-10-30&amp;rft.aulast=Bourzac&amp;rft.aufirst=Katherine&amp;rft_id=https%3A%2F%2Fcen.acs.org%2Farticles%2F95%2Fi43%2FChemistry-quantum-computings-killer-app.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLenstra2000" class="citation journal cs1">Lenstra, Arjen K. (2000). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150410234239/http://sage.math.washington.edu/edu/124/misc/arjen_lenstra_factoring.pdf">"Integer Factoring"</a> <span class="cs1-format">(PDF)</span>. <i>Designs, Codes and Cryptography</i>. <b>19</b> (2/3): 101–128. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1008397921377">10.1023/A:1008397921377</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9816153">9816153</a>. Archived from <a rel="nofollow" class="external text" href="http://sage.math.washington.edu/edu/124/misc/arjen_lenstra_factoring.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 10 April 2015.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Designs%2C+Codes+and+Cryptography&amp;rft.atitle=Integer+Factoring&amp;rft.volume=19&amp;rft.issue=2%2F3&amp;rft.pages=101-128&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1008397921377&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9816153%23id-name%3DS2CID&amp;rft.aulast=Lenstra&amp;rft.aufirst=Arjen+K.&amp;rft_id=http%3A%2F%2Fsage.math.washington.edu%2Fedu%2F124%2Fmisc%2Farjen_lenstra_factoring.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang2010216-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang2010216_71-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;216.</span> </li> <li id="cite_note-pqcrypto_survey-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-pqcrypto_survey_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pqcrypto_survey_72-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2009" class="citation book cs1">Bernstein, Daniel J. (2009). "Introduction to post-quantum cryptography". <i>Post-Quantum Cryptography</i>. Berlin, Heidelberg: Springer. pp.&#160;1–14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-88702-7_1">10.1007/978-3-540-88702-7_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-88701-0" title="Special:BookSources/978-3-540-88701-0"><bdi>978-3-540-88701-0</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:61401925">61401925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Introduction+to+post-quantum+cryptography&amp;rft.btitle=Post-Quantum+Cryptography&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pages=1-14&amp;rft.pub=Springer&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A61401925%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-88702-7_1&amp;rft.isbn=978-3-540-88701-0&amp;rft.aulast=Bernstein&amp;rft.aufirst=Daniel+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">See also <a rel="nofollow" class="external text" href="http://pqcrypto.org/">pqcrypto.org</a>, a bibliography maintained by Daniel J. Bernstein and <a href="/wiki/Tanja_Lange" title="Tanja Lange">Tanja Lange</a> on cryptography not known to be broken by quantum computing.</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcEliece1978" class="citation journal cs1">McEliece, R. J. (January 1978). <a rel="nofollow" class="external text" href="https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF">"A Public-Key Cryptosystem Based On Algebraic Coding Theory"</a> <span class="cs1-format">(PDF)</span>. <i>DSNPR</i>. <b>44</b>: 114–116. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978DSNPR..44..114M">1978DSNPR..44..114M</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=DSNPR&amp;rft.atitle=A+Public-Key+Cryptosystem+Based+On+Algebraic+Coding+Theory&amp;rft.volume=44&amp;rft.pages=114-116&amp;rft.date=1978-01&amp;rft_id=info%3Abibcode%2F1978DSNPR..44..114M&amp;rft.aulast=McEliece&amp;rft.aufirst=R.+J.&amp;rft_id=http%3A%2F%2Fipnpr.jpl.nasa.gov%2Fprogress_report2%2F42-44%2F44N.PDF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKobayashiGall2006" class="citation journal cs1">Kobayashi, H.; Gall, F. L. (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.2197%2Fipsjdc.1.470">"Dihedral Hidden Subgroup Problem: A Survey"</a>. <i>Information and Media Technologies</i>. <b>1</b> (1): 178–185. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2197%2Fipsjdc.1.470">10.2197/ipsjdc.1.470</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information+and+Media+Technologies&amp;rft.atitle=Dihedral+Hidden+Subgroup+Problem%3A+A+Survey&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=178-185&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.2197%2Fipsjdc.1.470&amp;rft.aulast=Kobayashi&amp;rft.aufirst=H.&amp;rft.au=Gall%2C+F.+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2197%252Fipsjdc.1.470&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-bennett_1997-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-bennett_1997_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennettBernsteinBrassardVazirani1997" class="citation journal cs1">Bennett, Charles H.; Bernstein, Ethan; Brassard, Gilles; Vazirani, Umesh (October 1997). "Strengths and Weaknesses of Quantum Computing". <i>SIAM Journal on Computing</i>. <b>26</b> (5): 1510–1523. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9701001">quant-ph/9701001</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997quant.ph..1001B">1997quant.ph..1001B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2Fs0097539796300933">10.1137/s0097539796300933</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13403194">13403194</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=Strengths+and+Weaknesses+of+Quantum+Computing&amp;rft.volume=26&amp;rft.issue=5&amp;rft.pages=1510-1523&amp;rft.date=1997-10&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9701001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13403194%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1137%2Fs0097539796300933&amp;rft_id=info%3Abibcode%2F1997quant.ph..1001B&amp;rft.aulast=Bennett&amp;rft.aufirst=Charles+H.&amp;rft.au=Bernstein%2C+Ethan&amp;rft.au=Brassard%2C+Gilles&amp;rft.au=Vazirani%2C+Umesh&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrassardHøyerTapp2016" class="citation encyclopaedia cs1">Brassard, Gilles; Høyer, Peter; Tapp, Alain (2016). "Quantum Algorithm for the Collision Problem". In Kao, Ming-Yang (ed.). <i>Encyclopedia of Algorithms</i>. New York, New York: Springer. pp.&#160;1662–1664. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9705002">quant-ph/9705002</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4939-2864-4_304">10.1007/978-1-4939-2864-4_304</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4939-2864-4" title="Special:BookSources/978-1-4939-2864-4"><bdi>978-1-4939-2864-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3116149">3116149</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+Algorithm+for+the+Collision+Problem&amp;rft.btitle=Encyclopedia+of+Algorithms&amp;rft.place=New+York%2C+New+York&amp;rft.pages=1662-1664&amp;rft.pub=Springer&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9705002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3116149%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4939-2864-4_304&amp;rft.isbn=978-1-4939-2864-4&amp;rft.aulast=Brassard&amp;rft.aufirst=Gilles&amp;rft.au=H%C3%B8yer%2C+Peter&amp;rft.au=Tapp%2C+Alain&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarhiGoldstoneGutmann2008" class="citation journal cs1">Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam (23 December 2008). <a rel="nofollow" class="external text" href="https://doi.org/10.4086%2Ftoc.2008.v004a008">"A Quantum Algorithm for the Hamiltonian NAND Tree"</a>. <i>Theory of Computing</i>. <b>4</b> (1): 169–190. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4086%2Ftoc.2008.v004a008">10.4086/toc.2008.v004a008</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1557-2862">1557-2862</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8258191">8258191</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theory+of+Computing&amp;rft.atitle=A+Quantum+Algorithm+for+the+Hamiltonian+NAND+Tree&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=169-190&amp;rft.date=2008-12-23&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8258191%23id-name%3DS2CID&amp;rft.issn=1557-2862&amp;rft_id=info%3Adoi%2F10.4086%2Ftoc.2008.v004a008&amp;rft.aulast=Farhi&amp;rft.aufirst=Edward&amp;rft.au=Goldstone%2C+Jeffrey&amp;rft.au=Gutmann%2C+Sam&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4086%252Ftoc.2008.v004a008&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2011" class="citation book cs1">Williams, Colin P. (2011). <i>Explorations in Quantum Computing</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. pp.&#160;242–244. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84628-887-6" title="Special:BookSources/978-1-84628-887-6"><bdi>978-1-84628-887-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Explorations+in+Quantum+Computing&amp;rft.pages=242-244&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-1-84628-887-6&amp;rft.aulast=Williams&amp;rft.aufirst=Colin+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrover1996" class="citation arxiv cs1"><a href="/wiki/Lov_Grover" title="Lov Grover">Grover, Lov</a> (29 May 1996). "A fast quantum mechanical algorithm for database search". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9605043">quant-ph/9605043</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+fast+quantum+mechanical+algorithm+for+database+search&amp;rft.date=1996-05-29&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9605043&amp;rft.aulast=Grover&amp;rft.aufirst=Lov&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmbainis2004" class="citation journal cs1">Ambainis, Ambainis (June 2004). "Quantum search algorithms". <i>ACM SIGACT News</i>. <b>35</b> (2): 22–35. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0504012">quant-ph/0504012</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005quant.ph..4012A">2005quant.ph..4012A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F992287.992296">10.1145/992287.992296</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11326499">11326499</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACM+SIGACT+News&amp;rft.atitle=Quantum+search+algorithms&amp;rft.volume=35&amp;rft.issue=2&amp;rft.pages=22-35&amp;rft.date=2004-06&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0504012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11326499%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F992287.992296&amp;rft_id=info%3Abibcode%2F2005quant.ph..4012A&amp;rft.aulast=Ambainis&amp;rft.aufirst=Ambainis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichGellman2014" class="citation news cs1">Rich, Steven; Gellman, Barton (1 February 2014). <a rel="nofollow" class="external text" href="https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html">"NSA seeks to build quantum computer that could crack most types of encryption"</a>. <i>The Washington Post</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=NSA+seeks+to+build+quantum+computer+that+could+crack+most+types+of+encryption&amp;rft.date=2014-02-01&amp;rft.aulast=Rich&amp;rft.aufirst=Steven&amp;rft.au=Gellman%2C+Barton&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fworld%2Fnational-security%2Fnsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption%2F2014%2F01%2F02%2F8fff297e-7195-11e3-8def-a33011492df2_story.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOuteiralStrahmMorrisBenjamin2021" class="citation journal cs1">Outeiral, Carlos; Strahm, Martin; Morris, Garrett; Benjamin, Simon; Deane, Charlotte; Shi, Jiye (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fwcms.1481">"The prospects of quantum computing in computational molecular biology"</a>. <i>WIREs Computational Molecular Science</i>. <b>11</b>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.12792">2005.12792</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fwcms.1481">10.1002/wcms.1481</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:218889377">218889377</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=WIREs+Computational+Molecular+Science&amp;rft.atitle=The+prospects+of+quantum+computing+in+computational+molecular+biology&amp;rft.volume=11&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2005.12792&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A218889377%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fwcms.1481&amp;rft.aulast=Outeiral&amp;rft.aufirst=Carlos&amp;rft.au=Strahm%2C+Martin&amp;rft.au=Morris%2C+Garrett&amp;rft.au=Benjamin%2C+Simon&amp;rft.au=Deane%2C+Charlotte&amp;rft.au=Shi%2C+Jiye&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fwcms.1481&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiamonteWittekPancottiRebentrost2017" class="citation journal cs1">Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth (September 2017). "Quantum machine learning". <i>Nature</i>. <b>549</b> (7671): 195–202. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.09347">1611.09347</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Natur.549..195B">2017Natur.549..195B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature23474">10.1038/nature23474</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-0836">0028-0836</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28905917">28905917</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:64536201">64536201</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+machine+learning&amp;rft.volume=549&amp;rft.issue=7671&amp;rft.pages=195-202&amp;rft.date=2017-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A64536201%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017Natur.549..195B&amp;rft_id=info%3Aarxiv%2F1611.09347&amp;rft.issn=0028-0836&amp;rft_id=info%3Adoi%2F10.1038%2Fnature23474&amp;rft_id=info%3Apmid%2F28905917&amp;rft.aulast=Biamonte&amp;rft.aufirst=Jacob&amp;rft.au=Wittek%2C+Peter&amp;rft.au=Pancotti%2C+Nicola&amp;rft.au=Rebentrost%2C+Patrick&amp;rft.au=Wiebe%2C+Nathan&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-Quantum_algorithm_for_solving_linear_systems_of_equations_by_Harrow_et_al.-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Quantum_algorithm_for_solving_linear_systems_of_equations_by_Harrow_et_al._85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrowHassidimLloyd2009" class="citation journal cs1">Harrow, Aram; Hassidim, Avinatan; Lloyd, Seth (2009). "Quantum algorithm for solving linear systems of equations". <i>Physical Review Letters</i>. <b>103</b> (15): 150502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.3171">0811.3171</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.103o0502H">2009PhRvL.103o0502H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.103.150502">10.1103/PhysRevLett.103.150502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19905613">19905613</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5187993">5187993</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum+algorithm+for+solving+linear+systems+of+equations&amp;rft.volume=103&amp;rft.issue=15&amp;rft.pages=150502&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5187993%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2009PhRvL.103o0502H&amp;rft_id=info%3Aarxiv%2F0811.3171&amp;rft_id=info%3Apmid%2F19905613&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.103.150502&amp;rft.aulast=Harrow&amp;rft.aufirst=Aram&amp;rft.au=Hassidim%2C+Avinatan&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedettiRealpe-GómezBiswasPerdomo-Ortiz2016" class="citation journal cs1">Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro (9 August 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.022308">"Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning"</a>. <i>Physical Review A</i>. <b>94</b> (2): 022308. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.07611">1510.07611</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvA..94b2308B">2016PhRvA..94b2308B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.022308">10.1103/PhysRevA.94.022308</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Estimation+of+effective+temperatures+in+quantum+annealers+for+sampling+applications%3A+A+case+study+with+possible+applications+in+deep+learning&amp;rft.volume=94&amp;rft.issue=2&amp;rft.pages=022308&amp;rft.date=2016-08-09&amp;rft_id=info%3Aarxiv%2F1510.07611&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.94.022308&amp;rft_id=info%3Abibcode%2F2016PhRvA..94b2308B&amp;rft.aulast=Benedetti&amp;rft.aufirst=Marcello&amp;rft.au=Realpe-G%C3%B3mez%2C+John&amp;rft.au=Biswas%2C+Rupak&amp;rft.au=Perdomo-Ortiz%2C+Alejandro&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevA.94.022308&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAjagekarYou2020" class="citation journal cs1">Ajagekar, Akshay; You, Fengqi (5 December 2020). "Quantum computing assisted deep learning for fault detection and diagnosis in industrial process systems". <i>Computers &amp; Chemical Engineering</i>. <b>143</b>: 107119. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.00264">2003.00264</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.compchemeng.2020.107119">10.1016/j.compchemeng.2020.107119</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0098-1354">0098-1354</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211678230">211678230</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computers+%26+Chemical+Engineering&amp;rft.atitle=Quantum+computing+assisted+deep+learning+for+fault+detection+and+diagnosis+in+industrial+process+systems&amp;rft.volume=143&amp;rft.pages=107119&amp;rft.date=2020-12-05&amp;rft_id=info%3Aarxiv%2F2003.00264&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211678230%23id-name%3DS2CID&amp;rft.issn=0098-1354&amp;rft_id=info%3Adoi%2F10.1016%2Fj.compchemeng.2020.107119&amp;rft.aulast=Ajagekar&amp;rft.aufirst=Akshay&amp;rft.au=You%2C+Fengqi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAjagekarYou2021" class="citation journal cs1">Ajagekar, Akshay; You, Fengqi (1 December 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apenergy.2021.117628">"Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems"</a>. <i>Applied Energy</i>. <b>303</b>: 117628. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ApEn..30317628A">2021ApEn..30317628A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apenergy.2021.117628">10.1016/j.apenergy.2021.117628</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-2619">0306-2619</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Energy&amp;rft.atitle=Quantum+computing+based+hybrid+deep+learning+for+fault+diagnosis+in+electrical+power+systems&amp;rft.volume=303&amp;rft.pages=117628&amp;rft.date=2021-12-01&amp;rft.issn=0306-2619&amp;rft_id=info%3Adoi%2F10.1016%2Fj.apenergy.2021.117628&amp;rft_id=info%3Abibcode%2F2021ApEn..30317628A&amp;rft.aulast=Ajagekar&amp;rft.aufirst=Akshay&amp;rft.au=You%2C+Fengqi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.apenergy.2021.117628&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaoAnschuetzWangCirac2022" class="citation journal cs1">Gao, Xun; Anschuetz, Eric R.; Wang, Sheng-Tao; Cirac, J. Ignacio; Lukin, Mikhail D. (2022). "Enhancing Generative Models via Quantum Correlations". <i>Physical Review X</i>. <b>12</b> (2): 021037. