CINXE.COM
Surface gravity - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Surface gravity - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"123f02ab-9b24-4412-af13-6b63ce842b70","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Surface_gravity","wgTitle":"Surface gravity","wgCurRevisionId":1258817807,"wgRevisionId":1258817807,"wgArticleId":1720933,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 errors: periodical ignored","Webarchive template wayback links","Articles with short description","Short description matches Wikidata","Gravity","Black holes","General relativity"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Surface_gravity","wgRelevantArticleId":1720933,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia" ,"wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1758384","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Surface gravity - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Surface_gravity"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Surface_gravity&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Surface_gravity"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Surface_gravity rootpage-Surface_gravity skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Surface+gravity" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Surface+gravity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Surface+gravity" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Surface+gravity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Relationship_of_surface_gravity_to_mass_and_radius" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationship_of_surface_gravity_to_mass_and_radius"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Relationship of surface gravity to mass and radius</span> </div> </a> <ul id="toc-Relationship_of_surface_gravity_to_mass_and_radius-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gas_giants" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gas_giants"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Gas giants</span> </div> </a> <ul id="toc-Gas_giants-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-spherically_symmetric_objects" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-spherically_symmetric_objects"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Non-spherically symmetric objects</span> </div> </a> <ul id="toc-Non-spherically_symmetric_objects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Black_holes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Black_holes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Black holes</span> </div> </a> <button aria-controls="toc-Black_holes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Black holes subsection</span> </button> <ul id="toc-Black_holes-sublist" class="vector-toc-list"> <li id="toc-Schwarzschild_solution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Schwarzschild_solution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Schwarzschild solution</span> </div> </a> <ul id="toc-Schwarzschild_solution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kerr_solution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kerr_solution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Kerr solution</span> </div> </a> <ul id="toc-Kerr_solution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kerr–Newman_solution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kerr–Newman_solution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Kerr–Newman solution</span> </div> </a> <ul id="toc-Kerr–Newman_solution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamical_black_holes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamical_black_holes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Dynamical black holes</span> </div> </a> <ul id="toc-Dynamical_black_holes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Surface gravity</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AC%D8%A7%D8%B0%D8%A8%D9%8A%D8%A9_%D8%B3%D8%B7%D8%AD%D9%8A%D8%A9" title="جاذبية سطحية – Arabic" lang="ar" hreflang="ar" data-title="جاذبية سطحية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Gravetat_superficial" title="Gravetat superficial – Catalan" lang="ca" hreflang="ca" data-title="Gravetat superficial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%AF%D8%B1%D8%A7%D9%86%D8%B4_%D8%B3%D8%B7%D8%AD%DB%8C" title="گرانش سطحی – Persian" lang="fa" hreflang="fa" data-title="گرانش سطحی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Gravit%C3%A9_de_surface" title="Gravité de surface – French" lang="fr" hreflang="fr" data-title="Gravité de surface" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%91%9C%EB%A9%B4%EC%A4%91%EB%A0%A5" title="표면중력 – Korean" lang="ko" hreflang="ko" data-title="표면중력" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Gravitasi_permukaan" title="Gravitasi permukaan – Indonesian" lang="id" hreflang="id" data-title="Gravitasi permukaan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Gravit%C3%A0_di_superficie" title="Gravità di superficie – Italian" lang="it" hreflang="it" data-title="Gravità di superficie" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D1%80%D1%88%D0%B8%D0%BD%D1%81%D0%BA%D0%B0_%D0%B3%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Површинска гравитација – Macedonian" lang="mk" hreflang="mk" data-title="Површинска гравитација" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Graviti_permukaan" title="Graviti permukaan – Malay" lang="ms" hreflang="ms" data-title="Graviti permukaan" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A1%A8%E9%9D%A2%E9%87%8D%E5%8A%9B" title="表面重力 – Japanese" lang="ja" hreflang="ja" data-title="表面重力" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Overflategravitasjon" title="Overflategravitasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Overflategravitasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D0%BE%D1%81%D1%82%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F" title="Поверхностная гравитация – Russian" lang="ru" hreflang="ru" data-title="Поверхностная гравитация" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Surface_gravity" title="Surface gravity – Simple English" lang="en-simple" hreflang="en-simple" data-title="Surface gravity" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Povr%C5%A1inska_te%C5%BEnost" title="Površinska težnost – Slovenian" lang="sl" hreflang="sl" data-title="Površinska težnost" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D1%80%D1%88%D0%B8%D0%BD%D1%81%D0%BA%D0%B0_%D0%B3%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Површинска гравитација – Serbian" lang="sr" hreflang="sr" data-title="Површинска гравитација" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Pintagravitaatio" title="Pintagravitaatio – Finnish" lang="fi" hreflang="fi" data-title="Pintagravitaatio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ytgravitation" title="Ytgravitation – Swedish" lang="sv" hreflang="sv" data-title="Ytgravitation" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Taldayt_n_tjumma" title="Taldayt n tjumma – Kabyle" lang="kab" hreflang="kab" data-title="Taldayt n tjumma" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B9%82%E0%B8%99%E0%B9%89%E0%B8%A1%E0%B8%96%E0%B9%88%E0%B8%A7%E0%B8%87%E0%B8%9E%E0%B8%B7%E0%B9%89%E0%B8%99%E0%B8%9C%E0%B8%B4%E0%B8%A7" title="ความโน้มถ่วงพื้นผิว – Thai" lang="th" hreflang="th" data-title="ความโน้มถ่วงพื้นผิว" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Y%C3%BCzey_k%C3%BCtle_%C3%A7ekimi" title="Yüzey kütle çekimi – Turkish" lang="tr" hreflang="tr" data-title="Yüzey kütle çekimi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D0%B5%D0%B2%D0%B0_%D0%B3%D1%80%D0%B0%D0%B2%D1%96%D1%82%D0%B0%D1%86%D1%96%D1%8F" title="Поверхнева гравітація – Ukrainian" lang="uk" hreflang="uk" data-title="Поверхнева гравітація" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BA%A5p_d%E1%BA%ABn_b%E1%BB%81_m%E1%BA%B7t" title="Hấp dẫn bề mặt – Vietnamese" lang="vi" hreflang="vi" data-title="Hấp dẫn bề mặt" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%A1%A8%E9%9D%A2%E9%87%8D%E5%8A%9B" title="表面重力 – Chinese" lang="zh" hreflang="zh" data-title="表面重力" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1758384#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Surface_gravity" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Surface_gravity" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Surface_gravity"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Surface_gravity&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Surface_gravity&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Surface_gravity"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Surface_gravity&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Surface_gravity&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Surface_gravity" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Surface_gravity" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Surface_gravity&oldid=1258817807" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Surface_gravity&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Surface_gravity&id=1258817807&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSurface_gravity"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSurface_gravity"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Surface_gravity&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Surface_gravity&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1758384" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Standard surface gravity</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle">Astrodynamics</th></tr><tr><td class="sidebar-image" style="padding-bottom:0.85em;"><span typeof="mw:File"><a href="/wiki/File:Orbit_mechanics_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/60px-Orbit_mechanics_icon.svg.png" decoding="async" width="60" height="60" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/90px-Orbit_mechanics_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/120px-Orbit_mechanics_icon.