CINXE.COM

A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST | PDF

<!DOCTYPE html><html lang="en"><script id="gtm"> performance.mark('gtm.start'); (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({ 'gtm.start': new Date().getTime(), event: 'gtm.js' }); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; j.onload = function () { performance.mark('gtm.end'); performance.measure('gtm', 'gtm.start', 'gtm.end'); }; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M36RG8PT'); </script><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width"/><link rel="shortcut icon" href="https://public.slidesharecdn.com/_next/static/media/favicon.7bc3d920.ico"/><script> window.eventsToSend = window.eventsToSend || [] window.eventsToSend.push({ name: "page_rendering", timestamp: new Date().toISOString(), value: JSON.stringify({ time: performance?.now() }) }) </script><script type="speculationrules">{"prerender":[{"where":{"and":[{"href_matches":"/slideshow/*"}]},"eagerness":"moderate"}]}</script><title>A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST | PDF</title><meta name="robots" content="index, follow"/><meta name="title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><link rel="canonical" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="alternate" hrefLang="en" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="alternate" hrefLang="x-default" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="preconnect" href="https://a.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://b.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://c.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://d.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://c.amazon-adsystem.com" crossorigin="anonymous"/><link rel="preconnect" href="https://s.amazon-adsystem.com" crossorigin="anonymous"/><link rel="preconnect" href="https://secure.quantserve.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://rules.quantcount.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://pixel.quantserve.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://btloader.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://api.btloader.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://confiant-integrations.global.ssl.fastly.net" crossorigin="anonymous"/><link rel="preload" href="https://a.pub.network/slideshare-net/pubfig.min.js" as="script"/><script> window.freestarReactCompontentLoaded = true; // Prevents Freestar from appending the script a second time; typo is theirs window.freestar = window.freestar || { queue: [] }; window.freestar.config = freestar.config || {}; window.freestar.config.disabledProducts = { googleInterstitial: false, }; window.eventsToSend = window.eventsToSend || []; window.freestar.queue.push(function () { window.eventsToSend.push({ name: "freestar_queue_start", timestamp: new Date().toISOString() }) }); </script><meta name="twitter:site" content="@SlideShare"/><meta name="twitter:card" content="player"/><meta name="twitter:title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="twitter:description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><meta name="twitter:image" content="https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640&amp;height=640&amp;fit=bounds"/><meta name="twitter:image:alt" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="twitter:player" content="https://www.slideshare.net/slideshow/embed_code/key/oiy1E5SIQXjS5R"/><meta name="twitter:player:width" content="670"/><meta name="twitter:player:height" content="715"/><meta name="twitter:app:name:googleplay" content="SlideShare Android"/><meta name="twitter:app:id:googleplay" content="net.slideshare.mobile"/><meta name="twitter:app:name:iphone" content="SlideShare iOS"/><meta name="twitter:app:id:iphone" content="917418728"/><meta name="twitter:app:url:iphone" content="slideshare-app://ss/165952101"/><meta name="twitter:app:name:ipad" content="SlideShare iOS"/><meta name="twitter:app:id:ipad" content="917418728"/><meta name="twitter:app:url:ipad" content="slideshare-app://ss/165952101"/><meta property="og:site_name" content="SlideShare"/><meta property="og:type" content="website"/><meta property="og:url" content="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><meta property="og:title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta property="og:description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><meta property="og:image" content="https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640&amp;height=640&amp;fit=bounds"/><meta property="og:image:alt" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta property="og:image:type" content="image/webp"/><meta property="og:image:width" content="640"/><meta property="og:image:height" content="360"/><script type="application/ld+json">{"@context":"http://schema.org","@type":"CreativeWork","name":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","description":"Recent James Webb Space Telescope ( JWST) observations have revealed\na surprisingly abundant population of faint, dusty active galactic nuclei at\nz ≈ 4–7. Together with the presence of supermassive black holes at z \u003e 6,\nthis raises questions about the formation and growth histories of early black\nholes. Current theories for the formation of seed black holes from the death\nof the frst stars (that is, light seeds) and/or the direct collapse of primordial\ngas clouds (that is, heavy seeds) still lack observational confrmation. Here\nwe present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful\noutfows that is observed in an extreme phase of rapid growth at redshift\nz ≈ 4. This object is similar to other JWST-discovered faint active galactic\nnuclei populations, but is bright in X-ray emission and accreting at more\nthan 4,000% of the limit at which radiation pressure exceeds the force of\ngravitational attraction of the black hole (that is, super-Eddington accretion).\nAnalysis of JWST Near-Infrared Spectrograph integral feld unit data reveals\nspatially extended Hα emission with velocities of ~−600–−500 km s−1 relative\nto the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington\naccretion as invoked by models of early black hole formation. This discovery\nshowcases a previously undiscovered key parameter space and ofers crucial\ninsights into rapid black hole growth mechanisms in the early universe.","url":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","datePublished":"2024-11-04 20:44:17 UTC","publisher":{"@type":"Organization","name":"Slideshare","url":"https://www.slideshare.net/"},"encodingFormat":"application/pdf","fileFormat":"pdf","inLanguage":"en","mainEntityOfPage":{"@type":"WebPage","@id":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"}}</script><script type="application/ld+json">{"@context":"https://schema.org/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.slideshare.net"},{"@type":"ListItem","position":2,"name":"Science","item":"https://www.slideshare.net/category/science"},{"@type":"ListItem","position":3,"name":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","item":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"}]}</script><script> freestar.queue.push(function() { googletag.pubads().setTargeting('test', []); }); </script><meta name="next-head-count" content="56"/><link rel="preload" href="https://public.slidesharecdn.com/_next/static/media/9c20d643cc03e499-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="https://public.slidesharecdn.com/_next/static/media/a9b61b60c2d733b4-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><noscript data-n-css=""></noscript><link rel="preload" href="https://cmp.osano.com/AzZdHGSGtpxCq1Cpt/079b27eb-bb3f-48dd-9bd9-3feb8aec3c38/osano.js" as="script"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/webpack-0599b13ea250d156.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/framework-5a981bd1af7edc76.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/main-9d633b45c44c4167.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/pages/_app-5316d509336a6820.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/5121-c12bfd4bed7c2139.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/5227-d715f91eabfbc7cb.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/pages/slideshow/%5Btitle%5D/%5Bid%5D-e7f20cb7621a4a8d.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/6cf5707a372b9e8ab0c6a000683653819317f919/_buildManifest.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/6cf5707a372b9e8ab0c6a000683653819317f919/_ssgManifest.js"/><style>:root{--black:#000;--white:#fff;--alice-blue-100:#f5fcff;--alice-blue-200:#f2faff;--alice-blue-300:#f2f9fc;--alice-blue-600:#ddf1f9;--celadon-blue:#027eb0;--celadon-blue-dark:#026c97;--midnight-green-dark:#002e3c;--light-gray:#e9edf8;--pale-gray:#fdfdfd;--border-light:#e3e6ef;--snow-gray:#f3f6fd;--snow-gray-100:#f9faff;--blue-gray-100:#f5f6fa;--blue-gray-200:#e3e6f0;--blue-gray-300:#d0d6e6;--blue-gray-400:#b4bbd1;--blue-gray-500:#989fbc;--blue-gray-575:#6d7594;--blue-gray-600:#636c8b;--blue-gray-700:#424766;--blue-gray-800:#212240;--blue-gray-900:#0e0f25;--blue-300:#005e93;--blue-200:#0076b9;--blue-100:#e7f5fc;--gray-500:#303133;--tangerine-100:#fbedd8;--color-info:#3aa7ea;--color-error:#bf3131;--color-success:#337c41;--color-warning:#cd5308;--color-error-red-100:#f2dede;--celadon-blue-rgb:2,126,176;--blue-gray-600-rgb:99,108,139;--color-twitter:#1da1f2;--color-twitter-hover:#1a91da;--color-facebook:#3b5998;--color-facebook-hover:#3c5586;--color-linkedin:#337ab1;--color-linkedin-hover:#2e6e9f;--color-scribd:#1e7b85;--color-scribd-hover:#1d7680;--color-sms:#3b3835;--color-email:#bbc4c8;color-scheme:only light;--header-height:64px;--toolbar-height:54px;--progress-bar-height:8px;--pushdown-height:90px;--adhesion-height:0px;--key-moments-size:140px;--sidebar-size:404px;--metadata-toolbar-height:100px;--metadata-toolbar-offset:0px;--metadata-toolbar-shadow-opacity:0;--actions-menu-height:74px;--max-content-width:1688px;--border-radius:8px;--sticky-index:8;--header-index:11;--dropdown-index:99;--freestar-index:999;--progress-bar-index:9999;--popup-index:9999;--toast-index:99999;--pointly-index:2;--slide-actions-index:3;--font-weight-light:300;--font-weight-regular:400;--font-weight-medium:600;--font-weight-bold:700;--font-weight-black:900;--font-size-large:16px;--font-size-medium:14px;--font-size-small:12px;--font-size-xsmall:10px;--line-height-relax:1.5;--line-height-compact:1.15;--line-height-tight:1;--ease:cubic-bezier(0.2,0,0,1)}@media screen and (max-width:1249px){:root{--sidebar-size:364px}}@media screen and (max-width:1024px){:root{--header-height:75px}}@media screen and (max-width:767px){:root{--pushdown-height:50px}}@media only screen and (min-width:929px){:root{--actions-menu-height:0}}*,:after,:before{box-sizing:border-box}*{margin:0}:focus-visible{outline:2px solid rgba(2,126,176,.7);outline-offset:2px}body,html{min-height:100%}html{scroll-behavior:smooth;scrollbar-gutter:stable}body{background-color:var(--white);font-family:var(--font-family);font-size:var(--font-size-medium);line-height:var(--line-height-relax);overflow:clip scroll;text-rendering:optimizeLegibility;-webkit-text-size-adjust:100%;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}canvas,img,picture,video{display:block;max-width:100%}button,input,select,textarea{font-family:var(--font-family)}h1,h2,h3,h4,h5,h6,p{overflow-wrap:break-word}#__next,#root{isolation:isolate;min-height:100%;height:-moz-max-content;height:max-content}::-moz-selection{color:var(--blue-gray-900);background-color:var(--blue-gray-200)}::selection{color:var(--blue-gray-900);background-color:var(--blue-gray-200)}body:has(dialog[open]){overflow:clip}body:has(dialog.scrollable[open]){overflow:auto}header:has(+aside.visible){box-shadow:none}header:has(+aside:not(.visible)){box-shadow:0 1px 0 0 var(--blue-gray-200)}.content-wrapper{width:100%;max-width:var(--max-content-width);margin-inline:auto}.clamp-lines{-webkit-box-orient:vertical;-webkit-line-clamp:2;line-clamp:2;display:-webkit-box}.clamp-lines,.ellipsis{text-overflow:ellipsis;overflow:hidden}.ellipsis{white-space:nowrap}.seo-only,.sr-only{position:absolute!important;width:1px;height:1px;border:0;clip:rect(1px,1px,1px,1px);clip-path:inset(50%);padding:0;margin:-1px;overflow:hidden;white-space:nowrap}.no-scroll,body[class^=no-scroll-for-]{overflow:hidden;touch-action:none}.hide-scrollbar{-ms-overflow-style:none;scrollbar-width:none}.hide-scrollbar::-webkit-scrollbar{display:none}.unstyled-button{background:none;border:none;padding:0}body:has(#slideshare_pushdown-pushdown-cls iframe){--pushdown-height:90px}body:has(.fs-pushdown-sticky:empty){--pushdown-height:0px}@media only screen and (max-width:928px){#fs-sticky-footer{bottom:var(--actions-menu-height)}}@media only screen and (min-width:1051px){body:has(#slideshare_pushdown-pushdown-cls.fs-pushdown-sticky){--metadata-toolbar-offset:0px!important}}.metadata-toolbar{top:var(--metadata-toolbar-offset)}body:has(#fs-sticky-footer iframe) #fixed-download-container{bottom:var(--adhesion-height,0)}body:not(:has(#fs-sticky-footer iframe)) #fs-sticky-footer{min-height:0!important}dialog[open]{display:grid;grid-template-rows:max-content;opacity:1}dialog[open]::backdrop{opacity:.6}dialog{max-width:100dvw;max-height:100dvh;box-shadow:0 0 0 1px rgba(9,30,66,.08),0 2px 1px rgba(9,30,66,.08),0 0 20px -6px rgba(9,30,66,.3);border:0;padding:0;margin:auto;overflow:clip}dialog,dialog::backdrop{opacity:0;transition:opacity .3s ease-out,transform .3s ease-out,translate .3s ease-out,display allow-discrete .3s,overlay allow-discrete .3s}dialog::backdrop{background-color:#000}@starting-style{dialog[open],dialog[open]::backdrop{opacity:0}}.popover.open,[popover]:popover-open{opacity:1;scale:1}[popover]:popover-open::backdrop{opacity:0}.popover.floating-ui{display:none;z-index:var(--popup-index)}.popover.floating-ui.open{display:block;opacity:1}.popover,[popover]{position:absolute;inset:auto;color:var(--blue-gray-800);background-color:canvas;border:0;border-radius:4px;box-shadow:0 1px 5px rgba(0,0,0,.05),0 4px 12px rgba(0,0,0,.2);overscroll-behavior:contain;overflow:clip auto;padding:0;margin-block:1ch;scale:.96}.popover,[popover],[popover]::backdrop{transition:opacity .3s,scale .3s,display allow-discrete .2s,overlay allow-discrete .2s;opacity:0}@starting-style{.popover.open,[popover]:popover-open,[popover]:popover-open::backdrop{opacity:0}.popover.open,[popover]:popover-open{scale:.96}}.popover [data-popover-title],[popover] [data-popover-title]{border-bottom:1px solid var(--border-light);padding-block:24px;padding-inline:16px;font-weight:600}.popover [data-popover-list],[popover] [data-popover-list]{display:flex;flex-direction:column;list-style:none;padding-inline:0;padding-block:8px}.popover [data-popover-item],[popover] [data-popover-item]{width:100%;display:flex;align-items:center;gap:8px;padding-block:12px;padding-inline:16px;color:inherit;text-decoration:none;cursor:pointer}.popover [data-popover-item]:hover,[popover] [data-popover-item]:hover{background-color:var(--blue-gray-100)}.popover [role=separator],[popover] [role=separator]{margin-block:8px;margin-inline:16px}@supports (anchor-name:--foo-bar){[popover]{position-try-order:most-height;position-visibility:anchors-visible}[popover][data-popover-position=bottom]{position-area:bottom;position-try:flip-block;transform-origin:top}[popover][data-popover-position=bottom-start]{position-area:bottom span-right;position-try:flip-block,flip-inline;transform-origin:top left}[popover][data-popover-position=bottom-end]{position-area:bottom span-left;position-try:flip-block,flip-inline;transform-origin:top right}[popover][data-popover-position=top]{position-area:top;position-try:flip-block}[popover][data-popover-position=top-start]{position-area:top span-right;position-try:flip-block,flip-inline;transform-origin:bottom left}[popover][data-popover-position=top-end]{position-area:top span-left;position-try:flip-block,flip-inline;transform-origin:bottom right}[popover][data-popover-position=left]{position-area:left;position-try:flip-inline;transform-origin:right}[popover][data-popover-position=left-start]{position-area:left span-bottom;position-try:flip-block,flip-inline;transform-origin:top right}[popover][data-popover-position=left-end]{position-area:left span-top;position-try:flip-block,flip-inline;transform-origin:bottom right}[popover][data-popover-position=right]{position-area:right;position-try:flip-inline;transform-origin:left}[popover][data-popover-position=right-start]{position-area:right span-bottom;position-try:flip-block,flip-inline;transform-origin:top left}[popover][data-popover-position=right-end]{position-area:right span-top;position-try:flip-block,flip-inline;transform-origin:bottom left}}#fs-sticky-footer,.orp-player-wrapper{z-index:var(--freestar-index)!important}.fs-sticky-parent{position:static!important}.fs-sticky-wrapper{padding-right:0!important;display:block!important}#slideshare_pushdown-pushdown-cls.fs-pushdown-sticky{position:static!important}body.no-scroll-mobile #slideshare_pushdown-pushdown-cls{height:auto}body.gallery-view #slideshare_pushdown-pushdown-cls{display:none}#pushdown-ad-large{display:grid;justify-content:center;align-items:center}#above-recs-desktop-ad-sm,#above-recs-mobile,#below-reader-ad,#between-recs-ad-1,#between-recs-ad-2{height:280px}@media screen and (min-width:929px){#below-reader-ad,#between-recs-ad-1,#between-recs-ad-2{height:250px}#above-recs-desktop-ad-sm,#above-recs-desktop-ad-sm-2{aspect-ratio:336/280;height:280px;margin-bottom:32px}#above-recs-desktop-ad-sm_container{justify-content:left!important}}@media only screen and (min-width:1051px){body{--padding-x-offset:clamp(1rem,-1.6rem + 8vw,8rem);--margin-x-offset:0px;--end:calc(var(--padding-x-offset) + var(--sidebar-size) + var(--margin-x-offset))}#fs-sticky-footer:has(#slideshare_adhesion){left:0;width:calc(100% - var(--end))}#fs-sticky-footer:has(#slideshare_adhesion2){width:var(--end);left:unset;right:0}}@media only screen and (min-width:1689px){body{--margin-x-offset:calc(calc(100% - var(--max-content-width)) / 2)}}div:has(>#between-recs-ad-1),div:has(>#between-recs-ad-2),div:has(>#interstitial-ad-1),div:has(>[id^=slideshare_docs_incontent]){display:grid;justify-content:center}div:has(>#interstitial-ad-1.video-interstitial-ad){display:block}@media screen and (max-width:928px){div:has(>#above-recs-mobile),div:has(>#below-reader-ad){display:grid;justify-content:center}}#fs-sticky-footer.hidden,.orp-player-wrapper.hidden{display:none!important}@media only screen and (max-width:928px){#fs-sticky-footer.hidden-on-mobile,.orp-player-wrapper.hidden-on-mobile{display:none!important}}div[id^=FreeStarVideoAdContainer_]{width:100%}#freestar-video-child:not(:empty){margin-bottom:24px}div[id^=FreeStarVideoAdContainer_FloatingOnly]{width:auto;aspect-ratio:auto}:root{--shadow-color:rgba(122,61,143,.15);--osano-dialog-shadow:drop-shadow(var(--shadow-color) 0.5px 1px 1px) drop-shadow(var(--shadow-color) 1px 2px 2px) drop-shadow(var(--shadow-color) 2px 4px 4px) drop-shadow(var(--shadow-color) 4px 8px 8px) drop-shadow(var(--shadow-color) 8px 16px 16px)}.osano-cm-dialog{background-color:#212240;color:var(--white)}.osano-cm-dialog__close{color:inherit;stroke:var(--white)}.osano-cm-dialog--eu{display:grid;grid-template-columns:1fr 200px;grid-column-gap:48px;-moz-column-gap:48px;column-gap:48px;max-height:95dvh;font-family:Source Sans Pro,sans-serif;color:var(--blue-gray-600,#636c8b);background-color:var(--white,#fff);border-top-left-radius:var(--border-radius,8px);border-top-right-radius:var(--border-radius,8px);filter:var(--osano-dialog-shadow);padding-block-start:32px;padding-block-end:20px;padding-inline:5%;.osano-cm-dialog__content{max-height:calc(95dvh - 52px)}.osano-cm-dialog__close{display:none}.osano-cm-dialog__title{font-size:24px;font-weight:700;color:var(--blue-gray-900,#0e0f25);margin-block-end:16px}.osano-cm-content__usage-list{font-size:16px}.osano-cm-usage-list__list{margin-block-start:8px;margin-block-end:16px;margin-inline-start:8px;.osano-cm-list__list-item{font-size:16px}}.osano-cm-link,.osano-cm-message{font-size:16px}.osano-cm-message{display:flex}.osano-cm-drawer-links,.osano-cm-link{display:inline}.osano-cm-link{color:var(--celadon-blue,#027eb0);font-weight:600;text-decoration:none;&:hover{color:var(--celadon-blue-dark,#026c97)}&:after{content:"|";padding-inline:12px}&:last-child:after{content:""}}.osano-cm-dialog__list{line-height:normal;margin-block-start:24px;.osano-cm-list__list-item{display:inline-flex;align-items:center;&:after{content:"|";padding-inline:16px;color:var(--blue-gray-200,#e3e6f0);font-size:28px}&:last-child:after{content:""}}}.osano-cm-toggle__switch{display:none}.osano-cm-toggle__input{width:16px;height:16px;margin:unset;overflow:unset;accent-color:var(--blue-gray-900,#0e0f25);position:static;opacity:1}.osano-cm-toggle__label.osano-cm-label{color:var(--blue-gray-600,#636c8b);font-size:18px;font-weight:600;margin-left:8px;margin-inline-end:0}.osano-cm-dialog__buttons{min-width:unset;align-self:flex-end;display:grid;grid-row-gap:8px;row-gap:8px;justify-content:stretch;align-items:center;margin:unset;.osano-cm-buttons__button{height:-moz-max-content;height:max-content;min-height:40px;font-size:16px;font-weight:600;margin:unset}.osano-cm-accept-all{order:-1}.osano-cm-accept-all,.osano-cm-manage{background-color:var(--celadon-blue,#027eb0)}.osano-cm-deny,.osano-cm-denyAll,.osano-cm-save{background-color:transparent;color:var(--celadon-blue,#027eb0);border:1px solid var(--celadon-blue,#027eb0)}}}.osano-cm-dialog--eu.osano-cm-dialog--br{.osano-cm-dialog__title{font-size:26px;font-weight:600}.osano-cm-dialog__buttons{row-gap:12px}}.osano-cm-window:has(>.osano-cm-dialog--br-overlay):before{content:"";position:fixed;inset:0;background-color:rgba(0,0,0,.6);z-index:-1}@media screen and (max-width:768px){.osano-cm-dialog--eu{-moz-column-gap:24px;column-gap:24px;grid-template-columns:1fr;padding-block-end:32px;padding-inline:16px;.osano-cm-dialog__buttons{display:flex;flex-wrap:nowrap;align-items:center;justify-content:flex-start;gap:16px;.osano-cm-buttons__button{width:-moz-max-content;width:max-content}}}.osano-cm-dialog--eu.osano-cm-dialog--br{.osano-cm-link,.osano-cm-message{font-size:16px;width:auto}.osano-cm-dialog__buttons{margin-block-start:24px;row-gap:16px}}}@media screen and (max-width:520px){.osano-cm-dialog--eu{font-size:14px;padding-block-start:16px;padding-block-end:16px;.osano-cm-dialog__title{font-size:20px;margin-block-end:8px}.osano-cm-link,.osano-cm-message{font-size:inherit}.osano-cm-usage-list__list{font-size:12px;.osano-cm-list__list-item{font-size:inherit}}.osano-cm-toggle__label.osano-cm-label{font-size:15px}.osano-cm-dialog__list{width:100%;display:flex;flex-direction:column;margin-block-start:8px;.osano-cm-list__list-item{display:grid;border-bottom:1px solid var(--blue-gray-200,#e3e6f0);padding-block:4px;&:last-child{border-bottom:unset}}.osano-cm-list__list-item:after{content:unset}.osano-cm-list-item__toggle{align-self:baseline;justify-content:space-between;.osano-cm-toggle__label{order:-1;margin:unset}}}.osano-cm-dialog__buttons{display:grid;grid-template-columns:1fr 1fr;grid-column-gap:16px;-moz-column-gap:16px;column-gap:16px;grid-row-gap:12px;row-gap:12px;margin-block-start:0;.osano-cm-buttons__button{min-width:-moz-max-content;min-width:max-content;width:unset;justify-self:stretch}.osano-cm-accept-all{grid-column:1/span 2}}}.osano-cm-dialog--eu.osano-cm-dialog--br{padding-block-start:32px;padding-block-end:32px;.osano-cm-dialog__title{font-size:26px;margin-block-end:16px}.osano-cm-link,.osano-cm-message{font-size:16px;width:auto}.osano-cm-dialog__buttons{margin-block-start:24px;row-gap:16px}}}@media screen and (min-width:929px){.osano-cm-widget{display:none}.osano-cm-content__message{margin-bottom:8px;padding-bottom:0;width:90%}.osano-cm-message{font-size:12px}.osano-cm-drawer-links{margin:0}.osano-cm-link{color:var(--celadon-blue);font-size:12px}.osano-cm-list__list-item{font-size:12px}.osano-cm-dialog__buttons{display:flex;align-items:center;gap:6px}.osano-cm-button{height:44px;font-size:14px;background-color:var(--celadon-blue);border-color:var(--celadon-blue);color:var(--white);padding:10px;margin:3px 0}.osano-cm-denyAll{background-color:var(--blue-gray-800);border-color:var(--white);color:var(--white)}}.osano-cm-widget{display:none}.osano-cm-content__message{margin-bottom:8px;padding-bottom:0;width:90%}.osano-cm-message{font-size:12px}.osano-cm-drawer-links{margin:0}.osano-cm-link{color:var(--celadon-blue);font-size:12px}.osano-cm-list__list-item{font-size:12px}.osano-cm-dialog__buttons{display:flex;align-items:center;gap:6px}.osano-cm-button{height:44px;font-size:14px;background-color:var(--celadon-blue);border-color:var(--celadon-blue);color:var(--white);padding:10px;margin:3px 0}.osano-cm-denyAll{background-color:var(--blue-gray-800);border-color:var(--white);color:var(--white)}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/bccb245ee3362e85-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c8a,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/4117e16a89310b23-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/2a041df68de43fa6-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/17c5807503b61094-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/7572a3f8628c1f19-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/9c20d643cc03e499-s.p.woff2) format("woff2");unicode-range:u+0100-02ba,u+02bd-02c5,u+02c7-02cc,u+02ce-02d7,u+02dd-02ff,u+0304,u+0308,u+0329,u+1d00-1dbf,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/a9b61b60c2d733b4-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Source_Sans_3_Fallback_4d9a39;src:local("Arial");ascent-override:109.21%;descent-override:42.66%;line-gap-override:0.00%;size-adjust:93.76%}.__className_4d9a39{font-family:__Source_Sans_3_4d9a39,__Source_Sans_3_Fallback_4d9a39,Inter,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,sans-serif;font-style:normal}.__variable_4d9a39{--font-family:"__Source_Sans_3_4d9a39","__Source_Sans_3_Fallback_4d9a39",Inter,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,sans-serif}.PageProgressBar_root__1y_Q3{position:fixed;top:0;left:0;width:100%;z-index:var(--progress-bar-index);pointer-events:none}.PageProgressBar_bar__Kyoem{width:100%;height:3px;background-color:var(--celadon-blue);transform:scaleX(0);transform-origin:left;transition:transform .4s cubic-bezier(.4,0,.2,1),opacity .5s ease;opacity:1}.PageProgressBar_complete__KhJy3{opacity:0}.ErrorShell_root__zYUH8{min-height:100vh;display:flex;flex-direction:column}.Header_root__8A86O{--fluid-16-24:clamp(1rem,0.7373rem + 1.3136vi,1.5rem);position:relative;height:var(--header-height);display:grid;grid-template-columns:auto 1fr;align-items:center;grid-gap:24px;gap:24px;background-color:var(--white);font-family:inherit;padding-inline:var(--fluid-16-24)}.Header_root__8A86O.Header_sticky__NGNE7{position:sticky;top:0;transition:box-shadow .3s ease-in-out;z-index:var(--header-index)}.Header_root__8A86O button{font-size:14px;white-space:nowrap}.Header_wrapper___zBfP{display:flex;align-items:center;flex-shrink:0;gap:12px}@media screen and (max-width:1320px){.Header_root__8A86O.Header_biggerSearch__Ce0Hq{grid-template-columns:auto 1fr auto}}@media screen and (min-width:768px){.Header_root__8A86O{grid-template-columns:repeat(3,minmax(min-content,1fr))}}.Hamburger_root__tHlgC{display:grid;place-content:center;background:transparent;border:0;border-radius:2px;color:var(--blue-gray-600);padding:0;margin:0;cursor:pointer}@media screen and (min-width:768px){.Hamburger_root__tHlgC{display:none}}.SidebarFallback_loggedOutRoot__oKMfe{display:grid;grid-template-rows:170px 1fr}.SidebarFallback_loggedOutContainer__Tpr_u{display:flex;flex-direction:column;padding:16px}.SidebarFallback_loggedInRoot__r1CEd{display:grid;grid-template-rows:64px 1fr}.SidebarFallback_loggedInContainer__dw_ML{display:flex;flex-direction:column;gap:16px;padding:16px}.SidebarFallback_loggedInLinks__C2NaL{display:grid;grid-gap:24px;gap:24px}.SidebarFallback_loggedInUser__b8i41{display:flex;align-items:center;gap:8px;margin-block-start:12px;margin-block-end:auto}.Skeleton_root__U4QqL{--skeleton-bg:rgba(0,0,0,.1);--shimmer-bg:linear-gradient(90deg,transparent,rgba(0,0,0,.04),transparent);position:relative;display:block;height:1.2rem;flex-shrink:0;background:var(--skeleton-bg);overflow:hidden}.Skeleton_root__U4QqL:after{content:"";position:absolute;inset:0;translate:-100% 