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2101.08354">2101.08354</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvX..12b1037G">2022PhRvX..12b1037G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.12.021037">10.1103/PhysRevX.12.021037</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231662294">231662294</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+X&amp;rft.atitle=Enhancing+Generative+Models+via+Quantum+Correlations&amp;rft.volume=12&amp;rft.issue=2&amp;rft.pages=021037&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2101.08354&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231662294%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevX.12.021037&amp;rft_id=info%3Abibcode%2F2022PhRvX..12b1037G&amp;rft.aulast=Gao&amp;rft.aufirst=Xun&amp;rft.au=Anschuetz%2C+Eric+R.&amp;rft.au=Wang%2C+Sheng-Tao&amp;rft.au=Cirac%2C+J.+Ignacio&amp;rft.au=Lukin%2C+Mikhail+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiTopalogluGhosh2021" class="citation arxiv cs1">Li, Junde; Topaloglu, Rasit; Ghosh, Swaroop (9 January 2021). "Quantum Generative Models for Small Molecule Drug Discovery". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2101.03438">2101.03438</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.ET">cs.ET</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+Generative+Models+for+Small+Molecule+Drug+Discovery&amp;rft.date=2021-01-09&amp;rft_id=info%3Aarxiv%2F2101.03438&amp;rft.aulast=Li&amp;rft.aufirst=Junde&amp;rft.au=Topaloglu%2C+Rasit&amp;rft.au=Ghosh%2C+Swaroop&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-good-for-nothing-91"><span class="mw-cite-backlink">^ <a href="#cite_ref-good-for-nothing_91-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-good-for-nothing_91-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-good-for-nothing_91-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrooks2023" class="citation journal cs1">Brooks, Michael (24 May 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-023-01692-9">"Quantum computers: what are they good for?"</a>. <i>Nature</i>. <b>617</b> (7962): S1–S3. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Natur.617S...1B">2023Natur.617S...1B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-023-01692-9">10.1038/d41586-023-01692-9</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37225885">37225885</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:258847001">258847001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+computers%3A+what+are+they+good+for%3F&amp;rft.volume=617&amp;rft.issue=7962&amp;rft.pages=S1-S3&amp;rft.date=2023-05-24&amp;rft_id=info%3Adoi%2F10.1038%2Fd41586-023-01692-9&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A258847001%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F37225885&amp;rft_id=info%3Abibcode%2F2023Natur.617S...1B&amp;rft.aulast=Brooks&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fd41586-023-01692-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-CACM-92"><span class="mw-cite-backlink">^ <a href="#cite_ref-CACM_92-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CACM_92-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CACM_92-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-CACM_92-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTorsten_HoeflerThomas_HänerMatthias_Troyer2023" class="citation web cs1">Torsten Hoefler; Thomas Häner; Matthias Troyer (May 2023). <a rel="nofollow" class="external text" href="https://m-cacm.acm.org/magazines/2023/5/272276-disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/fulltext">"Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage"</a>. Communications of the ACM.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Disentangling+Hype+from+Practicality%3A+On+Realistically+Achieving+Quantum+Advantage&amp;rft.pub=Communications+of+the+ACM&amp;rft.date=2023-05&amp;rft.au=Torsten+Hoefler&amp;rft.au=Thomas+H%C3%A4ner&amp;rft.au=Matthias+Troyer&amp;rft_id=https%3A%2F%2Fm-cacm.acm.org%2Fmagazines%2F2023%2F5%2F272276-disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage%2Ffulltext&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyakonov2018" class="citation journal cs1">Dyakonov, Mikhail (15 November 2018). <a rel="nofollow" class="external text" href="https://spectrum.ieee.org/the-case-against-quantum-computing">"The Case Against Quantum Computing"</a>. <i><a href="/wiki/IEEE_Spectrum" title="IEEE Spectrum">IEEE Spectrum</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Spectrum&amp;rft.atitle=The+Case+Against+Quantum+Computing&amp;rft.date=2018-11-15&amp;rft.aulast=Dyakonov&amp;rft.aufirst=Mikhail&amp;rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fthe-case-against-quantum-computing&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiVincenzo2000" class="citation journal cs1">DiVincenzo, David P. (13 April 2000). "The Physical Implementation of Quantum Computation". <i>Fortschritte der Physik</i>. <b>48</b> (9–11): 771–783. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0002077">quant-ph/0002077</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ForPh..48..771D">2000ForPh..48..771D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E">10.1002/1521-3978(200009)48:9/11&#60;771::AID-PROP771&#62;3.0.CO&#59;2-E</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15439711">15439711</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fortschritte+der+Physik&amp;rft.atitle=The+Physical+Implementation+of+Quantum+Computation&amp;rft.volume=48&amp;rft.issue=9%E2%80%9311&amp;rft.pages=771-783&amp;rft.date=2000-04-13&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0002077&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15439711%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E&amp;rft_id=info%3Abibcode%2F2000ForPh..48..771D&amp;rft.aulast=DiVincenzo&amp;rft.aufirst=David+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiles2019" class="citation news cs1">Giles, Martin (17 January 2019). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/612760/quantum-computers-component-shortage/">"We'd have more quantum computers if it weren't so hard to find the damn cables"</a>. MIT Technology Review<span class="reference-accessdate">. Retrieved <span class="nowrap">17 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=We%27d+have+more+quantum+computers+if+it+weren%27t+so+hard+to+find+the+damn+cables&amp;rft.date=2019-01-17&amp;rft.aulast=Giles&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F612760%2Fquantum-computers-component-shortage%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaukaDasKalraMoini2021" class="citation journal cs1">Pauka SJ, Das K, Kalra B, Moini A, Yang Y, Trainer M, Bousquet A, Cantaloube C, Dick N, Gardner GC, Manfra MJ, Reilly DJ (2021). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41928-020-00528-y">"A cryogenic CMOS chip for generating control signals for multiple qubits"</a>. <i><a href="/wiki/Nature_Electronics" title="Nature Electronics">Nature Electronics</a></i>. <b>4</b> (4): 64–70. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1912.01299">1912.01299</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-020-00528-y">10.1038/s41928-020-00528-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231715555">231715555</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Electronics&amp;rft.atitle=A+cryogenic+CMOS+chip+for+generating+control+signals+for+multiple+qubits&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=64-70&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F1912.01299&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231715555%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41928-020-00528-y&amp;rft.aulast=Pauka&amp;rft.aufirst=SJ&amp;rft.au=Das%2C+K&amp;rft.au=Kalra%2C+B&amp;rft.au=Moini%2C+A&amp;rft.au=Yang%2C+Y&amp;rft.au=Trainer%2C+M&amp;rft.au=Bousquet%2C+A&amp;rft.au=Cantaloube%2C+C&amp;rft.au=Dick%2C+N&amp;rft.au=Gardner%2C+GC&amp;rft.au=Manfra%2C+MJ&amp;rft.au=Reilly%2C+DJ&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41928-020-00528-y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-DiVincenzo_1995-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-DiVincenzo_1995_97-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiVincenzo1995" class="citation journal cs1">DiVincenzo, David P. (1995). "Quantum Computation". <i>Science</i>. <b>270</b> (5234): 255–261. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995Sci...270..255D">1995Sci...270..255D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.242.2165">10.1.1.242.2165</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.270.5234.255">10.1126/science.270.5234.255</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220110562">220110562</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Quantum+Computation&amp;rft.volume=270&amp;rft.issue=5234&amp;rft.pages=255-261&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.242.2165%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220110562%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.270.5234.255&amp;rft_id=info%3Abibcode%2F1995Sci...270..255D&amp;rft.aulast=DiVincenzo&amp;rft.aufirst=David+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZuDaide_Waele2022" class="citation journal cs1">Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of Dilution refrigerators – A review". <i>Cryogenics</i>. <b>121</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cryogenics.2021.103390">10.1016/j.cryogenics.2021.103390</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0011-2275">0011-2275</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244005391">244005391</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cryogenics&amp;rft.atitle=Development+of+Dilution+refrigerators+%E2%80%93+A+review&amp;rft.volume=121&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244005391%23id-name%3DS2CID&amp;rft.issn=0011-2275&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cryogenics.2021.103390&amp;rft.aulast=Zu&amp;rft.aufirst=H.&amp;rft.au=Dai%2C+W.&amp;rft.au=de+Waele%2C+A.T.A.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJones2013" class="citation journal cs1">Jones, Nicola (19 June 2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F498286a">"Computing: The quantum company"</a>. <i>Nature</i>. <b>498</b> (7454): 286–288. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Natur.498..286J">2013Natur.498..286J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F498286a">10.1038/498286a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23783610">23783610</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Computing%3A+The+quantum+company&amp;rft.volume=498&amp;rft.issue=7454&amp;rft.pages=286-288&amp;rft.date=2013-06-19&amp;rft_id=info%3Apmid%2F23783610&amp;rft_id=info%3Adoi%2F10.1038%2F498286a&amp;rft_id=info%3Abibcode%2F2013Natur.498..286J&amp;rft.aulast=Jones&amp;rft.aufirst=Nicola&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F498286a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVepsäläinenKaramlouOrrellDogra2020" class="citation journal cs1">Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; et&#160;al. (August 2020). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41586-020-2619-8">"Impact of ionizing radiation on superconducting qubit coherence"</a>. <i>Nature</i>. <b>584</b> (7822): 551–556. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2001.09190">2001.09190</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.584..551V">2020Natur.584..551V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2619-8">10.1038/s41586-020-2619-8</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32848227">32848227</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210920566">210920566</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Impact+of+ionizing+radiation+on+superconducting+qubit+coherence&amp;rft.volume=584&amp;rft.issue=7822&amp;rft.pages=551-556&amp;rft.date=2020-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210920566%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020Natur.584..551V&amp;rft_id=info%3Aarxiv%2F2001.09190&amp;rft.issn=1476-4687&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2619-8&amp;rft_id=info%3Apmid%2F32848227&amp;rft.aulast=Veps%C3%A4l%C3%A4inen&amp;rft.aufirst=Antti+P.&amp;rft.au=Karamlou%2C+Amir+H.&amp;rft.au=Orrell%2C+John+L.&amp;rft.au=Dogra%2C+Akshunna+S.&amp;rft.au=Loer%2C+Ben&amp;rft.au=Vasconcelos%2C+Francisca&amp;rft.au=Kim%2C+David+K.&amp;rft.au=Melville%2C+Alexander+J.&amp;rft.au=Niedzielski%2C+Bethany+M.&amp;rft.au=Yoder%2C+Jonilyn+L.&amp;rft.au=Gustavsson%2C+Simon&amp;rft.au=Formaggio%2C+Joseph+A.&amp;rft.au=VanDevender%2C+Brent+A.&amp;rft.au=Oliver%2C+William+D.&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-2619-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmyMatteoGheorghiuMosca2016" class="citation arxiv cs1">Amy, Matthew; Matteo, Olivia; Gheorghiu, Vlad; Mosca, Michele; Parent, Alex; Schanck, John (30 November 2016). "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.09383">1603.09383</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Estimating+the+cost+of+generic+quantum+pre-image+attacks+on+SHA-2+and+SHA-3&amp;rft.date=2016-11-30&amp;rft_id=info%3Aarxiv%2F1603.09383&amp;rft.aulast=Amy&amp;rft.aufirst=Matthew&amp;rft.au=Matteo%2C+Olivia&amp;rft.au=Gheorghiu%2C+Vlad&amp;rft.au=Mosca%2C+Michele&amp;rft.au=Parent%2C+Alex&amp;rft.au=Schanck%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyakonov2006" class="citation journal cs1">Dyakonov, M. I. (14 October 2006). S. Luryi; Xu, J.; Zaslavsky, A. (eds.). "Is Fault-Tolerant Quantum Computation Really Possible?". <i>Future Trends in Microelectronics. Up the Nano Creek</i>: 4–18. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0610117">quant-ph/0610117</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006quant.ph.10117D">2006quant.ph.10117D</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Future+Trends+in+Microelectronics.+Up+the+Nano+Creek&amp;rft.atitle=Is+Fault-Tolerant+Quantum+Computation+Really+Possible%3F&amp;rft.pages=4-18&amp;rft.date=2006-10-14&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0610117&amp;rft_id=info%3Abibcode%2F2006quant.ph.10117D&amp;rft.aulast=Dyakonov&amp;rft.aufirst=M.+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-:1-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhsan2015" class="citation book cs1">Ahsan, Muhammad (2015). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/923881411"><i>Architecture Framework for Trapped-ion Quantum Computer based on Performance Simulation Tool</i></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/923881411">923881411</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Architecture+Framework+for+Trapped-ion+Quantum+Computer+based+on+Performance+Simulation+Tool&amp;rft.date=2015&amp;rft_id=info%3Aoclcnum%2F923881411&amp;rft.aulast=Ahsan&amp;rft.aufirst=Muhammad&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F923881411&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-:2-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-:2_104-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhsanMeterKim2016" class="citation journal cs1">Ahsan, Muhammad; Meter, Rodney Van; Kim, Jungsang (28 December 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2830570">"Designing a Million-Qubit Quantum Computer Using a Resource Performance Simulator"</a>. <i>ACM Journal on Emerging Technologies in Computing Systems</i>. <b>12</b> (4): 39:1–39:25. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1512.00796">1512.00796</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2830570">10.1145/2830570</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1550-4832">1550-4832</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1258374">1258374</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACM+Journal+on+Emerging+Technologies+in+Computing+Systems&amp;rft.atitle=Designing+a+Million-Qubit+Quantum+Computer+Using+a+Resource+Performance+Simulator&amp;rft.volume=12&amp;rft.issue=4&amp;rft.pages=39%3A1-39%3A25&amp;rft.date=2016-12-28&amp;rft_id=info%3Aarxiv%2F1512.00796&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1258374%23id-name%3DS2CID&amp;rft.issn=1550-4832&amp;rft_id=info%3Adoi%2F10.1145%2F2830570&amp;rft.aulast=Ahsan&amp;rft.aufirst=Muhammad&amp;rft.au=Meter%2C+Rodney+Van&amp;rft.au=Kim%2C+Jungsang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F2830570&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGidneyEkerå2021" class="citation journal cs1">Gidney, Craig; Ekerå, Martin (15 April 2021). "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits". <i>Quantum</i>. <b>5</b>: 433. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.09749">1905.09749</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Quant...5..433G">2021Quant...5..433G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2021-04-15-433">10.22331/q-2021-04-15-433</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2521-327X">2521-327X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:162183806">162183806</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=How+to+factor+2048+bit+RSA+integers+in+8+hours+using+20+million+noisy+qubits&amp;rft.volume=5&amp;rft.pages=433&amp;rft.date=2021-04-15&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A162183806%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021Quant...5..433G&amp;rft_id=info%3Aarxiv%2F1905.09749&amp;rft.issn=2521-327X&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2021-04-15-433&amp;rft.aulast=Gidney&amp;rft.aufirst=Craig&amp;rft.au=Eker%C3%A5%2C+Martin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreedmanKitaevLarsenWang2003" class="citation journal cs1"><a href="/wiki/Michael_Freedman" title="Michael Freedman">Freedman, Michael H.</a>; <a href="/wiki/Alexei_Kitaev" title="Alexei Kitaev">Kitaev, Alexei</a>; <a href="/wiki/Michael_J._Larsen" title="Michael J. Larsen">Larsen, Michael J.</a>; Wang, Zhenghan (2003). "Topological quantum computation". <i>Bulletin of the American Mathematical Society</i>. <b>40</b> (1): 31–38. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0101025">quant-ph/0101025</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-02-00964-3">10.1090/S0273-0979-02-00964-3</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1943131">1943131</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Topological+quantum+computation&amp;rft.volume=40&amp;rft.issue=1&amp;rft.pages=31-38&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0101025&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1943131%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1090%2FS0273-0979-02-00964-3&amp;rft.aulast=Freedman&amp;rft.aufirst=Michael+H.&amp;rft.au=Kitaev%2C+Alexei&amp;rft.au=Larsen%2C+Michael+J.&amp;rft.au=Wang%2C+Zhenghan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonroe2008" class="citation journal cs1">Monroe, Don (1 October 2008). <a rel="nofollow" class="external text" href="https://www.newscientist.com/channel/fundamentals/mg20026761.700-anyons-the-breakthrough-quantum-computing-needs.html">"Anyons: The breakthrough quantum computing needs?"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Scientist&amp;rft.atitle=Anyons%3A+The+breakthrough+quantum+computing+needs%3F&amp;rft.date=2008-10-01&amp;rft.aulast=Monroe&amp;rft.aufirst=Don&amp;rft_id=https%3A%2F%2Fwww.newscientist.com%2Fchannel%2Ffundamentals%2Fmg20026761.700-anyons-the-breakthrough-quantum-computing-needs.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2012" class="citation arxiv cs1">Preskill, John (26 March 2012). "Quantum computing and the entanglement frontier". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1203.5813">1203.5813</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+computing+and+the+entanglement+frontier&amp;rft.date=2012-03-26&amp;rft_id=info%3Aarxiv%2F1203.5813&amp;rft.aulast=Preskill&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2018" class="citation journal cs1">Preskill, John (6 August 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">"Quantum Computing in the NISQ era and beyond"</a>. <i>Quantum</i>. <b>2</b>: 79. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.00862">1801.00862</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Quant...2...79P">2018Quant...2...79P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">10.22331/q-2018-08-06-79</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=Quantum+Computing+in+the+NISQ+era+and+beyond&amp;rft.volume=2&amp;rft.pages=79&amp;rft.date=2018-08-06&amp;rft_id=info%3Aarxiv%2F1801.00862&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2018-08-06-79&amp;rft_id=info%3Abibcode%2F2018Quant...2...79P&amp;rft.aulast=Preskill&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.22331%252Fq-2018-08-06-79&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoixoIsakovSmelyanskiyBabbush2018" class="citation journal cs1">Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; et&#160;al. (2018). "Characterizing Quantum Supremacy in Near-Term Devices". <i>Nature Physics</i>. <b>14</b> (6): 595–600. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1608.00263">1608.00263</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatPh..14..595B">2018NatPh..14..595B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-018-0124-x">10.1038/s41567-018-0124-x</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4167494">4167494</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Characterizing+Quantum+Supremacy+in+Near-Term+Devices&amp;rft.volume=14&amp;rft.issue=6&amp;rft.pages=595-600&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1608.00263&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4167494%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41567-018-0124-x&amp;rft_id=info%3Abibcode%2F2018NatPh..14..595B&amp;rft.aulast=Boixo&amp;rft.aufirst=Sergio&amp;rft.au=Isakov%2C+Sergei+V.&amp;rft.au=Smelyanskiy%2C+Vadim+N.&amp;rft.au=Babbush%2C+Ryan&amp;rft.au=Ding%2C+Nan&amp;rft.au=Jiang%2C+Zhang&amp;rft.au=Bremner%2C+Michael+J.&amp;rft.au=Martinis%2C+John+M.&amp;rft.au=Neven%2C+Hartmut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavage2017" class="citation web cs1">Savage, Neil (5 July 2017). <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/quantum-computers-compete-for-supremacy/">"Quantum Computers Compete for "Supremacy"<span class="cs1-kern-right"></span>"</a>. <i>Scientific American</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Scientific+American&amp;rft.atitle=Quantum+Computers+Compete+for+%22Supremacy%22&amp;rft.date=2017-07-05&amp;rft.aulast=Savage&amp;rft.aufirst=Neil&amp;rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fquantum-computers-compete-for-supremacy%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiles2019" class="citation web cs1">Giles, Martin (20 September 2019). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/f/614416/google-researchers-have-reportedly-achieved-quantum-supremacy/">"Google researchers have reportedly achieved 'quantum supremacy'<span class="cs1-kern-right"></span>"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">15 May</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MIT+Technology+Review&amp;rft.atitle=Google+researchers+have+reportedly+achieved+%27quantum+supremacy%27&amp;rft.date=2019-09-20&amp;rft.aulast=Giles&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fwww.technologyreview.com%2Ff%2F614416%2Fgoogle-researchers-have-reportedly-achieved-quantum-supremacy%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTavares2019" class="citation web cs1">Tavares, Frank (23 October 2019). <a rel="nofollow" class="external text" href="https://www.nasa.gov/feature/ames/quantum-supremacy">"Google and NASA Achieve Quantum Supremacy"</a>. <i>NASA</i><span class="reference-accessdate">. Retrieved <span class="nowrap">16 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NASA&amp;rft.atitle=Google+and+NASA+Achieve+Quantum+Supremacy&amp;rft.date=2019-10-23&amp;rft.aulast=Tavares&amp;rft.aufirst=Frank&amp;rft_id=http%3A%2F%2Fwww.nasa.gov%2Ffeature%2Fames%2Fquantum-supremacy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPednaultGunnelsNanniciniHoresh2019" class="citation arxiv cs1">Pednault, Edwin; Gunnels, John A.; Nannicini, Giacomo; Horesh, Lior; Wisnieff, Robert (22 October 2019). "Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.09534">1910.09534</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Leveraging+Secondary+Storage+to+Simulate+Deep+54-qubit+Sycamore+Circuits&amp;rft.date=2019-10-22&amp;rft_id=info%3Aarxiv%2F1910.09534&amp;rft.aulast=Pednault&amp;rft.aufirst=Edwin&amp;rft.au=Gunnels%2C+John+A.&amp;rft.au=Nannicini%2C+Giacomo&amp;rft.au=Horesh%2C+Lior&amp;rft.au=Wisnieff%2C+Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2019" class="citation journal cs1">Cho, Adrian (23 October 2019). <a rel="nofollow" class="external text" href="https://www.science.org/content/article/ibm-casts-doubt-googles-claims-quantum-supremacy">"IBM casts doubt on Google's claims of quantum supremacy"</a>. <i>Science</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aaz6080">10.1126/science.aaz6080</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211982610">211982610</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=IBM+casts+doubt+on+Google%27s+claims+of+quantum+supremacy&amp;rft.date=2019-10-23&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211982610%23id-name%3DS2CID&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aaz6080&amp;rft.aulast=Cho&amp;rft.aufirst=Adrian&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fcontent%2Farticle%2Fibm-casts-doubt-googles-claims-quantum-supremacy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuLiuLiFu2021" class="citation book cs1">Liu, Yong (Alexander); Liu, Xin (Lucy); Li, Fang (Nancy); Fu, Haohuan; Yang, Yuling; et&#160;al. (14 November 2021). "Closing the "quantum supremacy" gap". <i>Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</i>. SC '21. New York, New York: Association for Computing Machinery. pp.&#160;1–12. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2110.14502">2110.14502</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3458817.3487399">10.1145/3458817.3487399</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4503-8442-1" title="Special:BookSources/978-1-4503-8442-1"><bdi>978-1-4503-8442-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:239036985">239036985</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Closing+the+%22quantum+supremacy%22+gap&amp;rft.btitle=Proceedings+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&amp;rft.place=New+York%2C+New+York&amp;rft.series=SC+%2721&amp;rft.pages=1-12&amp;rft.pub=Association+for+Computing+Machinery&amp;rft.date=2021-11-14&amp;rft_id=info%3Aarxiv%2F2110.14502&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A239036985%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F3458817.3487399&amp;rft.isbn=978-1-4503-8442-1&amp;rft.aulast=Liu&amp;rft.aufirst=Yong+%28Alexander%29&amp;rft.au=Liu%2C+Xin+%28Lucy%29&amp;rft.au=Li%2C+Fang+%28Nancy%29&amp;rft.au=Fu%2C+Haohuan&amp;rft.au=Yang%2C+Yuling&amp;rft.au=Song%2C+Jiawei&amp;rft.au=Zhao%2C+Pengpeng&amp;rft.au=Wang%2C+Zhen&amp;rft.au=Peng%2C+Dajia&amp;rft.au=Chen%2C+Huarong&amp;rft.au=Guo%2C+Chu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBulmerBellChadwickJones2022" class="citation journal cs1">Bulmer, Jacob F. F.; Bell, Bryn A.; Chadwick, Rachel S.; Jones, Alex E.; Moise, Diana; et&#160;al. (28 January 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791606">"The boundary for quantum advantage in Gaussian boson sampling"</a>. <i>Science Advances</i>. <b>8</b> (4): eabl9236. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.01622">2108.01622</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SciA....8.9236B">2022SciA....8.9236B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.abl9236">10.1126/sciadv.abl9236</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791606">8791606</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35080972">35080972</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Advances&amp;rft.atitle=The+boundary+for+quantum+advantage+in+Gaussian+boson+sampling&amp;rft.volume=8&amp;rft.issue=4&amp;rft.pages=eabl9236&amp;rft.date=2022-01-28&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8791606%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2022SciA....8.9236B&amp;rft_id=info%3Aarxiv%2F2108.01622&amp;rft.issn=2375-2548&amp;rft_id=info%3Adoi%2F10.1126%2Fsciadv.abl9236&amp;rft_id=info%3Apmid%2F35080972&amp;rft.aulast=Bulmer&amp;rft.aufirst=Jacob+F.+F.&amp;rft.au=Bell%2C+Bryn+A.&amp;rft.au=Chadwick%2C+Rachel+S.&amp;rft.au=Jones%2C+Alex+E.&amp;rft.au=Moise%2C+Diana&amp;rft.au=Rigazzi%2C+Alessandro&amp;rft.au=Thorbecke%2C+Jan&amp;rft.au=Haus%2C+Utz-Uwe&amp;rft.au=Van+Vaerenbergh%2C+Thomas&amp;rft.au=Patel%2C+Raj+B.&amp;rft.au=Walmsley%2C+Ian+A.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8791606&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCormick2022" class="citation journal cs1">McCormick, Katie (10 February 2022). <a rel="nofollow" class="external text" href="https://physics.aps.org/articles/v15/19">"Race Not Over Between Classical and Quantum Computers"</a>. <i>Physics</i>. <b>15</b>: 19. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhyOJ..15...19M">2022PhyOJ..15...19M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysics.15.19">10.1103/Physics.15.19</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:246910085">246910085</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics&amp;rft.atitle=Race+Not+Over+Between+Classical+and+Quantum+Computers&amp;rft.volume=15&amp;rft.pages=19&amp;rft.date=2022-02-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A246910085%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysics.15.19&amp;rft_id=info%3Abibcode%2F2022PhyOJ..15...19M&amp;rft.aulast=McCormick&amp;rft.aufirst=Katie&amp;rft_id=https%3A%2F%2Fphysics.aps.org%2Farticles%2Fv15%2F19&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPanChenZhang2022" class="citation journal cs1">Pan, Feng; Chen, Keyang; Zhang, Pan (2022). "Solving the Sampling Problem of the Sycamore Quantum Circuits". <i>Physical Review Letters</i>. <b>129</b> (9): 090502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2111.03011">2111.03011</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvL.129i0502P">2022PhRvL.129i0502P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.129.090502">10.1103/PhysRevLett.129.090502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36083655">36083655</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251755796">251755796</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Solving+the+Sampling+Problem+of+the+Sycamore+Quantum+Circuits&amp;rft.volume=129&amp;rft.issue=9&amp;rft.pages=090502&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251755796%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2022PhRvL.129i0502P&amp;rft_id=info%3Aarxiv%2F2111.03011&amp;rft_id=info%3Apmid%2F36083655&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.129.090502&amp;rft.aulast=Pan&amp;rft.aufirst=Feng&amp;rft.au=Chen%2C+Keyang&amp;rft.au=Zhang%2C+Pan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2022" class="citation journal cs1">Cho, Adrian (2 August 2022). <a rel="nofollow" class="external text" href="https://www.science.org/content/article/ordinary-computers-can-beat-google-s-quantum-computer-after-all">"Ordinary computers can beat Google's quantum computer after all"</a>. <i>Science</i>. <b>377</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.ade2364">10.1126/science.ade2364</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Ordinary+computers+can+beat+Google%27s+quantum+computer+after+all&amp;rft.volume=377&amp;rft.date=2022-08-02&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.ade2364&amp;rft.aulast=Cho&amp;rft.aufirst=Adrian&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fcontent%2Farticle%2Fordinary-computers-can-beat-google-s-quantum-computer-after-all&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://techcrunch.com/2022/08/05/googles-quantum-supremacy-usurped-by-researchers-using-ordinary-supercomputer/">"Google's 'quantum supremacy' usurped by researchers using ordinary supercomputer"</a>. <i>TechCrunch</i>. 5 August 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">7 August</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=TechCrunch&amp;rft.atitle=Google%27s+%27quantum+supremacy%27+usurped+by+researchers+using+ordinary+supercomputer&amp;rft.date=2022-08-05&amp;rft_id=https%3A%2F%2Ftechcrunch.com%2F2022%2F08%2F05%2Fgoogles-quantum-supremacy-usurped-by-researchers-using-ordinary-supercomputer%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBall2020" class="citation journal cs1">Ball, Philip (3 December 2020). "Physicists in China challenge Google's 'quantum advantage'<span class="cs1-kern-right"></span>". <i>Nature</i>. <b>588</b> (7838): 380. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.588..380B">2020Natur.588..380B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-020-03434-7">10.1038/d41586-020-03434-7</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33273711">33273711</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:227282052">227282052</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Physicists+in+China+challenge+Google%27s+%27quantum+advantage%27&amp;rft.volume=588&amp;rft.issue=7838&amp;rft.pages=380&amp;rft.date=2020-12-03&amp;rft_id=info%3Adoi%2F10.1038%2Fd41586-020-03434-7&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A227282052%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33273711&amp;rft_id=info%3Abibcode%2F2020Natur.588..380B&amp;rft.aulast=Ball&amp;rft.aufirst=Philip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaristo" class="citation web cs1">Garisto, Daniel. <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/light-based-quantum-computer-exceeds-fastest-classical-supercomputers/">"Light-based Quantum Computer Exceeds Fastest Classical Supercomputers"</a>. <i>Scientific American</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Scientific+American&amp;rft.atitle=Light-based+Quantum+Computer+Exceeds+Fastest+Classical+Supercomputers&amp;rft.aulast=Garisto&amp;rft.aufirst=Daniel&amp;rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Flight-based-quantum-computer-exceeds-fastest-classical-supercomputers%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConover2020" class="citation web cs1">Conover, Emily (3 December 2020). <a rel="nofollow" class="external text" href="https://www.sciencenews.org/article/new-light-based-quantum-computer-jiuzhang-supremacy">"The new light-based quantum computer Jiuzhang has achieved quantum supremacy"</a>. <i>Science News</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Science+News&amp;rft.atitle=The+new+light-based+quantum+computer+Jiuzhang+has+achieved+quantum+supremacy&amp;rft.date=2020-12-03&amp;rft.aulast=Conover&amp;rft.aufirst=Emily&amp;rft_id=https%3A%2F%2Fwww.sciencenews.org%2Farticle%2Fnew-light-based-quantum-computer-jiuzhang-supremacy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-:6-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-:6_125-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhongWangDengChen2020" class="citation journal cs1">Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; et&#160;al. (3 December 2020). "Quantum computational advantage using photons". <i>Science</i>. <b>370</b> (6523): 1460–1463. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.01625">2012.01625</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...370.1460Z">2020Sci...370.1460Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abe8770">10.1126/science.abe8770</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33273064">33273064</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:227254333">227254333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Quantum+computational+advantage+using+photons&amp;rft.volume=370&amp;rft.issue=6523&amp;rft.pages=1460-1463&amp;rft.date=2020-12-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A227254333%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020Sci...370.1460Z&amp;rft_id=info%3Aarxiv%2F2012.01625&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.abe8770&amp;rft_id=info%3Apmid%2F33273064&amp;rft.aulast=Zhong&amp;rft.aufirst=Han-Sen&amp;rft.au=Wang%2C+Hui&amp;rft.au=Deng%2C+Yu-Hao&amp;rft.au=Chen%2C+Ming-Cheng&amp;rft.au=Peng%2C+Li-Chao&amp;rft.au=Luo%2C+Yi-Han&amp;rft.au=Qin%2C+Jian&amp;rft.au=Wu%2C+Dian&amp;rft.au=Ding%2C+Xing&amp;rft.au=Hu%2C+Yi&amp;rft.au=Hu%2C+Peng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoberson2020" class="citation journal cs1">Roberson, Tara M. (21 May 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F0963662520923109">"{{subst:title case|Can hype be a force for good?}}"</a>. <i>Public Understanding of Science</i>. <b>29</b> (5): 544–552. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F0963662520923109">10.1177/0963662520923109</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0963-6625">0963-6625</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32438851">32438851</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:218831653">218831653</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Public+Understanding+of+Science&amp;rft.atitle=%7B%7Bsubst%3Atitle+case%7CCan+hype+be+a+force+for+good%3F%7D%7D&amp;rft.volume=29&amp;rft.issue=5&amp;rft.pages=544-552&amp;rft.date=2020-05-21&amp;rft.issn=0963-6625&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A218831653%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F32438851&amp;rft_id=info%3Adoi%2F10.1177%2F0963662520923109&amp;rft.aulast=Roberson&amp;rft.aufirst=Tara+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1177%252F0963662520923109&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCavaliereMattssonSmeets2020" class="citation journal cs1">Cavaliere, Fabio; Mattsson, John; Smeets, Ben (September 2020). <a rel="nofollow" class="external text" href="http://www.magonlinelibrary.com/doi/10.1016/S1353-4858%2820%2930105-7">"The security implications of quantum cryptography and quantum computing"</a>. <i>Network Security</i>. <b>2020</b> (9): 9–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1353-4858%2820%2930105-7">10.1016/S1353-4858(20)30105-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1353-4858">1353-4858</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:222349414">222349414</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Network+Security&amp;rft.atitle=The+security+implications+of+quantum+cryptography+and+quantum+computing&amp;rft.volume=2020&amp;rft.issue=9&amp;rft.pages=9-15&amp;rft.date=2020-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A222349414%23id-name%3DS2CID&amp;rft.issn=1353-4858&amp;rft_id=info%3Adoi%2F10.1016%2FS1353-4858%2820%2930105-7&amp;rft.aulast=Cavaliere&amp;rft.aufirst=Fabio&amp;rft.au=Mattsson%2C+John&amp;rft.au=Smeets%2C+Ben&amp;rft_id=http%3A%2F%2Fwww.magonlinelibrary.com%2Fdoi%2F10.1016%2FS1353-4858%252820%252930105-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuChenGuoSong2024" class="citation journal cs1">Liu, Yong; Chen, Yaojian; Guo, Chu; Song, Jiawei; Shi, Xinmin; Gan, Lin; Wu, Wenzhao; Wu, Wei; Fu, Haohuan; Liu, Xin; Chen, Dexun; Zhao, Zhifeng; Yang, Guangwen; Gao, Jiangang (16 January 2024). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevLett.132.030601">"Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction"</a>. <i>Physical Review Letters</i>. <b>132</b> (3): 030601. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2212.04749">2212.04749</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024PhRvL.132c0601L">2024PhRvL.132c0601L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.132.030601">10.1103/PhysRevLett.132.030601</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38307065">38307065</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Verifying+Quantum+Advantage+Experiments+with+Multiple+Amplitude+Tensor+Network+Contraction&amp;rft.volume=132&amp;rft.issue=3&amp;rft.pages=030601&amp;rft.date=2024-01-16&amp;rft_id=info%3Abibcode%2F2024PhRvL.132c0601L&amp;rft_id=info%3Aarxiv%2F2212.04749&amp;rft_id=info%3Apmid%2F38307065&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.132.030601&amp;rft.issn=0031-9007&amp;rft.aulast=Liu&amp;rft.aufirst=Yong&amp;rft.au=Chen%2C+Yaojian&amp;rft.au=Guo%2C+Chu&amp;rft.au=Song%2C+Jiawei&amp;rft.au=Shi%2C+Xinmin&amp;rft.au=Gan%2C+Lin&amp;rft.au=Wu%2C+Wenzhao&amp;rft.au=Wu%2C+Wei&amp;rft.au=Fu%2C+Haohuan&amp;rft.au=Liu%2C+Xin&amp;rft.au=Chen%2C+Dexun&amp;rft.au=Zhao%2C+Zhifeng&amp;rft.au=Yang%2C+Guangwen&amp;rft.au=Gao%2C+Jiangang&amp;rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevLett.132.030601&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonroe2022" class="citation web cs1">Monroe, Don (December 2022). <a rel="nofollow" class="external text" href="https://m-cacm.acm.org/magazines/2022/12/266916-quantum-computers-and-the-universe/fulltext">"Quantum Computers and the Universe"</a>. Communications of the ACM.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Quantum+Computers+and+the+Universe&amp;rft.pub=Communications+of+the+ACM&amp;rft.date=2022-12&amp;rft.aulast=Monroe&amp;rft.aufirst=Don&amp;rft_id=https%3A%2F%2Fm-cacm.acm.org%2Fmagazines%2F2022%2F12%2F266916-quantum-computers-and-the-universe%2Ffulltext&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwayne2023" class="citation web cs1">Swayne, Matt (20 June 2023). <a rel="nofollow" class="external text" href="https://thequantuminsider.com/2023/06/20/psiquantum-sees-700x-reduction-in-computational-resource-requirements-to-break-elliptic-curve-cryptography-with-a-fault-tolerant-quantum-computer/">"PsiQuantum Sees 700x Reduction in Computational Resource Requirements to Break Elliptic Curve Cryptography With a Fault Tolerant Quantum Computer"</a>. <i>The Quanrum Insider</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Quanrum+Insider&amp;rft.atitle=PsiQuantum+Sees+700x+Reduction+in+Computational+Resource+Requirements+to+Break+Elliptic+Curve+Cryptography+With+a+Fault+Tolerant+Quantum+Computer&amp;rft.date=2023-06-20&amp;rft.aulast=Swayne&amp;rft.aufirst=Matt&amp;rft_id=https%3A%2F%2Fthequantuminsider.com%2F2023%2F06%2F20%2Fpsiquantum-sees-700x-reduction-in-computational-resource-requirements-to-break-elliptic-curve-cryptography-with-a-fault-tolerant-quantum-computer%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUnruh1995" class="citation journal cs1">Unruh, Bill (1995). "Maintaining coherence in Quantum Computers". <i>Physical Review A</i>. <b>51</b> (2): 992–997. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9406058">hep-th/9406058</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvA..51..992U">1995PhRvA..51..992U</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.51.992">10.1103/PhysRevA.51.992</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9911677">9911677</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13980886">13980886</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Maintaining+coherence+in+Quantum+Computers&amp;rft.volume=51&amp;rft.issue=2&amp;rft.pages=992-997&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13980886%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1995PhRvA..51..992U&amp;rft_id=info%3Aarxiv%2Fhep-th%2F9406058&amp;rft_id=info%3Apmid%2F9911677&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.51.992&amp;rft.aulast=Unruh&amp;rft.aufirst=Bill&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavies2007" class="citation arxiv cs1">Davies, Paul (6 March 2007). "The implications of a holographic universe for quantum information science and the nature of physical law". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0703041">quant-ph/0703041</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=The+implications+of+a+holographic+universe+for+quantum+information+science+and+the+nature+of+physical+law&amp;rft.date=2007-03-06&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0703041&amp;rft.aulast=Davies&amp;rft.aufirst=Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRegan2016" class="citation web cs1">Regan, K. W. (23 April 2016). <a rel="nofollow" class="external text" href="https://rjlipton.wordpress.com/2016/04/22/quantum-supremacy-and-complexity/">"Quantum Supremacy and Complexity"</a>. <i>Gödel's Lost Letter and P=NP</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=G%C3%B6del%27s+Lost+Letter+and+P%3DNP&amp;rft.atitle=Quantum+Supremacy+and+Complexity&amp;rft.date=2016-04-23&amp;rft.aulast=Regan&amp;rft.aufirst=K.+W.&amp;rft_id=https%3A%2F%2Frjlipton.wordpress.com%2F2016%2F04%2F22%2Fquantum-supremacy-and-complexity%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalai2016" class="citation journal cs1">Kalai, Gil (May 2016). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/notices/201605/rnoti-p508.pdf">"The Quantum Computer Puzzle"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the AMS</i>. <b>63</b> (5): 508–516.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=The+Quantum+Computer+Puzzle&amp;rft.volume=63&amp;rft.issue=5&amp;rft.pages=508-516&amp;rft.date=2016-05&amp;rft.aulast=Kalai&amp;rft.aufirst=Gil&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fnotices%2F201605%2Frnoti-p508.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRinottShohamKalai2021" class="citation arxiv cs1">Rinott, Yosef; Shoham, Tomer; Kalai, Gil (13 July 2021). "Statistical Aspects of the Quantum Supremacy Demonstration". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.05177">2008.05177</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Statistical+Aspects+of+the+Quantum+Supremacy+Demonstration&amp;rft.date=2021-07-13&amp;rft_id=info%3Aarxiv%2F2008.05177&amp;rft.aulast=Rinott&amp;rft.aufirst=Yosef&amp;rft.au=Shoham%2C+Tomer&amp;rft.au=Kalai%2C+Gil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyakonov2018" class="citation web cs1">Dyakonov, Mikhail (15 November 2018). <a rel="nofollow" class="external text" href="https://spectrum.ieee.org/the-case-against-quantum-computing">"The Case Against Quantum Computing"</a>. <i>IEEE Spectrum</i><span class="reference-accessdate">. Retrieved <span class="nowrap">3 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=IEEE+Spectrum&amp;rft.atitle=The+Case+Against+Quantum+Computing&amp;rft.date=2018-11-15&amp;rft.aulast=Dyakonov&amp;rft.aufirst=Mikhail&amp;rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fthe-case-against-quantum-computing&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyakonov2020" class="citation book cs1">Dyakonov, Mikhail (24 March 2020). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783030420185"><i>Will We Ever Have a Quantum Computer?</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783030420185" title="Special:BookSources/9783030420185"><bdi>9783030420185</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 May</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Will+We+Ever+Have+a+Quantum+Computer%3F&amp;rft.pub=Springer&amp;rft.date=2020-03-24&amp;rft.isbn=9783030420185&amp;rft.aulast=Dyakonov&amp;rft.aufirst=Mikhail&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783030420185&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (May 2020)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussell2019" class="citation news cs1">Russell, John (10 January 2019). <a rel="nofollow" class="external text" href="https://www.hpcwire.com/2019/01/10/ibm-quantum-update-q-system-one-launch-new-collaborators-and-qc-center-plans/">"IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans"</a>. <i>HPCwire</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=HPCwire&amp;rft.atitle=IBM+Quantum+Update%3A+Q+System+One+Launch%2C+New+Collaborators%2C+and+QC+Center+Plans&amp;rft.date=2019-01-10&amp;rft.aulast=Russell&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fwww.hpcwire.com%2F2019%2F01%2F10%2Fibm-quantum-update-q-system-one-launch-new-collaborators-and-qc-center-plans%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTacchinoChiesaCarrettaGerace2019" class="citation journal cs1">Tacchino, Francesco; Chiesa, Alessandro; Carretta, Stefano; Gerace, Dario (19 December 2019). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/qute.201900052">"Quantum Computers as Universal Quantum Simulators: State-of-the-Art and Perspectives"</a>. <i>Advanced Quantum Technologies</i>. <b>3</b> (3): 1900052. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1907.03505">1907.03505</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqute.201900052">10.1002/qute.201900052</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2511-9044">2511-9044</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:195833616">195833616</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Quantum+Technologies&amp;rft.atitle=Quantum+Computers+as+Universal+Quantum+Simulators%3A+State-of-the-Art+and+Perspectives&amp;rft.volume=3&amp;rft.issue=3&amp;rft.pages=1900052&amp;rft.date=2019-12-19&amp;rft_id=info%3Aarxiv%2F1907.03505&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A195833616%23id-name%3DS2CID&amp;rft.issn=2511-9044&amp;rft_id=info%3Adoi%2F10.1002%2Fqute.201900052&amp;rft.aulast=Tacchino&amp;rft.aufirst=Francesco&amp;rft.au=Chiesa%2C+Alessandro&amp;rft.au=Carretta%2C+Stefano&amp;rft.au=Gerace%2C+Dario&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fqute.201900052&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEGrumblingHorowitz2019127-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019127_140-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrumblingHorowitz2019">Grumbling &amp; Horowitz 2019</a>, p.&#160;127.</span> </li> <li id="cite_note-FOOTNOTEGrumblingHorowitz2019114-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019114_141-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrumblingHorowitz2019">Grumbling &amp; Horowitz 2019</a>, p.&#160;114.</span> </li> <li id="cite_note-FOOTNOTEGrumblingHorowitz2019119-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019119_142-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrumblingHorowitz2019">Grumbling &amp; Horowitz 2019</a>, p.&#160;119.</span> </li> <li id="cite_note-FOOTNOTEGrumblingHorowitz2019126-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrumblingHorowitz2019126_143-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrumblingHorowitz2019">Grumbling &amp; Horowitz 2019</a>, p.&#160;126.</span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMackie2024" class="citation web cs1">Mackie, Kurt (8 February 2024). <a rel="nofollow" class="external text" href="https://rcpmag.com/Articles/2024/02/08/Microsoft-Quantum-Computing-DARPA.aspx">"Microsoft Quantum Computing Getting DARPA Funding"</a>. <i>rcpmag.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 February</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=rcpmag.com&amp;rft.atitle=Microsoft+Quantum+Computing+Getting+DARPA+Funding&amp;rft.date=2024-02-08&amp;rft.aulast=Mackie&amp;rft.aufirst=Kurt&amp;rft_id=https%3A%2F%2Frcpmag.com%2FArticles%2F2024%2F02%2F08%2FMicrosoft-Quantum-Computing-DARPA.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGent2023" class="citation web cs1">Gent, Edd (5 July 2023). <a rel="nofollow" class="external text" href="https://singularityhub.com/2023/07/05/microsoft-plans-to-build-a-quantum-supercomputer-within-a-decade/">"Microsoft Wants to Build a Quantum Supercomputer Within a Decade"</a>. <i>Singularity Hub</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Singularity+Hub&amp;rft.atitle=Microsoft+Wants+to+Build+a+Quantum+Supercomputer+Within+a+Decade&amp;rft.date=2023-07-05&amp;rft.aulast=Gent&amp;rft.aufirst=Edd&amp;rft_id=https%3A%2F%2Fsingularityhub.com%2F2023%2F07%2F05%2Fmicrosoft-plans-to-build-a-quantum-supercomputer-within-a-decade%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLucian_Armasu2016" class="citation web cs1">Lucian Armasu (22 November 2016). <a rel="nofollow" class="external text" href="https://www.tomshardware.com/news/microsoft-first-topological-quantum-computer,33068.html">"Microsoft Aims To Create World's First Topological Quantum Computer"</a>. <i>Tom's Hardware</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Tom%27s+Hardware&amp;rft.atitle=Microsoft+Aims+To+Create+World%27s+First+Topological+Quantum+Computer&amp;rft.date=2016-11-22&amp;rft.au=Lucian+Armasu&amp;rft_id=https%3A%2F%2Fwww.tomshardware.com%2Fnews%2Fmicrosoft-first-topological-quantum-computer%2C33068.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeongSung2022" class="citation web cs1">Leong, Kelvin; Sung, Anna (November 2022). <a rel="nofollow" class="external text" href="http://journalofinterdisciplinarysciences.com/wp-content/uploads/2022/10/3-What-Business-Managers-Should-Know-About-Quantum-Computing.pdf">"What Business Managers Should Know About Quantum Computing?"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/w/index.php?title=Journal_of_Interdisciplinary_Sciences&amp;action=edit&amp;redlink=1" class="new" title="Journal of Interdisciplinary Sciences (page does not exist)">Journal of Interdisciplinary Sciences</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Journal+of+Interdisciplinary+Sciences&amp;rft.atitle=What+Business+Managers+Should+Know+About+Quantum+Computing%3F&amp;rft.date=2022-11&amp;rft.aulast=Leong&amp;rft.aufirst=Kelvin&amp;rft.au=Sung%2C+Anna&amp;rft_id=http%3A%2F%2Fjournalofinterdisciplinarysciences.com%2Fwp-content%2Fuploads%2F2022%2F10%2F3-What-Business-Managers-Should-Know-About-Quantum-Computing.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibney2019" class="citation journal cs1">Gibney, Elizabeth (2 October 2019). "Quantum gold rush: the private funding pouring into quantum start-ups". <i>Nature</i>. <b>574</b> (7776): 22–24. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.574...22G">2019Natur.574...22G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fd41586-019-02935-4">10.1038/d41586-019-02935-4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31578480">31578480</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:203626236">203626236</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+gold+rush%3A+the+private+funding+pouring+into+quantum+start-ups&amp;rft.volume=574&amp;rft.issue=7776&amp;rft.pages=22-24&amp;rft.date=2019-10-02&amp;rft_id=info%3Adoi%2F10.1038%2Fd41586-019-02935-4&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A203626236%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F31578480&amp;rft_id=info%3Abibcode%2F2019Natur.574...22G&amp;rft.aulast=Gibney&amp;rft.aufirst=Elizabeth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRodrigo2020" class="citation news cs1">Rodrigo, Chris Mills (12 February 2020). <a rel="nofollow" class="external text" href="https://thehill.com/policy/technology/482402-trump-budget-proposal-boosts-funding-for-artificial-intelligence-quantum">"Trump budget proposal boosts funding for artificial intelligence, quantum computing"</a>. <i>The Hill</i><span class="reference-accessdate">. Retrieved <span class="nowrap">11 July</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Hill&amp;rft.atitle=Trump+budget+proposal+boosts+funding+for+artificial+intelligence%2C+quantum+computing&amp;rft.date=2020-02-12&amp;rft.aulast=Rodrigo&amp;rft.aufirst=Chris+Mills&amp;rft_id=https%3A%2F%2Fthehill.com%2Fpolicy%2Ftechnology%2F482402-trump-budget-proposal-boosts-funding-for-artificial-intelligence-quantum&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiondiHeidHenkeMohr2021" class="citation web cs1">Biondi, Matteo; Heid, Anna; Henke, Nicolaus; Mohr, Niko; Pautasso, Lorenzo; et&#160;al. (14 December 2021). <a rel="nofollow" class="external text" href="https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/quantum-computing-use-cases-are-getting-real-what-you-need-to-know">"Quantum computing use cases are getting real—what you need to know"</a>. <i><a href="/wiki/McKinsey_%26_Company" title="McKinsey &amp; Company">McKinsey &amp; Company</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 April</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=McKinsey+%26+Company&amp;rft.atitle=Quantum+computing+use+cases+are+getting+real%E2%80%94what+you+need+to+know&amp;rft.date=2021-12-14&amp;rft.aulast=Biondi&amp;rft.aufirst=Matteo&amp;rft.au=Heid%2C+Anna&amp;rft.au=Henke%2C+Nicolaus&amp;rft.au=Mohr%2C+Niko&amp;rft.au=Pautasso%2C+Lorenzo&amp;rft.au=Ostojic%2C+Ivan&amp;rft.au=Wester%2C+Linde&amp;rft.au=Zemmel%2C+Rodney&amp;rft_id=https%3A%2F%2Fwww.mckinsey.com%2Fbusiness-functions%2Fmckinsey-digital%2Four-insights%2Fquantum-computing-use-cases-are-getting-real-what-you-need-to-know&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTENielsenChuang201029-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang201029_151-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;29.</span> </li> <li id="cite_note-FOOTNOTENielsenChuang2010126-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang2010126_152-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;126.</span> </li> <li id="cite_note-FOOTNOTENielsenChuang201041-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang201041_153-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;41.</span> </li> <li id="cite_note-FOOTNOTENielsenChuang2010201-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENielsenChuang2010201_154-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2010">Nielsen &amp; Chuang 2010</a>, p.&#160;201.</span> </li> <li id="cite_note-BernVazi-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-BernVazi_155-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinVazirani1997" class="citation journal cs1">Bernstein, Ethan; Vazirani, Umesh (1997). <a rel="nofollow" class="external text" href="http://www.cs.berkeley.edu/~vazirani/bv.ps">"Quantum Complexity Theory"</a>. <i>SIAM Journal on Computing</i>. <b>26</b> (5): 1411–1473. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7852">10.1.1.144.7852</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2FS0097539796300921">10.1137/S0097539796300921</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=Quantum+Complexity+Theory&amp;rft.volume=26&amp;rft.issue=5&amp;rft.pages=1411-1473&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.144.7852%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1137%2FS0097539796300921&amp;rft.aulast=Bernstein&amp;rft.aufirst=Ethan&amp;rft.au=Vazirani%2C+Umesh&amp;rft_id=http%3A%2F%2Fwww.cs.berkeley.edu%2F~vazirani%2Fbv.ps&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=35" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2013" class="citation book cs1"><a href="/wiki/Scott_Aaronson" title="Scott Aaronson">Aaronson, Scott</a> (2013). <i>Quantum Computing Since Democritus</i>. Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511979309">10.1017/CBO9780511979309</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-19956-8" title="Special:BookSources/978-0-521-19956-8"><bdi>978-0-521-19956-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/829706638">829706638</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing+Since+Democritus&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F829706638&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511979309&amp;rft.isbn=978-0-521-19956-8&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrumblingHorowitz2019" class="citation book cs1">Grumbling, Emily; Horowitz, Mark, eds. (2019). <i>Quantum Computing: Progress and Prospects</i>. Washington, DC: The National Academies Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17226%2F25196">10.17226/25196</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-309-47970-7" title="Special:BookSources/978-0-309-47970-7"><bdi>978-0-309-47970-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1091904777">1091904777</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125635007">125635007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing%3A+Progress+and+Prospects&amp;rft.place=Washington%2C+DC&amp;rft.pub=The+National+Academies+Press&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1091904777&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125635007%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.17226%2F25196&amp;rft.isbn=978-0-309-47970-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMermin2007" class="citation book cs1"><a href="/wiki/N._David_Mermin" title="N. David Mermin">Mermin, N. David</a> (2007). <i>Quantum Computer Science: An Introduction</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511813870">10.1017/CBO9780511813870</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-511-34258-5" title="Special:BookSources/978-0-511-34258-5"><bdi>978-0-511-34258-5</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/422727925">422727925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computer+Science%3A+An+Introduction&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F422727925&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511813870&amp;rft.isbn=978-0-511-34258-5&amp;rft.aulast=Mermin&amp;rft.aufirst=N.+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2010" class="citation book cs1"><a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Nielsen, Michael</a>; <a href="/wiki/Isaac_L._Chuang" class="mw-redirect" title="Isaac L. Chuang">Chuang, Isaac</a> (2010). <i><a href="/wiki/Quantum_Computation_and_Quantum_Information" title="Quantum Computation and Quantum Information">Quantum Computation and Quantum Information</a></i> (10th anniversary&#160;ed.). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511976667">10.1017/CBO9780511976667</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-511-99277-3" title="Special:BookSources/978-0-511-99277-3"><bdi>978-0-511-99277-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/700706156">700706156</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59717455">59717455</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Quantum+Information&amp;rft.edition=10th+anniversary&amp;rft.date=2010&amp;rft_id=info%3Aoclcnum%2F700706156&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59717455%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511976667&amp;rft.isbn=978-0-511-99277-3&amp;rft.aulast=Nielsen&amp;rft.aufirst=Michael&amp;rft.au=Chuang%2C+Isaac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShor1994" class="citation conference cs1"><a href="/wiki/Peter_Shor" title="Peter Shor">Shor, Peter W.</a> (1994). <i>Algorithms for Quantum Computation: Discrete Logarithms and Factoring</i>. <a href="/wiki/Symposium_on_Foundations_of_Computer_Science" title="Symposium on Foundations of Computer Science">Symposium on Foundations of Computer Science</a>. <a href="/wiki/Santa_Fe,_New_Mexico" title="Santa Fe, New Mexico">Santa Fe, New Mexico</a>: <a href="/wiki/IEEE" class="mw-redirect" title="IEEE">IEEE</a>. pp.&#160;124–134. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSFCS.1994.365700">10.1109/SFCS.1994.365700</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8186-6580-6" title="Special:BookSources/978-0-8186-6580-6"><bdi>978-0-8186-6580-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Algorithms+for+Quantum+Computation%3A+Discrete+Logarithms+and+Factoring&amp;rft.place=Santa+Fe%2C+New+Mexico&amp;rft.pages=124-134&amp;rft.pub=IEEE&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1109%2FSFCS.1994.365700&amp;rft.isbn=978-0-8186-6580-6&amp;rft.aulast=Shor&amp;rft.aufirst=Peter+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=36" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <div class="mw-heading mw-heading3"><h3 id="Textbooks">Textbooks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=37" title="Edit section: Textbooks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAkama2014" class="citation book cs1">Akama, Seiki (2014). <i>Elements of Quantum Computing: History, Theories and Engineering Applications</i>. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-08284-4">10.1007/978-3-319-08284-4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-08284-4" title="Special:BookSources/978-3-319-08284-4"><bdi>978-3-319-08284-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/884786739">884786739</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Quantum+Computing%3A+History%2C+Theories+and+Engineering+Applications&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft_id=info%3Aoclcnum%2F884786739&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-08284-4&amp;rft.isbn=978-3-319-08284-4&amp;rft.aulast=Akama&amp;rft.aufirst=Seiki&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenentiCasatiRossiniStrini2019" class="citation book cs1">Benenti, Giuliano; Casati, Giulio; Rossini, Davide; Strini, Giuliano (2019). <i>Principles of Quantum Computation and Information: A Comprehensive Textbook</i> (2nd&#160;ed.). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F10909">10.1142/10909</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-3237-23-0" title="Special:BookSources/978-981-3237-23-0"><bdi>978-981-3237-23-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1084428655">1084428655</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62280636">62280636</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Quantum+Computation+and+Information%3A+A+Comprehensive+Textbook&amp;rft.edition=2nd&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1084428655&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62280636%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2F10909&amp;rft.isbn=978-981-3237-23-0&amp;rft.aulast=Benenti&amp;rft.aufirst=Giuliano&amp;rft.au=Casati%2C+Giulio&amp;rft.au=Rossini%2C+Davide&amp;rft.au=Strini%2C+Giuliano&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernhardt2019" class="citation book cs1">Bernhardt, Chris (2019). <i>Quantum Computing for Everyone</i>. MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-35091-4" title="Special:BookSources/978-0-262-35091-4"><bdi>978-0-262-35091-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1082867954">1082867954</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing+for+Everyone&amp;rft.pub=MIT+Press&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1082867954&amp;rft.isbn=978-0-262-35091-4&amp;rft.aulast=Bernhardt&amp;rft.aufirst=Chris&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHidary2021" class="citation book cs1">Hidary, Jack D. (2021). <i>Quantum Computing: An Applied Approach</i> (2nd&#160;ed.). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-83274-2">10.1007/978-3-030-83274-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-03-083274-2" title="Special:BookSources/978-3-03-083274-2"><bdi>978-3-03-083274-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1272953643">1272953643</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:238223274">238223274</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing%3A+An+Applied+Approach&amp;rft.edition=2nd&amp;rft.date=2021&amp;rft_id=info%3Aoclcnum%2F1272953643&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A238223274%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-83274-2&amp;rft.isbn=978-3-03-083274-2&amp;rft.aulast=Hidary&amp;rft.aufirst=Jack+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiroshiMasahito2006" class="citation book cs1">Hiroshi, Imai; Masahito, Hayashi, eds. (2006). <i>Quantum Computation and Information: From Theory to Experiment</i>. Topics in Applied Physics. Vol.&#160;102. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-33133-6">10.1007/3-540-33133-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-33133-9" title="Special:BookSources/978-3-540-33133-9"><bdi>978-3-540-33133-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Information%3A+From+Theory+to+Experiment&amp;rft.series=Topics+in+Applied+Physics&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1007%2F3-540-33133-6&amp;rft.isbn=978-3-540-33133-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHughesIsaacsonPerrySun2021" class="citation book cs1">Hughes, Ciaran; Isaacson, Joshua; Perry, Anastasia; Sun, Ranbel F.; Turner, Jessica (2021). <a rel="nofollow" class="external text" href="https://link.springer.com/content/pdf/10.1007/978-3-030-61601-4.pdf"><i>Quantum Computing for the Quantum Curious</i></a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-61601-4">10.1007/978-3-030-61601-4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-03-061601-4" title="Special:BookSources/978-3-03-061601-4"><bdi>978-3-03-061601-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1244536372">1244536372</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:242566636">242566636</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing+for+the+Quantum+Curious&amp;rft.date=2021&amp;rft_id=info%3Aoclcnum%2F1244536372&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A242566636%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-61601-4&amp;rft.isbn=978-3-03-061601-4&amp;rft.aulast=Hughes&amp;rft.aufirst=Ciaran&amp;rft.au=Isaacson%2C+Joshua&amp;rft.au=Perry%2C+Anastasia&amp;rft.au=Sun%2C+Ranbel+F.&amp;rft.au=Turner%2C+Jessica&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fcontent%2Fpdf%2F10.1007%2F978-3-030-61601-4.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaeger2007" class="citation book cs1">Jaeger, Gregg (2007). <i>Quantum Information: An Overview</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-36944-0">10.1007/978-0-387-36944-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-36944-0" title="Special:BookSources/978-0-387-36944-0"><bdi>978-0-387-36944-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/186509710">186509710</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Information%3A+An+Overview&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F186509710&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-387-36944-0&amp;rft.isbn=978-0-387-36944-0&amp;rft.aulast=Jaeger&amp;rft.aufirst=Gregg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnstonHarriganGimeno-Segovia2019" class="citation book cs1">Johnston, Eric R.; Harrigan, Nic; Gimeno-Segovia, Mercedes (2019). <i>Programming Quantum Computers: Essential Algorithms and Code Samples</i>. O'Reilly Media, Incorporated. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4920-3968-6" title="Special:BookSources/978-1-4920-3968-6"><bdi>978-1-4920-3968-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1111634190">1111634190</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Programming+Quantum+Computers%3A+Essential+Algorithms+and+Code+Samples&amp;rft.pub=O%27Reilly+Media%2C+Incorporated&amp;rft.date=2019&amp;rft_id=info%3Aoclcnum%2F1111634190&amp;rft.isbn=978-1-4920-3968-6&amp;rft.aulast=Johnston&amp;rft.aufirst=Eric+R.&amp;rft.au=Harrigan%2C+Nic&amp;rft.au=Gimeno-Segovia%2C+Mercedes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKayeLaflammeMosca2007" class="citation book cs1">Kaye, Phillip; <a href="/wiki/Raymond_Laflamme" title="Raymond Laflamme">Laflamme, Raymond</a>; <a href="/wiki/Michele_Mosca" title="Michele Mosca">Mosca, Michele</a> (2007). <i>An Introduction to Quantum Computing</i>. OUP Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-857000-4" title="Special:BookSources/978-0-19-857000-4"><bdi>978-0-19-857000-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/85896383">85896383</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Quantum+Computing&amp;rft.pub=OUP+Oxford&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F85896383&amp;rft.isbn=978-0-19-857000-4&amp;rft.aulast=Kaye&amp;rft.aufirst=Phillip&amp;rft.au=Laflamme%2C+Raymond&amp;rft.au=Mosca%2C+Michele&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaevShenVyalyi2002" class="citation book cs1"><a href="/wiki/Alexei_Kitaev" title="Alexei Kitaev">Kitaev, Alexei Yu.</a>; Shen, Alexander H.; Vyalyi, Mikhail N. (2002). <i>Classical and Quantum Computation</i>. American Mathematical Soc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-3229-5" title="Special:BookSources/978-0-8218-3229-5"><bdi>978-0-8218-3229-5</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/907358694">907358694</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+and+Quantum+Computation&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2002&amp;rft_id=info%3Aoclcnum%2F907358694&amp;rft.isbn=978-0-8218-3229-5&amp;rft.aulast=Kitaev&amp;rft.aufirst=Alexei+Yu.&amp;rft.au=Shen%2C+Alexander+H.&amp;rft.au=Vyalyi%2C+Mikhail+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurgalinBorzunov2021" class="citation book cs1">Kurgalin, Sergei; Borzunov, Sergei (2021). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-3-030-65052-0"><i>Concise Guide to Quantum Computing: Algorithms, Exercises, and Implementations</i></a>. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-65052-0">10.1007/978-3-030-65052-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-65052-0" title="Special:BookSources/978-3-030-65052-0"><bdi>978-3-030-65052-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Concise+Guide+to+Quantum+Computing%3A+Algorithms%2C+Exercises%2C+and+Implementations&amp;rft.pub=Springer&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-65052-0&amp;rft.isbn=978-3-030-65052-0&amp;rft.aulast=Kurgalin&amp;rft.aufirst=Sergei&amp;rft.au=Borzunov%2C+Sergei&amp;rft_id=https%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-030-65052-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStolzeSuter2004" class="citation book cs1">Stolze, Joachim; Suter, Dieter (2004). <i>Quantum Computing: A Short Course from Theory to Experiment</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9783527617760">10.1002/9783527617760</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-61776-0" title="Special:BookSources/978-3-527-61776-0"><bdi>978-3-527-61776-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/212140089">212140089</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing%3A+A+Short+Course+from+Theory+to+Experiment&amp;rft.date=2004&amp;rft_id=info%3Aoclcnum%2F212140089&amp;rft_id=info%3Adoi%2F10.1002%2F9783527617760&amp;rft.isbn=978-3-527-61776-0&amp;rft.aulast=Stolze&amp;rft.aufirst=Joachim&amp;rft.au=Suter%2C+Dieter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSusskindFriedman2014" class="citation book cs1"><a href="/wiki/Leonard_Susskind" title="Leonard Susskind">Susskind, Leonard</a>; Friedman, Art (2014). <i>Quantum Mechanics: The Theoretical Minimum</i>. <a href="/wiki/New_York_City" title="New York City">New York</a>: <a href="/wiki/Basic_Books" title="Basic Books">Basic Books</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-465-08061-8" title="Special:BookSources/978-0-465-08061-8"><bdi>978-0-465-08061-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Mechanics%3A+The+Theoretical+Minimum&amp;rft.place=New+York&amp;rft.pub=Basic+Books&amp;rft.date=2014&amp;rft.isbn=978-0-465-08061-8&amp;rft.aulast=Susskind&amp;rft.aufirst=Leonard&amp;rft.au=Friedman%2C+Art&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWichert2020" class="citation book cs1">Wichert, Andreas (2020). <i>Principles of Quantum Artificial Intelligence: Quantum Problem Solving and Machine Learning</i> (2nd&#160;ed.). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F11938">10.1142/11938</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-12-2431-7" title="Special:BookSources/978-981-12-2431-7"><bdi>978-981-12-2431-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1178715016">1178715016</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225498497">225498497</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Quantum+Artificial+Intelligence%3A+Quantum+Problem+Solving+and+Machine+Learning&amp;rft.edition=2nd&amp;rft.date=2020&amp;rft_id=info%3Aoclcnum%2F1178715016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225498497%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2F11938&amp;rft.isbn=978-981-12-2431-7&amp;rft.aulast=Wichert&amp;rft.aufirst=Andreas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWong2022" class="citation book cs1">Wong, Thomas (2022). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220129214631/http://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e.pdf"><i>Introduction to Classical and Quantum Computing</i></a> <span class="cs1-format">(PDF)</span>. Rooted Grove. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/979-8-9855931-0-5" title="Special:BookSources/979-8-9855931-0-5"><bdi>979-8-9855931-0-5</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1308951401">1308951401</a>. Archived from <a rel="nofollow" class="external text" href="http://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 29 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">6 February</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Classical+and+Quantum+Computing&amp;rft.pub=Rooted+Grove&amp;rft.date=2022&amp;rft_id=info%3Aoclcnum%2F1308951401&amp;rft.isbn=979-8-9855931-0-5&amp;rft.aulast=Wong&amp;rft.aufirst=Thomas&amp;rft_id=http%3A%2F%2Fwww.thomaswong.net%2Fintroduction-to-classical-and-quantum-computing-1e.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZengChenZhouWen2019" class="citation book cs1">Zeng, Bei; Chen, Xie; Zhou, Duan-Lu; Wen, Xiao-Gang (2019). <i>Quantum Information Meets Quantum Matter</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1508.02595">1508.02595</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4939-9084-9">10.1007/978-1-4939-9084-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4939-9084-9" title="Special:BookSources/978-1-4939-9084-9"><bdi>978-1-4939-9084-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1091358969">1091358969</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118528258">118528258</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Information+Meets+Quantum+Matter&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118528258%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4939-9084-9&amp;rft_id=info%3Aoclcnum%2F1091358969&amp;rft_id=info%3Aarxiv%2F1508.02595&amp;rft.isbn=978-1-4939-9084-9&amp;rft.aulast=Zeng&amp;rft.aufirst=Bei&amp;rft.au=Chen%2C+Xie&amp;rft.au=Zhou%2C+Duan-Lu&amp;rft.au=Wen%2C+Xiao-Gang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Academic_papers">Academic papers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=38" title="Edit section: Academic papers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbbotDoeringCavesLidar2003" class="citation journal cs1"><a href="/wiki/Derek_Abbott" title="Derek Abbott">Abbot, Derek</a>; <a href="/wiki/Charles_R._Doering" title="Charles R. Doering">Doering, Charles R.</a>; <a href="/wiki/Carlton_M._Caves" title="Carlton M. Caves">Caves, Carlton M.</a>; <a href="/wiki/Daniel_Lidar" title="Daniel Lidar">Lidar, Daniel M.</a>; <a href="/wiki/Howard_Brandt" title="Howard Brandt">Brandt, Howard E.</a>; et&#160;al. (2003). "Dreams versus Reality: Plenary Debate Session on Quantum Computing". <i>Quantum Information Processing</i>. <b>2</b> (6): 449–472. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0310130">quant-ph/0310130</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003QuIP....2..449A">2003QuIP....2..449A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FB%3AQINP.0000042203.24782.9a">10.1023/B:QINP.0000042203.24782.9a</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027.42%2F45526">2027.42/45526</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34885835">34885835</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+Processing&amp;rft.atitle=Dreams+versus+Reality%3A+Plenary+Debate+Session+on+Quantum+Computing&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=449-472&amp;rft.date=2003&amp;rft_id=info%3Ahdl%2F2027.42%2F45526&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34885835%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2003QuIP....2..449A&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0310130&amp;rft_id=info%3Adoi%2F10.1023%2FB%3AQINP.0000042203.24782.9a&amp;rft.aulast=Abbot&amp;rft.aufirst=Derek&amp;rft.au=Doering%2C+Charles+R.&amp;rft.au=Caves%2C+Carlton+M.&amp;rft.au=Lidar%2C+Daniel+M.&amp;rft.au=Brandt%2C+Howard+E.&amp;rft.au=Hamilton%2C+Alexander+R.&amp;rft.au=Ferry%2C+David+K.&amp;rft.au=Gea-Banacloche%2C+Julio&amp;rft.au=Bezrukov%2C+Sergey+M.&amp;rft.au=Kish%2C+Laszlo+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerthiaume1998" class="citation book cs1">Berthiaume, Andre (1 December 1998). "Quantum Computation". <i>Solution Manual for Quantum Mechanics</i>. pp.&#160;233–234. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789814541893_0016">10.1142/9789814541893_0016</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-4541-88-6" title="Special:BookSources/978-981-4541-88-6"><bdi>978-981-4541-88-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128255429">128255429</a> &#8211; via Semantic Scholar.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+Computation&amp;rft.btitle=Solution+Manual+for+Quantum+Mechanics&amp;rft.pages=233-234&amp;rft.date=1998-12-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128255429%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2F9789814541893_0016&amp;rft.isbn=978-981-4541-88-6&amp;rft.aulast=Berthiaume&amp;rft.aufirst=Andre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiVincenzo2000" class="citation journal cs1"><a href="/wiki/David_DiVincenzo" title="David DiVincenzo">DiVincenzo, David P.</a> (2000). "The Physical Implementation of Quantum Computation". <i>Fortschritte der Physik</i>. <b>48</b> (9–11): 771–783. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0002077">quant-ph/0002077</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ForPh..48..771D">2000ForPh..48..771D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E">10.1002/1521-3978(200009)48:9/11&#60;771::AID-PROP771&#62;3.0.CO&#59;2-E</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15439711">15439711</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fortschritte+der+Physik&amp;rft.atitle=The+Physical+Implementation+of+Quantum+Computation&amp;rft.volume=48&amp;rft.issue=9%E2%80%9311&amp;rft.pages=771-783&amp;rft.date=2000&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0002077&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15439711%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E&amp;rft_id=info%3Abibcode%2F2000ForPh..48..771D&amp;rft.aulast=DiVincenzo&amp;rft.aufirst=David+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiVincenzo1995" class="citation journal cs1">DiVincenzo, David P. (1995). "Quantum Computation". <i>Science</i>. <b>270</b> (5234): 255–261. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995Sci...270..255D">1995Sci...270..255D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.242.2165">10.1.1.242.2165</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.270.5234.255">10.1126/science.270.5234.255</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220110562">220110562</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Quantum+Computation&amp;rft.volume=270&amp;rft.issue=5234&amp;rft.pages=255-261&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.242.2165%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220110562%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.270.5234.255&amp;rft_id=info%3Abibcode%2F1995Sci...270..255D&amp;rft.aulast=DiVincenzo&amp;rft.aufirst=David+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span> Table 1 lists switching and dephasing times for various systems.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1982" class="citation journal cs1"><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard</a> (1982). "Simulating physics with computers". <i>International Journal of Theoretical Physics</i>. <b>21</b> (6–7): 467–488. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982IJTP...21..467F">1982IJTP...21..467F</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.9310">10.1.1.45.9310</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02650179">10.1007/BF02650179</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124545445">124545445</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Theoretical+Physics&amp;rft.atitle=Simulating+physics+with+computers&amp;rft.volume=21&amp;rft.issue=6%E2%80%937&amp;rft.pages=467-488&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.45.9310%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124545445%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02650179&amp;rft_id=info%3Abibcode%2F1982IJTP...21..467F&amp;rft.aulast=Feynman&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeutner2021" class="citation journal cs1">Jeutner, Valentin (2021). <a rel="nofollow" class="external text" href="https://lup.lub.lu.se/record/e034e7b7-d17c-4863-9cee-7e654f97225b">"The Quantum Imperative: Addressing the Legal Dimension of Quantum Computers"</a>. <i>Morals &amp; Machines</i>. <b>1</b> (1): 52–59. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5771%2F2747-5174-2021-1-52">10.5771/2747-5174-2021-1-52</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236664155">236664155</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Morals+%26+Machines&amp;rft.atitle=The+Quantum+Imperative%3A+Addressing+the+Legal+Dimension+of+Quantum+Computers&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=52-59&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.5771%2F2747-5174-2021-1-52&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236664155%23id-name%3DS2CID&amp;rft.aulast=Jeutner&amp;rft.aufirst=Valentin&amp;rft_id=https%3A%2F%2Flup.lub.lu.se%2Frecord%2Fe034e7b7-d17c-4863-9cee-7e654f97225b&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantzKjaergaardYanOrlando2019" class="citation journal cs1">Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T. P.; Gustavsson, S.; Oliver, W. D. (17 June 2019). "A Quantum Engineer's Guide to Superconducting Qubits". <i><a href="/wiki/Applied_Physics_Reviews" title="Applied Physics Reviews">Applied Physics Reviews</a></i>. <b>6</b> (2): 021318. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1904.06560">1904.06560</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019ApPRv...6b1318K">2019ApPRv...6b1318K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5089550">10.1063/1.5089550</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1931-9401">1931-9401</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119104251">119104251</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Physics+Reviews&amp;rft.atitle=A+Quantum+Engineer%27s+Guide+to+Superconducting+Qubits&amp;rft.volume=6&amp;rft.issue=2&amp;rft.pages=021318&amp;rft.date=2019-06-17&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119104251%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019ApPRv...6b1318K&amp;rft_id=info%3Aarxiv%2F1904.06560&amp;rft.issn=1931-9401&amp;rft_id=info%3Adoi%2F10.1063%2F1.5089550&amp;rft.aulast=Krantz&amp;rft.aufirst=P.&amp;rft.au=Kjaergaard%2C+M.&amp;rft.au=Yan%2C+F.&amp;rft.au=Orlando%2C+T.+P.&amp;rft.au=Gustavsson%2C+S.&amp;rft.au=Oliver%2C+W.+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitchell1998" class="citation web cs1">Mitchell, Ian (1998). <a rel="nofollow" class="external text" href="http://citeseer.ist.psu.edu/mitchell98computing.html">"Computing Power into the 21st Century: Moore's Law and Beyond"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Computing+Power+into+the+21st+Century%3A+Moore%27s+Law+and+Beyond&amp;rft.date=1998&amp;rft.aulast=Mitchell&amp;rft.aufirst=Ian&amp;rft_id=http%3A%2F%2Fciteseer.ist.psu.edu%2Fmitchell98computing.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimon1994" class="citation web cs1">Simon, Daniel R. (1994). <a rel="nofollow" class="external text" href="http://citeseer.ist.psu.edu/simon94power.html">"On the Power of Quantum Computation"</a>. Institute of Electrical and Electronics Engineers Computer Society Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=On+the+Power+of+Quantum+Computation&amp;rft.pub=Institute+of+Electrical+and+Electronics+Engineers+Computer+Society+Press&amp;rft.date=1994&amp;rft.aulast=Simon&amp;rft.aufirst=Daniel+R.&amp;rft_id=http%3A%2F%2Fciteseer.ist.psu.edu%2Fsimon94power.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_computing&amp;action=edit&amp;section=39" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Quantum_computer" class="extiw" title="commons:Quantum computer">Quantum computer</a> at Wikimedia Commons</li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> Learning materials related to <a href="https://en.wikiversity.org/wiki/Quantum_computing" class="extiw" title="v:Quantum computing">Quantum computing</a> at Wikiversity</li> <li><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a>: "<a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/qt-quantcomp/">Quantum Computing</a>" by Amit Hagar and Michael E. Cuffaro.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Quantum_computation,_theory_of">"Quantum computation, theory of"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+computation%2C+theory+of&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DQuantum_computation%2C_theory_of&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+computing" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://quantum.country/qcvc">Quantum computing for the very curious</a> by Andy Matuschak and <a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Michael Nielsen</a></li></ul> <dl><dt>Lectures</dt></dl> <ul><li><a rel="nofollow" class="external text" href="https://www.youtube.com/playlist?list=PL1826E60FD05B44E4">Quantum computing for the determined</a> – 22 video lectures by <a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Michael Nielsen</a></li> <li><a rel="nofollow" class="external text" href="http://www.quiprocone.org/Protected/DD_lectures.htm">Video Lectures</a> by <a href="/wiki/David_Deutsch" title="David Deutsch">David Deutsch</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303183533/http://www.quantware.ups-tlse.fr/IHP2006/">Lectures at the Institut Henri Poincaré (slides and videos)</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130901004919/http://nanohub.org/resources/4778">Online lecture on An Introduction to Quantum Computing, Edward Gerjuoy (2008)</a></li> <li>Lomonaco, Sam. <a rel="nofollow" class="external text" href="http://www.csee.umbc.edu/~lomonaco/Lectures.html#OxfordLectures">Four Lectures on Quantum Computing given at Oxford University in July 2006</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Processor_technologies" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Processor_technologies" title="Template:Processor technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Processor_technologies" title="Template talk:Processor technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Processor_technologies" title="Special:EditPage/Template:Processor technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Processor_technologies" style="font-size:114%;margin:0 4em"><a href="/wiki/Processor_(computing)" title="Processor (computing)">Processor technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_of_computation" title="Model of computation">Models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_machine" title="Abstract machine">Abstract machine</a></li> <li><a href="/wiki/Stored-program_computer" title="Stored-program computer">Stored-program computer</a></li> <li><a href="/wiki/Finite-state_machine" title="Finite-state machine">Finite-state machine</a> <ul><li><a href="/wiki/Finite-state_machine_with_datapath" class="mw-redirect" title="Finite-state machine with datapath">with datapath</a></li> <li><a href="/wiki/Hierarchical_state_machine" class="mw-redirect" title="Hierarchical state machine">Hierarchical</a></li> <li><a href="/wiki/Deterministic_finite_automaton" title="Deterministic finite automaton">Deterministic finite automaton</a></li> <li><a href="/wiki/Queue_automaton" title="Queue automaton">Queue automaton</a></li> <li><a href="/wiki/Cellular_automaton" title="Cellular automaton">Cellular automaton</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automaton</a></li></ul></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a> <ul><li><a href="/wiki/Alternating_Turing_machine" title="Alternating Turing machine">Alternating Turing machine</a></li> <li><a href="/wiki/Universal_Turing_machine" title="Universal Turing machine">Universal</a></li> <li><a href="/wiki/Post%E2%80%93Turing_machine" title="Post–Turing machine">Post–Turing</a></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum</a></li> <li><a href="/wiki/Nondeterministic_Turing_machine" title="Nondeterministic Turing machine">Nondeterministic Turing machine</a></li> <li><a href="/wiki/Probabilistic_Turing_machine" title="Probabilistic Turing machine">Probabilistic Turing machine</a></li> <li><a href="/wiki/Hypercomputation" title="Hypercomputation">Hypercomputation</a></li> <li><a href="/wiki/Zeno_machine" title="Zeno machine">Zeno machine</a></li></ul></li> <li><a href="/wiki/History_of_general-purpose_CPUs#Belt_machine_architecture" title="History of general-purpose CPUs">Belt machine</a></li> <li><a href="/wiki/Stack_machine" title="Stack machine">Stack machine</a></li> <li><a href="/wiki/Register_machine" title="Register machine">Register machines</a> <ul><li><a href="/wiki/Counter_machine" title="Counter machine">Counter</a></li> <li><a href="/wiki/Pointer_machine" title="Pointer machine">Pointer</a></li> <li><a href="/wiki/Random-access_machine" title="Random-access machine">Random-access</a></li> <li><a href="/wiki/Random-access_stored-program_machine" title="Random-access stored-program machine">Random-access stored program</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computer_architecture" title="Computer architecture">Architecture</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Microarchitecture" title="Microarchitecture">Microarchitecture</a></li> <li><a href="/wiki/Von_Neumann_architecture" title="Von Neumann architecture">Von Neumann</a></li> <li><a href="/wiki/Harvard_architecture" title="Harvard architecture">Harvard</a> <ul><li><a href="/wiki/Modified_Harvard_architecture" title="Modified Harvard architecture">modified</a></li></ul></li> <li><a href="/wiki/Dataflow_architecture" title="Dataflow architecture">Dataflow</a></li> <li><a href="/wiki/Transport_triggered_architecture" title="Transport triggered architecture">Transport-triggered</a></li> <li><a href="/wiki/Cellular_architecture" title="Cellular architecture">Cellular</a></li> <li><a href="/wiki/Endianness" title="Endianness">Endianness</a></li> <li><a href="/wiki/Computer_data_storage" title="Computer data storage">Memory access</a> <ul><li><a href="/wiki/Non-uniform_memory_access" title="Non-uniform memory access">NUMA</a></li> <li><a href="/wiki/Uniform_memory_access" title="Uniform memory access">HUMA</a></li> <li><a href="/wiki/Load%E2%80%93store_architecture" title="Load–store architecture">Load–store</a></li> <li><a href="/wiki/Register%E2%80%93memory_architecture" title="Register–memory architecture">Register/memory</a></li></ul></li> <li><a href="/wiki/Cache_hierarchy" title="Cache hierarchy">Cache hierarchy</a></li> <li><a href="/wiki/Memory_hierarchy" title="Memory hierarchy">Memory hierarchy</a> <ul><li><a href="/wiki/Virtual_memory" title="Virtual memory">Virtual memory</a></li> <li><a href="/wiki/Secondary_storage" class="mw-redirect" title="Secondary storage">Secondary storage</a></li></ul></li> <li><a href="/wiki/Heterogeneous_System_Architecture" title="Heterogeneous System Architecture">Heterogeneous</a></li> <li><a href="/wiki/Fabric_computing" title="Fabric computing">Fabric</a></li> <li><a href="/wiki/Multiprocessing" title="Multiprocessing">Multiprocessing</a></li> <li><a href="/wiki/Cognitive_computing" title="Cognitive computing">Cognitive</a></li> <li><a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">Neuromorphic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Instruction_set_architecture" title="Instruction set architecture">Instruction set<br />architectures</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonal_instruction_set" title="Orthogonal instruction set">Orthogonal instruction set</a></li> <li><a href="/wiki/Complex_instruction_set_computer" title="Complex instruction set computer">CISC</a></li> <li><a href="/wiki/Reduced_instruction_set_computer" title="Reduced instruction set computer">RISC</a></li> <li><a href="/wiki/Application-specific_instruction_set_processor" title="Application-specific instruction set processor">Application-specific</a></li> <li><a href="/wiki/Explicit_data_graph_execution" title="Explicit data graph execution">EDGE</a> <ul><li><a href="/wiki/TRIPS_architecture" title="TRIPS architecture">TRIPS</a></li></ul></li> <li><a href="/wiki/Very_long_instruction_word" title="Very long instruction word">VLIW</a> <ul><li><a href="/wiki/Explicitly_parallel_instruction_computing" title="Explicitly parallel instruction computing">EPIC</a></li></ul></li> <li><a href="/wiki/Minimal_instruction_set_computer" title="Minimal instruction set computer">MISC</a></li> <li><a href="/wiki/One-instruction_set_computer" title="One-instruction set computer">OISC</a></li> <li><a href="/wiki/No_instruction_set_computing" title="No instruction set computing">NISC</a></li> <li><a href="/wiki/Zero_instruction_set_computer" class="mw-redirect" title="Zero instruction set computer">ZISC</a></li> <li><a href="/wiki/VISC_architecture" title="VISC architecture">VISC architecture</a></li> <li><a class="mw-selflink selflink">Quantum computing</a></li> <li><a href="/wiki/Comparison_of_instruction_set_architectures" title="Comparison of instruction set architectures">Comparison</a> <ul><li><a href="/wiki/Addressing_mode" title="Addressing mode">Addressing modes</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Instruction<br />sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Motorola_68000_series" title="Motorola 68000 series">Motorola 68000 series</a></li> <li><a href="/wiki/VAX" title="VAX">VAX</a></li> <li><a href="/wiki/PDP-11_architecture" title="PDP-11 architecture">PDP-11</a></li> <li><a href="/wiki/X86" title="X86">x86</a></li> <li><a href="/wiki/ARM_architecture_family" title="ARM architecture family">ARM</a></li> <li><a href="/wiki/Stanford_MIPS" title="Stanford MIPS">Stanford MIPS</a></li> <li><a href="/wiki/MIPS_architecture" title="MIPS architecture">MIPS</a></li> <li><a href="/wiki/MIPS-X" title="MIPS-X">MIPS-X</a></li> <li>Power <ul><li><a href="/wiki/IBM_POWER_architecture" title="IBM POWER architecture">POWER</a></li> <li><a