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></td></tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics"><span style="font-size:110%;">Orbital mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Orbital_elements" title="Orbital elements">Orbital elements</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Apsis" title="Apsis">Apsis</a></li> <li><a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><a href="/wiki/Orbital_node" title="Orbital node">Orbital nodes</a></li> <li><a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Types of <a href="/wiki/Two-body_problem" title="Two-body problem">two-body orbits</a> by <br />eccentricity</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular orbit</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptic orbit</a></li></ul> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Transfer_orbit" title="Transfer orbit">Transfer orbit</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer orbit</a></li><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer orbit</a>)</li></ul></div></div> <ul><li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic orbit</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic orbit</a></li> <li><a href="/wiki/Radial_trajectory" title="Radial trajectory">Radial orbit</a></li> <li><a href="/wiki/Orbital_decay" title="Orbital decay">Decaying orbit</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Dynamical_friction" title="Dynamical friction">Dynamical friction</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler's equation">Kepler's equation</a></li> <li><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler's laws of planetary motion">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><a href="/wiki/Orbital_speed" title="Orbital speed">Orbital velocity</a></li> <li><a class="mw-selflink selflink">Surface gravity</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Vis-viva_equation" title="Vis-viva equation">Vis-viva equation</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Celestial_mechanics" title="Celestial mechanics"><span style="font-size:110%;">Celestial mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Gravitational influences</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">Barycenter</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a href="/wiki/Perturbation_(astronomy)" title="Perturbation (astronomy)">Perturbations</a></li> <li><a href="/wiki/Sphere_of_influence_(astrodynamics)" title="Sphere of influence (astrodynamics)">Sphere of influence</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/N-body_problem" title="N-body problem">N-body orbits</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian points</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Halo_orbit" title="Halo orbit">Halo orbits</a>)</li></ul></div></div> <ul><li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous orbits</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov orbits</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Aerospace_engineering" title="Aerospace engineering"><span style="font-size:110%;">Engineering and efficiency</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Preflight engineering</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Mass_ratio" title="Mass ratio">Mass ratio</a></li> <li><a href="/wiki/Payload_fraction" title="Payload fraction">Payload fraction</a></li> <li><a href="/wiki/Propellant_mass_fraction" title="Propellant mass fraction">Propellant mass fraction</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Tsiolkovsky rocket equation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Efficiency measures</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Propulsive maneuvers</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Orbital maneuver</a></li> <li><a href="/wiki/Orbit_insertion" title="Orbit insertion">Orbit insertion</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Astrodynamics" title="Template:Astrodynamics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Astrodynamics" title="Template talk:Astrodynamics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Astrodynamics" title="Special:EditPage/Template:Astrodynamics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The <b>surface gravity</b>, <i>g</i>, of an <a href="/wiki/Astronomical_object" title="Astronomical object">astronomical object</a> is the <a href="/wiki/Gravitational_acceleration" title="Gravitational acceleration">gravitational acceleration</a> experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere. </p><p>Surface gravity is measured in units of acceleration, which, in the <a href="/wiki/SI_units" class="mw-redirect" title="SI units">SI</a> system, are <a href="/wiki/Metre_per_second_squared" title="Metre per second squared">meters per second squared</a>. It may also be expressed as a multiple of the <a href="/wiki/Earth" title="Earth">Earth</a>'s <a href="/wiki/Standard_gravity" title="Standard gravity">standard surface gravity</a>, which is equal to<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.5em;"><i>g</i> = <span class="nowrap"><span data-sort-value="7000980665000000000♠"></span>9.806<span style="margin-left:.25em;">65</span> m/s<sup>2</sup></span></div> <p>In <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a>, the surface gravity may be expressed as <style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="log_g"></span><span class="vanchor-text"><span class="texhtml">log <i>g</i></span></span></span>, which is obtained by first expressing the gravity in <a href="/wiki/Cgs_unit" class="mw-redirect" title="Cgs unit">cgs units</a>, where the unit of acceleration and surface gravity is <a href="/wiki/Centimeter" class="mw-redirect" title="Centimeter">centimeters</a> per second squared (cm/s<sup>2</sup>), and then taking the base-10 <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> of the cgs value of the surface gravity.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Therefore, the surface gravity of Earth could be expressed in cgs units as <span class="nowrap"><span data-sort-value="7000980665000000000♠"></span>980.665 cm/s<sup>2</sup></span>, and then taking the base-10 <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> ("log <i>g</i>") of 980.665, giving 2.992 as "log <i>g</i>". </p><p>The surface gravity of a <a href="/wiki/White_dwarf" title="White dwarf">white dwarf</a> is very high, and of a <a href="/wiki/Neutron_star" title="Neutron star">neutron star</a> even higher. A white dwarf's surface gravity is around 100,000 <i>g</i> (<span class="nowrap"><span data-sort-value="7006100000000000000♠"></span>10<sup>6</sup> m/s<sup>2</sup></span>) whilst the neutron star's compactness gives it a surface gravity of up to <span class="nowrap"><span data-sort-value="7012700000000000000♠"></span>7<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>12</sup> m/s<sup>2</sup></span> with typical values of order <span class="nowrap"><span data-sort-value="7012100000000000000♠"></span>10<sup>12</sup> m/s<sup>2</sup></span> (that is more than 10<sup>11</sup> times that of Earth). One measure of such immense gravity is that neutron stars have an <a href="/wiki/Escape_velocity" title="Escape velocity">escape velocity</a> of around <a href="/wiki/Orders_of_magnitude_(speed)#8" title="Orders of magnitude (speed)">100,000 km/s</a>, about a third of the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a>. For black holes, the surface gravity must be calculated relativistically. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Relationship_of_surface_gravity_to_mass_and_radius">Relationship of surface gravity to mass and radius</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=1" title="Edit section: Relationship of surface gravity to mass and radius"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable sortable" style="float:right; clear:right; margin-left:1em"> <caption>Surface gravity of various<br />Solar System bodies<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><br /><div style="font-size:70%; line-height:110%">(1 <i>g</i> = 9.80665 m/s<sup>2</sup>, the average surface gravitational acceleration on Earth)</div> </caption> <tbody><tr> <th scope="col">Name </th> <th scope="col" data-sort-type="number">Surface gravity </th></tr> <tr style="background:#FF8B8B"> <td><a href="/wiki/Sun" title="Sun">Sun</a></td> <td>28.02 <i>g</i> </td></tr> <tr style="background:#EEFFFF"> <td><a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.377 <i>g</i> </td></tr> <tr style="background:#FDFFFF"> <td><a href="/wiki/Venus" title="Venus">Venus</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.905 <i>g</i> </td></tr> <tr style="background:#FFFFFF"> <td><a href="/wiki/Gravity_of_Earth" title="Gravity of Earth">Earth</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>1 <i>g</i> (midlatitudes) </td></tr> <tr style="background:#E0FFFF"> <td><a href="/wiki/Gravitation_of_the_Moon" title="Gravitation