0;background:var(--shimmer-bg);animation:Skeleton_shimmer__hGst9 2s ease-in-out .5s infinite}.Skeleton_circle___fxTG{aspect-ratio:1/1;border-radius:100vmax;height:unset}.Skeleton_rectangle__UY3OD{border-radius:0}.Skeleton_rounded__BLBq2{border-radius:4px}.Skeleton_text___JusF{border-radius:4px;font-size:1rem;scale:1 .6}.Skeleton_text___JusF:before{content:"\00a0"}.Skeleton_list__xNehW{display:flex;flex-direction:column;gap:6px;padding-inline:8px;padding-block:10px}.Skeleton_copy__qgw2R{display:flex;flex-direction:column;padding-block:12px;padding-inline:16px}.Skeleton_copy__qgw2R .skeleton:first-child{margin-block-end:8px}@keyframes Skeleton_shimmer__hGst9{0%{translate:-100% 0}50%{translate:100% 0}to{translate:100% 0}}.Icon_root__AjZyv{--size:24px;position:relative;display:flex;align-items:center;justify-content:center}.Icon_icon__4zzsG{flex-shrink:0;display:inline-block;width:var(--size);height:var(--size);-webkit-mask-position:center;mask-position:center;-webkit-mask-repeat:no-repeat;mask-repeat:no-repeat;-webkit-mask-size:cover;mask-size:cover;vertical-align:middle}.Drawer_root__ob4ZM[open]{translate:0 0}.Drawer_root__ob4ZM{position:fixed;inset:0;border-radius:0;translate:var(--slide-from)}@starting-style{.Drawer_root__ob4ZM[open]{translate:var(--slide-from)}}.Drawer_root__ob4ZM[data-placement=left]{--slide-from:-100% 0;inset-inline-end:auto;border-top-right-radius:var(--border-radius);border-bottom-right-radius:var(--border-radius)}.Drawer_root__ob4ZM[data-placement=right]{--slide-from:100% 0;inset-inline-start:unset;border-top-left-radius:var(--border-radius);border-bottom-left-radius:var(--border-radius)}.Drawer_root__ob4ZM[data-placement=bottom]{--slide-from:0 100%;inset-block-start:unset;border-top-left-radius:var(--border-radius);border-top-right-radius:var(--border-radius)}.Drawer_content__ye6ZB{display:grid;overflow:auto}.Drawer_root__ob4ZM[data-placement=left],.Drawer_root__ob4ZM[data-placement=right]{width:min(280px,80vw);height:100dvh}.Drawer_root__ob4ZM[data-placement=bottom]{width:100dvw;max-height:80dvh}.CloseButton_root__JCTRm{position:absolute;right:16px;top:16px;width:40px;height:40px;display:grid;place-content:center;color:var(--blue-gray-600);border-radius:100vmax;background-color:transparent;border:0;padding:0;margin:0;transition:background-color .2s ease-in-out;cursor:pointer}.CloseButton_root__JCTRm:hover{background-color:rgba(var(--blue-gray-600-rgb),.05)}.Logo_root__Qba3h{flex-shrink:0}.SearchForm_root__usp4s{position:relative;justify-self:center;width:min(100%,440px)}.SearchForm_root__usp4s form{display:grid}.SearchForm_root__usp4s input{height:40px;border-radius:100vmax;border:1px solid var(--blue-gray-600);margin:0;padding:0 40px 0 16px;color:var(--blue-gray-900);background-color:var(--white);width:100%}.SearchForm_root__usp4s.SearchForm_biggerSearch__syu70{width:100%}.SearchForm_root__usp4s input::-moz-placeholder{color:var(--blue-gray-600)}.SearchForm_root__usp4s input::placeholder{color:var(--blue-gray-600)}div.SearchForm_popover__K3_9y{left:anchor(left);right:anchor(right)}div.SearchForm_popoverContent__O_56c{max-width:100%}div.SearchForm_popoverContent__O_56c p{--webkit-line-clamp:unset;line-clamp:unset}.SearchForm_hidden__rZp69{display:none}.SearchForm_submit__U8kPR{width:32px;height:32px;position:absolute;right:14px;top:50%;display:grid;place-content:center;border:none;background:transparent;border-radius:100vmax;color:var(--blue-gray-400);padding:0;margin:0;translate:0 -50%;cursor:pointer}.SearchForm_expressivePlaceholder__6nNw5{position:absolute;top:10px;left:20px;height:20px;overflow:hidden;white-space:nowrap;pointer-events:none;max-width:100%;display:flex;padding-right:60px}.SearchForm_expressiveLabel__7_0_U{display:block;color:var(--blue-gray-575);font-size:14px;max-width:100%;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.SearchForm_expressiveLabelMobile__ZmtzP{display:none}@media screen and (max-width:928px){.SearchForm_expressiveLabelDesktop__D0GoT,.SearchForm_popover__K3_9y{display:none}.SearchForm_expressiveLabelMobile__ZmtzP{display:block}}@media screen and (max-width:768px){.SearchForm_root__usp4s{justify-self:flex-end}}.PopoverContent_root__Wu_Vr{max-width:332px;padding-block:12px;padding-inline:16px;display:flex;gap:10px;align-items:flex-start}.PopoverContent_root__Wu_Vr .PopoverContent_title__U2Bf2{display:flex;align-items:center;justify-content:space-between;font-size:1rem;margin-bottom:4px}.PopoverContent_inner__Ulol1{display:flex;flex-direction:column}.PopoverContent_root__Wu_Vr .PopoverContent_title__U2Bf2 span{line-height:18px;font-weight:600}.PopoverContent_accentBubble__E3IDn{margin-left:34px}.PopoverContent_root__Wu_Vr p{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;color:var(--blue-gray-600);font-size:14px;line-height:18px;line-clamp:5;overflow:hidden}.AccentBubble_root__DZ4aE{padding:4px 12px;border-radius:100px;background:var(--tangerine-100);font-size:11px;font-weight:600;color:var(--gray-500);display:flex;text-align:center;justify-content:center}.HeaderActions_root__11_ai{display:flex;align-items:center;justify-self:flex-end;gap:16px}@media screen and (max-width:768px){.HeaderActions_root__11_ai{display:none}}.Footer_footer__N3WmV{width:100%;display:flex;flex-direction:column;background-color:var(--midnight-green-dark);color:var(--blue-gray-400);padding:24px;margin-top:auto}.Footer_separator__Qa1tj{border:1px solid var(--white);opacity:.2;margin:24px 0}.FooterTop_wrapper__RuYz5{display:flex;justify-content:space-between;align-items:center;gap:24px}.FooterTop_links__9J65v{color:inherit;display:flex;align-items:center;flex-wrap:wrap;-moz-column-gap:40px;column-gap:40px;row-gap:12px;padding:0;margin:0}.FooterTop_cookiePreferenceButton__xmSox{background-color:transparent;border:none;color:inherit;font-size:inherit;font-weight:800;cursor:pointer}@media screen and (max-width:768px){.FooterTop_links__9J65v{-moz-column-gap:24px;column-gap:24px}}.Link_root__vn3ab{display:inline-flex;align-items:center;gap:4px;border-radius:2px;color:inherit;font-size:inherit;font-weight:inherit;text-decoration:none;-webkit-text-decoration-color:transparent;text-decoration-color:transparent;transition:color .2s ease-in-out,-webkit-text-decoration-color .2s ease-in-out .2s;transition:color .2s ease-in-out,text-decoration-color .2s ease-in-out .2s;transition:color .2s ease-in-out,text-decoration-color .2s ease-in-out .2s,-webkit-text-decoration-color .2s ease-in-out .2s}.Link_primary__Iq4CI{color:var(--celadon-blue-dark)}.Link_primary__Iq4CI:focus,.Link_primary__Iq4CI:focus-visible,.Link_primary__Iq4CI:hover{color:var(--celadon-blue)}.Link_gray__Efpxa{color:var(--blue-gray-600)}.Link_gray__Efpxa:focus,.Link_gray__Efpxa:focus-visible,.Link_gray__Efpxa:hover{color:var(--blue-gray-700)}.Link_light__mcUPh{color:var(--blue-gray-400)}.Link_light__mcUPh:focus,.Link_light__mcUPh:focus-visible,.Link_light__mcUPh:hover{color:var(--blue-gray-100)}.Link_dark__Ql4LW{color:var(--blue-gray-800)}.Link_dark__Ql4LW:focus,.Link_dark__Ql4LW:focus-visible,.Link_dark__Ql4LW:hover{color:var(--celadon-blue)}.Link_weight-regular__yPpnB{font-weight:400}.Link_weight-medium__h0ic3{font-weight:600}.Link_weight-bold__me4nt{font-weight:700}.Link_size-small__wSSrC{font-size:12px}.Link_size-medium__ZLo12{font-size:14px}.Link_size-large__W0PAv{font-size:16px}.Link_size-xLarge__Dq0j8{font-size:18px}.Link_hoverUnderline__QMNau:hover,.Link_underline__RoQbh{text-decoration:underline;-webkit-text-decoration-color:inherit;text-decoration-color:inherit}.Link_hoverUnderline__QMNau:hover{text-decoration-thickness:1.5px;text-underline-offset:2px}.FooterBottom_wrapper__Gj9p_{height:51px;display:flex;align-items:center;gap:24px}.FooterBottom_copyright__xltkG{font-size:14px;line-height:24px;margin-right:auto}.FooterBottom_icons__wEEhc{display:flex;align-items:center;gap:16px}.FooterBottom_separator__181dN{width:2px;height:22px;background-color:var(--white);opacity:.2}.PrivateContentMessage_root__IEx17{flex-grow:1;width:100%;height:100%;display:flex;align-items:flex-start}.PrivateContentMessage_box__YG0Bp{width:100%;max-width:960px;background-color:#f2dede;border-color:#eed3d7;border-radius:8px;color:#b94a48;font-size:14px;font-weight:400;padding:16px 24px;margin:100px auto}@media screen and (max-width:960px){.PrivateContentMessage_box__YG0Bp{margin-left:16px;margin-right:16px}}.RemovedContentMessage_root__rtN5X{flex-grow:1;width:100%;display:flex;align-items:flex-start}.RemovedContentMessage_box__pw1z3{width:100%;max-width:960px;background-color:#fcf8e3;border:1px solid #fbeed5;border-radius:4px;color:#c09853;font-size:14px;font-weight:400;text-shadow:0 1px 0 hsla(0,0%,100%,.5);padding:16px 24px;margin:100px auto}.RemovedContentMessage_title__vwHjN{color:#504c48;font-size:25px;font-weight:300;line-height:35px;margin-bottom:4px}@media screen and (max-width:960px){.RemovedContentMessage_box__pw1z3{margin-left:16px;margin-right:16px}}.ErrorDisplay_root__bY_Qo{height:100%;display:flex;flex-direction:column;align-items:center;justify-content:center;background:var(--white);font-family:-system-ui,sans-serif;color:var(--blue-gray-800)}.ErrorDisplay_smiley__o9HSN{width:129px;height:122px;margin:60px auto 30px}.ErrorDisplay_errorBox__jL_9h{max-width:800px;width:100%;height:290px;background:var(--white) url(/images/fadedlogo.jpg) no-repeat left top;background-position:14px 20px;margin:0 auto 120px}.ErrorDisplay_errorCode__AlZal{border-right:1px solid var(--blue-gray-100);color:var(--blue-gray-500);float:left;font-size:1.3em;height:290px;line-height:370px;margin:0 25px 0 0;vertical-align:bottom;text-align:center;width:200px}.ErrorDisplay_errorBox__jL_9h h1{font-weight:400;margin-bottom:0}.ErrorDisplay_errorBox__jL_9h h2{font-size:.9em;font-weight:400;margin-top:0}.ErrorDisplay_errorBox__jL_9h h3{font-size:1em;font-weight:700;margin:10px 0}.ErrorDisplay_errorBox__jL_9h ul{list-style-type:none}.ErrorDisplay_errorBox__jL_9h ul li{background:transparent url(/images/arrow.png) no-repeat left 6px;float:left;font-size:.813em;font-weight:400;list-style-type:none;margin:.313em;padding-left:20px;width:110px}.ErrorDisplay_middle__espDJ{padding-right:3.5em}.ErrorDisplay_searchSection__1J_EK{background:var(--blue-gray-100) url(/images/searchbg.jpg) repeat-x left top;border:1px solid var(--blue-gray-300);float:left;padding:10px;margin-top:20px}.ErrorDisplay_searchSection__1J_EK form{display:flex}.ErrorDisplay_searchSection__1J_EK button{background:url(/images/searchbutton.jpg) repeat-x scroll 0 0 #ffb762;border:1px solid #db9b51;color:var(--blue-gray-800);cursor:pointer;float:left;font-size:1em;margin:0 0 0 .8px;padding:9px 15px;outline:0 none;text-decoration:none;text-shadow:1px 1px 1px var(--white);vertical-align:top}.ErrorDisplay_searchSection__1J_EK button span{background:#ffb762 url(/images/magnifier.jpg) no-repeat 0 0;padding:0 8px;margin-left:5px;text-decoration:none}.ErrorDisplay_errorSearchBox__Uglib{border-color:var(--blue-gray-500) var(--blue-gray-400) var(--blue-gray-400) var(--blue-gray-500);border-width:1px;color:var(--blue-gray-600);float:left;font-size:13px;margin-left:2px;padding:9px;vertical-align:top;width:350px}@media screen and (max-width:768px){.ErrorDisplay_searchSection__1J_EK{width:calc(100% - 240px)}.ErrorDisplay_errorSearchBox__Uglib{width:calc(100% - 128px);margin:0 auto}}.ToastManager_root__mVUMQ{position:fixed;inset-block-end:0;inset-inline:0;display:grid;justify-items:flex-end;justify-content:flex-end;grid-gap:1vh;gap:1vh;padding-block-end:5vh;padding-right:1rem;pointer-events:none;z-index:var(--toast-index)}@media only screen and (max-width:928px){.ToastManager_root__mVUMQ{justify-items:center;justify-content:center;padding-right:0;top:0;padding-block-start:2vh;inset-block-end:unset}}.Toast_root__ZhPa4{min-width:360px;max-width:360px;display:grid;grid-template-columns:max-content 1fr repeat(2,max-content);grid-gap:4px;gap:4px;background-color:var(--background);border-radius:8px;color:var(--white);padding-block:28px;padding-inline:24px;pointer-events:all;opacity:1;transition:opacity .3s ease-in-out}@starting-style{.Toast_root__ZhPa4{opacity:0}}.Toast_info__g9NV8{--background:var(--midnight-green-dark)}.Toast_success__sWJ1E{--background:var(--color-success)}.Toast_error__SQpXK{--background:var(--color-error)}.Toast_warning__7GyxY{--background:var(--color-warning)}.Toast_root__ZhPa4>svg{flex-shrink:0;margin-top:2px}.Toast_content__whMkq{font-weight:400;font-size:16px;line-height:24px;word-wrap:break-word}.Toast_separator__dUZVN{width:1px;background-color:var(--blue-gray-500);opacity:.3;margin-inline:8px}.Toast_dismiss___YbdO{color:var(--blue-gray-300);cursor:pointer}.Toast_dismiss___YbdO:hover{color:var(--white)}.PortalsContainer_drawerRoot__esMLC{position:fixed;top:0;left:0}.PortalsContainer_bannerRoot__Q_sNw{position:relative}.PortalsContainer_drawerRoot__esMLC{z-index:101} /*# sourceMappingURL=65044a2b35345606.css.map*/</style><style>.SlideshowScreen_root__k9j1_{width:100%;max-width:var(--max-content-width);position:relative;display:grid;place-content:flex-start;grid-template-columns:minmax(0,1fr) var(--sidebar-size);grid-template-rows:auto auto 1fr;background-color:var(--white);padding-block:1px;padding-inline:clamp(1rem,-1.6rem + 8vw,8rem);margin-inline:auto}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:var(--key-moments-size) minmax(0,1fr) var(--sidebar-size)}.SlideshowScreen_root__k9j1_.SlideshowScreen_withAdSidebar__iVE05{--sidebar-size:calc(1px + 300px + 56px)}.SlideshowScreen_root__k9j1_:before{content:"";position:absolute;inset:0 0 auto;height:1px;background-color:var(--blue-gray-200);margin-inline:-50vw}.SlideshowScreen_root__k9j1_ .sidebar{border-left:1px solid var(--blue-gray-200);grid-row:1/-1;grid-column:2}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .sidebar{grid-column:3}.SlideshowScreen_root__k9j1_ .metadata{grid-column:1/-2;grid-row:1}.SlideshowScreen_root__k9j1_ .metadata-toolbar{grid-column:1/-2;grid-row:2}.SlideshowScreen_root__k9j1_ .player{grid-column:1}@media screen and (min-width:929px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .player{grid-column:2;grid-row:3}}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .key-moments{grid-column:1;grid-row:3}@media screen and (min-width:929px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .player{border-left:1px solid var(--blue-gray-200)}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata{padding-inline-end:24px}}@media screen and (min-width:929px) and (max-width:1050px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:var(--key-moments-size) minmax(0,1fr);padding-inline:0}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata,.