href="/wiki/PowerPC" title="PowerPC">PowerPC</a></li> <li><a href="/wiki/Power_ISA" title="Power ISA">Power ISA</a></li></ul></li> <li><a href="/wiki/Clipper_architecture" title="Clipper architecture">Clipper architecture</a></li> <li><a href="/wiki/SPARC" title="SPARC">SPARC</a></li> <li><a href="/wiki/SuperH" title="SuperH">SuperH</a></li> <li><a href="/wiki/DEC_Alpha" title="DEC Alpha">DEC Alpha</a></li> <li><a href="/wiki/ETRAX_CRIS" title="ETRAX CRIS">ETRAX CRIS</a></li> <li><a href="/wiki/M32R" title="M32R">M32R</a></li> <li><a href="/wiki/Unicore" title="Unicore">Unicore</a></li> <li><a href="/wiki/IA-64" title="IA-64">Itanium</a></li> <li><a href="/wiki/OpenRISC" title="OpenRISC">OpenRISC</a></li> <li><a href="/wiki/RISC-V" title="RISC-V">RISC-V</a></li> <li><a href="/wiki/MicroBlaze" title="MicroBlaze">MicroBlaze</a></li> <li><a href="/wiki/Little_man_computer" title="Little man computer">LMC</a></li> <li>System/3x0 <ul><li><a href="/wiki/IBM_System/360_architecture" title="IBM System/360 architecture">S/360</a></li> <li><a href="/wiki/IBM_System/370" title="IBM System/370">S/370</a></li> <li><a href="/wiki/IBM_System/390" title="IBM System/390">S/390</a></li> <li><a href="/wiki/Z/Architecture" title="Z/Architecture">z/Architecture</a></li></ul></li> <li>Tilera ISA</li> <li><a href="/wiki/VISC_architecture" title="VISC architecture">VISC architecture</a></li> <li><a href="/wiki/Adapteva#Products" class="mw-redirect" title="Adapteva">Epiphany architecture</a></li> <li><a href="/wiki/Comparison_of_instruction_set_architectures" title="Comparison of instruction set architectures">Others</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Instruction_cycle" title="Instruction cycle">Execution</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Instruction_pipelining" title="Instruction pipelining">Instruction pipelining</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pipeline_stall" title="Pipeline stall">Pipeline stall</a></li> <li><a href="/wiki/Operand_forwarding" title="Operand forwarding">Operand forwarding</a></li> <li><a href="/wiki/Classic_RISC_pipeline" title="Classic RISC pipeline">Classic RISC pipeline</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hazard_(computer_architecture)" title="Hazard (computer architecture)">Hazards</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Data_dependency" title="Data dependency">Data dependency</a></li> <li><a href="/wiki/Structural_hazard" class="mw-redirect" title="Structural hazard">Structural</a></li> <li><a href="/wiki/Control_hazard" class="mw-redirect" title="Control hazard">Control</a></li> <li><a href="/wiki/False_sharing" title="False sharing">False sharing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Out-of-order_execution" title="Out-of-order execution">Out-of-order</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scoreboarding" title="Scoreboarding">Scoreboarding</a></li> <li><a href="/wiki/Tomasulo%27s_algorithm" title="Tomasulo&#39;s algorithm">Tomasulo's algorithm</a> <ul><li><a href="/wiki/Reservation_station" title="Reservation station">Reservation station</a></li> <li><a href="/wiki/Re-order_buffer" title="Re-order buffer">Re-order buffer</a></li></ul></li> <li><a href="/wiki/Register_renaming" title="Register renaming">Register renaming</a></li> <li><a href="/wiki/Wide-issue" title="Wide-issue">Wide-issue</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Speculative_execution" title="Speculative execution">Speculative</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Branch_predictor" title="Branch predictor">Branch prediction</a></li> <li><a href="/wiki/Memory_dependence_prediction" title="Memory dependence prediction">Memory dependence prediction</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Parallel_computing" title="Parallel computing">Parallelism</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Level</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit-level_parallelism" title="Bit-level parallelism">Bit</a> <ul><li><a href="/wiki/Bit-serial_architecture" title="Bit-serial architecture">Bit-serial</a></li> <li><a href="/wiki/Word_(computer_architecture)" title="Word (computer architecture)">Word</a></li></ul></li> <li><a href="/wiki/Instruction-level_parallelism" title="Instruction-level parallelism">Instruction</a></li> <li><a href="/wiki/Instruction_pipelining" title="Instruction pipelining">Pipelining</a> <ul><li><a href="/wiki/Scalar_processor" title="Scalar processor">Scalar</a></li> <li><a href="/wiki/Superscalar_processor" title="Superscalar processor">Superscalar</a></li></ul></li> <li><a href="/wiki/Task_parallelism" title="Task parallelism">Task</a> <ul><li><a href="/wiki/Thread_(computing)" title="Thread (computing)">Thread</a></li> <li><a href="/wiki/Process_(computing)" title="Process (computing)">Process</a></li></ul></li> <li><a href="/wiki/Data_parallelism" title="Data parallelism">Data</a> <ul><li><a href="/wiki/Vector_processor" title="Vector processor">Vector</a></li></ul></li> <li><a href="/wiki/Memory-level_parallelism" title="Memory-level parallelism">Memory</a></li> <li><a href="/wiki/Distributed_architecture" class="mw-redirect" title="Distributed architecture">Distributed</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multithreading_(computer_architecture)" title="Multithreading (computer architecture)">Multithreading</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Temporal_multithreading" title="Temporal multithreading">Temporal</a></li> <li><a href="/wiki/Simultaneous_multithreading" title="Simultaneous multithreading">Simultaneous</a> <ul><li><a href="/wiki/Hyper-threading" title="Hyper-threading">Hyperthreading</a></li> <li><a href="/wiki/Simultaneous_and_heterogeneous_multithreading" title="Simultaneous and heterogeneous multithreading">Simultaneous and heterogenous</a></li></ul></li> <li><a href="/wiki/Speculative_multithreading" title="Speculative multithreading">Speculative</a></li> <li><a href="/wiki/Preemption_(computing)" title="Preemption (computing)">Preemptive</a></li> <li><a href="/wiki/Cooperative_multitasking" title="Cooperative multitasking">Cooperative</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Flynn%27s_taxonomy" title="Flynn&#39;s taxonomy">Flynn's taxonomy</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Single_instruction,_single_data" title="Single instruction, single data">SISD</a></li> <li><a href="/wiki/Single_instruction,_multiple_data" title="Single instruction, multiple data">SIMD</a> <ul><li><a href="/wiki/Single_instruction,_multiple_threads" title="Single instruction, multiple threads">Array processing (SIMT)</a></li> <li><a href="/wiki/Flynn%27s_taxonomy#Pipelined_processor" title="Flynn&#39;s taxonomy">Pipelined processing</a></li> <li><a href="/wiki/Flynn%27s_taxonomy#Associative_processor" title="Flynn&#39;s taxonomy">Associative processing</a></li> <li><a href="/wiki/SWAR" title="SWAR">SWAR</a></li></ul></li> <li><a href="/wiki/Multiple_instruction,_single_data" title="Multiple instruction, single data">MISD</a></li> <li><a href="/wiki/Multiple_instruction,_multiple_data" title="Multiple instruction, multiple data">MIMD</a> <ul><li><a href="/wiki/Single_program,_multiple_data" title="Single program, multiple data">SPMD</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computer_performance" title="Computer performance">Processor<br />performance</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor_count" title="Transistor count">Transistor count</a></li> <li><a href="/wiki/Instructions_per_cycle" title="Instructions per cycle">Instructions per cycle</a> (IPC) <ul><li><a href="/wiki/Cycles_per_instruction" title="Cycles per instruction">Cycles per instruction</a> (CPI)</li></ul></li> <li><a href="/wiki/Instructions_per_second" title="Instructions per second">Instructions per second</a> (IPS)</li> <li><a href="/wiki/FLOPS" class="mw-redirect" title="FLOPS">Floating-point operations per second</a> (FLOPS)</li> <li><a href="/wiki/Transactions_per_second" title="Transactions per second">Transactions per second</a> (TPS)</li> <li><a href="/wiki/SUPS" title="SUPS">Synaptic updates per second</a> (SUPS)</li> <li><a href="/wiki/Performance_per_watt" title="Performance per watt">Performance per watt</a> (PPW)</li> <li><a href="/wiki/Cache_performance_measurement_and_metric" title="Cache performance measurement and metric">Cache performance metrics</a></li> <li><a href="/wiki/Computer_performance_by_orders_of_magnitude" title="Computer performance by orders of magnitude">Computer performance by orders of magnitude</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Processor_(computing)" title="Processor (computing)">Types</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_processing_unit" title="Central processing unit">Central processing unit</a> (CPU)</li> <li><a href="/wiki/Graphics_processing_unit" title="Graphics processing unit">Graphics processing unit</a> (GPU) <ul><li><a href="/wiki/General-purpose_computing_on_graphics_processing_units" title="General-purpose computing on graphics processing units">GPGPU</a></li></ul></li> <li><a href="/wiki/Vector_processor" title="Vector processor">Vector</a></li> <li><a href="/wiki/Barrel_processor" title="Barrel processor">Barrel</a></li> <li><a href="/wiki/Stream_processing" title="Stream processing">Stream</a></li> <li><a href="/wiki/Tile_processor" title="Tile processor">Tile processor</a></li> <li><a href="/wiki/Coprocessor" title="Coprocessor">Coprocessor</a></li> <li><a href="/wiki/Programmable_Array_Logic" title="Programmable Array Logic">PAL</a></li> <li><a href="/wiki/Application-specific_integrated_circuit" title="Application-specific integrated circuit">ASIC</a></li> <li><a href="/wiki/Field-programmable_gate_array" title="Field-programmable gate array">FPGA</a></li> <li><a href="/wiki/Field-programmable_object_array" title="Field-programmable object array">FPOA</a></li> <li><a href="/wiki/Complex_programmable_logic_device" title="Complex programmable logic device">CPLD</a></li> <li><a href="/wiki/Multi-chip_module" title="Multi-chip module">Multi-chip module</a> (MCM)</li> <li><a href="/wiki/System_in_a_package" title="System in a package">System in a package</a> (SiP)</li> <li><a href="/wiki/Package_on_a_package" title="Package on a package">Package on a package</a> (PoP)</li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">By application</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Embedded_system" title="Embedded system">Embedded system</a></li> <li><a href="/wiki/Microprocessor" title="Microprocessor">Microprocessor</a></li> <li><a href="/wiki/Microcontroller" title="Microcontroller">Microcontroller</a></li> <li><a href="/wiki/Mobile_processor" title="Mobile processor">Mobile</a></li> <li><a href="/wiki/Ultra-low-voltage_processor" title="Ultra-low-voltage processor">Ultra-low-voltage</a></li> <li><a href="/wiki/Application-specific_instruction_set_processor" title="Application-specific instruction set processor">ASIP</a></li> <li><a href="/wiki/Soft_microprocessor" title="Soft microprocessor">Soft microprocessor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Systems<br />on chip</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/System_on_a_chip" title="System on a chip">System on a chip</a> (SoC)</li> <li><a href="/wiki/Multiprocessor_system_on_a_chip" class="mw-redirect" title="Multiprocessor system on a chip">Multiprocessor</a> (MPSoC)</li> <li><a href="/wiki/Cypress_PSoC" title="Cypress PSoC">Cypress PSoC</a></li> <li><a href="/wiki/Network_on_a_chip" title="Network on a chip">Network on a chip</a> (NoC)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hardware_acceleration" title="Hardware acceleration">Hardware<br />accelerators</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coprocessor" title="Coprocessor">Coprocessor</a></li> <li><a href="/wiki/AI_accelerator" title="AI accelerator">AI accelerator</a></li> <li><a href="/wiki/Graphics_processing_unit" title="Graphics processing unit">Graphics processing unit</a> (GPU)</li> <li><a href="/wiki/Image_processor" title="Image processor">Image processor</a></li> <li><a href="/wiki/Vision_processing_unit" title="Vision processing unit">Vision processing unit</a> (VPU)</li> <li><a href="/wiki/Physics_processing_unit" title="Physics processing unit">Physics processing unit</a> (PPU)</li> <li><a href="/wiki/Digital_signal_processor" title="Digital signal processor">Digital signal processor</a> (DSP)</li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">Tensor Processing Unit</a> (TPU)</li> <li><a href="/wiki/Secure_cryptoprocessor" title="Secure cryptoprocessor">Secure cryptoprocessor</a></li> <li><a href="/wiki/Network_processor" title="Network processor">Network processor</a></li> <li><a href="/wiki/Baseband_processor" title="Baseband processor">Baseband processor</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Word_(computer_architecture)" title="Word (computer architecture)">Word size</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/1-bit_computing" title="1-bit computing">1-bit</a></li> <li><a href="/wiki/4-bit_computing" title="4-bit computing">4-bit</a></li> <li><a href="/wiki/8-bit_computing" title="8-bit computing">8-bit</a></li> <li><a href="/wiki/12-bit_computing" title="12-bit computing">12-bit</a></li> <li><a href="/wiki/Apollo_Guidance_Computer" title="Apollo Guidance Computer">15-bit</a></li> <li><a href="/wiki/16-bit_computing" title="16-bit computing">16-bit</a></li> <li><a href="/wiki/24-bit_computing" title="24-bit computing">24-bit</a></li> <li><a href="/wiki/32-bit_computing" title="32-bit computing">32-bit</a></li> <li><a href="/wiki/48-bit_computing" title="48-bit computing">48-bit</a></li> <li><a href="/wiki/64-bit_computing" title="64-bit computing">64-bit</a></li> <li><a href="/wiki/128-bit_computing" title="128-bit computing">128-bit</a></li> <li><a href="/wiki/256-bit_computing" title="256-bit computing">256-bit</a></li> <li><a href="/wiki/512-bit_computing" title="512-bit computing">512-bit</a></li> <li><a href="/wiki/Bit_slicing" title="Bit slicing">bit slicing</a></li> <li><a href="/wiki/Word_(computer_architecture)#Table_of_word_sizes" title="Word (computer architecture)">others</a> <ul><li><a href="/wiki/Word_(computer_architecture)#Variable-word_architectures" title="Word (computer architecture)">variable</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Core count</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Single-core" title="Single-core">Single-core</a></li> <li><a href="/wiki/Multi-core_processor" title="Multi-core processor">Multi-core</a></li> <li><a href="/wiki/Manycore_processor" title="Manycore processor">Manycore</a></li> <li><a href="/wiki/Heterogeneous_computing" title="Heterogeneous computing">Heterogeneous architecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Components</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_processing_unit" title="Central processing unit">Core</a></li> <li><a href="/wiki/Cache_(computing)" title="Cache (computing)">Cache</a> <ul><li><a href="/wiki/CPU_cache" title="CPU cache">CPU cache</a></li> <li><a href="/wiki/Scratchpad_memory" title="Scratchpad memory">Scratchpad memory</a></li> <li><a href="/wiki/Data_cache" class="mw-redirect" title="Data cache">Data cache</a></li> <li><a href="/wiki/Instruction_cache" class="mw-redirect" title="Instruction cache">Instruction cache</a></li> <li><a href="/wiki/Cache_replacement_policies" title="Cache replacement policies">replacement policies</a></li> <li><a href="/wiki/Cache_coherence" title="Cache coherence">coherence</a></li></ul></li> <li><a href="/wiki/Bus_(computing)" title="Bus (computing)">Bus</a></li> <li><a href="/wiki/Clock_rate" title="Clock rate">Clock rate</a></li> <li><a href="/wiki/Clock_signal" title="Clock signal">Clock signal</a></li> <li><a href="/wiki/FIFO_(computing_and_electronics)" title="FIFO (computing and electronics)">FIFO</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Execution_unit" title="Execution unit">Functional<br />units</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_logic_unit" title="Arithmetic logic unit">Arithmetic logic unit</a> (ALU)</li> <li><a href="/wiki/Address_generation_unit" title="Address generation unit">Address generation unit</a> (AGU)</li> <li><a href="/wiki/Floating-point_unit" title="Floating-point unit">Floating-point unit</a> (FPU)</li> <li><a href="/wiki/Memory_management_unit" title="Memory management unit">Memory management unit</a> (MMU) <ul><li><a href="/wiki/Load%E2%80%93store_unit" title="Load–store unit">Load–store unit</a></li> <li><a href="/wiki/Translation_lookaside_buffer" title="Translation lookaside buffer">Translation lookaside buffer</a> (TLB)</li></ul></li> <li><a href="/wiki/Branch_predictor" title="Branch predictor">Branch predictor</a></li> <li><a href="/wiki/Branch_target_predictor" title="Branch target predictor">Branch target predictor</a></li> <li><a href="/wiki/Memory_controller" title="Memory controller">Integrated memory controller</a> (IMC) <ul><li><a href="/wiki/Memory_management_unit" title="Memory management unit">Memory management unit</a></li></ul></li> <li><a href="/wiki/Instruction_decoder" class="mw-redirect" title="Instruction decoder">Instruction decoder</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic_gate" title="Logic gate">Logic</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Combinational_logic" title="Combinational logic">Combinational</a></li> <li><a href="/wiki/Sequential_logic" title="Sequential logic">Sequential</a></li> <li><a href="/wiki/Glue_logic" title="Glue logic">Glue</a></li> <li><a href="/wiki/Logic_gate" title="Logic gate">Logic gate</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum</a></li> <li><a href="/wiki/Gate_array" title="Gate array">Array</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hardware_register" title="Hardware register">Registers</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Processor_register" title="Processor register">Processor register</a></li> <li><a href="/wiki/Status_register" title="Status register">Status register</a></li> <li><a href="/wiki/Stack_register" title="Stack register">Stack register</a></li> <li><a href="/wiki/Register_file" title="Register file">Register file</a></li> <li><a href="/wiki/Memory_buffer_register" title="Memory buffer register">Memory buffer</a></li> <li><a href="/wiki/Memory_address_register" title="Memory address register">Memory address register</a></li> <li><a href="/wiki/Program_counter" title="Program counter">Program counter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Control_unit" title="Control unit">Control unit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardwired_control_unit" class="mw-redirect" title="Hardwired control unit">Hardwired control unit</a></li> <li><a href="/wiki/Instruction_unit" title="Instruction unit">Instruction unit</a></li> <li><a href="/wiki/Data_buffer" title="Data buffer">Data buffer</a></li> <li><a href="/wiki/Write_buffer" title="Write buffer">Write buffer</a></li> <li><a href="/wiki/Microcode" title="Microcode">Microcode</a> <a href="/wiki/ROM_image" title="ROM image">ROM</a></li> <li><a href="/wiki/Counter_(digital)" title="Counter (digital)">Counter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Datapath" title="Datapath">Datapath</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Multiplexer" title="Multiplexer">Multiplexer</a></li> <li><a href="/wiki/Demultiplexer" class="mw-redirect" title="Demultiplexer">Demultiplexer</a></li> <li><a href="/wiki/Adder_(electronics)" title="Adder (electronics)">Adder</a></li> <li><a