of the Moon">Moon</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.165 7 <i>g</i> (average) </td></tr> <tr style="background:#EEFFFF"> <td><a href="/wiki/Gravity_of_Mars" title="Gravity of Mars">Mars</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.379 <i>g</i> (midlatitudes) </td></tr> <tr style="background:#7EFFFF"> <td><a href="/wiki/Phobos_(moon)" title="Phobos (moon)">Phobos</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.000 581 <i>g</i> </td></tr> <tr style="background:#72FFFF"> <td><a href="/wiki/Deimos_(moon)" title="Deimos (moon)">Deimos</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.000 306 <i>g</i> </td></tr> <tr style="background:#BDFFFF"> <td><a href="/wiki/2_Pallas" title="2 Pallas">Pallas</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.022 <i>g</i> (equator) </td></tr> <tr style="background:#BFFFFF"> <td><a href="/wiki/4_Vesta" title="4 Vesta">Vesta</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.025 <i>g</i> (equator) </td></tr> <tr style="background:#C2FFFF"> <td><a href="/wiki/Ceres_(dwarf_planet)" title="Ceres (dwarf planet)">Ceres</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.029 <i>g</i> </td></tr> <tr style="background:#FFDFDF"> <td><a href="/wiki/Jupiter" title="Jupiter">Jupiter</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>2.528 <i>g</i> (midlatitudes) </td></tr> <tr style="background:#E2FFFF"> <td><a href="/wiki/Io_(moon)" title="Io (moon)">Io</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.183 <i>g</i> </td></tr> <tr style="background:#DCFFFF"> <td><a href="/wiki/Europa_(moon)" title="Europa (moon)">Europa</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.134 <i>g</i> </td></tr> <tr style="background:#DEFFFF"> <td><a href="/wiki/Ganymede_(moon)" title="Ganymede (moon)">Ganymede</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.146 <i>g</i> </td></tr> <tr style="background:#DBFFFF"> <td><a href="/wiki/Callisto_(moon)" title="Callisto (moon)">Callisto</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.126 <i>g</i> </td></tr> <tr style="background:#FDFFFF"> <td><a href="/wiki/Saturn" title="Saturn">Saturn</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>1.065 <i>g</i> (midlatitudes) </td></tr> <tr style="background:#A7FFFF"> <td><a href="/wiki/Mimas_(moon)" class="mw-redirect" title="Mimas (moon)">Mimas</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.006 48 <i>g</i> </td></tr> <tr style="background:#B1FFFF"> <td><a href="/wiki/Enceladus" title="Enceladus">Enceladus</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.011 5 <i>g</i> </td></tr> <tr style="background:#B5FFFF"> <td><a href="/wiki/Tethys_(moon)" title="Tethys (moon)">Tethys</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.014 9 <i>g</i> </td></tr> <tr style="background:#BDFFFF"> <td><a href="/wiki/Dione_(moon)" title="Dione (moon)">Dione</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.023 7 <i>g</i> </td></tr> <tr style="background:#C0FFFF"> <td><a href="/wiki/Rhea_(moon)" title="Rhea (moon)">Rhea</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.026 9 <i>g</i> </td></tr> <tr style="background:#DDFFFF"> <td><a href="/wiki/Titan_(moon)" title="Titan (moon)">Titan</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.138 <i>g</i> </td></tr> <tr style="background:#BDFFFF"> <td><a href="/wiki/Iapetus_(moon)" title="Iapetus (moon)">Iapetus</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.022 8 <i>g</i> </td></tr> <tr style="background:#A1FFFF"> <td><a href="/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.003 9–0.005 1 <i>g</i> </td></tr> <tr style="background:#FDFFFF"> <td><a href="/wiki/Uranus" title="Uranus">Uranus</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.886 <i>g</i> (equator) </td></tr> <tr style="background:#A9FFFF"> <td><a href="/wiki/Miranda_(moon)" title="Miranda (moon)">Miranda</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.007 9 <i>g</i> </td></tr> <tr style="background:#BFFFFF"> <td><a href="/wiki/Ariel_(moon)" title="Ariel (moon)">Ariel</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.025 4 <i>g</i> </td></tr> <tr style="background:#BDFFFF"> <td><a href="/wiki/Umbriel" title="Umbriel">Umbriel</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.023 <i>g</i> </td></tr> <tr style="background:#C6FFFF"> <td><a href="/wiki/Titania_(moon)" title="Titania (moon)">Titania</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.037 2 <i>g</i> </td></tr> <tr style="background:#C5FFFF"> <td><a href="/wiki/Oberon_(moon)" title="Oberon (moon)">Oberon</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.036 1 <i>g</i> </td></tr> <tr style="background:#FFFAFA"> <td><a href="/wiki/Neptune" title="Neptune">Neptune</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>1.137 <i>g</i> (midlatitudes) </td></tr> <tr style="background:#A9FFFF"> <td><a href="/wiki/Proteus_(moon)" title="Proteus (moon)">Proteus</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.007 <i>g</i> </td></tr> <tr style="background:#D3FFFF"> <td><a href="/wiki/Triton_(moon)" title="Triton (moon)">Triton</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.079 4 <i>g</i> </td></tr> <tr style="background:#CFFFFF"> <td><a href="/wiki/Pluto" title="Pluto">Pluto</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.063 <i>g</i> </td></tr> <tr style="background:#C2FFFF"> <td><a href="/wiki/Charon_(moon)" title="Charon (moon)">Charon</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.029 4 <i>g</i> </td></tr> <tr style="background:#D4FFFF"> <td><a href="/wiki/Eris_(dwarf_planet)" title="Eris (dwarf planet)">Eris</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.084 <i>g</i> </td></tr> <tr style="background:#BFFFFF"> <td><a href="/wiki/Haumea" title="Haumea">Haumea</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.0247 <i>g</i> (equator) </td></tr> <tr style="background:#40FFFF"> <td><a href="/wiki/67P/Churyumov%E2%80%93Gerasimenko" title="67P/Churyumov–Gerasimenko">67P-CG</a></td> <td><span style="visibility:hidden;color:transparent;">0</span>0.000 017 <i>g</i> </td></tr></tbody></table> <p>In the <a href="/wiki/Newtonian_gravity" class="mw-redirect" title="Newtonian gravity">Newtonian</a> theory of <a href="/wiki/Gravity" title="Gravity">gravity</a>, the <a href="/wiki/Gravitational_force" class="mw-redirect" title="Gravitational force">gravitational force</a> exerted by an object is proportional to its mass: an object with twice the mass-produces twice as much force. Newtonian gravity also follows an <a href="/wiki/Inverse_square_law" class="mw-redirect" title="Inverse square law">inverse square law</a>, so that moving an object twice as far away divides its gravitational force by four, and moving it ten times as far away divides it by 100. This is similar to the intensity of <a href="/wiki/Light" title="Light">light</a>, which also follows an inverse square law: with relation to distance, light becomes less visible. Generally speaking, this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space. </p><p>A large object, such as a <a href="/wiki/Planet" title="Planet">planet</a> or <a href="/wiki/Star" title="Star">star</a>, will usually be approximately round, approaching <a href="/wiki/Hydrostatic_equilibrium" title="Hydrostatic equilibrium">hydrostatic equilibrium</a> (where all points on the surface have the same amount of <a href="/wiki/Gravitational_potential_energy" class="mw-redirect" title="Gravitational potential energy">gravitational potential energy</a>). On a small scale, higher parts of the terrain are eroded, with eroded material deposited in lower parts of the terrain. On a large scale, the planet or star itself deforms until equilibrium is reached.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> For most celestial objects, the result is that the planet or star in question can be treated as a near-perfect <a href="/wiki/Sphere" title="Sphere">sphere</a> when the rotation rate is low. However, for young, massive stars, the equatorial <a href="/wiki/Azimuth" title="Azimuth">azimuthal</a> velocity can be quite high—up to 200 km/s or more—causing a significant amount of <a href="/wiki/Equatorial_bulge" title="Equatorial bulge">equatorial bulge</a>. Examples of such <a href="/wiki/Stellar_rotation" title="Stellar rotation">rapidly rotating stars</a> include <a href="/wiki/Achernar" title="Achernar">Achernar</a>, <a href="/wiki/Altair" title="Altair">Altair</a>, <a href="/wiki/Regulus" title="Regulus">Regulus A</a> and <a href="/wiki/Vega" title="Vega">Vega</a>. </p><p>The fact that many large celestial objects are approximately spheres makes it easier to calculate their surface gravity. According to the <a href="/wiki/Shell_theorem" title="Shell theorem">shell theorem</a>, the gravitational force outside a spherically symmetric body is the same as if its entire mass were concentrated in the center, as was established by <a href="/wiki/Sir_Isaac_Newton" class="mw-redirect" title="Sir Isaac Newton">Sir Isaac Newton</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Therefore, the surface gravity of a planet or star with a given mass will be approximately inversely proportional to the square of its <a href="/wiki/Radius" title="Radius">radius</a>, and the surface gravity of a planet or star with a given average density will be approximately proportional to its radius. For example, the recently discovered planet, <a href="/wiki/Gliese_581_c" class="mw-redirect" title="Gliese 581 c">Gliese 581 c</a>, has at least 5 times the mass of Earth, but is unlikely to have 5 times its surface gravity. If its mass is no more than 5 times that of the Earth, as is expected,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> and if it is a rocky planet with a large iron core, it should have a radius approximately 50% larger than that of Earth.