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata-toolbar{grid-column:1/-1;padding-inline:16px}}@media screen and (max-width:928px){.SlideshowScreen_root__k9j1_:before{display:none}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:minmax(0,1fr)!important}.SlideshowScreen_root__k9j1_ .metadata,.SlideshowScreen_root__k9j1_ .metadata-toolbar,.SlideshowScreen_root__k9j1_ .player{grid-column:1/-1}}.PrivateContentScreen_root__qdfD9{gap:30px}.PasswordForm_root__Pnyoo,.PrivateContentScreen_root__qdfD9{min-height:calc(100svh - 2 * var(--header-height));background-color:var(--blue-gray-100);display:flex;flex-direction:column;align-items:center;justify-content:center}.PasswordForm_root__Pnyoo{gap:20px}.Form_root__NTbyO{display:flex;flex-direction:column;gap:10px}.Form_root__NTbyO button[type=submit]{align-self:flex-start}.Button_root__i1yp0{--size:44px;--foreground:var(--white);--background:var(--celadon-blue);--border:var(--celadon-blue);--fontSize:16px;--padding-x:14px;position:relative;min-width:48px;min-height:var(--size);display:flex;align-items:center;border-radius:4px;border:none;background-color:var(--background);color:var(--foreground);font-size:var(--fontSize);font-weight:var(--font-weight-medium);padding-inline:var(--padding-x);transition:color .2s ease-in-out,background-color .2s ease-in-out;cursor:pointer}.Button_root__i1yp0 span{display:flex;align-items:center;gap:4px;opacity:1;transition:opacity .2s ease-in-out}.Button_large__Yv_oe{--fontSize:18px;--size:48px;--padding-x:20px}.Button_regular__i28NX{--fontSize:18px;--size:44px}.Button_medium__H8pKi{--size:40px}.Button_small__sqsEx{--size:32px;--padding-x:12px}.Button_xsmall__jBPCG{--fontSize:14px;--size:24px;--padding-x:8px}.Button_root__i1yp0.Button_icon__1C4qi{justify-content:center;min-width:24px;padding:0}.Button_icon__1C4qi{width:var(--size);height:var(--size)}.Button_spinner__iLPXf{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out}.Button_loading__ZYqeE .Button_spinner__iLPXf{opacity:1;visibility:visible;transition-delay:0s}.Button_loading__ZYqeE span{opacity:0}.Button_fullWidth__dRbM6{width:100%;justify-content:center}.Button_fullWidth__dRbM6 span{justify-content:center}.Button_disabled__M5jJf{opacity:.8;pointer-events:none;-webkit-user-select:none;-moz-user-select:none;user-select:none}.Button_primary__K25Gq.Button_contained__gyjai{--foreground:var(--white);--background:var(--celadon-blue);--border:var(--celadon-blue)}.Button_primary__K25Gq.Button_contained__gyjai:active,.Button_primary__K25Gq.Button_contained__gyjai:hover{--background:var(--celadon-blue-dark);--border:var(--celadon-blue-dark)}.Button_primary__K25Gq.Button_outlined__oZHqK{border:1px solid var(--border);--foreground:var(--celadon-blue-dark);--background:transparent;--border:var(--celadon-blue-dark)}.Button_primary__K25Gq.Button_outlined__oZHqK:hover{--foreground:var(--blue-gray-800);--background:rgba(var(--celadon-blue-rgb),0.05);--border:var(--blue-gray-800)}.Button_primary__K25Gq.Button_outlined__oZHqK:active{--foreground:var(--celadon-blue-dark);--background:rgba(var(--celadon-blue-rgb),0.1);--border:var(--celadon-blue)}.Button_primary__K25Gq.Button_text__ZT_3O{--foreground:var(--celadon-blue-dark);--background:transparent;--border:transparent}.Button_primary__K25Gq.Button_text__ZT_3O:hover{--foreground:var(--celadon-blue-dark);--background:rgba(var(--celadon-blue-rgb),0.05);--border:transparent}.Button_primary__K25Gq.Button_text__ZT_3O:active{--foreground:var(--celadon-blue);--background:rgba(var(--celadon-blue-rgb),0.1);--border:transparent}.Button_secondary__hHiHI.Button_contained__gyjai{--foreground:var(--white);--background:var(--blue-gray-600);--border:var(--blue-gray-600)}.Button_secondary__hHiHI.Button_contained__gyjai:hover{--background:var(--blue-gray-700);--border:var(--blue-gray-700)}.Button_secondary__hHiHI.Button_contained__gyjai:active{--background:var(--blue-gray-500);--border:var(--blue-gray-500)}.Button_secondary__hHiHI.Button_outlined__oZHqK{border:1px solid var(--border);--foreground:var(--blue-gray-600);--background:transparent;--border:var(--blue-gray-600)}.Button_secondary__hHiHI.Button_outlined__oZHqK:hover{--foreground:var(--blue-gray-700);--background:rgba(var(--blue-gray-600-rgb),0.05);--border:var(--blue-gray-700)}.Button_secondary__hHiHI.Button_outlined__oZHqK:active{--foreground:var(--blue-gray-600);--background:rgba(var(--blue-gray-600-rgb),0.1);--border:var(--blue-gray-500)}.Button_secondary__hHiHI.Button_regular__i28NX{border:1px solid var(--border);--foreground:var(--blue-gray-700);--background:var(--white);--border:var(--blue-gray-200)}.Button_secondary__hHiHI.Button_regular__i28NX:hover{--background:var(--blue-gray-100)}.Button_secondary__hHiHI.Button_text__ZT_3O{--foreground:var(--blue-gray-600);--background:transparent;--border:transparent}.Button_secondary__hHiHI.Button_text__ZT_3O:hover{--foreground:var(--blue-gray-700);--background:rgba(var(--blue-gray-600-rgb),0.05);--border:transparent}.Button_secondary__hHiHI.Button_text__ZT_3O:active{--foreground:var(--blue-gray-600);--background:rgba(var(--blue-gray-600-rgb),0.1);--border:transparent}.Button_tertiary__ae6C5{--foreground:var(--blue-gray-700);--background:var(--white);border:1px solid var(--blue-gray-200)}.Button_tertiary__ae6C5:hover{--background:var(--blue-gray-100)}.Button_tertiary__ae6C5.Button_active__YNf7E,.Button_tertiary__ae6C5:active{--background:var(--blue-gray-200)}.Dropdown_container__NBOZ_{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Dropdown_select__8pQOA{border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);margin:0;padding:8px 20px 8px 8px;background:transparent}.Dropdown_select__8pQOA:hover{border:1px solid var(--blue-gray-600);background:transparent}.Dropdown_select__8pQOA:focus{outline:none;border:1px solid var(--celadon-blue)}.Dropdown_footerText__NChWz{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Dropdown_error__QI4FY{border:1px solid var(--color-error)}.Label_label__KH246{font-weight:600;font-size:14px;font-family:var(--font-family);color:var(--blue-gray-600);margin:0;-webkit-user-select:none;-moz-user-select:none;user-select:none}.Label_error__jqh1I{color:var(--color-error)}.RequiredNotice_required___q_RJ{display:flex;align-items:center;gap:8px;color:var(--blue-gray-600);font-size:11px;font-weight:400}.RequiredNotice_error__eBy3b{color:var(--color-error)}.Input_container__QSkRF{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Input_input__Q0qP2{padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);margin:0;height:46px}.Input_input__Q0qP2:hover{border:1px solid var(--blue-gray-600)}.Input_input__Q0qP2:focus{outline:none;border:1px solid var(--celadon-blue)}.Input_error__l9OaT{border:1px solid var(--color-error)}.Input_characterLimit__4NkYE{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Input_characterLimitError__ZByP3{color:var(--color-error)}.Input_footer__55AdV{display:flex;justify-content:space-between}.Input_footerAlignRight__DG8UZ{justify-content:flex-end}.Text_root__is73U{display:inline-block;padding:0;margin:0}.Text_primary__rZf7F{color:var(--blue-gray-900)}.Text_secondary__EPWj0{color:var(--blue-gray-600)}.Text_success__Mcw5I{color:var(--color-success)}.Text_error__pdEO6{color:var(--color-error)}.Text_warning__xCiZk{color:var(--color-warning)}.Text_white__Sb1IU{color:#fff}.Text_rowTitle__U1gB1{font-size:28px;line-height:35px}.Text_xlarge__X3NtK{font-size:20px;line-height:26px}.Text_large__c_Tar{font-size:18px;line-height:26px}.Text_medium__rk8Tn{font-size:16px;line-height:22px}.Text_small__S0zKm{font-size:14px;line-height:18px}.Text_xsmall__vYp9p{font-size:12px;line-height:15px}.Text_xxsmall__kOJdm{font-size:11px;line-height:14px}.Text_disabled___vAZA{color:var(--blue-gray-500)}.Text_italic__ZZFbJ{font-style:italic}.Text_weight-light__Rh8tc{font-weight:300}.Text_weight-regular__gWC16{font-weight:400}.Text_weight-medium__oIdYz{font-weight:500}.Text_weight-strong__yEO2S{font-weight:600}.Text_weight-bold__xnsIS{font-weight:700}.Text_ellipsis__QNjvO{max-width:100%;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.Text_lineClamp__SO_Pl{overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-box-orient:vertical}.TextArea_container__oc_q4{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.TextArea_textarea__VyrNQ{padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);font-family:var(--font-family);min-height:150px;margin:0}.TextArea_textarea__VyrNQ:hover{border:1px solid var(--blue-gray-600)}.TextArea_textarea__VyrNQ:focus{outline:none;border:1px solid var(--celadon-blue);background:transparent}.TextArea_error__o_XpL{border:1px solid var(--color-error)}.TextArea_characterLimit__hm9El{color:var(--blue-gray-600);font-size:11px;font-weight:400}.TextArea_characterLimitError__UbPM9{color:var(--color-error)}.TextArea_footer__EG4wA{display:flex;justify-content:space-between}.TextArea_footerAlignRight__PmO7Z{justify-content:flex-end}.TagInput_container__4lPGD{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.TagInput_input__lsGqa{border:none;flex:1 1;min-width:100px;height:30px}.TagInput_tag__9BE6f{border-radius:20px;padding:4px 8px;border:1px solid var(--blue-gray-300);display:flex;gap:8px;font-size:14px;color:var(--blue-gray-600);font-weight:600;align-items:center}.TagInput_closeTag__oeDgn{border:none;background-color:transparent;padding:0;color:var(--blue-gray-500);font-size:10px;margin:0}.TagInput_closeTag__oeDgn:hover{opacity:.75;cursor:pointer}.TagInput_inputContainer__dl2dW{box-sizing:border-box;padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);width:100%;display:flex;gap:8px}.TagInput_inputContainer__dl2dW:hover{border:1px solid var(--blue-gray-600)}.TagInput_input__lsGqa:focus{outline:none;border-radius:4px;border:1px solid var(--celadon-blue)}.TagInput_error__INAMJ{border:1px solid var(--color-error)}.TagInput_errorText__Dq2QW{display:flex;align-items:center;gap:8px;color:var(--color-error);font-size:11px;font-weight:400}.TagInput_autocompleteContainer__RgOvw{position:relative}.TagInput_autocomplete__nGD9D{background-color:var(--white);display:flex;flex-direction:column;width:100%;position:absolute;left:0;right:0;top:-8px;box-shadow:0 .5px 5px rgba(0,0,0,.039),0 3.75px 11px rgba(0,0,0,.19);border-radius:4px;overflow-y:scroll;z-index:3}.TagInput_suggestion__k4kfh{padding:8px;color:var(--blue-gray-600);font-weight:600;text-decoration:underline;text-underline-offset:1.5px}.TagInput_suggestion__k4kfh:hover{cursor:pointer;color:var(--blue-gray-600)}.TagInput_focusedSuggestion__QnSXo,.TagInput_suggestion__k4kfh:hover{background-color:var(--blue-gray-200)}.TagInput_tagContainer__LflB5{display:flex;gap:8px;flex-wrap:wrap;width:100%}.TagInput_footerText__O_1t4{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Selector_container__v2jVr{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Selector_selector__U2foh{border-radius:4px;display:flex;width:100%}.Selector_selector__U2foh button{border:1px solid var(--blue-gray-500);padding:6px 0;flex:1 1;margin:0;background-color:transparent}.Selector_selector__U2foh button:enabled:hover{cursor:pointer;background-color:var(--blue-gray-300)}.Selector_selector__U2foh button:first-child{border-radius:4px 0 0 4px}.Selector_selector__U2foh button:last-child{border-radius:0 4px 4px 0}.Selector_selector__U2foh button.Selector_selected__nyxjH{border:1px solid var(--celadon-blue);background-color:var(--celadon-blue)}.Selector_selector__U2foh button.Selector_selected__nyxjH .Selector_text__Rs7F7{color:var(--white)}.Selector_selector__U2foh button.Selector_selected__nyxjH:focus{outline-offset:4px}.Selector_selectorContainer__h4Mg1{display:flex;align-items:center;gap:4px}.Selector_icon__Y9S90{color:var(--blue-gray-500)}.Selector_text__Rs7F7{margin:0;font-weight:400;font-size:16px;font-family:Source Sans Pro,sans-serif}.IconWithExplanation_container__21T3S{position:relative;display:inline-flex}.IconWithExplanation_explanation___qwbw{position:absolute;top:50%;transform:translateY(-50%);left:120%;background-color:#fff;border-radius:4px;box-shadow:0 .5px 5px rgba(0,0,0,.039),0 3.75px 11px rgba(0,0,0,.19);z-index:3;padding:8px;width:150px}.IconWithExplanation_container__21T3S:hover .IconWithExplanation_explanation___qwbw{display:block}.IconWithExplanation_arrow__fCL_Y{content:"";position:absolute;left:-10px;margin-left:-5px;top:50%;transform:translateY(-50%);border:10px solid transparent;border-right-color:#fff}@media (max-width:768px){.IconWithExplanation_arrow__fCL_Y{margin-right:-5px;margin-left:0;border-color:transparent transparent transparent #fff;left:auto;right:-10px}.IconWithExplanation_explanation___qwbw{left:auto;right:120%}}.Checkbox_wrapper__HI5JR{display:flex;gap:10px;align-items:center}.Checkbox_input__RZSBL:hover,.Checkbox_label__7BF2Y:hover,.Checkbox_wrapper__HI5JR:hover{cursor:pointer}.Checkbox_wrapper__HI5JR .Checkbox_label__7BF2Y{font-weight:400;color:var(--blue-gray-900);margin:0}.Checkbox_wrapper__HI5JR .Checkbox_input__RZSBL{width:20px;height:20px;accent-color:var(--celadon-blue);margin:0}.Checkbox_wrapper__HI5JR:hover .Checkbox_input__RZSBL{accent-color:var(--celadon-blue-dark)}.Checkbox_wrapper__HI5JR:hover .Checkbox_label__7BF2Y{color:var(--celadon-blue-dark)}.RadioButton_root__592m2{--size:16px;--borderSize:2px;display:inline-flex;align-items:center;justify-content:flex-start;gap:12px;padding-block:8px;cursor:pointer}.RadioButton_root__592m2.RadioButton_large__K_9NI{--size:24px}.RadioButton_root__592m2.RadioButton_rtl__rAcql{font-size:16px;justify-content:space-between}.RadioButton_root__592m2:hover:not(.RadioButton_labelOnLeft__nb96s){font-weight:600}.RadioButton_root__592m2 input[type=radio]{position:relative;width:var(--size);height:var(--size);-webkit-appearance:none;-moz-appearance:none;appearance:none;background-color:transparent;margin:0;border:var(--borderSize) solid