CINXE.COM
Search results for: factory planning
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: factory planning</title> <meta name="description" content="Search results for: factory planning"> <meta name="keywords" content="factory planning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="factory planning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="factory planning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3630</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: factory planning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3630</span> Deficits and Solutions in the Development of Modular Factory Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Burggr%C3%A4f"> Peter Burggräf</a>, <a href="https://publications.waset.org/abstracts/search?q=Moritz%20Krunke"> Moritz Krunke</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanno%20Voet"> Hanno Voet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a reaction to current challenges in factory planning, many companies think about introducing factory standards to lower planning times and decrease planning costs. If these factory standards are set-up with a high level of modularity, they are defined as modular factory systems. This paper deals with the main current problems in the application of modular factory systems in practice and presents a solution approach with its basic models. The methodology is based on methods from factory planning but also uses the tools of other disciplines like product development or technology management to deal with the high complexity, which the development of modular factory systems implies. The four basic models that such a methodology has to contain are introduced and pointed out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title="factory planning">factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20factory%20systems" title=" modular factory systems"> modular factory systems</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20standards" title=" factory standards"> factory standards</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-benefit%20analysis" title=" cost-benefit analysis"> cost-benefit analysis</a> </p> <a href="https://publications.waset.org/abstracts/30282/deficits-and-solutions-in-the-development-of-modular-factory-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3629</span> Approach for Updating a Digital Factory Model by Photogrammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hellmuth">R. Hellmuth</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Wehner"> F. Wehner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title="digital factory model">digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring" title=" restructuring"> restructuring</a> </p> <a href="https://publications.waset.org/abstracts/111562/approach-for-updating-a-digital-factory-model-by-photogrammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3628</span> Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rene%20Hellmuth">Rene Hellmuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorg%20Frohnmayer"> Jorg Frohnmayer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring" title=" restructuring"> restructuring</a> </p> <a href="https://publications.waset.org/abstracts/111667/literature-review-and-approach-for-the-use-of-digital-factory-models-in-an-augmented-reality-application-for-decision-making-in-restructuring-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3627</span> Application of the Building Information Modeling Planning Approach to the Factory Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peggy%20N%C3%A4ser">Peggy Näser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title="building information modeling">building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory" title=" digital factory"> digital factory</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20planning" title=" digital planning"> digital planning</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a> </p> <a href="https://publications.waset.org/abstracts/75072/application-of-the-building-information-modeling-planning-approach-to-the-factory-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3626</span> A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hellmuth">R. Hellmuth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title="building information modeling">building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a> </p> <a href="https://publications.waset.org/abstracts/111743/a-structuring-and-classification-method-for-assigning-application-areas-to-suitable-digital-factory-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3625</span> Concept for Planning Sustainable Factories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mersmann">T. Mersmann</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nyhuis"> P. Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title="factory planning">factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder" title=" stakeholder"> stakeholder</a>, <a href="https://publications.waset.org/abstracts/search?q=systematization" title=" systematization"> systematization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/10526/concept-for-planning-sustainable-factories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3624</span> Application of Production Planning to Improve Operation in Local Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashayer%20Al-Enezi">Bashayer Al-Enezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Budoor%20Al-Sabti"> Budoor Al-Sabti</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Al-Durai"> Eman Al-Durai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatmah%20Kalban"> Fatmah Kalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshael%20Ahmed"> Meshael Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production planning and control principles are concerned with planning, controlling and balancing all aspects of manufacturing including raw materials, finished goods, production schedules, and equipment requirements. Hence, an effective production planning and control system is very critical to the success of any factory. This project will focus on the application of production planning and control principles on “The National Canned Food Production and Trading Company (NCFP)” factory to find problems or areas for improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title="production planning">production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20improvement" title=" operations improvement"> operations improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=National%20Canned%20Food%20Production%20and%20Trading%20Company%20%28NCFP%29" title=" National Canned Food Production and Trading Company (NCFP)"> National Canned Food Production and Trading Company (NCFP)</a> </p> <a href="https://publications.waset.org/abstracts/10770/application-of-production-planning-to-improve-operation-in-local-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3623</span> Development of Industry Sector Specific Factory Standards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Burggr%C3%A4f">Peter Burggräf</a>, <a href="https://publications.waset.org/abstracts/search?q=Moritz%20Krunke"> Moritz Krunke</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanno%20Voet"> Hanno Voet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to shortening product and technology lifecycles, many companies use standardization approaches in product development and factory planning to reduce costs and time to market. Unlike large companies, where modular systems are already widely used, small and medium-sized companies often show a much lower degree of standardization due to lower scale effects and missing capacities for the development of these standards. To overcome these challenges, the development of industry sector specific standards in cooperations or by third parties is an interesting approach. This paper analyzes which branches that are mainly dominated by small or medium-sized companies might be especially interesting for the development of factory standards using the example of the German industry. For this, a key performance indicator based approach was developed that will be presented in detail with its specific results for the German industry structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title="factory planning">factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20standards" title=" factory standards"> factory standards</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%20sector%20specific%20standardization" title=" industry sector specific standardization"> industry sector specific standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title=" production planning"> production planning</a> </p> <a href="https://publications.waset.org/abstracts/37790/development-of-industry-sector-specific-factory-standards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3622</span> Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hellmuth">R. Hellmuth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptability" title="adaptability">adaptability</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20twin" title=" digital factory twin"> digital factory twin</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a> </p> <a href="https://publications.waset.org/abstracts/111625/methodical-approach-for-the-integration-of-a-digital-factory-twin-into-the-industry-40-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3621</span> Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rene%20Hellmuth">Rene Hellmuth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring" title=" restructuring"> restructuring</a> </p> <a href="https://publications.waset.org/abstracts/111653/method-for-requirements-analysis-and-decision-making-for-restructuring-projects-in-factories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3620</span> The Impact of Artificial Intelligence on Digital Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Awad%20Wanis%20Gad">Mona Awad Wanis Gad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring%20digital%20factory%20model" title=" restructuring digital factory model"> restructuring digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring%20building%20information%20modeling" title=" restructuring building information modeling"> restructuring building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a> </p> <a href="https://publications.waset.org/abstracts/188937/the-impact-of-artificial-intelligence-on-digital-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3619</span> An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rene%20Hellmuth">Rene Hellmuth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title="building information modeling">building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring" title=" restructuring"> restructuring</a> </p> <a href="https://publications.waset.org/abstracts/111910/an-as-is-analysis-and-approach-for-updating-building-information-models-and-laser-scans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3618</span> Development of a Model for the Redesign of Plant Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Richter">L. Richter</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L%C3%BCbkemann"> J. Lübkemann</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nyhuis"> P. Nyhuis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20driven%20factory%20redesign" title="change driven factory redesign">change driven factory redesign</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20structure" title=" plant structure"> plant structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a> </p> <a href="https://publications.waset.org/abstracts/10716/development-of-a-model-for-the-redesign-of-plant-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3617</span> Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ignatio%20Madanhire">Ignatio Madanhire</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mbohwa"> Charles Mbohwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate%20production%20planning" title="aggregate production planning">aggregate production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=trial%20and%20error" title=" trial and error"> trial and error</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture%20industry" title=" furniture industry "> furniture industry </a> </p> <a href="https://publications.waset.org/abstracts/13776/aggregate-production-planning-framework-in-a-multi-product-factory-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3616</span> The Effect of Artificial Intelligence on Digital Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Fayez%20Lewis%20Ghaly">Sherif Fayez Lewis Ghaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title="building information modeling">building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory%20model" title=" digital factory model"> digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20planning" title=" factory planning"> factory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20digital%20factory%20model" title=" maintenance digital factory model"> maintenance digital factory model</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=restructuring" title=" restructuring"> restructuring</a> </p> <a href="https://publications.waset.org/abstracts/191687/the-effect-of-artificial-intelligence-on-digital-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3615</span> The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Armin%20Hashemi">Seyed Armin Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Rahimzadeh"> Somayeh Rahimzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20pollution" title="cadmium pollution">cadmium pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=spruce" title=" spruce"> spruce</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20factory%20of%20producing%20alloy%20metals" title=" the factory of producing alloy metals"> the factory of producing alloy metals</a> </p> <a href="https://publications.waset.org/abstracts/1368/the-investigation-of-cadmium-pollution-in-the-metal-production-factory-in-relation-to-environmental-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3614</span> Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmajeed%20Bashir%20Mlitan">Abdulmajeed Bashir Mlitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethan%20Hack"> Ethan Hack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial" title=" soil microbial"> soil microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=alkomos" title=" alkomos"> alkomos</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/19051/some-characteristics-and-identification-of-fungi-contaminated-by-alkomos-cement-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3613</span> Analysis of Steel Beam-Column Joints Under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mizam%20Do%C4%9Fan">Mizam Doğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column-beam%20connection" title="column-beam connection">column-beam connection</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/45749/analysis-of-steel-beam-column-joints-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3612</span> Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Xiang%20Xu"> Sheng-Xiang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20guided%20vehicle" title="automated guided vehicle">automated guided vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20operation%20system" title=" robot operation system"> robot operation system</a>, <a href="https://publications.waset.org/abstracts/search?q=Simultaneous%20Localization%20and%20Mapping" title=" Simultaneous Localization and Mapping"> Simultaneous Localization and Mapping</a> </p> <a href="https://publications.waset.org/abstracts/99761/development-of-an-autonomous-automated-guided-vehicle-with-robot-manipulator-under-robot-operation-system-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3611</span> Optimization of Scheduling through Altering Layout Using Pro-Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20Issa%20Ahmed">Zouhair Issa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdulrasool%20Ahmed"> Ahmed Abdulrasool Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Falah%20Hassan%20Abdulsada"> Falah Hassan Abdulsada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a layout of a factory using Pro-Model simulation by choosing the best layout that gives the highest productivity and least work in process. The general problem is to find the best sequence in which jobs pass between the machines which are compatible with the technological constraints and optimal with respect to some performance criteria. The best simulation with Pro-Model program increased productivity and reduced work in process by balancing lines of production compared with the current layout of factory when productivity increased from 45 products to 180 products through 720 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=Pro-Model" title=" Pro-Model"> Pro-Model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=balancing%20lines%20of%20production" title=" balancing lines of production"> balancing lines of production</a>, <a href="https://publications.waset.org/abstracts/search?q=layout%20planning" title=" layout planning"> layout planning</a>, <a href="https://publications.waset.org/abstracts/search?q=WIP" title=" WIP "> WIP </a> </p> <a href="https://publications.waset.org/abstracts/8498/optimization-of-scheduling-through-altering-layout-using-pro-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3610</span> Application of Semantic Technologies in Rapid Reconfiguration of Factory Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zhang">J. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Agyapong-Kodua"> K. Agyapong-Kodua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital factory based on visual design and simulation has emerged as a mainstream to reduce digital development life cycle. Some basic industrial systems are being integrated via semantic modelling, and products (P) matching process (P)-resource (R) requirements are designed to fulfill current customer demands. Nevertheless, product design is still limited to fixed product models and known knowledge of product engineers. Therefore, this paper presents a rapid reconfiguration method based on semantic technologies with PPR ontologies to reuse known and unknown knowledge. In order to avoid the influence of big data, our system uses a cloud manufactory and distributed database to improve the efficiency of querying meeting PPR requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20technologies" title="semantic technologies">semantic technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=factory%20system" title=" factory system"> factory system</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20factory" title=" digital factory"> digital factory</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufactory" title=" cloud manufactory"> cloud manufactory</a> </p> <a href="https://publications.waset.org/abstracts/17570/application-of-semantic-technologies-in-rapid-reconfiguration-of-factory-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3609</span> Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulrike%20Dowie">Ulrike Dowie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralph%20Grothmann"> Ralph Grothmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20software%20development" title="agile software development">agile software development</a>, <a href="https://publications.waset.org/abstracts/search?q=AI%20project%20success%20factors" title=" AI project success factors"> AI project success factors</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title=" demand forecasting"> demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast%20uncertainty" title=" forecast uncertainty"> forecast uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/131957/using-ai-to-advance-factory-planning-a-case-study-to-identify-success-factors-of-implementing-an-ai-based-demand-planning-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3608</span> LaPEA: Language for Preprocessing of Edge Applications in Smart Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Sakai">Masaki Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Nakajima"> Tsuyoshi Nakajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Takahashi"> Kazuya Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20application%20framework" title="edge application framework">edge application framework</a>, <a href="https://publications.waset.org/abstracts/search?q=edgecross" title=" edgecross"> edgecross</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing%20language" title=" preprocessing language"> preprocessing language</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20factory" title=" smart factory"> smart factory</a> </p> <a href="https://publications.waset.org/abstracts/142882/lapea-language-for-preprocessing-of-edge-applications-in-smart-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3607</span> An Application of Self-Health Risk Assessment among Populations Living in The Vicinity of a Fiber-Cement Roofing Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phayong%20Thepaksorn">Phayong Thepaksorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to assess whether living in proximity to a roofing fiber cement factory in southern Thailand was associated with physical, mental, social, and spiritual health domains measured in a self-reported health risk assessment (HRA) questionnaire. A cross-sectional study was conducted among community members divided into two groups: near population (living within 0-2 km of factory) and far population (living within 2-5 km of factory)(N=198). A greater proportion of those living far from the factory (65.34%) reported physical health problems than the near group (51.04 %)(p=0.032). This study has demonstrated that the near population group had higher proportion of participants with positive ratings on mental assessment (30.34%) and social health impacts (28.42%) than far population group (10.59% and 16.67 %, respectively) (p<0.001). The near population group (29.79%) had similar proportion of participants with positive ratings in spiritual health impacts compared with far population group (27.08%). Among females, but not males, this study demonstrated that a higher proportion of the near population had a positive summative score for the self-HRA, which included all four health domain, compared to the far population (p <0.001 for females; p=0.154 for males). In conclusion, this self-HRA of physical, mental, social, and spiritual health domains reflected the risk perceptions of populations living in the vicinity of the roofing fiber cement factory. This type of tool can bring attention to population concerns and complaints in the factory’s surrounding community. Our findings may contribute to future development of self-HRA for HIA development procedure in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20dust" title="cement dust">cement dust</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20impact%20assessment" title=" health impact assessment"> health impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=walk-though%20survey" title=" walk-though survey"> walk-though survey</a> </p> <a href="https://publications.waset.org/abstracts/17912/an-application-of-self-health-risk-assessment-among-populations-living-in-the-vicinity-of-a-fiber-cement-roofing-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3606</span> Optimal Production Planning in Aromatic Coconuts Supply Chain Based on Mixed-Integer Linear Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimongkol%20Limpianchob">Chaimongkol Limpianchob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20coconut" title="aromatic coconut">aromatic coconut</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title=" production planning"> production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/6619/optimal-production-planning-in-aromatic-coconuts-supply-chain-based-on-mixed-integer-linear-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3605</span> The Exploration on the Mode of Renovation and Reconstruction of Old Factory Buildings for Cultural and Creative Industrial Parks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Pan"> Yu Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Wu"> Jing Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwan%20Shen"> Lingwan Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the reform and opening, China's cities have developed rapidly, and the industrial structure has been constantly adjusted and optimized. A large number of industrial plants have lost their production functions and become idle buildings. The renovation projects for the old factory buildings are important parts of the urban renewal, and most of them are the cultural and creative industrial park projects. In this paper, a statistical analysis of renovation projects of the representative cultural and creative industrial parks in recent years was conducted. According to the user's spatial experience satisfaction survey, the physical and spatial factors affecting the space regeneration of the old factory were concluded. Thus the relationship between space regeneration and material, structure, internal and external space design has been derived. Finally, we summarized the general spatial processing model in which the contradiction between ‘new’ and ‘old’ can be grafted and transformed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renovation%20of%20factory%20buildings" title="renovation of factory buildings">renovation of factory buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20renewal" title=" urban renewal"> urban renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20cultural%20and%20creative%20industrial%20park" title=" the cultural and creative industrial park"> the cultural and creative industrial park</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20regeneration" title=" space regeneration"> space regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20mode" title=" reconstruction mode "> reconstruction mode </a> </p> <a href="https://publications.waset.org/abstracts/92043/the-exploration-on-the-mode-of-renovation-and-reconstruction-of-old-factory-buildings-for-cultural-and-creative-industrial-parks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3604</span> Environmental Pollution and Health Risks of Residents Living near Ewekoro Cement Factory, Ewekoro, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Ajide%20Oyinloye">Michael Ajide Oyinloye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural environment is made up of air, water and soil. The release of emission of industrial waste into anyone of the components of the environment causes pollution. Industrial pollution significantly threatens the inherent right of people, to the enjoyment of a safe and secure environment. The aim of this paper is to assess the effect of environmental pollution and health risks of residents living near Ewekoro Cement factory. The research made use of IKONOS imagery for Geographical Information System (GIS) to