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-model_8-0" class="reference"><a href="#cite_note-model-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Gravity on such a planet's surface would be approximately 2.2 times as strong as on Earth. If it is an icy or watery planet, its radius might be as large as twice the Earth's, in which case its surface gravity might be no more than 1.25 times as strong as the Earth's.<sup id="cite_ref-model_8-1" class="reference"><a href="#cite_note-model-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>These proportionalities may be expressed by the formula: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\propto {\frac {m}{r^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>∝<!-- ∝ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\propto {\frac {m}{r^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620b77ae24e16c4c459486a02499d1e32bd20f17" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:7.153ex; height:5.009ex;" alt="{\displaystyle g\propto {\frac {m}{r^{2}}}}"></span> where <span class="texhtml"><i>g</i></span> is the surface gravity of an object, expressed as a multiple of the Earth's, <span class="texhtml"><i>m</i></span> is its mass, expressed as a multiple of the <a href="/wiki/Earth" title="Earth">Earth</a>'s mass (<span class="nowrap"><span data-sort-value="7024597600000000000♠"></span>5.976<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>24</sup> kg</span>) and <span class="texhtml"><i>r</i></span> its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km).<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> For instance, <a href="/wiki/Mars" title="Mars">Mars</a> has a mass of <span class="nowrap"><span data-sort-value="7023641850000000000♠"></span>6.4185<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>23</sup> kg</span> = 0.107 Earth masses and a mean radius of 3,390 km = 0.532 Earth radii.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> The surface <a href="/wiki/Gravity_of_Mars" title="Gravity of Mars">gravity of Mars</a> is therefore approximately <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {0.107}{0.532^{2}}}=0.38}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.107</mn> <msup> <mn>0.532</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>0.38</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {0.107}{0.532^{2}}}=0.38}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4854f012613388994a4343681233910bfc8ede" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.42ex; height:5.676ex;" alt="{\displaystyle {\frac {0.107}{0.532^{2}}}=0.38}"></span> times that of Earth. Without using the Earth as a reference body, the surface gravity may also be calculated directly from <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a>, which gives the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\frac {GM}{r^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\frac {GM}{r^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/853ff89e03328fcf0eef4b0a64e9d78a84172c72" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:9.32ex; height:5.676ex;" alt="{\displaystyle g={\frac {GM}{r^{2}}}}"></span> where <span class="texhtml"><i>M</i></span> is the mass of the object, <span class="texhtml"><i>r</i></span> is its radius, and <span class="texhtml"><i>G</i></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>. If <span class="texhtml"><i>ρ</i> = <i>M</i>/<i>V</i></span> denote the mean <a href="/wiki/Density" title="Density">density</a> of the object, this can also be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\frac {4\pi }{3}}G\rho r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mi>G</mi> <mi>ρ<!-- ρ --></mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\frac {4\pi }{3}}G\rho r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9de94d854fd21e4cf5eb4f2ec76158ffc625e121" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.622ex; height:5.176ex;" alt="{\displaystyle g={\frac {4\pi }{3}}G\rho r}"></span> so that, for fixed mean density, the surface gravity <span class="texhtml"><i>g</i></span> is proportional to the radius <span class="texhtml"><i>r</i></span>. Solving for mass, this equation can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=G\left({\frac {4\pi \rho }{3}}\right)^{2/3}M^{1/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mi>G</mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> <mi>ρ<!-- ρ --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=G\left({\frac {4\pi \rho }{3}}\right)^{2/3}M^{1/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61a47fb2e2fdf9ffce1d71e2c7db51b600a83d42" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.89ex; height:6.676ex;" alt="{\displaystyle g=G\left({\frac {4\pi \rho }{3}}\right)^{2/3}M^{1/3}}"></span> But density is not constant, but increases as the planet grows in size, as they are not incompressible bodies. That is why the experimental relationship between surface gravity and mass does not grow as 1/3 but as 1/2:<sup id="cite_ref-g_vs_M_11-0" class="reference"><a href="#cite_note-g_vs_M-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=M^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=M^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/652fe7f5d0cf8eb7afe74dea00281aadb411afb2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.411ex; height:3.176ex;" alt="{\displaystyle g=M^{1/2}}"></span> here with <span class="texhtml"><i>g</i></span> in times Earth's surface gravity and <span class="texhtml"><i>M</i></span> in times Earth's mass. In fact, the exoplanets found fulfilling the former relationship have been found to be rocky planets.<sup id="cite_ref-g_vs_M_11-1" class="reference"><a href="#cite_note-g_vs_M-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Thus, for rocky planets, density grows with mass as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho \propto M^{1/4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo>∝<!-- ∝ --></mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho \propto M^{1/4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9b81508c7ca9dc36735dc92c995f5756f321a02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.497ex; height:3.343ex;" alt="{\displaystyle \rho \propto M^{1/4}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Gas_giants">Gas giants</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=2" title="Edit section: Gas giants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For gas giant planets such as Jupiter, Saturn, Uranus, and Neptune, the surface gravity is given at the 1 bar pressure level in the atmosphere.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> It has been found that for giant planets with masses in the range up to 100 times Earth's mass, their gravity surface is nevertheless very similar and close to 1<span class="texhtml"><i>g</i></span>, a region named the <i>gravity plateau</i>.<sup id="cite_ref-g_vs_M_11-2" class="reference"><a href="#cite_note-g_vs_M-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Non-spherically_symmetric_objects">Non-spherically symmetric objects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=3" title="Edit section: Non-spherically symmetric objects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most real astronomical objects are not perfectly spherically symmetric. One reason for this is that they are often rotating, which means that they are affected by the combined effects of <a href="/wiki/Gravity" title="Gravity">gravitational force</a> and <a href="/wiki/Centrifugal_force" title="Centrifugal force">centrifugal force</a>. This causes stars and planets to be <a href="/wiki/Oblateness" class="mw-redirect" title="Oblateness">oblate</a>, which means that their surface gravity is smaller at the equator than at the poles. This effect was exploited by <a href="/wiki/Hal_Clement" title="Hal Clement">Hal Clement</a> in his SF novel <i><a href="/wiki/Mission_of_Gravity" title="Mission of Gravity">Mission of Gravity</a></i>, dealing with a massive, fast-spinning planet where gravity was much higher at the poles than at the equator. </p><p>To the extent that an object's internal distribution of mass differs from a symmetric model, the measured surface gravity may be used to deduce things about the object's internal structure. This fact has been put to practical use since 1915–1916, when <a href="/wiki/Roland_E%C3%B6tv%C3%B6s" class="mw-redirect" title="Roland Eötvös">Roland Eötvös</a>'s <a href="/wiki/Torsion_balance" class="mw-redirect" title="Torsion balance">torsion balance</a> was used to prospect for <a href="/wiki/Oil" title="Oil">oil</a> near the city of <a href="/wiki/Egbell" class="mw-redirect" title="Egbell">Egbell</a> (now <a href="/wiki/Gbely" title="Gbely">Gbely</a>, <a href="/wiki/Slovakia" title="Slovakia">Slovakia</a>.)<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 1663">: 1663 </span></sup><sup id="cite_ref-hung_14-0" class="reference"><a href="#cite_note-hung-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 223">: 223 </span></sup> In 1924, the torsion balance was used to locate the <a href="/w/index.php?title=Nash_Dome&action=edit&redlink=1" class="new" title="Nash Dome (page does not exist)">Nash Dome</a> oil fields in <a href="/wiki/Texas" title="Texas">Texas</a>.