CINXE.COM

Search results for: digital elevation model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: digital elevation model</title> <meta name="description" content="Search results for: digital elevation model"> <meta name="keywords" content="digital elevation model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="digital elevation model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="digital elevation model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19200</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: digital elevation model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19200</span> Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keisuke%20Takahata">Keisuke Takahata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Suetsugu"> Hiroshi Suetsugu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20terrain%20model" title="digital terrain model">digital terrain model</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20LiDAR" title=" satellite LiDAR"> satellite LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20processes" title=" gaussian processes"> gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/148360/satellite-lidar-based-digital-terrain-model-correction-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19199</span> Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hao%20Chang">Chia-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Geng-Gui%20Wang"> Geng-Gui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Cheng%20Wu"> Jee-Cheng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title="digital elevation model">digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20factors" title=" environmental factors"> environmental factors</a>, <a href="https://publications.waset.org/abstracts/search?q=back-propagation%20neural%20network" title=" back-propagation neural network"> back-propagation neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=BPNN" title=" BPNN"> BPNN</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR "> LiDAR </a> </p> <a href="https://publications.waset.org/abstracts/93322/identification-of-landslide-features-using-back-propagation-neural-network-on-lidar-digital-elevation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19198</span> Digital Elevation Model Analysis of Potential Prone Flood Disaster Watershed Citarum Headwaters Bandung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizin%20Mulia%20Rizkika">Faizin Mulia Rizkika</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Jabbari%20Mufti"> Iqbal Jabbari Mufti</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Y.%20Nugraha"> Muhammad R. Y. Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadil%20Maulidir%20Sube"> Fadil Maulidir Sube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flooding is an event of ponding on the flat area around the river as a result of the overflow of river water was not able to be accommodated by the river and may cause damage to the infrastructure of a region. This study aimed to analyze the data of Digital Elevation Model (DEM) for information that plays a role in the mapping of zones prone to flooding, mapping the distribution of zones prone to flooding that occurred in the Citarum upstream using secondary data and software (ArcGIS, MapInfo), this assessment was made distribution map of flooding, there were 13 counties / districts dam flood-prone areas in Bandung, and the most vulnerable districts are areas Baleendah-Dayeuhkolot-Bojongsoang-Banjaran. The area has a low slope and the same limits with boundary rivers and areas that have excessive land use, so the water catchment area is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitigation" title="mitigation">mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=citarum" title=" citarum"> citarum</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/63985/digital-elevation-model-analysis-of-potential-prone-flood-disaster-watershed-citarum-headwaters-bandung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19197</span> A Practical Approach and Implementation of Digital Library Towards Best Practice in Malaysian Academic Library</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Ajab%20Mohideen">Zainab Ajab Mohideen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kaur"> Kiran Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Basheer%20Ahamadhu"> A. Basheer Ahamadhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Azlinda%20Wan%20Jan"> Noor Azlinda Wan Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukmawati%20Muhammad"> Sukmawati Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corpus in the digital library is to provide an overview and evidence from library automation that can be used to justify the needs of the digital library. This paper disperses the approach and implementation of the digital library as part of best practices by the Automation Division at Hamzah Sendut Library of the University Science Malaysia (USM). The implemented digital library model emphasizes on the entire library collections, technical perspective, and automation solution. This model served as a foundation for digital library services as part of information delivery in the USM digital library. The approach to digital library includes discussion on key factors, design, architecture, and pragmatic model that has been collected, captured, and identified during the implementation stages. At present, the USM digital library has achieved the status of an Institutional Repository (IR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20digital%20library" title="academic digital library">academic digital library</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20information%20system" title=" digital information system"> digital information system</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20library%20best%20practice" title=" digital library best practice"> digital library best practice</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20library%20model" title=" digital library model"> digital library model</a> </p> <a