href="/wiki/Binary_multiplier" title="Binary multiplier">Multiplier</a> <ul><li><a href="/wiki/CPU_multiplier" title="CPU multiplier">CPU</a></li></ul></li> <li><a href="/wiki/Binary_decoder" title="Binary decoder">Binary decoder</a> <ul><li><a href="/wiki/Address_decoder" title="Address decoder">Address decoder</a></li> <li><a href="/wiki/Sum-addressed_decoder" title="Sum-addressed decoder">Sum-addressed decoder</a></li></ul></li> <li><a href="/wiki/Barrel_shifter" title="Barrel shifter">Barrel shifter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Electronic_circuit" title="Electronic circuit">Circuitry</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> <ul><li><a href="/wiki/Three-dimensional_integrated_circuit" title="Three-dimensional integrated circuit">3D</a></li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal</a></li> <li><a href="/wiki/Power_management_integrated_circuit" title="Power management integrated circuit">Power management</a></li></ul></li> <li><a href="/wiki/Boolean_circuit" title="Boolean circuit">Boolean</a></li> <li><a href="/wiki/Circuit_(computer_science)" title="Circuit (computer science)">Digital</a></li> <li><a href="/wiki/Analogue_electronics" title="Analogue electronics">Analog</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum</a></li> <li><a href="/wiki/Switch#Electronic_switches" title="Switch">Switch</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Power_management" title="Power management">Power<br />management</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Power_Management_Unit" title="Power Management Unit">PMU</a></li> <li><a href="/wiki/Advanced_Power_Management" title="Advanced Power Management">APM</a></li> <li><a href="/wiki/ACPI" title="ACPI">ACPI</a></li> <li><a href="/wiki/Dynamic_frequency_scaling" title="Dynamic frequency scaling">Dynamic frequency scaling</a></li> <li><a href="/wiki/Dynamic_voltage_scaling" title="Dynamic voltage scaling">Dynamic voltage scaling</a></li> <li><a href="/wiki/Clock_gating" title="Clock gating">Clock gating</a></li> <li><a href="/wiki/Performance_per_watt" title="Performance per watt">Performance per watt</a> (PPW)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_general-purpose_CPUs" title="History of general-purpose CPUs">History of general-purpose CPUs</a></li> <li><a href="/wiki/Microprocessor_chronology" title="Microprocessor chronology">Microprocessor chronology</a></li> <li><a href="/wiki/Processor_design" title="Processor design">Processor design</a></li> <li><a href="/wiki/Digital_electronics" title="Digital electronics">Digital electronics</a></li> <li><a href="/wiki/Hardware_security_module" title="Hardware security module">Hardware security module</a></li> <li><a href="/wiki/Semiconductor_device_fabrication" title="Semiconductor device fabrication">Semiconductor device fabrication</a></li> <li><a href="/wiki/Tick%E2%80%93tock_model" title="Tick–tock model">Tick–tock model</a></li> <li><a href="/wiki/Pin_grid_array" title="Pin grid array">Pin grid array</a></li> <li><a href="/wiki/Chip_carrier" title="Chip carrier">Chip carrier</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo&#39;s criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a class="mw-selflink selflink">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell&#39;s theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason&#39;s theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo&#39;s theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's</a></li> <li><a href="/wiki/Simon%27s_problem" title="Simon&#39;s problem">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gate</a></li></ul></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Quantum</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">cellular automata</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">complexity theory</a></li> <li><a class="mw-selflink selflink">computing</a></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">cryptography</a> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">post-quantum</a></li></ul></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">dynamics</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">error correction</a></li> <li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">finite automata</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">image processing</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">imaging</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">logic</a></li> <li><a href="/wiki/Quantum_logic_clock" title="Quantum logic clock">logic clock</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">logic gate</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">metamaterial</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acoustic_levitation" title="Acoustic levitation">Acoustic levitation</a></li> <li><a href="/wiki/Anti-gravity" title="Anti-gravity">Anti-gravity</a></li> <li><a href="/wiki/Cloak_of_invisibility" title="Cloak of invisibility">Cloak of invisibility</a></li> <li><a href="/wiki/Digital_scent_technology" title="Digital scent technology">Digital scent technology</a></li> <li><a href="/wiki/Force_field_(technology)" title="Force field (technology)">Force field</a> <ul><li><a href="/wiki/Plasma_window" title="Plasma window">Plasma window</a></li></ul></li> <li><a href="/wiki/Immersion_(virtual_reality)" title="Immersion (virtual reality)">Immersive virtual reality</a></li> <li><a href="/wiki/Magnetic_refrigeration" title="Magnetic refrigeration">Magnetic refrigeration</a></li> <li><a href="/wiki/Phased-array_optics" title="Phased-array optics">Phased-array optics</a></li> <li><a href="/wiki/Thermoacoustic_heat_engine" title="Thermoacoustic heat engine">Thermoacoustic heat engine</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper&#39;s experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler&#39;s delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a class="mw-selflink selflink">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger&#39;s cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger&#39;s cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner&#39;s friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q17995793#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2014002839">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="kvantové výpočty"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph367803&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007407434005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐64cd99f567‐6rhmh Cached time: 20241125154828 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.180 seconds Real time usage: 2.716 seconds Preprocessor visited node count: 17316/1000000 Post‐expand include size: 571902/2097152 bytes Template argument size: 9776/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 17/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 646143/5000000 bytes Lua time usage: 1.384/10.000 seconds Lua memory usage: 28117255/52428800 bytes Lua Profile: dataWrapper <mw.lua:672> 240 ms 16.4% ? 160 ms 11.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 160 ms 11.0% <mw.lua:694> 120 ms 8.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 100 ms 6.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 80 ms 5.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 60 ms 4.1% gsub 60 ms 4.1% recursiveClone <mwInit.lua:45> 40 ms 2.7% tostring 40 ms 2.7% [others] 400 ms 27.4% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2216.678 1 -total 44.34% 982.947 2 Template:Reflist 25.00% 554.223 73 Template:Cite_journal 11.09% 245.928 20 Template:Annotated_link 8.74% 193.818 28 Template:Sfn 8.13% 180.151 1 Template:Short_description 7.12% 157.775 34 Template:Cite_book 5.48% 121.378 12 Template:Navbox 4.85% 107.522 41 Template:Main_other 4.75% 105.220 26 Template:Cite_web --> <!-- Saved in parser cache with key enwiki:pcache:idhash:25220-0!canonical and timestamp 20241125154828 and revision id 1258679333. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Quantum_computing&amp;oldid=1258679333">https://en.wikipedia.org/w/index.php?title=Quantum_computing&amp;oldid=1258679333</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Quantum_computing" title="Category:Quantum computing">Quantum computing</a></li><li><a href="/wiki/Category:Models_of_computation" title="Category:Models of computation">Models of computation</a></li><li><a href="/wiki/Category:Quantum_cryptography" title="Category:Quantum cryptography">Quantum cryptography</a></li><li><a href="/wiki/Category:Information_theory" title="Category:Information theory">Information theory</a></li><li><a href="/wiki/Category:Computational_complexity_theory" title="Category:Computational complexity theory">Computational complexity theory</a></li><li><a href="/wiki/Category:Classes_of_computers" title="Category:Classes of computers">Classes of computers</a></li><li><a href="/wiki/Category:Theoretical_computer_science" title="Category:Theoretical computer science">Theoretical computer science</a></li><li><a href="/wiki/Category:Open_problems" title="Category:Open problems">Open problems</a></li><li><a href="/wiki/Category:Computer-related_introductions_in_1980" title="Category:Computer-related introductions in 1980">Computer-related introductions in 1980</a></li><li><a href="/wiki/Category:Supercomputers" title="Category:Supercomputers">Supercomputers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_Russian-language_sources_(ru)" title="Category:CS1 Russian-language sources (ru)">CS1 Russian-language sources (ru)</a></li><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_May_2020" title="Category:Wikipedia articles needing page number citations from May 2020">Wikipedia articles needing page number citations from May 2020</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_February_2023" title="Category:Use American English from February 2023">Use American English from February 2023</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_February_2021" title="Category:Use dmy dates from February 2021">Use dmy dates from February 2021</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2023" title="Category:Articles containing potentially dated statements from 2023">Articles containing potentially dated statements from 2023</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Commons_link_is_locally_defined" title="Category:Commons link is locally defined">Commons link is locally defined</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 00:17<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Quantum_computing&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5cd4cd96d5-ql8gb","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"2.180","walltime":"2.716","ppvisitednodes":{"value":17316,"limit":1000000},"postexpandincludesize":{"value":571902,"limit":2097152},"templateargumentsize":{"value":9776,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":17,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":646143,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2216.678 1 -total"," 44.34% 982.947 2 Template:Reflist"," 25.00% 554.223 73 Template:Cite_journal"," 11.09% 245.928 20 Template:Annotated_link"," 8.74% 193.818 28 Template:Sfn"," 8.13% 180.151 1 Template:Short_description"," 7.12% 157.775 34 Template:Cite_book"," 5.48% 121.378 12 Template:Navbox"," 4.85% 107.522 41 Template:Main_other"," 4.75% 105.220 26 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"1.384","limit":"10.000"},"limitreport-memusage":{"value":28117255,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAaronson2013\"] = 1,\n [\"CITEREFAaronson2019\"] = 1,\n [\"CITEREFAaronsonArkhipov2011\"] = 1,\n [\"CITEREFAbbotDoeringCavesLidar2003\"] = 1,\n [\"CITEREFAharonovvan_DamKempeLandau2008\"] = 1,\n [\"CITEREFAhsan2015\"] = 1,\n [\"CITEREFAhsanMeterKim2016\"] = 1,\n [\"CITEREFAjagekarYou2020\"] = 1,\n [\"CITEREFAjagekarYou2021\"] = 1,\n [\"CITEREFAkama2014\"] = 1,\n [\"CITEREFAmbainis2004\"] = 1,\n [\"CITEREFAmbainis2014\"] = 1,\n [\"CITEREFAmyMatteoGheorghiuMosca2016\"] = 1,\n [\"CITEREFAruteAryaBabbushBacon2019\"] = 1,\n [\"CITEREFBall2020\"] = 1,\n [\"CITEREFBenedettiRealpe-GómezBiswasPerdomo-Ortiz2016\"] = 1,\n [\"CITEREFBenentiCasatiRossiniStrini2019\"] = 1,\n [\"CITEREFBenioff1980\"] = 1,\n [\"CITEREFBennett2020\"] = 1,\n [\"CITEREFBennettBernsteinBrassardVazirani1997\"] = 1,\n [\"CITEREFBennettBrassard1984\"] = 1,\n [\"CITEREFBernhardt2019\"] = 1,\n [\"CITEREFBernstein2009\"] = 1,\n [\"CITEREFBernsteinVazirani1993\"] = 1,\n [\"CITEREFBernsteinVazirani1997\"] = 1,\n [\"CITEREFBerthiaume1998\"] = 1,\n [\"CITEREFBhatta2020\"] = 1,\n [\"CITEREFBiamonteWittekPancottiRebentrost2017\"] = 1,\n [\"CITEREFBiondiHeidHenkeMohr2021\"] = 1,\n [\"CITEREFBluvsteinEveredGeimLi2023\"] = 1,\n [\"CITEREFBoixoIsakovSmelyanskiyBabbush2018\"] = 1,\n [\"CITEREFBourzac2017\"] = 1,\n [\"CITEREFBrassard2005\"] = 1,\n [\"CITEREFBrassardHøyerTapp2016\"] = 1,\n [\"CITEREFBrooks2023\"] = 1,\n [\"CITEREFBuddeVolz2019\"] = 1,\n [\"CITEREFBulmerBellChadwickJones2022\"] = 1,\n [\"CITEREFBulutaNori2009\"] = 1,\n [\"CITEREFCaoRomeroOlsonDegroote2019\"] = 1,\n [\"CITEREFCavaliereMattssonSmeets2020\"] = 1,\n [\"CITEREFCeruzzi2012\"] = 1,\n [\"CITEREFChang2023\"] = 1,\n [\"CITEREFChi-Chih_Yao1993\"] = 1,\n [\"CITEREFCho2019\"] = 1,\n [\"CITEREFCho2022\"] = 1,\n [\"CITEREFChoudhury2023\"] = 1,\n [\"CITEREFChuangGershenfeldKubinec1998\"] = 1,\n [\"CITEREFConover2020\"] = 1,\n [\"CITEREFDasChakrabarti2008\"] = 1,\n [\"CITEREFDavies2007\"] = 1,\n [\"CITEREFDeutsch1985\"] = 1,\n [\"CITEREFDiVincenzo1995\"] = 2,\n [\"CITEREFDiVincenzo2000\"] = 2,\n [\"CITEREFDyakonov2006\"] = 1,\n [\"CITEREFDyakonov2018\"] = 2,\n [\"CITEREFDyakonov2020\"] = 1,\n [\"CITEREFFarhiGoldstoneGutmann2008\"] = 1,\n [\"CITEREFFeynman1982\"] = 2,\n [\"CITEREFFreedberg_Jr.2023\"] = 1,\n [\"CITEREFFreedmanKitaevLarsenWang2003\"] = 1,\n [\"CITEREFFreedmanLarsenWang2002\"] = 1,\n [\"CITEREFGaoAnschuetzWangCirac2022\"] = 1,\n [\"CITEREFGaristo\"] = 1,\n [\"CITEREFGent2023\"] = 1,\n [\"CITEREFGibney2019\"] = 2,\n [\"CITEREFGidneyEkerå2021\"] = 1,\n [\"CITEREFGiles2019\"] = 2,\n [\"CITEREFGrover1996\"] = 2,\n [\"CITEREFGrumblingHorowitz2019\"] = 1,\n [\"CITEREFGuoBreumBorregaardIzumi2019\"] = 1,\n [\"CITEREFHarrowHassidimLloyd2009\"] = 1,\n [\"CITEREFHidary2021\"] = 1,\n [\"CITEREFHiroshiMasahito2006\"] = 1,\n [\"CITEREFHodges2014\"] = 1,\n [\"CITEREFHolton\"] = 1,\n [\"CITEREFHughesIsaacsonPerrySun2021\"] = 1,\n [\"CITEREFJaeger2007\"] = 1,\n [\"CITEREFJeutner2021\"] = 1,\n [\"CITEREFJohnstonHarriganGimeno-Segovia2019\"] = 1,\n [\"CITEREFJones2013\"] = 1,\n [\"CITEREFJordan2022\"] = 1,\n [\"CITEREFKalai2016\"] = 1,\n [\"CITEREFKayeLaflammeMosca2007\"] = 1,\n [\"CITEREFKim,_Youngseok2023\"] = 1,\n [\"CITEREFKitaevShenVyalyi2002\"] = 1,\n [\"CITEREFKobayashiGall2006\"] = 1,\n [\"CITEREFKozlowskiWehner2019\"] = 1,\n [\"CITEREFKrantzKjaergaardYanOrlando2019\"] = 1,\n [\"CITEREFKurgalinBorzunov2021\"] = 2,\n [\"CITEREFLenstra2000\"] = 1,\n [\"CITEREFLeongSung2022\"] = 1,\n [\"CITEREFLiTopalogluGhosh2021\"] = 1,\n [\"CITEREFLiuChenGuoSong2024\"] = 1,\n [\"CITEREFLiuLiuLiFu2021\"] = 1,\n [\"CITEREFLloyd1996\"] = 1,\n [\"CITEREFLucian_Armasu2016\"] = 1,\n [\"CITEREFMackie2024\"] = 1,\n [\"CITEREFManin1980\"] = 1,\n [\"CITEREFMartinisBoixo2019\"] = 1,\n [\"CITEREFMcCormick2022\"] = 1,\n [\"CITEREFMcEliece1978\"] = 1,\n [\"CITEREFMermin2007\"] = 1,\n [\"CITEREFMitchell1998\"] = 1,\n [\"CITEREFMonroe2008\"] = 1,\n [\"CITEREFMonroe2022\"] = 1,\n [\"CITEREFMorello2018\"] = 1,\n [\"CITEREFMårtensson-Pendrill2006\"] = 1,\n [\"CITEREFNayakSimonSternDas_Sarma2008\"] = 1,\n [\"CITEREFNielsenChuang2010\"] = 1,\n [\"CITEREFNorton2007\"] = 1,\n [\"CITEREFOuteiralStrahmMorrisBenjamin2021\"] = 1,\n [\"CITEREFPanChenZhang2022\"] = 1,\n [\"CITEREFPanZhang2021\"] = 1,\n [\"CITEREFPaukaDasKalraMoini2021\"] = 1,\n [\"CITEREFPednault2019\"] = 1,\n [\"CITEREFPednaultGunnelsNanniciniHoresh2019\"] = 1,\n [\"CITEREFPirandolaAndersenBanchiBerta2020\"] = 2,\n [\"CITEREFPreskill2012\"] = 1,\n [\"CITEREFPreskill2018\"] = 2,\n [\"CITEREFRaussendorfBrowneBriegel2003\"] = 1,\n [\"CITEREFRegan2016\"] = 1,\n [\"CITEREFRichGellman2014\"] = 1,\n [\"CITEREFRinottShohamKalai2021\"] = 1,\n [\"CITEREFRoberson2020\"] = 1,\n [\"CITEREFRodrigo2020\"] = 1,\n [\"CITEREFRuaneMcAfeeOliver2022\"] = 1,\n [\"CITEREFRussell2019\"] = 1,\n [\"CITEREFSavage2017\"] = 1,\n [\"CITEREFShor1994\"] = 1,\n [\"CITEREFSimon1994\"] = 2,\n [\"CITEREFStaff2023\"] = 1,\n [\"CITEREFStolzeSuter2004\"] = 1,\n [\"CITEREFSusskindFriedman2014\"] = 1,\n [\"CITEREFSwayne2023\"] = 1,\n [\"CITEREFTacchinoChiesaCarrettaGerace2019\"] = 1,\n [\"CITEREFTavares2019\"] = 1,\n [\"CITEREFTorsten_HoeflerThomas_HänerMatthias_Troyer2023\"] = 1,\n [\"CITEREFUnruh1995\"] = 1,\n [\"CITEREFVepsäläinenKaramlouOrrellDogra2020\"] = 1,\n [\"CITEREFWichert2020\"] = 1,\n [\"CITEREFWilliams2011\"] = 1,\n [\"CITEREFWong2022\"] = 1,\n [\"CITEREFXuMaZhangLo2020\"] = 1,\n [\"CITEREFXuMaoSakkWang2023\"] = 1,\n [\"CITEREFZengChenZhouWen2019\"] = 1,\n [\"CITEREFZhongWangDengChen2020\"] = 1,\n [\"CITEREFZuDaide_Waele2022\"] = 1,\n [\"Computational_biology\"] = 1,\n [\"Computer-aided_drug_design_and_generative_chemistry\"] = 1,\n [\"Definition\"] = 1,\n [\"Quantum_circuit\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"*\"] = 1,\n [\"Anchor\"] = 3,\n [\"Annotated link\"] = 20,\n [\"As of\"] = 1,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 2,\n [\"CPU technologies\"] = 1,\n [\"Cite AV media\"] = 2,\n [\"Cite arXiv\"] = 8,\n [\"Cite book\"] = 34,\n [\"Cite conference\"] = 6,\n [\"Cite encyclopedia\"] = 1,\n [\"Cite journal\"] = 73,\n [\"Cite magazine\"] = 1,\n [\"Cite news\"] = 9,\n [\"Cite web\"] = 26,\n [\"Colend\"] = 1,\n [\"Cols\"] = 1,\n [\"Commons category\"] = 1,\n [\"Commons-inline\"] = 1,\n [\"Efn\"] = 2,\n [\"Em\"] = 1,\n [\"Emerging technologies\"] = 1,\n [\"En dash\"] = 4,\n [\"For timeline\"] = 1,\n [\"Further\"] = 4,\n [\"Gloss\"] = 1,\n [\"Hyphen\"] = 1,\n [\"Ket\"] = 11,\n [\"Main\"] = 5,\n [\"Mdash\"] = 2,\n [\"Nbsp\"] = 4,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 3,\n [\"Page needed\"] = 1,\n [\"Quantum computing\"] = 1,\n [\"Quantum mechanics topics\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 2,\n [\"Sfn\"] = 28,\n [\"Sfrac\"] = 6,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Subst:title case\"] = 1,\n [\"Use American English\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Wikiversity inline\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["dataWrapper \u003Cmw.lua:672\u003E","240","16.4"],["?","160","11.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","160","11.0"],["\u003Cmw.lua:694\u003E","120","8.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","100","6.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","80","5.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","60","4.1"],["gsub","60","4.1"],["recursiveClone \u003CmwInit.lua:45\u003E","40","2.7"],["tostring","40","2.7"],["[others]","400","27.4"]]},"cachereport":{"origin":"mw-web.eqiad.main-64cd99f567-6rhmh","timestamp":"20241125154828","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quantum computing","url":"https:\/\/en.wikipedia.org\/wiki\/Quantum_computing","sameAs":"http:\/\/www.wikidata.org\/entity\/Q17995793","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q17995793","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-21T16:10:53Z","dateModified":"2024-11-21T00:17:02Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/6b\/Bloch_sphere.svg","headline":"study of a model of computation"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10