<sup id="cite_ref-hung_14-1" class="reference"><a href="#cite_note-hung-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 223">: 223 </span></sup> </p><p>It is sometimes useful to calculate the surface gravity of simple hypothetical objects which are not found in nature. The surface gravity of infinite planes, tubes, lines, hollow shells, cones, and even more unrealistic structures may be used to provide insights into the behavior of real structures. </p> <div class="mw-heading mw-heading2"><h2 id="Black_holes">Black holes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=4" title="Edit section: Black holes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In relativity, the Newtonian concept of acceleration turns out not to be clear cut. For a black hole, which must be treated relativistically, one cannot define a surface gravity as the acceleration experienced by a test body at the object's surface because there is no surface, although the event horizon is a natural alternative candidate, but this still presents a problem because the acceleration of a test body at the event horizon of a black hole turns out to be infinite in relativity. Because of this, a renormalized value is used that corresponds to the Newtonian value in the non-relativistic limit. The value used is generally the local proper acceleration (which diverges at the event horizon) multiplied by the <a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">gravitational time dilation</a> factor (which goes to zero at the event horizon). For the Schwarzschild case, this value is mathematically well behaved for all non-zero values of <span class="texhtml"><i>r</i></span> and <span class="texhtml"><i>M</i></span>. </p><p>When one talks about the surface gravity of a black hole, one is defining a notion that behaves analogously to the Newtonian surface gravity, but is not the same thing. In fact, the surface gravity of a general black hole is not well defined. However, one can define the surface gravity for a black hole whose event horizon is a Killing horizon. </p><p>The surface gravity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> of a static <a href="/wiki/Killing_horizon" title="Killing horizon">Killing horizon</a> is the acceleration, as exerted at infinity, needed to keep an object at the horizon. Mathematically, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f616f6d9abc36f4acf71805487e34f584308fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.313ex; height:2.343ex;" alt="{\displaystyle k^{a}}"></span> is a suitably normalized <a href="/wiki/Killing_vector" class="mw-redirect" title="Killing vector">Killing vector</a>, then the surface gravity is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <mi>κ<!-- κ --></mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6e8e04c68e8153cc230ff0593a6a32058c6d2f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.12ex; height:3.009ex;" alt="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b},}"></span> where the equation is evaluated at the horizon. For a static and asymptotically flat spacetime, the normalization should be chosen so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}k_{a}\to -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}k_{a}\to -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95575c4932d63312072b6ed3ed26e76698b9b2c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.211ex; height:2.676ex;" alt="{\displaystyle k^{a}k_{a}\to -1}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcd3a85ea2e3d6b4027434e502cace4177d7a3e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.986ex; height:1.843ex;" alt="{\displaystyle r\to \infty }"></span>, and so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa \geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa \geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9116cdbe7518638eb7b26515e903573d6f920d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.6ex; height:2.343ex;" alt="{\displaystyle \kappa \geq 0}"></span>. For the Schwarzschild solution, take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f616f6d9abc36f4acf71805487e34f584308fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.313ex; height:2.343ex;" alt="{\displaystyle k^{a}}"></span> to be the <a href="/wiki/Time_translation" class="mw-redirect" title="Time translation">time translation</a> <a href="/wiki/Killing_vector" class="mw-redirect" title="Killing vector">Killing vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a79e8690f73550d0dbd25b6fa6007d0001f8b095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.11ex; height:3.843ex;" alt="{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}}"></span>, and more generally for the <a href="/wiki/Kerr%E2%80%93Newman_solution" class="mw-redirect" title="Kerr–Newman solution">Kerr–Newman solution</a> take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}+\Omega {\frac {\partial }{\partial \varphi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>φ<!-- φ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}+\Omega {\frac {\partial }{\partial \varphi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8baa62c9c3baa60378ab9f84a08ff97f3461da3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:17.471ex; height:4.176ex;" alt="{\textstyle k^{a}\partial _{a}={\frac {\partial }{\partial t}}+\Omega {\frac {\partial }{\partial \varphi }}}"></span>, the linear combination of the time translation and axisymmetry Killing vectors which is null at the horizon, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> is the angular velocity. </p> <div class="mw-heading mw-heading3"><h3 id="Schwarzschild_solution">Schwarzschild solution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=5" title="Edit section: Schwarzschild solution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f616f6d9abc36f4acf71805487e34f584308fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.313ex; height:2.343ex;" alt="{\displaystyle k^{a}}"></span> is a Killing vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <mi>κ<!-- κ --></mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a866eb312dd1b2112a477dae55b5c7464f2aed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.473ex; height:3.009ex;" alt="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -k^{a}\,\nabla ^{b}k_{a}=\kappa k^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mi>κ<!-- κ --></mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -k^{a}\,\nabla ^{b}k_{a}=\kappa k^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa93aca48cdbfed5aba390035d10246015cf7ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.281ex; height:3.009ex;" alt="{\displaystyle -k^{a}\,\nabla ^{b}k_{a}=\kappa k^{b}}"></span>. In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t,r,\theta ,\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t,r,\theta ,\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e79f5224bc4883bd5ac5706182f564d8f946468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.41ex; height:2.843ex;" alt="{\displaystyle (t,r,\theta ,\varphi )}"></span> coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}=(1,0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}=(1,0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb9ace39c00f4373d271070593356e9428b4d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.972ex; height:2.843ex;" alt="{\displaystyle k^{a}=(1,0,0,0)}"></span>. Performing a coordinate change to the advanced Eddington–Finklestein coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v=t+r+2M\ln |r-2M|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mi>t</mi> <mo>+</mo> <mi>r</mi> <mo>+</mo> <mn>2</mn> <mi>M</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v=t+r+2M\ln |r-2M|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e30e78eb1e3b0d28d457bf110fd857023522266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.901ex; height:2.843ex;" alt="{\textstyle v=t+r+2M\ln |r-2M|}"></span> causes the metric to take the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)\,dv^{2}+\left(dv\,dr+\,dr\,dv\right)+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> <mo>+</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>v</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <msup> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)\,dv^{2}+\left(dv\,dr+\,dr\,dv\right)+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d76f1ce38aeb3ada237f4a7dd1dd20ef4713840c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:66.818ex; height:6.176ex;" alt="{\displaystyle ds^{2}=-\left(1-{\frac {2M}{r}}\right)\,dv^{2}+\left(dv\,dr+\,dr\,dv\right)+r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}\right).