href="https://publications.waset.org/abstracts/31709/a-practical-approach-and-implementation-of-digital-library-towards-best-practice-in-malaysian-academic-library" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19196</span> TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Sarma">Siddharth Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayush%20Majumdar"> Ayush Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Sabu"> Nidhi Sabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mufaddal%20Jiruwaala"> Mufaddal Jiruwaala</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Paygude"> Shilpa Paygude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ESRGAN" title=" ESRGAN"> ESRGAN</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20upscaling" title=" image upscaling"> image upscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/193143/terraenhance-high-resolution-digital-elevation-model-generation-using-gans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19195</span> A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZY-3%20satellite%20imagery" title="ZY-3 satellite imagery">ZY-3 satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SRTM" title=" SRTM"> SRTM</a>, <a href="https://publications.waset.org/abstracts/search?q=refinement" title=" refinement"> refinement</a> </p> <a href="https://publications.waset.org/abstracts/76112/a-study-of-zy3-satellite-digital-elevation-model-verification-and-refinement-with-shuttle-radar-topography-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19194</span> Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20K.%20Ghansah">Benjamin K. Ghansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20K.%20Appoh"> Richard K. Appoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Iliya%20Nababa"> Iliya Nababa</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20K.%20Forkuo"> Eric K. Forkuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title="digital elevation model">digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=floodplain" title=" floodplain"> floodplain</a>, <a href="https://publications.waset.org/abstracts/search?q=HAND%20contour" title=" HAND contour"> HAND contour</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20extent" title=" inundation extent"> inundation extent</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasia%20River" title=" Nasia River"> Nasia River</a> </p> <a href="https://publications.waset.org/abstracts/68869/delineating-floodplain-along-the-nasia-river-in-northern-ghana-using-hand-contour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19193</span> Comparing Two Unmanned Aerial Systems in Determining Elevation at the Field Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brock%20Buckingham">Brock Buckingham</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Lin"> Zhe Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxuan%20Guo"> Wenxuan Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate elevation data is critical in deriving topographic attributes for the precision management of crop inputs, especially water and nutrients. Traditional ground-based elevation data acquisition is time consuming, labor intensive, and often inconvenient at the field scale. Various unmanned aerial systems (UAS) provide the capability of generating digital elevation data from high-resolution images. The objective of this study was to compare the performance of two UAS with different global positioning system (GPS) receivers in determining elevation at the field scale. A DJI Phantom 4 Pro and a DJI Phantom 4 RTK(real-time kinematic) were applied to acquire images at three heights, including 40m, 80m, and 120m above ground. Forty ground control panels were placed in the field, and their geographic coordinates were determined using an RTK GPS survey unit. For each image acquisition using a UAS at a particular height, two elevation datasets were generated using the Pix4D stitching software: a calibrated dataset using the surveyed coordinates of the ground control panels and an uncalibrated dataset without using the surveyed coordinates of the ground control panels. Elevation values for each panel derived from the elevation model of each dataset were compared to the corresponding coordinates of the ground control panels. The coefficient of the determination (R²) and the root mean squared error (RMSE) were used as evaluation metrics to assess the performance of each image acquisition scenario. RMSE values for the uncalibrated elevation dataset were 26.613 m, 31.141 m, and 25.135 m for images acquired at 120 m, 80 m, and 40 m, respectively, using the Phantom 4 Pro UAS. With calibration for the same UAS, the accuracies were significantly improved with RMSE values of 0.161 m, 0.165, and 0.030 m, respectively. The best results showed an RMSE of 0.032 m and an R² of 0.998 for calibrated dataset generated using the Phantom 4 RTK UAS at 40m height. The accuracy of elevation determination decreased as the flight height increased for both UAS, with RMSE values greater than 0.160 m for the datasets acquired at 80 m and 160 m. The results of this study show that calibration with ground control panels improves the accuracy of elevation determination, especially for the UAS with a regular GPS receiver. The Phantom 4 Pro provides accurate elevation data with substantial surveyed ground control panels for the 40 m dataset. The Phantom 4 Pro RTK UAS provides accurate elevation at 40 m without calibration for practical precision agriculture applications. This study provides valuable information on selecting appropriate UAS and flight heights in determining elevation for precision agriculture applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20system" title="unmanned aerial system">unmanned aerial system</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation" title=" elevation"> elevation</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20kinematic%20%28RTK%29" title=" real-time kinematic (RTK)"> real-time kinematic (RTK)</a> </p> <a