var(--blue-gray-500);border-radius:100vmax}.RadioButton_root__592m2 input[type=radio]:before{content:"";position:absolute;top:50%;left:50%;display:block;width:calc(var(--size) / 2);height:calc(var(--size) / 2);background-color:var(--celadon-blue);border-radius:100vmax;translate:-50% -50%;transition:scale .2s;scale:0}.RadioButton_root__592m2.RadioButton_checked__dJL5R input[type=radio]{border-color:var(--celadon-blue)}.RadioButton_root__592m2.RadioButton_checked__dJL5R input[type=radio]:before{scale:1}.Banner_root__pOnAN{--background:var(--celadon-blue-dark);width:100vw;height:40px;display:flex;align-items:center;justify-content:center;background-color:var(--background);color:var(--white);font-size:var(--font-size-medium);font-weight:var(--font-weight-medium);opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out;z-index:1}.Banner_visible__q1NMx{opacity:1;visibility:visible;transition-delay:0s}.Banner_aboveHeader__hC_i_{position:static;top:0}.Banner_belowHeader__Mcfew{position:absolute;top:var(--header-height)}.Banner_info__7SXSI{--background:var(--color-info)}.Banner_success__wveEs{--background:var(--color-success)}.Banner_error__lW5NB{--background:var(--color-error)}.Banner_warning__pEEt7{--background:var(--color-warning)}.Metadata_root__oCstk{display:grid;grid-template-columns:repeat(2,minmax(0,1fr));place-content:flex-start;padding-block-start:32px}.Metadata_root__oCstk .author{grid-column:1;grid-row:3;align-content:flex-start}.Metadata_root__oCstk .description,.Metadata_root__oCstk .pills-list,.Metadata_root__oCstk .stats,.Metadata_root__oCstk .title{grid-column:1/span 2}.Metadata_root__oCstk .title{margin-bottom:8px}.Metadata_root__oCstk .stats{margin-bottom:12px}.Metadata_root__oCstk .description{margin-top:12px}.Metadata_root__oCstk .pills-list{margin-block-start:20px;margin-block-end:18px}.Metadata_root__oCstk .actions{display:none}@media screen and (max-width:928px){.Metadata_root__oCstk{margin-block:8px 20px}.Metadata_root__oCstk .stats{margin-bottom:16px}.Metadata_root__oCstk .description{margin-top:0}.Metadata_root__oCstk .author{grid-column:2;grid-row:5;margin-block-start:12px;margin-block-end:6px;justify-content:end}.Metadata_root__oCstk.Metadata_authorInDescription__hW1wb:not(.Metadata_expanded__uLdy4) .author{display:none}.Metadata_root__oCstk.Metadata_authorInDescription__hW1wb.Metadata_expanded__uLdy4 .author{display:flex;grid-column:1/span 2;grid-row:5;justify-content:flex-start;margin-block-start:12px}.Metadata_root__oCstk .actions{display:none}.Metadata_root__oCstk .pills-list{margin-block-start:16px;margin-block-end:0}}.Metadata_root__oCstk .metadata-recs{grid-column:1/-1}.Title_root__svkHQ{font-size:clamp(26px,1vw + 1rem,28px);font-weight:600;line-height:1.25;min-width:0;word-break:break-word}.Heading_heading__3MAvZ,.Title_root__svkHQ{color:var(--blue-gray-900)}.Heading_h1__3k7S2{font-size:32px;font-weight:700}.Heading_h2__f9yvs{font-size:28px;font-weight:600}.Heading_h3__f1djd{font-size:24px}.Heading_h4__7tfLE{font-size:20px}.Heading_h5__jVM0l{font-size:16px;font-weight:400}.Heading_h6__uUTrd{font-size:14px;font-weight:400}.Stats_root__p_BoZ{flex-wrap:wrap;display:flex;align-items:center;-moz-column-gap:6px;column-gap:6px;color:var(--blue-gray-600);font-size:16px}.Stats_leftContent__588PR,.Stats_rightContent__8d0AF{display:flex;gap:6px}@media screen and (max-width:928px){.Stats_root__p_BoZ.Stats_extendedMetadata__wb62p .Stats_leftContent__588PR{width:100%}.Stats_root__p_BoZ.Stats_extendedMetadata__wb62p .Stats_formatTypesBullet__xDv0L{display:none}}.Likes_root__WVQ1_{cursor:pointer;transition:color .2s ease-in-out;border-radius:4px}.Likes_root__WVQ1_:hover{color:var(--blue-gray-700)}.LikeModal_more__R9uAk{justify-self:center;color:var(--celadon-blue);font-weight:500;opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out}.LikeModal_more__R9uAk.LikeModal_visible__t1vr4{opacity:1;visibility:visible;transition-delay:0s}.LikesUserListSkeleton_root__pUbb3{display:flex;flex-direction:column;gap:12px}.LikesUserListSkeleton_root__pUbb3 .skeleton:first-child{grid-row:1/span 2}.LikesUserListSkeleton_item__mONV4{display:grid;grid-template-columns:max-content 1fr;grid-column-gap:12px;-moz-column-gap:12px;column-gap:12px;grid-row-gap:4px;row-gap:4px}.Modal_root__TYkzh[open]{transform:translateY(0)}.Modal_root__TYkzh{--max-height:calc(100dvb - var(--header-height));--title-size:80px;width:-moz-max-content;width:max-content;max-height:var(--max-height);place-self:center;border-radius:var(--border-radius);transform:translateY(8px)}@starting-style{.Modal_root__TYkzh[open]{transform:translateY(8px)}}.Modal_root__TYkzh.Modal_small__hupRE{width:400px}.Modal_root__TYkzh.Modal_medium__j8NOV{width:600px}.Modal_root__TYkzh.Modal_large__ygVmr{width:800px}.Modal_root__TYkzh.Modal_xlarge__HeXWk{width:960px}.Modal_wrapper__4UTGq{position:relative;display:grid}.Modal_wrapper__4UTGq .modal-content{flex:1 1;max-height:calc(var(--max-height) - var(--title-size));overflow:clip auto}@media screen and (max-width:520px){.Modal_root__TYkzh,.Modal_root__TYkzh.Modal_large__ygVmr,.Modal_root__TYkzh.Modal_medium__j8NOV,.Modal_root__TYkzh.Modal_small__hupRE,.Modal_root__TYkzh.Modal_xlarge__HeXWk{width:100vw}}@media screen and (max-width:928px){.Modal_root__TYkzh.Modal_bottomPlacement__BUbfp{width:100vw;top:unset;bottom:0;border-bottom-left-radius:0;border-bottom-right-radius:0}}.Modal_title__xhSfl{height:var(--title-size);line-height:var(--title-size);color:var(--blue-gray-900);font-size:20px;font-weight:600;border-bottom:1px solid var(--blue-gray-200);padding-inline-start:20px;padding-inline-end:60px}.Modal_title__xhSfl:first-letter{text-transform:capitalize}.Modal_content__R1F4d{padding-inline:20px;padding-block:24px}.Modal_root__TYkzh:has(.Modal_actions__t63hZ) .Modal_content__R1F4d{padding-block-end:96px}.Modal_actions__t63hZ{position:absolute;inset-inline:0;bottom:0;display:flex;align-items:center;justify-content:flex-end;gap:24px;background-color:var(--white);padding-inline:20px;padding-block:16px}.ViewModal_content__GPKXy{padding-block:0}.ViewModal_row__xLxnz{display:flex;justify-content:space-between;border-bottom:1px dashed var(--blue-gray-300);color:var(--blue-gray-800);padding:16px 0}.ViewModal_row__xLxnz:last-child{border-bottom:none}.Author_link___lVxw,.Author_root___6Bx5{display:flex;align-items:center;gap:8px}.Author_link___lVxw{color:var(--blue-gray-800);font-size:var(--font-size-large);font-weight:600;text-decoration:none;transition:color .15s}.Author_link___lVxw:hover{color:var(--celadon-blue-dark)}.Avatar_root__GNWHY{display:inline-flex;align-items:center;justify-content:center;flex-shrink:0;background-color:var(--white);color:var(--blue-gray-300);border-radius:50%;font-size:16px;font-weight:600;text-align:center;-webkit-user-select:none;-moz-user-select:none;user-select:none;overflow:hidden}.Avatar_initials__EJfVt{color:var(--white);transition:background-color .2s ease-in-out}.Avatar_initials__EJfVt,.Avatar_initials__EJfVt:hover{background-color:var(--blue-gray-600)}.Avatar_image__Bbtll{width:100%;height:100%;-o-object-fit:cover;object-fit:cover}.Description_root__kt4uq{--line-height:26px;position:relative}.Description_root__kt4uq.Description_clamped__PaV_1{padding-bottom:25px}.Description_root__kt4uq.Description_clamped__PaV_1 .Description_wrapper__hYE9_{mask-image:linear-gradient(to bottom,var(--white),transparent);-webkit-mask-image:linear-gradient(to bottom,var(--white),transparent)}.Description_wrapper__hYE9_{min-height:var(--line-height);display:-webkit-box;overflow:hidden;text-overflow:ellipsis;-webkit-box-orient:vertical;-webkit-line-clamp:2}.Description_noClamp__1z7c5,.Description_wrapper__hYE9_.Description_expanded__lRamt{-webkit-line-clamp:unset;-webkit-mask-image:none;mask-image:none}.Description_wrapper__hYE9_.Description_expanded__lRamt{height:auto}.Description_wrapper__hYE9_ p{color:var(--blue-gray-600);font-size:18px;line-height:var(--line-height);white-space:pre-wrap;word-break:break-word}.Description_root__kt4uq button{padding-inline:0}.Description_root__kt4uq .Description_more__ChrRK{position:absolute;padding:0;bottom:0;height:26px}.Description_root__kt4uq .Description_less__BvWbY{display:none}@media screen and (max-width:928px){.Description_root__kt4uq .Description_more__ChrRK{right:0;background-color:#fff}.Description_root__kt4uq.Description_clamped__PaV_1{padding-bottom:0}.Description_root__kt4uq .Description_less__BvWbY,.Description_root__kt4uq .Description_more__ChrRK{display:flex;height:var(--line-height)}}.Description_root__kt4uq .Description_less__BvWbY.Description_hidden__a9QZJ,.Description_root__kt4uq .Description_more__ChrRK.Description_hidden__a9QZJ{display:none}.PillsList_root__2EydN{display:flex;flex-wrap:wrap;align-items:center;gap:8px}.Pill_root__IqOYH{--bg:color-mix(in srgb,var(--celadon-blue-dark),90% transparent);--color:var(--blue-gray-800);height:40px;display:inline-flex;align-items:center;gap:6px;background-color:var(--bg);border-radius:100vmax;color:var(--color);font-size:16px;font-weight:600;padding-inline:16px;transition:color .2s ease-in-out,background-color .2s ease-in-out,filter .2s ease-in-out;cursor:pointer;-webkit-user-select:none;-moz-user-select:none;user-select:none;text-decoration:none;white-space:nowrap}.Pill_root__IqOYH:not(.Pill_selected__VPtHm):hover{filter:brightness(.6)}.Pill_root__IqOYH.Pill_selected__VPtHm{--bg:var(--blue-gray-900);--color:var(--white)}@media screen and (max-width:520px){.Pill_root__IqOYH{height:28px;padding-inline:12px;gap:4px;font-size:12px}.Pill_icon__xE_Cg{--size:18px!important}}.Actions_root__00yIC{display:flex;gap:6px;align-items:baseline;min-height:44px}@media screen and (max-width:928px){.Actions_root__00yIC{min-height:35px}.Actions_root__00yIC .gallery-view-button{padding-inline:0;margin-inline-end:auto}}@media (min-width:929px){.Actions_root__00yIC .fullscreen-button,.Actions_root__00yIC .like-button,.Actions_root__00yIC .more-button,.Actions_root__00yIC .save-button,.Actions_root__00yIC .study-guide-button{--size:44px;border:1px solid var(--blue-gray-200)}}button.GalleryViewButton_root__s4Nw4{--size:32px;color:var(--blue-gray-700)}button.GalleryViewButton_root__s4Nw4:hover{background-color:transparent}@media only screen and (min-width:929px){button.GalleryViewButton_root__s4Nw4{display:none}}.StudyGuideButton_root__DHAq3{color:var(--blue-gray-700);white-space:nowrap}button.StudyGuideButton_root__DHAq3 span{gap:8px}.Tooltip_root__7FS0Y{background:var(--midnight-green-dark);border-radius:4px;box-shadow:.5px 5px rgba(0,0,0,.04),0 4px 11px rgba(0,0,0,.2);color:var(--white);font-size:12px;line-height:15px;padding-inline:8px;padding-block:6px;margin:1ch}.SaveLoggedIn_icon__lk74r{color:var(--blue-gray-700)}.SaveOptionsDrawer_drawerTrigger__Gb7nK{box-shadow:none;border:none;border-radius:4px;position:relative;z-index:7}.SaveOptionsDrawer_drawerTrigger__Gb7nK:active,.SaveOptionsDrawer_drawerTrigger__Gb7nK:active:focus,.SaveOptionsDrawer_drawerTrigger__Gb7nK:hover{border:none;box-shadow:none;background-color:transparent}.SaveOptionsDrawer_drawerTrigger__Gb7nK:focus{background:transparent}.SaveOptionsDrawerContent_drawerContent__J5JTL{margin:16px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_separator__UW5Rz{margin:8px 0}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_itemsContainer__tCXw5{display:flex;flex-direction:column;margin-top:0;max-height:144px;overflow-y:auto}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j{font-weight:400;line-height:24px;padding:0 8px;margin:8px 0;width:100%}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j span{color:var(--blue-gray-800);justify-content:space-between;gap:30px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR span{gap:14px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR{color:var(--blue-gray-800);display:flex;font-weight:400;line-height:24px;align-items:center;justify-content:flex-start;padding:8px 4px;margin:14px 0}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR.SaveOptionsDrawerContent_newListButton__VzhfD{font-size:16px;font-weight:600}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_addIcon__Wb2cq{color:var(--blue-gray-800)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j span.SaveOptionsDrawerContent_clampLines__zfkfI{display:inline-block;overflow:hidden;text-align:left;text-overflow:ellipsis;white-space:nowrap;width:calc(100vw - 115px)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_listIcon__5dcfC{color:var(--blue-gray-900)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_noSavedLists__cpUBY{color:var(--blue-gray-600);font-weight:400;font-size:16px;line-height:24px;padding:12px 16px;text-align:center}.Separator_root__70Ime{--orientationMargin:0;background-color:var(--blue-gray-200);flex-shrink:0}.Separator_horizontal__czVEa{width:calc(100% - var(--orientationMargin) * 2);height:1px}.Separator_vertical__JYCCK{width:1px;height:calc(100% - var(--orientationMargin) * 2)}.SaveLoggedOut_icon__ny9X2{color:var(--blue-gray-700)}.MoreDropdownButton_root__ciXL6{width:100%;padding:0 16px}.MoreDropdownButton_list__VI5Ah{list-style-type:none;padding:0;margin:0}.MoreDropdownButton_item__t4HmI{margin:8px 0}.MoreDropdownButton_actionButton__gJ41E{color:var(--black);display:flex;align-items:center;font-size:16px;height:48px;gap:12px}.MoreDropdownButton_actionButton__gJ41E:focus{outline:none}.MoreDropdownButton_drawerHeading__chh4X{margin:24px 0;display:flex;align-items:center}.MoreDropdownButton_moreOptionsIcon__TpJLA{color:var(--blue-gray-700)}.MoreDropdownButton_icon__DxfY4{color:var(--blue-gray-800)}.MoreDropdownButton_tooltip__az4od{white-space:nowrap}.MoreDropdownButton_trigger__x7wGs{width:44px;height:44px;border-radius:4px}@media (max-width:928px){.MoreDropdownButton_trigger__x7wGs{width:32px;height:32px}}.ReportForm_root__REyLj{display:grid;grid-gap:12px;gap:12px;font-size:1rem;color:var(--blue-gray-800)}.ReportForm_root__REyLj label,.ReportForm_row__dXO5W{display:flex;align-items:center;gap:12px}.ReportForm_root__REyLj label{gap:8px}.ReportForm_root__REyLj label:has(input[type=radio]:checked){font-weight:600;color:var(--blue-gray-900)}.ReportForm_root__REyLj