}"></span> </p><p>Under a general change of coordinates the Killing vector transforms as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{v}=A_{t}^{v}k^{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msubsup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{v}=A_{t}^{v}k^{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4b1d7f758673bafbc3f36b5f6239b8a09064641" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.149ex; height:3.176ex;" alt="{\displaystyle k^{v}=A_{t}^{v}k^{t}}"></span> giving the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a'}=\delta _{v}^{a'}=(1,0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>a</mi> <mo>′</mo> </msup> </mrow> </msup> <mo>=</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>a</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a'}=\delta _{v}^{a'}=(1,0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a78cbd355c05e48fdfad1bb95486d0334e014192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.29ex; height:3.343ex;" alt="{\displaystyle k^{a'}=\delta _{v}^{a'}=(1,0,0,0)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k_{a'}=g_{a'v}=\left(-1+{\frac {2M}{r}},1,0,0\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>a</mi> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>a</mi> <mo>′</mo> </msup> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mi>r</mi> </mfrac> </mrow> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k_{a'}=g_{a'v}=\left(-1+{\frac {2M}{r}},1,0,0\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae39677bcd978a1ed54b441db13546c8ee26b25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.176ex; height:4.843ex;" alt="{\textstyle k_{a'}=g_{a'v}=\left(-1+{\frac {2M}{r}},1,0,0\right).}"></span> </p><p>Considering the <span class="texhtml"><i>b</i> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span></span> entry for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <mi>κ<!-- κ --></mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a866eb312dd1b2112a477dae55b5c7464f2aed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.473ex; height:3.009ex;" alt="{\displaystyle k^{a}\,\nabla _{a}k^{b}=\kappa k^{b}}"></span> gives the differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -{\frac {1}{2}}{\frac {\partial }{\partial r}}\left(-1+{\frac {2M}{r}}\right)=\kappa .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>r</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>κ<!-- κ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -{\frac {1}{2}}{\frac {\partial }{\partial r}}\left(-1+{\frac {2M}{r}}\right)=\kappa .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4038c2aa22bc132ae411608b63c30fba980efa95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.419ex; height:4.843ex;" alt="{\textstyle -{\frac {1}{2}}{\frac {\partial }{\partial r}}\left(-1+{\frac {2M}{r}}\right)=\kappa .}"></span> </p><p>Therefore, the surface gravity for the <a href="/wiki/Schwarzschild_solution" class="mw-redirect" title="Schwarzschild solution">Schwarzschild solution</a> with mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\frac {1}{4M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>M</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={\frac {1}{4M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c943af396c876f643069ec56dacc11b716dd04d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.878ex; height:5.176ex;" alt="{\displaystyle \kappa ={\frac {1}{4M}}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={c^{4}}/{4GM}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>G</mi> <mi>M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={c^{4}}/{4GM}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c181ce4298afbcc8a20a8e9804632b860d6de3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.092ex; height:3.176ex;" alt="{\displaystyle \kappa ={c^{4}}/{4GM}}"></span> in SI units).<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kerr_solution">Kerr solution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=6" title="Edit section: Kerr solution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The surface gravity for the uncharged, rotating black hole is, simply <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa =g-k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mi>g</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa =g-k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d231ca17771781cfbfbaac40d58b0f657cab18" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.252ex; height:2.509ex;" alt="{\displaystyle \kappa =g-k,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle g={\frac {1}{4M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>M</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle g={\frac {1}{4M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76231949e8805ea2f0b1273ca37986d24c969d90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.599ex; height:3.509ex;" alt="{\textstyle g={\frac {1}{4M}}}"></span> is the Schwarzschild surface gravity, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k:=M\Omega _{+}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>:=</mo> <mi>M</mi> <msubsup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k:=M\Omega _{+}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d6fe03eb4856e467d4c29a2053088fb6d64171c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.588ex; height:3.176ex;" alt="{\displaystyle k:=M\Omega _{+}^{2}}"></span> is the spring constant of the rotating black hole. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aece5d68daf75b9115c8bda0d66c4a0c1d462888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Omega _{+}}"></span> is the angular velocity at the event horizon. This expression gives a simple Hawking temperature of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi T=g-k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>T</mi> <mo>=</mo> <mi>g</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi T=g-k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c9827f76480592360bc636eebf0d9909d3ca0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.397ex; height:2.509ex;" alt="{\displaystyle 2\pi T=g-k}"></span>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kerr–Newman_solution"><span id="Kerr.E2.80.93Newman_solution"></span>Kerr–Newman solution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=7" title="Edit section: Kerr–Newman solution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The surface gravity for the <a href="/wiki/Kerr%E2%80%93Newman_solution" class="mw-redirect" title="Kerr–Newman solution">Kerr–Newman solution</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\frac {r_{+}-r_{-}}{2\left(r_{+}^{2}+a^{2}\right)}}={\frac {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}{2M^{2}-Q^{2}+2M{\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>2</mn> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={\frac {r_{+}-r_{-}}{2\left(r_{+}^{2}+a^{2}\right)}}={\frac {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}{2M^{2}-Q^{2}+2M{\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/366d6fa0bd08522e8b5d5d2234ddfacb830aad73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:59.857ex; height:7.509ex;" alt="{\displaystyle \kappa ={\frac {r_{+}-r_{-}}{2\left(r_{+}^{2}+a^{2}\right)}}={\frac {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}{2M^{2}-Q^{2}+2M{\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is the electric charge, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> is the angular momentum, define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle r_{\pm }:=M\pm {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>±<!-- ± --></mo> </mrow> </msub> <mo>:=</mo> <mi>M</mi> <mo>±<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle r_{\pm }:=M\pm {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/429593999482dc90175907dc76130de7bb8ea7a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.333ex; height:3.343ex;" alt="{\textstyle r_{\pm }:=M\pm {\sqrt {M^{2}-Q^{2}-J^{2}/M^{2}}}}"></span> to be the locations of the two horizons and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a:=J/M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>:=</mo> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a:=J/M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59ef26abe0b96635502bb56f551ebfb0edddb84b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.051ex; height:2.843ex;" alt="{\displaystyle a:=J/M}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Dynamical_black_holes">Dynamical black holes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=8" title="Edit section: Dynamical black holes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Surface gravity for stationary black holes is well defined. This is because all stationary black holes have a horizon that is Killing.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Recently there has been a shift towards defining the surface gravity of dynamical black holes whose spacetime does not admit a timelike <a href="/wiki/Killing_vector_field" title="Killing vector field">Killing vector (field)</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Several definitions have been proposed over the years by various authors, such as peeling surface gravity and Kodama surface gravity.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> As of current, there is no consensus or agreement on which definition, if any, is correct.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical</a> results indicate that the peeling surface gravity is ill-defined for transient objects formed in finite time of a distant observer.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=9" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFTaylor2001" class="citation book cs1">Taylor, Barry N., ed. (2001). <a rel="nofollow" class="external text" href="https://physics.nist.gov/cuu/pdf/sp330.pdf"><i>The International System of Units (SI)</i></a> <span class="cs1-format">(PDF)</span>. United States Department of Commerce: National Institute of Standards and Technology. p. 29<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-03-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+International+System+of+Units+%28SI%29&rft.pages=29&rft.pub=United+States+Department+of+Commerce%3A+National+Institute+of+Standards+and+Technology&rft.date=2001&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcuu%2Fpdf%2Fsp330.