href="https://publications.waset.org/abstracts/141275/comparing-two-unmanned-aerial-systems-in-determining-elevation-at-the-field-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19192</span> Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Amer%20Mahmood">Syed Amer Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Mansor%20Ali%20Khan"> Rao Mansor Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quaternary%20deformation" title="quaternary deformation">quaternary deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=SRTM%20DEM" title=" SRTM DEM"> SRTM DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphometric%20indices" title=" geomorphometric indices"> geomorphometric indices</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20tectonics%20and%20MBT" title=" active tectonics and MBT"> active tectonics and MBT</a> </p> <a href="https://publications.waset.org/abstracts/36263/dem-based-surface-deformation-in-jhelum-valley-insights-from-river-profile-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19191</span> Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaypalsinh%20B.%20Parmar">Jaypalsinh B. Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pintu%20Nakrani"> Pintu Nakrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Chaurasia"> Ashish Chaurasia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CartoDEM" title="CartoDEM">CartoDEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Digital%20Elevation%20Model" title=" Digital Elevation Model"> Digital Elevation Model</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Tapi%20basin" title=" lower Tapi basin"> lower Tapi basin</a> </p> <a href="https://publications.waset.org/abstracts/71398/vertical-accuracy-evaluation-of-indian-national-dem-cartodem-v3-using-dual-frequency-gnss-derived-ground-control-points-for-lower-tapi-basin-western-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19190</span> A Concept for Design of Road Super-Elevation Based on Horizontal Radius, Vertical Gradient and Accident Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Chattaraj">U. Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Meena"> D. Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth of traffic brings various negative effects, such as road accidents. To avoid such problems, a model is developed for the purpose of highway safety. In such areas, fuzzy logic is the most well-known simulation in the larger field. A model is accomplished for hilly and steep terrain based on Fuzzy Inference System (FIS), for which output is super elevation and input data is horizontal radius, vertical gradient, accident rate (AR). This result shows that the system can be efficaciously applied as for highway safety tool distinguishing hazards components correlated to the characteristics of the highway and has a great influence to the making of decision for accident precaution in transportation models. From this model, a positive relationship between geometric elements, accident rate, and super elevation is also identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20rate" title="accident rate">accident rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient" title=" gradient"> gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=radius" title=" radius"> radius</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20elevation" title=" super elevation"> super elevation</a> </p> <a href="https://publications.waset.org/abstracts/97961/a-concept-for-design-of-road-super-elevation-based-on-horizontal-radius-vertical-gradient-and-accident-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19189</span> 2D Surface Flow Model in The Biebrza Floodplain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorota%20Miroslaw-Swiatek">Dorota Miroslaw-Swiatek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Grygoruk"> Mateusz Grygoruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Szporak"> Sylwia Szporak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floodplain%20flow" title="floodplain flow">floodplain flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Biebrza%20valley" title=" Biebrza valley"> Biebrza valley</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20simulation" title=" model simulation"> model simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20surface%20flow%20model" title=" 2D surface flow model"> 2D surface flow model</a> </p> <a href="https://publications.waset.org/abstracts/25314/2d-surface-flow-model-in-the-biebrza-floodplain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19188</span> The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Kundu">P. M. Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20R.%20Singo"> L. R. Singo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Odiyo"> J. O. Odiyo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment" title="catchment">catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title=" digital elevation model"> digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20model" title=" hydrological model"> hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/23083/the-impact-of-land-cover-change-on-stream-discharges-and-water-resources-in-luvuvhu-river-catchment-vhembe-district-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19187</span> Digital Marketing Maturity Models: Overview and Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elina%20Bakhtieva">Elina Bakhtieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company&rsquo;s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B2B%20digital%20marketing%20strategy" title="B2B digital marketing strategy">B2B digital marketing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20marketing" title=" digital marketing"> digital marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20marketing%20maturity%20model" title=" digital marketing maturity model"> digital marketing maturity model</a>, <a href="https://publications.waset.org/abstracts/search?q=SWOT%20analysis" title=" SWOT analysis"> SWOT analysis</a> </p> <a