input[type=radio]{accent-color:var(--celadon-blue)}.ReportForm_root__REyLj select{width:100%;display:block;height:40px;-webkit-appearance:none;-moz-appearance:none;appearance:none;background:url('data:image/svg+xml;utf8,<svg fill="lightgray" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="24px" height="24px"><path d="M7 10l5 5 5-5z"/></svg>') no-repeat right 8px center;border:1px solid var(--blue-gray-300);border-radius:4px;color:var(--blue-gray-600);font-size:1rem;padding-block:4px;padding-inline:16px;margin-block-start:8px}.ReportForm_root__REyLj select.changed{background-image:url('data:image/svg+xml;utf8,<svg fill="lightgray" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="24px" height="24px"><path d="M7 10l5 5 5-5z"/></svg>');color:var(--blue-gray-900)}.ReportForm_root__REyLj a{color:var(--celadon-blue);font-weight:600;text-decoration:none}.ReportForm_root__REyLj p{color:var(--blue-gray-700)}.ReportForm_actions__LPSXn{display:flex;gap:12px;justify-content:flex-end;margin-block-start:8px}.ReportForm_copyrightPolicy__z8QMf{display:unset}.ReportForm_info__2Xs_1{max-width:200px;padding-inline:16px;padding-block:20px}.ReportForm_error__bC3zN{display:flex;align-items:center;background-color:#f2dede;color:var(--blue-gray-800);margin-block-end:16px}.ReportForm_error__bC3zN,.StudyGuideBanner_root__gh6Sc{gap:8px;border-radius:8px;padding-inline:16px;padding-block:12px}.StudyGuideBanner_root__gh6Sc{border:1px solid var(--blue-gray-200);display:none;flex-direction:column;margin-top:12px;grid-column:1/span 2;margin-bottom:-20px}.StudyGuideBanner_root__gh6Sc .StudyGuideBanner_title__gwKh4{display:flex;align-items:center;font-size:1rem;gap:8px;margin-bottom:4px;font-weight:600}.StudyGuideBanner_accentBubble__Ia3m0{margin-left:34px}.StudyGuideBanner_root__gh6Sc p{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;color:var(--blue-gray-600);font-size:14px;line-height:18px;line-clamp:5;overflow:hidden}.StudyGuideBanner_root__gh6Sc .StudyGuideBanner_button__CvohZ{align-self:flex-start;color:var(--celadon-blue);border:1px solid var(--celadon-blue)}@media screen and (max-width:928px){.StudyGuideBanner_root__gh6Sc{display:flex}}.MetadataToolbar_root__c03ao{--shadow-opacity:0;position:sticky;display:grid;height:var(--metadata-toolbar-height);background-color:var(--white);z-index:var(--header-index)}.MetadataToolbar_root__c03ao.MetadataToolbar_withStickyHeader__EDA4C{top:var(--header-height)}.MetadataToolbar_wrapper__r7XEc{position:relative;display:grid;grid-template-columns:minmax(0,1fr) max-content 1fr;align-items:center;padding-inline-end:20px;padding-block:16px}.MetadataToolbar_underline__QQn0C{grid-column:1/-1;grid-row:2;height:1px;position:absolute;bottom:0;right:-20px;left:-30vw;background-color:var(--blue-gray-200);box-shadow:0 2px 4px 0 rgba(0 0 0/var(--shadow-opacity));animation:MetadataToolbar_reveal-shadow__5yBxP linear both;animation-timeline:scroll(block);animation-range:150px 450px}.MetadataToolbar_title__jfTWv{font-size:18px;font-weight:600}.MetadataToolbar_actions__FB33C{width:-moz-max-content;width:max-content;justify-self:flex-end;align-self:flex-start;display:flex;grid-column-end:-1}.MetadataToolbar_pageNumber__i6Bhj{display:inline-flex;align-items:center;margin-inline:1em;height:44px}@media screen and (max-width:928px){.MetadataToolbar_root__c03ao{display:none}}@keyframes MetadataToolbar_reveal-shadow__5yBxP{to{--shadow-opacity:0.122}}.DownloadButton_root__adY00{margin-left:auto;display:inline-grid;gap:6px;justify-items:center;flex-shrink:0;text-align:center}.DownloadButton_savedStyling__k18od{font-weight:600;font-size:18px}.Player_root__L1AmF{position:relative;min-width:0;background-color:var(--snow-gray);padding:20px}.Player_root__L1AmF.Player_isInfographic__iQpvH{background-color:unset;padding-inline-start:1px;padding-inline-end:20px}@media (max-width:928px){.Player_root__L1AmF,.Player_root__L1AmF.Player_isInfographic__iQpvH{background-color:unset;padding-inline:2px}}.VerticalPlayer_root__K8_YS{position:relative;display:grid;grid-template-columns:minmax(0,1fr);grid-gap:24px;gap:24px}@media screen and (max-width:928px){.VerticalPlayer_root__K8_YS{gap:8px}}.VerticalSlide_root__jU_9r{position:relative}.VerticalSlide_root__jU_9r .vertical-slide-image{position:absolute;inset:0}.VerticalSlide_root__jU_9r>.save-slide{position:absolute;top:12px;right:12px}@media only screen and (max-width:928px){.VerticalSlide_root__jU_9r .save-slide-button{--size:32px;background-color:var(--blue-gray-100)}}.VerticalSlideImage_root__64KSA{position:relative;width:100%;height:100%;box-shadow:0 0 0 1px var(--blue-gray-200);border-radius:8px;overflow:clip}.VerticalSlideImage_image__VtE4p{-o-object-fit:contain;object-fit:contain;opacity:0;transition:opacity .3s var(--ease)}.VerticalSlideImage_image__VtE4p.VerticalSlideImage_loaded__Q7FLb{opacity:1}.VerticalSlideActions_root__azvaH{display:flex;flex-direction:column;gap:12px;position:absolute;top:12px;right:12px;bottom:12px;opacity:1;transition:opacity .3s ease-in .1s;z-index:1}@starting-style{.VerticalSlideActions_root__azvaH{opacity:0}}button.VerticalSlideActions_downloadButton__ancDu{border-radius:4px;color:var(--blue-gray-700);background-color:var(--blue-gray-100)}button.VerticalSlideActions_fullscreen__5CkK_{background-color:var(--blue-gray-100);color:var(--blue-gray-700);margin-block-start:auto}@media (max-width:928px){.VerticalSlideActions_root__azvaH>div:first-child{display:none}}.SaveSlide_root__k6Uis{color:var(--blue-gray-700)}.SaveSlide_root__k6Uis button.SaveSlide_button__w0PF7{background-color:var(--blue-gray-100);font-size:18px;line-height:24px;color:var(--blue-gray-700);padding:0 8px;min-width:32px;transition:min-width .2s ease-in-out}.FreestarVideoAd_root__KDWgl{min-width:0;flex-shrink:0;aspect-ratio:16/9}.SlideRecs_root__likA5{--card-hover-background:var(--blue-gray-200);display:flex;flex-direction:column;gap:20px}.SlideRecs_root__likA5 h2{font-size:24px;font-weight:600}@media (max-width:1050px){.SlideRecs_root__likA5{display:none}}.SlideRecs_root__likA5 .SlideRecs_cards__Lbxtt{display:grid;grid-gap:16px;gap:16px}.SlideRecs_root__likA5 .SlideRecs_card__txc2D{position:relative;grid-template-columns:180px 1fr;grid-template-rows:auto;gap:16px}.SlideRecs_root__likA5 .slideshow-thumbnail{box-shadow:0 0 0 1px var(--blue-gray-200)}.SlideRecs_root__likA5 .slideshow-card-content{padding-block:0;padding-inline-end:36px;gap:8px}.SlideRecs_root__likA5 .slideshow-title{line-height:1;margin-block-end:0}.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w{display:flex;gap:8px;align-items:center}.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w a,.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w span{font-size:12px}.SlideRecs_root__likA5 .SlideRecs_save__RR8dD{position:absolute;top:8px;right:8px}.SlideRecs_root__likA5 .SlideRecs_author__zlhWO{color:var(--blue-gray-700);font-weight:600;text-decoration:none;z-index:2}.SlideRecs_root__likA5 .SlideRecs_author__zlhWO:first-letter{text-transform:uppercase}.SlideRecs_root__likA5 .SlideRecs_card__txc2D .slideshow-title{font-size:16px}.SlideRecs_root__likA5 .SlideRecs_description__0bGsx{color:var(--blue-gray-700);font-size:14px;display:-webkit-box;overflow:hidden;line-clamp:1;-webkit-line-clamp:1;-webkit-box-orient:vertical}.SlideRecs_root__likA5 .SlideRecs_dot__Db7HR{font-size:16px}.SlideRecs_root__likA5 .SlideRecs_tags__RCA1q{display:flex;flex-wrap:wrap;align-items:center;gap:8px}.SlideRecs_root__likA5 .SlideRecs_tags__RCA1q span{display:grid;place-content:center;height:20px;background-color:var(--alice-blue-600);border-radius:100vmax;color:var(--blue-gray-700);font-size:11px;font-weight:600;padding-inline:12px;-webkit-user-select:none;-moz-user-select:none;user-select:none;white-space:nowrap;text-transform:capitalize;z-index:2}.SlideshowCard_root__pD8t4{position:relative;display:grid;grid-template-rows:max-content minmax(0,1fr);grid-template-columns:minmax(0,1fr);align-content:flex-start;color:var(--blue-gray-600)}.SlideshowCard_root__pD8t4:hover .SlideshowCard_thumb__86aJk{scale:1.02}.SlideshowCard_content__xh7kV{display:grid;padding:16px 0;grid-template-columns:1fr 32px;grid-template-rows:auto;grid-row-gap:4px;row-gap:4px}.SlideshowCard_content__xh7kV .slideshow-right-side{grid-column-start:2;grid-row-start:1;grid-row-end:span 3}.SlideshowCard_content__xh7kV .slideshow-author,.SlideshowCard_content__xh7kV .slideshow-stats,.SlideshowCard_content__xh7kV .slideshow-title,.SlideshowCard_content__xh7kV .slideshow-type{grid-column-start:1}.SlideshowCard_content__xh7kV .slideshow-author,.SlideshowCard_content__xh7kV .slideshow-stats{margin-block-start:auto}.SlideshowCardLink_root__p8KI7{position:absolute;inset:0;z-index:1;margin:4px}.Thumbnail_root__qLW0K{--ease:cubic-bezier(0.2,0,0,1);position:relative;background-color:var(--blue-gray-100);border:1px solid var(--blue-gray-100);border-radius:8px;-webkit-backdrop-filter:blur(8px);backdrop-filter:blur(8px);scale:1;transition:scale .2s var(--ease);overflow:hidden}.Thumbnail_thumb__UXO3a{--reveal-delay:calc(30ms * var(--index));position:absolute;inset:0;width:100%;height:100%;opacity:0;transition:opacity .3s var(--ease);transition-delay:var(--reveal-delay)}.Thumbnail_loaded__XOJ5p{opacity:1}.Thumbnail_blur__opK6A{filter:blur(8px)}.Thumbnail_cover__1zsIi{-o-object-fit:cover;object-fit:cover}.Thumbnail_contain__K6M0d{-o-object-fit:contain;object-fit:contain}.SlideshowTitle_root__2VccW{display:-webkit-box;color:var(--blue-gray-900);font-size:18px;font-weight:600;line-height:1.2;margin-bottom:8px;white-space:break-spaces;word-break:break-word;-webkit-box-orient:vertical}.RecSaveButton_icon__btwCp{color:var(--blue-gray-700);z-index:2}.SlideshowStats_root__EQOR1{display:flex;align-items:center;gap:6px}.SlideshowStats_text___WD7l{color:var(--blue-gray-600)}.SlideshowAuthor_root__IkT1_{color:var(--celadon-blue-dark);font-weight:600;text-decoration:underline;-webkit-text-decoration-color:transparent;text-decoration-color:transparent;text-decoration-thickness:1.5px;text-underline-offset:2px;transition:-webkit-text-decoration-color .2s ease-out;transition:text-decoration-color .2s ease-out;transition:text-decoration-color .2s ease-out,-webkit-text-decoration-color .2s ease-out;z-index:2}.SlideshowAuthor_root__IkT1_:hover{-webkit-text-decoration-color:var(--celadon-blue);text-decoration-color:var(--celadon-blue)}.CountTag_root__y1hE1,.SplitDot_root__lTZDc{color:var(--blue-gray-600);font-weight:400}.VerticalInterstitialAdWrapper_root__LxQh8{container-type:inline-size;position:relative;display:grid;min-height:280px;overflow-x:clip}.VerticalInterstitialAdWrapper_root__LxQh8:has(.interstitial-ad-container.has-fetched):not(:has(.interstitial-ad-container.has-fetched .freestar-ad-container:not(.unfilled))){display:none}.VerticalInterstitialAdWrapper_root__LxQh8:has(div.interstitial-ad-container.has-fetched div.freestar-ad-container.filled div),.VerticalInterstitialAdWrapper_root__LxQh8:has(div.interstitial-ad-container.has-fetched div.freestar-ad-container.unfilled iframe){display:grid!important}.VerticalInterstitial_root__Dunl7{display:none}@container (max-width: 480px){.VerticalInterstitial_root__Dunl7{display:block;justify-self:center;align-self:center}}.FreestarAdContainer_root__qPPC_{position:relative;display:grid;place-content:center}.FreestarAdContainer_root__qPPC_.FreestarAdContainer_withFallback__A4lgm{aspect-ratio:var(--fallback-aspect-ratio)}.FreestarAdContainer_fallback__WreT9{position:absolute;inset:0;grid-template-columns:unset;place-content:center}.AdFallback_root__uAXsl{display:grid;justify-items:center;grid-template-columns:1fr;z-index:0}.VerticalInterstitialDesktop_root__s5iTm{display:none;place-content:center}@container (min-width: 481px){.VerticalInterstitialDesktop_root__s5iTm{display:grid}}.BelowReaderAd_root__NKeGg{margin-top:16px;margin-bottom:60px}.BelowReaderAd_root__NKeGg.BelowReaderAd_desktop__7_JN7{display:block;justify-items:flex-start}.BelowReaderAd_root__NKeGg.BelowReaderAd_mobile__08T3d{display:none}.BelowReaderAd_root__NKeGg .fallback-ad{justify-self:flex-start}@media screen and (max-width:928px){.BelowReaderAd_root__NKeGg.BelowReaderAd_desktop__7_JN7{display:none}.BelowReaderAd_root__NKeGg.BelowReaderAd_mobile__08T3d{display:block;justify-items:center}}.Sidebar_root__1BbNu{width:var(--sidebar-size);max-height:100dvh;overflow:clip scroll;position:sticky;top:var(--metadata-toolbar-offset,0);display:flex;flex-direction:column;padding-inline-start:28px;padding-block-start:32px;padding-block-end:430px}.Sidebar_root__1BbNu.Sidebar_withStickyHeader__u8U46{top:var(--header-height)}.Sidebar_root__1BbNu.Sidebar_withSidebarAds__0w0dT{max-height:unset;overflow:unset;position:static;top:unset;display:grid;grid-template-rows:repeat(var(--slots),1fr);padding-inline:28px}@media (max-width:1050px){.Sidebar_root__1BbNu,.Sidebar_root__1BbNu.Sidebar_withSidebarAds__0w0dT{display:none}}.AboveRecsAd_root__iTmTR{min-height:280px;margin-block-end:32px}.AboveRecsAd_root__iTmTR .freestar-ad-container{place-content:flex-start}@media (max-width:1050px){.AboveRecsAd_root__iTmTR .freestar-ad-container{place-content:center}}.AboveRecsAd_mobileAd__LYgqf{display:none}.AboveRecsAd_desktopAd__ymykj{display:block}@media (max-width:1050px){.AboveRecsAd_mobileAd__LYgqf{display:block}.AboveRecsAd_desktopAd__ymykj{display:none}}.RailRecommendations_root__zqtZQ{display:flex;flex-direction:column;gap:8px;padding-block-end:24px}.RailRecommendations_title__kt1D2{font-size:24px;color:var(--blue-gray-900);font-weight:600;margin-block-end:20px}.RailCard_root__rZUGY{--card-hover-background:var(--blue-gray-100);width:100%;position:relative;padding-block:12px}.RailCard_root__rZUGY.slideshow-card{grid-template-columns:160px minmax(0,1fr);grid-template-rows:auto;gap:12px}.RailCard_root__rZUGY .slideshow-card-content{padding:0}.RailCard_link__d3BBm{z-index:1}.RailCard_root__rZUGY .RailCard_title__Tvfiv{font-size:16px}.RailCard_stats__ZvZms .text{font-size:12px}.RailCard_root__rZUGY .RailCard_author__JYeYZ{color:var(--blue-gray-700);text-decoration:none}@media screen and (min-width:929px){.RailCard_root__rZUGY.RailCard_hasDescription__MjSgf:hover{background-color:var(--blue-gray-100)}}.RelatedContent_root__29Np1{background-color:var(--blue-gray-100);border-top:1px