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">|work=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmalley2006" class="citation web cs1">Smalley, B. (13 July 2006). <a rel="nofollow" class="external text" href="http://www.astro.keele.ac.uk/~bs/publs/review_text.html">"The Determination of T<i>eff</i> and log <i>g</i> for B to G stars"</a>. <a href="/wiki/Keele_University" title="Keele University">Keele University</a><span class="reference-accessdate">. Retrieved <span class="nowrap">31 May</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Determination+of+Teff+and+log+g+for+B+to+G+stars&rft.pub=Keele+University&rft.date=2006-07-13&rft.aulast=Smalley&rft.aufirst=B.&rft_id=http%3A%2F%2Fwww.astro.keele.ac.uk%2F~bs%2Fpubls%2Freview_text.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsaac_Asimov1978" class="citation book cs1">Isaac Asimov (1978). <i>The Collapsing Universe</i>. Corgi. p. 44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-552-10884-3" title="Special:BookSources/978-0-552-10884-3"><bdi>978-0-552-10884-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Collapsing+Universe&rft.pages=44&rft.pub=Corgi&rft.date=1978&rft.isbn=978-0-552-10884-3&rft.au=Isaac+Asimov&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080921075319/http://www.newton.dep.anl.gov/askasci/gen99/gen99251.htm">"Why is the Earth round?"</a>. <i>Ask A Scientist</i>. Argonne National Laboratory, Division of Educational Programs. Archived from <a rel="nofollow" class="external text" href="http://www.newton.dep.anl.gov/askasci/gen99/gen99251.htm">the original</a> on 21 September 2008.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Ask+A+Scientist&rft.atitle=Why+is+the+Earth+round%3F&rft_id=http%3A%2F%2Fwww.newton.dep.anl.gov%2Faskasci%2Fgen99%2Fgen99251.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Book I, §XII, pp. 218–226, <i>Newton's Principia: The Mathematical Principles of Natural Philosophy</i>, Sir Isaac Newton, tr. Andrew Motte, ed. N. W. Chittenden. New York: Daniel Adee, 1848. First American edition.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.eso.org/public/outreach/press-rel/pr-2007/pr-22-07.html">Astronomers Find First Earth-like Planet in Habitable Zone</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090617093157/http://www.eso.org/public/outreach/press-rel/pr-2007/pr-22-07.html">Archived</a> 2009-06-17 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, ESO 22/07, press release from the <a href="/wiki/European_Southern_Observatory" title="European Southern Observatory">European Southern Observatory</a>, April 25, 2007</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUdryBonfilsDelfosseForveille2007" class="citation journal cs1">Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Mayor, Michel; Perrier, Christian; Bouchy, François; Lovis, Christophe; Pepe, Francesco; Queloz, Didier; Bertaux, Jean-Loup (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101008120426/http://exoplanet.eu/papers/udry_terre_HARPS-1.pdf">"The HARPS search for southern extra-solar planets XI. Super-Earths (5 and 8 <var>M</var><sub>E</sub>) in a 3-planet system"</a> <span class="cs1-format">(PDF)</span>. <i>Astronomy & Astrophysics</i>. <b>469</b> (3): L43–L47. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0704.3841">0704.3841</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007A&A...469L..43U">2007A&A...469L..43U</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20077612">10.1051/0004-6361:20077612</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119144195">119144195</a>. Archived from <a rel="nofollow" class="external text" href="http://exoplanet.eu/papers/udry_terre_HARPS-1.pdf">the original</a> <span class="cs1-format">(PDF)</span> on October 8, 2010.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astronomy+%26+Astrophysics&rft.atitle=The+HARPS+search+for+southern+extra-solar+planets+XI.+Super-Earths+%285+and+8+%3Cvar%3EM%3C%2Fvar%3E%3Csub%3EE%3C%2Fsub%3E%29+in+a+3-planet+system&rft.volume=469&rft.issue=3&rft.pages=L43-L47&rft.date=2007&rft_id=info%3Aarxiv%2F0704.3841&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119144195%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1051%2F0004-6361%3A20077612&rft_id=info%3Abibcode%2F2007A%26A...469L..43U&rft.aulast=Udry&rft.aufirst=St%C3%A9phane&rft.au=Bonfils%2C+Xavier&rft.au=Delfosse%2C+Xavier&rft.au=Forveille%2C+Thierry&rft.au=Mayor%2C+Michel&rft.au=Perrier%2C+Christian&rft.au=Bouchy%2C+Fran%C3%A7ois&rft.au=Lovis%2C+Christophe&rft.au=Pepe%2C+Francesco&rft.au=Queloz%2C+Didier&rft.au=Bertaux%2C+Jean-Loup&rft_id=http%3A%2F%2Fexoplanet.eu%2Fpapers%2Fudry_terre_HARPS-1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-model-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-model_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-model_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValenciaSasselovO'Connell2007" class="citation journal cs1">Valencia, Diana; Sasselov, Dimitar D; O'Connell, Richard J (2007). "Detailed Models of super-Earths: How well can we infer bulk properties?". <i>The Astrophysical Journal</i>. <b>665</b> (2): 1413–1420. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0704.3454">0704.3454</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1413V">2007ApJ...665.1413V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F519554">10.1086/519554</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15605519">15605519</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Detailed+Models+of+super-Earths%3A+How+well+can+we+infer+bulk+properties%3F&rft.volume=665&rft.issue=2&rft.pages=1413-1420&rft.date=2007&rft_id=info%3Aarxiv%2F0704.3454&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15605519%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1086%2F519554&rft_id=info%3Abibcode%2F2007ApJ...665.1413V&rft.aulast=Valencia&rft.aufirst=Diana&rft.au=Sasselov%2C+Dimitar+D&rft.au=O%27Connell%2C+Richard+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_4.html">2.7.4 Physical properties of the Earth</a>, web page, accessed on line May 27, 2007.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html">Mars Fact Sheet</a>, web page at NASA NSSDC, accessed May 27, 2007.</span> </li> <li id="cite_note-g_vs_M-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-g_vs_M_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-g_vs_M_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-g_vs_M_11-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBallesterosLuque2016" class="citation journal cs1">Ballesteros, Fernando; Luque, Bartolo (2016). "Walking on exoplanets: Is Star Wars right?". <i>Astrobiology</i>. <b>16</b> (5): 1–3. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.07725">1604.07725</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fast.2016.1475">10.1089/ast.2016.1475</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrobiology&rft.atitle=Walking+on+exoplanets%3A+Is+Star+Wars+right%3F&rft.volume=16&rft.issue=5&rft.pages=1-3&rft.date=2016&rft_id=info%3Aarxiv%2F1604.07725&rft_id=info%3Adoi%2F10.1089%2Fast.2016.1475&rft.aulast=Ballesteros&rft.aufirst=Fernando&rft.au=Luque%2C+Bartolo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html">"Planetary Fact Sheet Notes"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Planetary+Fact+Sheet+Notes&rft_id=https%3A%2F%2Fnssdc.gsfc.nasa.gov%2Fplanetary%2Ffactsheet%2Fplanetfact_notes.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiGötze2001" class="citation journal cs1">Li, Xiong; Götze, Hans-Jürgen (2001). "Ellipsoid, geoid, gravity, geodesy, and geophysics". <i>Geophysics</i>. <b>66</b> (6): 1660–1668. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Geop...66.1660L">2001Geop...66.1660L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1190%2F1.1487109">10.1190/1.1487109</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geophysics&rft.atitle=Ellipsoid%2C+geoid%2C+gravity%2C+geodesy%2C+and+geophysics&rft.volume=66&rft.issue=6&rft.pages=1660-1668&rft.date=2001&rft_id=info%3Adoi%2F10.1190%2F1.1487109&rft_id=info%3Abibcode%2F2001Geop...66.1660L&rft.aulast=Li&rft.aufirst=Xiong&rft.au=G%C3%B6tze%2C+Hans-J%C3%BCrgen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-hung-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-hung_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hung_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pp.bme.hu/ci/2002_2/pdf/ci2002_2_09.pdf">Prediction by Eötvös' torsion balance data in Hungary</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071128200353/http://www.pp.bme.hu/ci/2002_2/pdf/ci2002_2_09.pdf">Archived</a> 2007-11-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Gyula Tóth, <i>Periodica Polytechnica Ser. Civ. Eng.</i> <b>46</b>, #2 (2002), pp. 221–229.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaineThomas2010" class="citation book cs1">Raine, Derek J.; Thomas, Edwin George (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=O3puAMw5U3UC"><i>Black Holes: An Introduction</i></a> (illustrated ed.). <a href="/wiki/Imperial_College_Press" title="Imperial College Press">Imperial College Press</a>. p. 44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84816-382-9" title="Special:BookSources/978-1-84816-382-9"><bdi>978-1-84816-382-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Black+Holes%3A+An+Introduction&rft.pages=44&rft.edition=illustrated&rft.pub=Imperial+College+Press&rft.date=2010&rft.isbn=978-1-84816-382-9&rft.aulast=Raine&rft.aufirst=Derek+J.