href="https://publications.waset.org/abstracts/58290/digital-marketing-maturity-models-overview-and-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19186</span> Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tridipa%20Biswas">Tridipa Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Pandey"> Kamal Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASTER-DEM" title="ASTER-DEM">ASTER-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=CARTO-DEM" title=" CARTO-DEM"> CARTO-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=CARTOSAT-1" title=" CARTOSAT-1"> CARTOSAT-1</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model%20%28DEM%29" title=" digital elevation model (DEM)"> digital elevation model (DEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=ortho-rectified%20image" title=" ortho-rectified image"> ortho-rectified image</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=RPC" title=" RPC"> RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20pair" title=" stereo pair"> stereo pair</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20parameters" title=" terrain parameters"> terrain parameters</a> </p> <a href="https://publications.waset.org/abstracts/39979/satellite-photogrammetry-for-dem-generation-using-stereo-pair-and-automatic-extraction-of-terrain-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19185</span> Gnss Aided Photogrammetry for Digital Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman%20Akram">Muhammad Usman Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title="photogrammetry">photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20processing%20kinematics" title=" post processing kinematics"> post processing kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20kinematics" title=" real time kinematics"> real time kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20data%20inquiry" title=" manual data inquiry"> manual data inquiry</a> </p> <a href="https://publications.waset.org/abstracts/189835/gnss-aided-photogrammetry-for-digital-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19184</span> Impact of Data and Model Choices to Urban Flood Risk Assessments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Saha">Abhishek Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Serene%20Tay"> Serene Tay</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Pijcke"> Gerard Pijcke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flooding" title="flooding">flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a>, <a href="https://publications.waset.org/abstracts/search?q=subgrid" title=" subgrid"> subgrid</a> </p> <a href="https://publications.waset.org/abstracts/115700/impact-of-data-and-model-choices-to-urban-flood-risk-assessments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19183</span> Mapping of Geological Structures Using Aerial Photography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Sharma">Ankit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudit%20Sachan"> Mudit Sachan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Prakash"> Anurag Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title="digital elevation model">digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetric%20data%20analysis" title=" photogrammetric data analysis"> photogrammetric data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20structures" title=" geological structures "> geological structures </a> </p> <a href="https://publications.waset.org/abstracts/26316/mapping-of-geological-structures-using-aerial-photography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19182</span> Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20K.%20M.%20Al-Nasrawi">Ali K. M. Al-Nasrawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20A.%20Al-Hamdany"> Uday A. Al-Hamdany</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20M.%20Hamylton"> Sarah M. Hamylton</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20G.%20Jones"> Brian G. Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20M.%20Alyazichi"> Yasir M. Alyazichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution <em>global positioning systems</em> (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (&le; 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEMs" title="DEMs">DEMs</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-geomorphic-dynamic%20processes" title=" eco-geomorphic-dynamic processes"> eco-geomorphic-dynamic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20Information%20Science" title=" geospatial Information Science"> geospatial Information Science</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20elevation%20changes" title=" surface elevation changes"> surface elevation changes</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/59124/surface-elevation-dynamics-assessment-using-digital-elevation-models-light-detection-and-ranging-gps-and-geospatial-information-science-analysis-ecosystem-modelling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19181</span> Mastering Digitization: A Quality-Adapted Digital Transformation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franziska%20Schaefer">Franziska Schaefer</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlene%20Kuhn"> Marlene Kuhn</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Otten"> Heiner Otten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the very near future, digitization will be the main challenge a company has to master to survive in a highly competitive market. Developing the right transformation strategy by considering all relevant aspects determines the success or failure of a company. Especially the digital focus on the customer plays a key role in creating sustainable competitive advantages, also leading to new tasks within the quality management. Therefore, quality management needs to be particularly addressed to support the upcoming digital change. In this paper, we present an analysis of existing digital transformation approaches and derive a transformation strategy from a quality management perspective. We identify and classify different transformation dimensions and assess their relevance to quality management tasks, resulting in a quality-adapted