solid var(--blue-gray-200);border-bottom:1px solid var(--blue-gray-200);padding-block:32px;position:relative}.RelatedContent_wrapper__riU7l{display:grid;grid-template-columns:minmax(0,1fr);grid-gap:32px;gap:32px;max-width:var(--max-content-width);margin-inline:auto}.RelatedContent_title__QUhpL{text-align:center;font-size:32px;font-weight:700}@media screen and (max-width:520px){.RelatedContent_wrapper__riU7l{padding-inline:16px}}.BottomRecommendation_root__7aU9w{display:grid;grid-gap:4px;gap:4px;padding-inline:24px}.BottomRecommendation_title__SRj68{font-size:22px;font-weight:600}.BottomRecommendation_count__4HpLo{font-size:16px;font-weight:400}@media screen and (max-width:520px){.BottomRecommendation_root__7aU9w{padding-inline:0}}.BottomRecommendationContent_root__2qm4_{display:grid}.BottomRecommendationContent_hidden__CUlxl{display:none}.BottomRecommendationContent_root__2qm4_ .mobile-recs{display:grid}.BottomRecommendationContent_root__2qm4_ .desktop-recs{display:none}@media screen and (min-width:520px){.BottomRecommendationContent_root__2qm4_ .mobile-recs{display:none}.BottomRecommendationContent_root__2qm4_ .desktop-recs{display:flex}}.Slider_root__c0Jo8{position:relative;display:grid}.Slider_scroller__KHjw4{display:flex;gap:20px;overflow:auto;scroll-snap-type:x mandatory;overscroll-behavior-x:contain;max-inline-size:100%;min-block-size:100%;touch-action:pan-x;-ms-overflow-style:none;scrollbar-width:none}.Slider_scroller__KHjw4::-webkit-scrollbar{display:none}.Slider_scroller__KHjw4>*{flex-grow:1;flex-shrink:0;scroll-snap-align:start}.Slider_scroller__KHjw4>:last-child{scroll-snap-align:end}.Slider_arrow__8LCca{display:grid;place-content:center;width:36px;height:36px;position:absolute;top:50%;background:var(--white);border:1px solid var(--blue-gray-200);border-radius:100vmax;box-shadow:0 2px 4px 0 rgba(0,0,0,.25);color:var(--blue-gray-800);padding:0;opacity:1;visibility:visible;pointer-events:all;transition:opacity .2s ease-in-out,visibility .2s ease-in-out;transition-delay:0s;cursor:pointer;z-index:1}.Slider_prev__YMssa{left:0;translate:-50% -50%}.Slider_next__fa9IO{right:0;translate:50% -50%}.Slider_hidden__rs7nK{opacity:0;visibility:hidden;pointer-events:none}.BottomRecommendationCard_root__gffTk{inline-size:clamp(220px,12.63rem + 3.45vw,260px);position:relative;background-color:none}.BottomRecommendationCard_root__gffTk .slideshow-thumbnail{border:1px solid var(--blue-gray-200)}.ScribdRecommendation_root__t3ezS{display:grid;grid-gap:16px;gap:16px;padding:0 24px}.ScribdRecommendation_header__Jw_M1{display:grid;grid-template-columns:1fr max-content}.ScribdRecommendation_title__JZ5p7{font-size:22px;font-weight:600}.ScribdRecommendation_link__4DVQz{align-self:end;grid-column:2;grid-row:1/span 2;color:var(--celadon-blue-dark)}.ScribdRecommendation_link__4DVQz:hover{color:var(--celadon-blue)}.ScribdRecommendationCard_root__ef2Y_{--rec-bg-1:#f1e3e3;--rec-bg-2:#f6f4e3;--rec-bg-3:#e1eaec;--rec-bg-4:#efebef;--rec-bg-5:#f1f0f0;--rec-bg-6:#f4eadb;--rec-bg-7:#eaeee7;--rec-bg-8:#e3e8ef;--rec-bg-9:#f1eee6;max-width:172px;position:relative;height:100%;display:grid;grid-template-columns:minmax(0,1fr);grid-template-rows:max-content minmax(0,1fr);align-content:flex-start;background-color:var(--white);border:1px solid var(--blue-gray-200);box-shadow:none;transition:box-shadow .2s ease-in-out;text-decoration:none}.ScribdRecommendationCard_root__ef2Y_:hover{box-shadow:0 2px 10px rgba(0,0,0,.1)}.ScribdRecommendationCard_thumb__5VVNh{position:relative;display:flex;background-color:var(--blue-gray-200);margin-block-start:24px;margin-inline:20px}.ScribdRecommendationCard_root__ef2Y_:before{position:absolute;inset:0;aspect-ratio:19/16;content:"";background-color:var(--block-color)}.ScribdRecommendationCard_thumb__5VVNh img{--reveal-delay:calc(30ms * var(--card-index));aspect-ratio:inherit;box-shadow:0 4px 6px rgba(0,0,0,.2);-o-object-fit:cover;object-fit:cover;opacity:0;visibility:hidden;transition:opacity .3s var(--ease);transition-delay:var(--reveal-delay)}.ScribdRecommendationCard_loaded__FTN_f img{opacity:1;visibility:visible}.ScribdRecommendationCard_content__ObcvL{display:flex;flex-direction:column;padding-block:20px;padding-inline:16px}.ScribdRecommendationCard_content__ObcvL .rating{padding-block-start:8px;margin-block-start:auto}@media (max-width:928px){.ScribdRecommendationCard_content__ObcvL .rating{flex-direction:column;align-items:flex-start}}.Rating_root__fgZQJ{display:flex;align-items:center;-moz-column-gap:6px;column-gap:6px;white-space:nowrap}.Rating_root__fgZQJ :first-child{color:#e47b01;font-size:16px;line-height:1}.Rating_root__fgZQJ :last-child{color:var(--blue-gray-600);font-size:14px;letter-spacing:-.25px}.Transcript_root__Vrf6Q{width:100%;max-width:var(--max-content-width);display:grid;grid-gap:8px;gap:8px;padding:32px 16px;margin-inline:auto;position:relative;background:#fff}.Transcript_title__YgAka{display:flex;align-items:center;gap:4px;font-weight:300;word-break:break-word}.Transcript_list__faItj{list-style-type:none;padding-inline-start:0;word-break:break-word}.Transcript_link__MLbGS{color:var(--celadon-blue);font-weight:700;line-height:22px;text-decoration:none;cursor:pointer}.EditorsNotes_root__3PcDF{padding:32px 16px;margin:0 auto}.EditorsNotes_heading__XR9E6{font-weight:700;font-size:22px}.EditorsNotes_list__NcG5Y{padding-left:30px;font-size:18px;font-style:italic;color:var(--blue-gray-600)}.EditorsNotes_item__ebBbj{word-break:break-word}.EditorsNotes_link__HRUAh{color:var(--celadon-blue);font-weight:700;line-height:22px;text-decoration:none;cursor:pointer}@media screen and (min-width:1696px){.EditorsNotes_root__3PcDF{max-width:1688px}}.ActionsMenu_root__4k507{display:flex;gap:12px;align-items:center;justify-content:flex-start;min-height:44px;position:sticky;bottom:0;z-index:var(--sticky-index);height:var(--actions-menu-height);padding:0 15px;background-color:#fff;box-shadow:0 1.85px 6.25px 0 #00000030}.ActionsMenu_root__4k507 .ActionsMenu_downloadButton__s7Iqj{justify-self:flex-end}@media (min-width:929px){.ActionsMenu_root__4k507{display:none}}.ConfirmRemoveSavedModal_description__2EAEu{color:var(--blue-gray-800);font-weight:400;font-size:16px;line-height:20px;padding:24px 0}div.SaveToNewListModal_input__Fi90k{max-width:unset;margin-bottom:24px}.SaveToNewListModal_checkboxWrapper__y_w0m .SaveToNewListModal_checkboxLabel__lMiU9:hover,.SaveToNewListModal_checkboxWrapper__y_w0m:hover .SaveToNewListModal_checkboxLabel__lMiU9,.SaveToNewListModal_checkboxWrapper__y_w0m:hover .SaveToNewListModal_input__Fi90k{color:var(--blue-gray-800)}.SaveToNewListModal_checkboxWrapper__y_w0m .SaveToNewListModal_checkboxLabel__lMiU9{color:var(--blue-gray-800);font-weight:400;font-size:14px;flex-direction:column;display:flex;line-height:18px}.SaveToNewListModal_imageContainer__Dx4nD{display:flex;flex-direction:column;justify-content:center;align-items:center;width:178px;margin:0 auto 24px}.SaveToNewListModal_imageContainer__Dx4nD img{height:100px}.SaveToNewListModal_errorContainer__FBZPH{margin:16px 0}.StudyGuideModal_description__JdU5u,.StudyGuideModal_radioContainer__x9iaP .radio-label{font-size:16px}.StudyGuideModal_radioContainer__x9iaP .label{font-size:16px;color:#000;margin-bottom:8px}form.StudyGuideModal_form__xcIWu{gap:0}.StudyGuideModal_radioContainer__x9iaP{display:flex;flex-direction:column;border-radius:8px;background:var(--alice-blue-100);padding:20px;margin-top:24px}.StudyGuideModal_buttonContainer__nHtF2{display:flex;justify-content:flex-end;margin-top:24px;gap:24px}button.StudyGuideModal_cancelButton__cVPcL{background-color:transparent;color:var(--celadon-blue);font-weight:var(--font-weight-medium)}button.StudyGuideModal_cancelButton__cVPcL:active,button.StudyGuideModal_cancelButton__cVPcL:hover{background:rgba(var(--celadon-blue-rgb),.05);color:var(--celadon-blue-dark)}dialog.FullscreenModal_root__efM9m[open]{animation:none;opacity:1;scale:1}dialog.FullscreenModal_root__efM9m{--max-height:100dvh;width:100dvw;height:100dvh;border-radius:0;opacity:0;scale:.96}dialog.FullscreenModal_root__efM9m .FullscreenModal_content__bQ6mt{width:100svw;height:100svh;display:grid;padding:0;max-height:100svh}@starting-style{dialog.FullscreenModal_root__efM9m[open]{opacity:0;scale:.96}} /*# sourceMappingURL=ee3e4d3e7d77a389.css.map*/</style></head><body><noscript><iframe title="gtm-noscript" src="https://www.googletagmanager.com/ns.html?id=GTM-M36RG8PT" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript><div id="__next"><div class="__variable_4d9a39 __className_4d9a39" style="overflow:clip"><div class="PageProgressBar_root__1y_Q3"><div class="PageProgressBar_bar__Kyoem" style="transform:scaleX(0)"></div></div><div data-freestar-ad="__320x50 __1140x90" id="slideshare_pushdown-pushdown-cls" style="height:var(--pushdown-height)"></div><header class="Header_root__8A86O"><div class="Header_wrapper___zBfP"><button aria-label="Open navigation menu" class="Hamburger_root__tHlgC" data-cy="mobile-header-menu" type="button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/hamburger.5a525941.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button><dialog id=":R15d6:" class="drawer Drawer_root__ob4ZM" data-placement="left"><div class="Drawer_content__ye6ZB"></div><button autofocus="" type="button" aria-label="Close" class="close-button CloseButton_root__JCTRm" data-cy="drawer-close-button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/close.393923c4.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button></dialog><a aria-label="SlideShare a Scribd company logo" class="Logo_root__Qba3h" data-cy="slideshare-logo" title="Return to the homepage" href="https://www.slideshare.net/"><img alt="SlideShare a Scribd company logo" loading="lazy" width="120" height="30" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=128&amp;q=75 1x, https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=256&amp;q=75 2x" src="https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=256&amp;q=75"/></a></div><div class="SearchForm_root__usp4s"><form data-testid="search-form" role="search"><input name="searchfrom" type="hidden" value="header"/><input type="text" autoComplete="off" aria-label="Search SlideShare" id="nav-search-query" data-cy="search-field" name="q" placeholder="Search" aria-haspopup="dialog" aria-controls=":R16d6:" popovertarget=":R16d6:" style="anchor-name:--popover-R16d6" value=""/><div class="SearchForm_popover__K3_9y SearchForm_hidden__rZp69" id=":R16d6:" popover="manual" data-popover-position="bottom-start" style="position-anchor:--popover-R16d6"></div><button type="submit" class="SearchForm_submit__U8kPR" id="search-submit" data-cy="search-submit"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/search.844a289d.svg);background-color:currentColor"></span><span class="sr-only">Submit Search</span></span></button></form></div><div class="HeaderActions_root__11_ai undefined"></div></header><div class="SlideshowScreen_root__k9j1_ SlideshowScreen_withKeyMoments__RbHLe"><!--$--><div class="metadata Metadata_root__oCstk" data-cy="metadata"><h1 class="Heading_heading__3MAvZ Heading_h1__3k7S2 title Title_root__svkHQ">A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST</h1><div class="stats Stats_root__p_BoZ"><div class="Stats_leftContent__588PR"><time dateTime="2024-11-04 20:44:17 UTC"><span class="skeleton Skeleton_root__U4QqL Skeleton_rounded__BLBq2" style="width:75px;height:24px"></span></time><span class="Text_root__is73U Text_medium__rk8Tn text" style="-webkit-line-clamp:0">•</span></div><div class="Stats_rightContent__8d0AF"><span class="Text_root__is73U Text_weight-strong__yEO2S Text_secondary__EPWj0 Text_medium__rk8Tn Likes_root__WVQ1_ text" style="-webkit-line-clamp:0" tabindex="0">0 likes</span><span class="Text_root__is73U Text_medium__rk8Tn text" style="-webkit-line-clamp:0">•</span><span class="Text_root__is73U Text_weight-strong__yEO2S Text_secondary__EPWj0 Text_medium__rk8Tn Likes_root__WVQ1_ text" style="-webkit-line-clamp:0" tabindex="0">24,300<!-- --> <!-- -->views</span></div></div><div class="author Author_root___6Bx5"><a data-cy="author-link" class="Author_link___lVxw ellipsis" title="Sérgio Sacani" href="https://www.slideshare.net/sacani"><div class="Avatar_root__GNWHY" style="width:24px;height:24px;line-height:24px"><img class="Avatar_image__Bbtll" src="https://cdn.slidesharecdn.com/profile-photo-sacani-48x48.jpg?cb=1735405912" alt="Sérgio Sacani" loading="lazy" decoding="sync"/></div><span>Sérgio Sacani</span></a></div><div class="description Description_root__kt4uq Description_clamped__PaV_1"><div class="Description_wrapper__hYE9_" data-cy="document-description"><p>Recent James Webb Space Telescope ( JWST) observations have revealed a surprisingly abundant population of faint, dusty active galactic nuclei at z ≈ 4–7. Together with the presence of supermassive black holes at z &gt; 6, this raises questions about the formation and growth histories of early black holes. Current theories for the formation of seed black holes from the death of the frst stars (that is, light seeds) and/or the direct collapse of primordial gas clouds (that is, heavy seeds) still lack observational confrmation. Here we present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful outfows that is observed in an extreme phase of rapid growth at redshift z ≈ 4. This object is similar to other JWST-discovered faint active galactic nuclei populations, but is bright in X-ray emission and accreting at more than 4,000% of the limit at which radiation pressure exceeds the force of gravitational attraction of the black hole (that is, super-Eddington accretion). Analysis of JWST Near-Infrared Spectrograph integral feld unit data reveals spatially extended Hα emission with velocities of ~−600–−500 km s−1 relative to the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington accretion as invoked by models of early black hole formation. This discovery showcases a previously undiscovered key parameter space and ofers crucial insights into rapid black hole growth mechanisms in the early universe.