&rft.au=Thomas%2C+Edwin+George&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DO3puAMw5U3UC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=O3puAMw5U3UC&pg=PA44">Extract of page 44</a></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodYen_Chin_Ong2015" class="citation journal cs1">Good, Michael; Yen Chin Ong (February 2015). "Are Black Holes Springlike?". <i>Physical Review D</i>. <b>91</b> (4): 044031. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.5432">1412.5432</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhRvD..91d4031G">2015PhRvD..91d4031G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.91.044031">10.1103/PhysRevD.91.044031</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117749566">117749566</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Are+Black+Holes+Springlike%3F&rft.volume=91&rft.issue=4&rft.pages=044031&rft.date=2015-02&rft_id=info%3Aarxiv%2F1412.5432&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117749566%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.91.044031&rft_id=info%3Abibcode%2F2015PhRvD..91d4031G&rft.aulast=Good&rft.aufirst=Michael&rft.au=Yen+Chin+Ong&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWald1984" class="citation book cs1">Wald, Robert (1984). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/generalrelativit0000wald"><i>General Relativity</i></a></span>. University Of Chicago Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-226-87033-5" title="Special:BookSources/978-0-226-87033-5"><bdi>978-0-226-87033-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+Relativity&rft.pub=University+Of+Chicago+Press&rft.date=1984&rft.isbn=978-0-226-87033-5&rft.aulast=Wald&rft.aufirst=Robert&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeneralrelativit0000wald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFA._B._NielsenJ._H._Yoon2008" class="citation journal cs1">A. B. Nielsen; J. H. Yoon (2008). "Dynamical Surface Gravity". <i>Classical and Quantum Gravity</i>. <b>25</b> (8): 085010. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0711.1445">0711.1445</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008CQGra..25h5010N">2008CQGra..25h5010N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F25%2F8%2F085010">10.1088/0264-9381/25/8/085010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15438397">15438397</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=Dynamical+Surface+Gravity&rft.volume=25&rft.issue=8&rft.pages=085010&rft.date=2008&rft_id=info%3Aarxiv%2F0711.1445&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15438397%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F25%2F8%2F085010&rft_id=info%3Abibcode%2F2008CQGra..25h5010N&rft.au=A.+B.+Nielsen&rft.au=J.+H.+Yoon&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFH._Kodama1980" class="citation journal cs1">H. Kodama (1980). "Conserved Energy Flux for the Spherically Symmetric System and the Backreaction Problem in the Black Hole Evaporation". <i>Progress of Theoretical Physics</i>. <b>63</b> (4): 1217. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1980PThPh..63.1217K">1980PThPh..63.1217K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.63.1217">10.1143/PTP.63.1217</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122827579">122827579</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+of+Theoretical+Physics&rft.atitle=Conserved+Energy+Flux+for+the+Spherically+Symmetric+System+and+the+Backreaction+Problem+in+the+Black+Hole+Evaporation&rft.volume=63&rft.issue=4&rft.pages=1217&rft.date=1980&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122827579%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1143%2FPTP.63.1217&rft_id=info%3Abibcode%2F1980PThPh..63.1217K&rft.au=H.+Kodama&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPielahnG._KunstatterA._B._Nielsen2011" class="citation journal cs1">Pielahn, Mathias; G. Kunstatter; A. B. Nielsen (November 2011). "Dynamical surface gravity in spherically symmetric black hole formation". <i>Physical Review D</i>. <b>84</b> (10): 104008(11). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1103.0750">1103.0750</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvD..84j4008P">2011PhRvD..84j4008P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.84.104008">10.1103/PhysRevD.84.104008</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119015033">119015033</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Dynamical+surface+gravity+in+spherically+symmetric+black+hole+formation&rft.volume=84&rft.issue=10&rft.pages=104008%2811%29&rft.date=2011-11&rft_id=info%3Aarxiv%2F1103.0750&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119015033%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.84.104008&rft_id=info%3Abibcode%2F2011PhRvD..84j4008P&rft.aulast=Pielahn&rft.aufirst=Mathias&rft.au=G.+Kunstatter&rft.au=A.+B.+Nielsen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._B._MannS._MurkD._R._Terno2022" class="citation journal cs1">R. B. Mann; S. Murk; D. R. Terno (2022). "Surface gravity and the information loss problem". <i>Physical Review D</i>. <b>105</b> (12): 124032. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2109.13939">2109.13939</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvD.105l4032M">2022PhRvD.105l4032M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.105.124032">10.1103/PhysRevD.105.124032</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249799593">249799593</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Surface+gravity+and+the+information+loss+problem&rft.volume=105&rft.issue=12&rft.pages=124032&rft.date=2022&rft_id=info%3Aarxiv%2F2109.13939&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249799593%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.105.124032&rft_id=info%3Abibcode%2F2022PhRvD.105l4032M&rft.au=R.+B.+Mann&rft.au=S.+Murk&rft.au=D.+R.+Terno&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASurface+gravity" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Surface_gravity&action=edit&section=10" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://farside.ph.utexas.edu/teaching/301/lectures/node152.html">Newtonian surface gravity</a></li> <li><a rel="nofollow" class="external text" href="http://www.exploratorium.edu/ronh/weight/">Exploratorium – Your Weight on Other Worlds</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐48htr Cached time: 20241122143235 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.645 seconds Real time usage: 0.965 seconds Preprocessor visited node count: 3534/1000000 Post‐expand include size: 65802/2097152 bytes Template argument size: 5181/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 86656/5000000 bytes Lua time usage: 0.366/10.000 seconds Lua memory usage: 8755664/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 667.840 1 -total 39.19% 261.713 1 Template:Reflist 21.70% 144.950 1 Template:Astrodynamics 19.61% 130.955 1 Template:Sidebar_with_collapsible_lists 19.45% 129.894 4 Template:Cite_book 16.15% 107.835 1 Template:Short_description 10.35% 69.117 9 Template:Cite_journal 9.46% 63.167 2 Template:Pagetype 7.68% 51.307 5 Template:Longitem 7.36% 49.123 7 Template:Val --> <!-- Saved in parser cache with key enwiki:pcache:1720933:|#|:idhash:canonical and timestamp 20241122143235 and revision id 1258817807. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Surface_gravity&oldid=1258817807">https://en.wikipedia.org/w/index.php?title=Surface_gravity&oldid=1258817807</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Gravity" title="Category:Gravity">Gravity</a></li><li><a href="/wiki/Category:Black_holes" title="Category:Black holes">Black holes</a></li><li><a href="/wiki/Category:General_relativity" title="Category:General relativity">General relativity</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 20:11<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Surface_gravity&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4fxvw","wgBackendResponseTime":176,"wgPageParseReport":{"limitreport":{"cputime":"0.645","walltime":"0.965","ppvisitednodes":{"value":3534,"limit":1000000},"postexpandincludesize":{"value":65802,"limit":2097152},"templateargumentsize":{"value":5181,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":86656,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 667.840 1 -total"," 39.19% 261.713 1 Template:Reflist"," 21.70% 144.950 1 Template:Astrodynamics"," 19.61% 130.955 1 Template:Sidebar_with_collapsible_lists"," 19.45% 129.894 4 Template:Cite_book"," 16.15% 107.835 1 Template:Short_description"," 10.35% 69.117 9 Template:Cite_journal"," 9.46% 63.167 2 Template:Pagetype"," 7.68% 51.307 5 Template:Longitem"," 7.36% 49.123 7 Template:Val"]},"scribunto":{"limitreport-timeusage":{"value":"0.366","limit":"10.000"},"limitreport-memusage":{"value":8755664,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-48htr","timestamp":"20241122143235","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Surface gravity","url":"https:\/\/en.wikipedia.org\/wiki\/Surface_gravity","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1758384","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1758384","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-04-10T23:32:32Z","dateModified":"2024-11-21T20:11:51Z","headline":"Standard surface gravity"}</script> </body> </html>