digital transformation model. Furthermore, we introduce applicable and customized quality management methods to support the presented digital transformation tasks. With our developed model we provide a digital transformation guideline from a quality perspective to master future disruptive changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title="digital transformation">digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=digitization" title=" digitization"> digitization</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/78145/mastering-digitization-a-quality-adapted-digital-transformation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19180</span> Evaluating Key Attributes of Effective Digital Games in Tertiary Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Kulkarni">Roopali Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuliya%20Khrypko"> Yuliya Khrypko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem in educational digital game design is that game developers are often focused on maintaining the fun and playability of an educational game, whereas educators are more concerned with the learning aspect of the game rather than its entertaining characteristics. There is a clear need to understand what key aspects of digital learning games make them an effective learning medium in tertiary education. Through a systematic literature review and content analysis, this paper identifies, evaluates, and summarizes twenty-three key attributes of digital games used in tertiary education and presents a summary digital game-based learning (DGBL) model for designing and evaluating an educational digital game of any genre that promotes effective learning in tertiary education. The proposed solution overcomes limitations of previously designed models for digital game evaluation, such as a small number of game attributes considered or applicability to a specific genre of digital games. The proposed DGBL model can be used to assist game designers and educators with creating effective and engaging educational digital games for the tertiary education curriculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DGBL%20model" title="DGBL model">DGBL model</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20games" title=" digital games"> digital games</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20games" title=" educational games"> educational games</a>, <a href="https://publications.waset.org/abstracts/search?q=game-based%20learning" title=" game-based learning"> game-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20education" title=" tertiary education"> tertiary education</a> </p> <a href="https://publications.waset.org/abstracts/147502/evaluating-key-attributes-of-effective-digital-games-in-tertiary-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19179</span> Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In designing a kinetic fa&ccedil;ade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20media" title="design media">design media</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20facades" title=" kinetic facades"> kinetic facades</a>, <a href="https://publications.waset.org/abstracts/search?q=tangible%20user%20interface" title=" tangible user interface"> tangible user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanning" title=" 3D scanning"> 3D scanning</a> </p> <a href="https://publications.waset.org/abstracts/70846/kinetic-facade-design-using-3d-scanning-to-convert-physical-models-into-digital-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19178</span> A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alanazi">Fahad Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Jones"> Andrew Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=metadata" title=" metadata"> metadata</a>, <a href="https://publications.waset.org/abstracts/search?q=Traceback" title=" Traceback"> Traceback</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauid%20Arabia" title=" Sauid Arabia"> Sauid Arabia</a> </p> <a href="https://publications.waset.org/abstracts/57322/a-method-to-enhance-the-accuracy-of-digital-forensic-in-the-absence-of-sufficient-evidence-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19177</span> Factors Drive Consumers to Purchase Digital Music: An Empirical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chechen%20Liao">Chechen Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jen%20Huang"> Yi-Jen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ting%20Lu"> Yu-Ting Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores and complements digital aspects. In this study, we construct a research model based on the theory of reasoned action and extend it with the advantages and disadvantages of intangibility (convenience, perceived risk), some characteristics of digital products (price, variety, trialability), and factors related to entertainment (perceived playfulness) to predict what consumers really consider when they buy digital music. Eight hypotheses were tested and supported. Finally, we prove that the theory of reasoned action is still valid in the field of digital products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20music" title="digital music">digital music</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20product" title=" digital product"> digital product</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20reasoned%20action" title=" theory of reasoned action "> theory of reasoned action </a> </p> <a href="https://publications.waset.org/abstracts/29870/factors-drive-consumers-to-purchase-digital-music-an-empirical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19176</span> Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Magaji%20Musa">Zainab Magaji Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20M.%20A.%20Rahman"> Nordin M. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Julaily%20Aida%20Jusoh"> Julaily Aida Jusoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=validation" title="validation">validation</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=formal" title=" formal"> formal</a>, <a href="https://publications.waset.org/abstracts/search?q=theorem%20prover" title=" theorem prover"> theorem prover</a> </p> <a href="https://publications.waset.org/abstracts/34902/validation-of-the-formal-model-of-web-services-applications-for-digital-reference-service-of-library-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19175</span> Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aber%20Salem%20Aboalgasm">Aber Salem Aboalgasm</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupert%20Ward"> Rupert Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artistic%20ability" title="artistic ability">artistic ability</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20digital%20tool" title=" drawing digital tool"> drawing digital tool</a>, <a href="https://publications.waset.org/abstracts/search?q=TAM%20model" title=" TAM model"> TAM model</a>, <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20domain" title=" psychomotor domain"> psychomotor domain</a> </p> <a href="https://publications.waset.org/abstracts/16532/evaluating-the-use-of-digital-art-tools-for-drawing-to-enhance-artistic-ability-and-improve-digital-skill-among-junior-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19174</span> Digital Preservation: A Need of Tomorrow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kumar">Gaurav Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital libraries have been established all over the world to create, maintain and to preserve the digital materials. This paper exhibits the importance and objectives of digital preservation. The necessities of preservation are hardware and software technology to interpret the digital documents and discuss various aspects of digital preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preservation" title="preservation">preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20preservation" title=" digital preservation"> digital preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=archive" title=" archive"> archive</a>, <a href="https://publications.waset.org/abstracts/search?q=repository" title=" repository"> repository</a>, <a href="https://publications.waset.org/abstracts/search?q=document" title=" document"> document</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware" title=" hardware"> hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/abstracts/search?q=organization" title=" organization"> organization</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20readable%20format" title=" machine readable format"> machine readable format</a> </p> <a href="https://publications.waset.org/abstracts/23433/digital-preservation-a-need-of-tomorrow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19173</span> Role of Digital Economy in the Emerging Countries Like Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Fagge%20Muhammad">Aminu Fagge Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The digital economy is fast becoming the most innovative and widest reaching economy in the world, especially in developing countries. The paper aimed at examining role of digital economy in the emerging countries like Nigeria. The methodology used in the study is Business Model Perspective: lying between the process and structural perspectives, bring in the idea of the new business models that are being enabled e.g. e-business or e-commerce. The paper concluded that, the policy objectives and measures, and processes and structures necessary to enhance digital economy growth and its contribution to socio-economic development. The finding reveals that, digital infrastructure is in part incomplete, costly and poorly-performing in emerging economies like Nigeria. The wider digital ecosystem suffers a shortfall in human capabilities, weak financing, and poor governance. It is also found that, Growth in the digital economy is exacerbating digital exclusion, inequality, adverse incorporation and other digital harms. It is recommended that, government in partnership with private sector should build strong local infrastructure to enable broadband availability and accessibility and to create an enabling environment for strong competition in the telecom and technology ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Digital%20Economy" title="Digital Economy">Digital Economy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emerging%20Countries" title=" Emerging Countries"> Emerging Countries</a>, <a href="https://publications.waset.org/abstracts/search?q=Business%20Model" title=" Business Model "> Business Model </a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/120479/role-of-digital-economy-in-the-emerging-countries-like-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19172</span> Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20J.%20Anci%20Alm%C3%A9star">Arturo J. Anci Alméstar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20D.%20Fernandez%20Huapaya"> Jose D. Fernandez Huapaya</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mauricio"> David Mauricio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20payment%20medium" title="digital payment medium">digital payment medium</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20payments%20taxonomy" title=" digital payments taxonomy"> digital payments taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/85328/decision-tree-model-for-the-recommendation-of-digital-and-alternate-payment-methods-for-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19171</span> A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hellmuth">R. Hellmuth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title="building information modeling">building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a> </p> <a href="https://publications.waset.org/abstracts/111743/a-structuring-and-classification-method-for-assigning-application-areas-to-suitable-digital-factory-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=639">639</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=640">640</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10