buffer and extract buildings that are less than 1 km to the plant, within 1 km to 5 km and above 5 km to the factory. Also, a questionnaire was used to elicit information on the socio-economic factors, the effect of environmental pollution on residents and measures adopted to control industrial pollution on the residents. Findings show that most buildings that between less than 1 km and 1 km to 5 km to the factory have high health risk in the study area. The study recommended total relocation for the residents of the study area to reduce risk health problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=ewekoro" title=" ewekoro"> ewekoro</a> </p> <a href="https://publications.waset.org/abstracts/22574/environmental-pollution-and-health-risks-of-residents-living-near-ewekoro-cement-factory-ewekoro-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3603</span> Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Demir">Yavuz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Genisel"> Mucip Genisel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hulya%20Turk"> Hulya Turk</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgay%20Sisman"> Turgay Sisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Erdal"> Serkan Erdal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plant" title="aquatic plant">aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20factory" title=" cement factory"> cement factory</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution" title=" heavy metal pollution"> heavy metal pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20element" title=" inorganic element"> inorganic element</a>, <a href="https://publications.waset.org/abstracts/search?q=Potamogeton%20natans" title=" Potamogeton natans "> Potamogeton natans </a> </p> <a href="https://publications.waset.org/abstracts/45228/changes-in-inorganic-element-contents-in-potamogeton-natans-exposed-to-cement-factory-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3602</span> BIM Model and Virtual Prototyping in Construction Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Alkindy">Samar Alkindy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The BIM model has been used to support the planning of different construction projects in the industry by showing the different stages of the construction process. The model has been instrumental in identifying some of the common errors in the construction process through the spatial arrangement. The continuous use of the BIM model in the construction industry has resulted in various radical changes such as virtual prototyping. Construction virtual prototyping is a highly advanced technology that incorporates a BIM model with realistic graphical simulations, and facilitates the simulation of the project before a product is built in the factory. The paper presents virtual prototyping in the construction industry by examining its application, challenges and benefits to a construction project. Methodology approach: A case study was conducted for this study in four major construction projects, which incorporate virtual construction prototyping in several stages of the construction project. Furthermore, there was the administration of interviews with the project manager and engineer and the planning manager. Findings: Data collected from the methodological approach shows a positive response for virtual construction prototyping in construction, especially concerning communication and visualization. Furthermore, the use of virtual prototyping has increased collaboration and efficiency between construction experts handling a project. During the planning stage, virtual prototyping has increased accuracy, reduced planning time, and reduced the amount of rework during the implementation stage. Irrespective of virtual prototyping being a new concept in the construction industry, the findings outline that the approach will benefit the management of construction projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20operations" title="construction operations">construction operations</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20planning" title=" construction planning"> construction planning</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20prototyping" title=" virtual prototyping"> virtual prototyping</a> </p> <a href="https://publications.waset.org/abstracts/143753/bim-model-and-virtual-prototyping-in-construction-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3601</span> 3D Simulation of the Twin-Aperture IRON Superconducting Quadrupole for Charm-Tau Factory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Riabchenko">K. K. Riabchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V%20Rybitskaya"> T. V Rybitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Starostenko"> A. A. Starostenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sper Charm-Tau Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 1035 cm-2s-1 (Crab Waist collision) and with longitudinally polarized electrons at the IP (interaction point). One of the important elements of the cτ-factory is the superconducting two-aperture quadrupole of the final focus. It was decided to make a full-scale prototype quadrupole. The main objectives of our study included: 1) 3D modeling of the quadrupole in the Opera program, 2) Optimization of the geometry of the quadrupole lens, 3) Study of the influence of magnetic properties and geometry of a quadrupole on integral harmonics. In addition to this, the ways of producing unwanted harmonics have been studied. In the course of this work, a 3D model of a two-aperture iron superconducting quadrupole lens was created. A three-dimensional simulation of the magnetic field was performed, and the geometrical parameters of the lens were selected. Calculations helped to find sources of possible errors and methods for correcting unwanted harmonics. In addition to this, calculations show that there are no obstacles to the production of a prototype lens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20c%CF%84-factory" title="super cτ-factory">super cτ-factory</a>, <a href="https://publications.waset.org/abstracts/search?q=final%20focus" title=" final focus"> final focus</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20aperture%20quadrupole%20lens" title=" twin aperture quadrupole lens"> twin aperture quadrupole lens</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20harmonics" title=" integral harmonics"> integral harmonics</a> </p> <a href="https://publications.waset.org/abstracts/109778/3d-simulation-of-the-twin-aperture-iron-superconducting-quadrupole-for-charm-tau-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=121">121</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factory%20planning&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>