<button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_text__ZT_3O Button_small__sqsEx Description_less__BvWbY Description_hidden__a9QZJ" data-testid="button" aria-label="Read less"><span>Read less</span></button></p></div><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_text__ZT_3O Button_small__sqsEx Description_more__ChrRK" data-testid="button" aria-label="Read more" data-cy="read-more-button"><span>Read more</span></button></div><div class="actions Actions_root__00yIC"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi like-button unliked" data-testid="button" aria-label="Like" data-favorited="false" data-cy="like-button" aria-haspopup="dialog" aria-controls=":Rdi94f6:" popovertarget=":Rdi94f6:" style="anchor-name:--popover-Rdi94f6"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/like.3870b074.svg);background-color:#424766"></span><span class="sr-only"></span></span></button><div class="Tooltip_root__7FS0Y" id=":Rdi94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-Rdi94f6"></div><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="Save A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST for later" data-saved="false" data-cy="loggedout-save-slideshow-button" aria-haspopup="dialog" aria-controls=":Rhi94f6:" popovertarget=":Rhi94f6:" style="anchor-name:--popover-Rhi94f6"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button><div class="Tooltip_root__7FS0Y" id=":Rhi94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-Rhi94f6"></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis" aria-haspopup="dialog" aria-controls=":R1li94f6:" popovertarget=":R1li94f6:" style="anchor-name:--popover-R1li94f6"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="anchor-name:--popover-Rdli94f6" aria-haspopup="dialog" aria-controls=":Rdli94f6:" popovertarget=":Rdli94f6:"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span><div class="Tooltip_root__7FS0Y" id=":Rdli94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-Rdli94f6"></div></button><div class="" id=":R1li94f6:" popover="manual" data-popover-position="bottom-start" style="position-anchor:--popover-R1li94f6"></div></div></div><div class="MetadataToolbar_root__c03ao metadata-toolbar" data-cy="slideshow-toolbar"><div class="MetadataToolbar_wrapper__r7XEc"><div class="actions Actions_root__00yIC"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi like-button unliked" data-testid="button" aria-label="Like" data-favorited="false" data-cy="like-button" aria-haspopup="dialog" aria-controls=":R6c94f6:" popovertarget=":R6c94f6:" style="anchor-name:--popover-R6c94f6"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/like.3870b074.svg);background-color:#424766"></span><span class="sr-only"></span></span></button><div class="Tooltip_root__7FS0Y" id=":R6c94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-R6c94f6"></div><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="Save A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST for later" data-saved="false" data-cy="loggedout-save-slideshow-button" aria-haspopup="dialog" aria-controls=":R8c94f6:" popovertarget=":R8c94f6:" style="anchor-name:--popover-R8c94f6"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button><div class="Tooltip_root__7FS0Y" id=":R8c94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-R8c94f6"></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis" aria-haspopup="dialog" aria-controls=":Rqc94f6:" popovertarget=":Rqc94f6:" style="anchor-name:--popover-Rqc94f6"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="anchor-name:--popover-R6qc94f6" aria-haspopup="dialog" aria-controls=":R6qc94f6:" popovertarget=":R6qc94f6:"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span><div class="Tooltip_root__7FS0Y" id=":R6qc94f6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-R6qc94f6"></div></button><div class="" id=":Rqc94f6:" popover="manual" data-popover-position="bottom-start" style="position-anchor:--popover-Rqc94f6"></div></div><span data-cy="page-number" class="MetadataToolbar_pageNumber__i6Bhj">1<!-- --> <!-- -->of<!-- --> <!-- -->12</span><div class="MetadataToolbar_actions__FB33C"><div class="DownloadButton_root__adY00"><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_contained__gyjai Button_large__Yv_oe" data-testid="download-button" data-cy="download-button-toolbar"><span><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/download.b1b2622c.svg);background-color:currentColor"></span><span class="sr-only"></span></span>Download now</span></button><span class="Text_root__is73U Text_secondary__EPWj0 Text_xsmall__vYp9p text" style="-webkit-line-clamp:0">Download to read offline</span></div></div><div class="MetadataToolbar_underline__QQn0C"></div></div></div><!--/$--><!--$--><!--/$--><div class="player Player_root__L1AmF"><div id="new-player" class="vertical-player VerticalPlayer_root__K8_YS" data-slideshow-id="273014912"><div><div id="slide1" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-0" alt="Nature Astronomy natureastronomy https://doi.org/10.1038/s41550-024-02402-9 Article Asuper-Eddington-accretingblackhole ~1.5 GyraftertheBigBangobservedwith JWST Hyewon Suh 1 , Julia Scharwächter 1 , Emanuele Paolo Farina 1 , Federica Loiacono 2 , Giorgio Lanzuisi 2 , Günther Hasinger 3,4,5 , Stefano Marchesi 2,6,7 , Mar Mezcua 8,9 , Roberto Decarli 2 , Brian C. Lemaux 1,10 , Marta Volonteri11 , Francesca Civano12 , Sukyoung K. Yi 13 , San Han13 , Mark Rawlings 1 &amp; Denise Hung 1 RecentJamesWebbSpaceTelescope(JWST)observationshaverevealed asurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat z ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz &gt; 6, thisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack holes.Currenttheoriesfortheformationofseedblackholesfromthedeath ofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial gasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here wepresentLID-568,alow-mass(7.2 × 106 M⊙)blackholehostingpowerful outflowsthatisobservedinanextremephaseofrapidgrowthatredshift z ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic nucleipopulations,butisbrightinX-rayemissionandaccretingatmore than4,000%ofthelimitatwhichradiationpressureexceedstheforceof gravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion). AnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals spatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1 relative tothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID- 568representsanelusivelow-massblackholeexperiencingsuper-Eddington accretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery showcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial insightsintorapidblackholegrowthmechanismsintheearlyuniverse. Observational surveys have identified several hundreds of luminous quasars at redshift z &gt; 6–7 (refs. 1–6). The presence of supermassive black holes (SMBHs) with masses of 109–10 M⊙ at such early cosmic epochschallengesmodelsofSMBHformationandgrowth,andraises questionsabouttheoriginofseedblackholesandthemechanismsfor theirrapidandextremegrowth.Althoughtheformationofseedblack holes remains observationally unconstrained, they are commonly thoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar physicalprocessesthatcangenerateblackholeswithmassesinexcess of102 M⊙ (ref.7).Historically,modelshavebeendividedintolightand heavyseeds,withademarcationatabout103 M⊙.Thelightestseedsare generallyassociatedwiththedeathofthefirststarswithinitialmasses of102–3 M⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime intotheobservedpopulationofSMBHsatslightlylatertimeischalleng- ing,becauseblackholesformedinthismannerwouldhavetoaccrete attheEddingtonlimitfromthetimetheyareformeduptotheredshift Received: 1 April 2024 Accepted: 1 October 2024 Published online: xx xx xxxx Check for updates A full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="eager" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide2" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-1" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 andPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568 are shown in Fig. 1. However, LID-568 stands out as uniquely bright in theX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby JWST, which indicates a higher level of central accretion activity. The observed 0.5–10 keV flux is 5.16 × 10−15 erg cm−2 s−1 (ref. 27). Analysis of the X-ray spectrum (as inferred from the emission measured in the 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura- tion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2 ) a ndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth- ods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo- metricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1 ,afactorof~100 higher than the average bolometric luminosities of JWST-discovered faintAGNs. Theshapeofthemid-tofar-IRspectralenergydistribution(SED) ofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle power law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac- teristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates atwhichtheyareobserved10 ,whichappearstobedifficult11 .Thedirect collapseofprimordialgascloudsintosupermassivestarsturninginto black holes with initial masses of 104–6 M⊙ (that is, heavy seed)12,13 is an attractive alternative, as these heavy seeds can more rapidly grow intoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How- ever, the expected number densities for the sites where such super- massive stars can form are low. Intermediate pathways where seeds of 103–4 M⊙ form from very massive stars in pristine rapidly growing halosorthroughstellarmergers,hierarchicalblackholemergersand stellar captures in dense stellar systems bridge these two extremes14 . It is also possible that heavy seeds originate from primordial black holes,eliminatingtheneedforthestellarandgas-basedprocesses15–17 . WiththeunprecedentedsensitivityoftheJamesWebbSpaceTel- escope (JWST), it is now possible to extend studies to faint, low-mass sources at high redshifts (that is, z &gt; 3–4), an epoch when both black holesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser- vation can provide insights into the mechanisms seeding early black holes. JWST has recently discovered a new population of relatively faint,compact,dust-reddenedsourcesatz &gt; 4usingvariousselection techniquesinawidevarietyofextragalacticsurveys18–24 .Theyarefound to have overmassive black holes with respect to the local black hole mass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times higherMBH/Mstellar ratios25 .Mostofthesesourceshavenotbeendetected inX-rayobservations18–24 ;onlytwosourceswithX-ray-detectionshave beenrecentlyreported26 .Thisfaintpopulationislikelytorepresentthe moderate accretion phase of active galactic nuclei (AGNs), which are accreting at ~20% of the Eddington rates, and are hosted by relatively low-mass galaxies. Some of these sources are referred to as ‘little red dots’andarecharacterizedbyaredcontinuumintherest-frameopti- calandamodestblueUVcontinuum.Suchsourcesexhibitprominent broad Balmer emission lines, which implies that they are powered by AGNs.Theseredcompactsourcesaresurprisinglyabundant,being100 timesmorecommonthanUV-selectedquasarsatsimilarredshifts23 . LID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole population identified as near-infrared-dropout (near-IR-dropout) X-ray sources from the Chandra-COSMOS Legacy Survey27,28 . Similar to other faint AGNs discovered by JWST, LID-568 appears extremely red and compact in the IR, yet it remains invisible in any optical wave- lengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble Space Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was determined from JWST Near-Infrared Spectrograph (NIRSpec) and (Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii] 10 Observed wavelength (µm) 0.1 1.0 10.0 100.0 log Flux (µJy) GB + PL (Tdust = 655 K) JWST NIRSpec JWST MIRI 3.0 3.5 4.0 4.5 5.0 Observed wavelength (µm) 0 2 4 6 Hα [SII] OI CaII Paη Paζ Paε [SIII] [CI] Paδ [SII] FeII 6 8 10 12 0 50 100 150 200 Paα Brγ z = 3.965 Fig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8 and8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue), includingapowerlaw(bluedotted)andgreybody(bluedashed)components, ataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars representthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange) spectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top) andNIRSpec(bottom),withthedetectedemissionlinesmarked. 6 7 8 9 10 log MBH/M 44 45 46 47 48 log L bol (erg s –1 ) LID-568 L bol /L Edd = 1 0.1 0.01 JWST AGNs Matthee+24 (4 &lt; z &lt; 6) Harikane+23 (4 &lt; z &lt; 7) Maiolino+23 (4 &lt; z &lt; 7) Greene+24 (z &gt; 5) UV-selected quasars Farina+22 (z &gt; 5.8) Fig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs athighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4, isshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately afactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack holes18,20,23,24 recentlyfoundbyJWSTobservations.Forreference,UV-selected quasars5 atz &gt; 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith differentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error barsrepresent1σuncertainties. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide3" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-2" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 forobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis substantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST (whichexhibitapower-lawslopeα𝜆 ≈ 2.0onaverage)19 .Thedetection ofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda heavilyobscuredAGN,withoutanapparentpresenceoftheunderlying host galaxy features. The model SEDs for super-Eddington accretion suggest a notable absence of rest-frame UV or even optical emission, withatendencytobecomeprogressivelyredderintheIRastheEdding- ton ratio increases29 . However, contrasting perspectives have been presentedinotherstudies,indicatingthatsuper-Eddingtonaccretion mightleadtoanexcessofUVradiation,resultinginasignificantlybluer continuumslopeintherest-frameUV30,31 . Giventhepoint-like,compactnatureofthissource,theextremely red colour primarily arises from the thermal emission originating in a dust-obscured accretion disk, with negligible contribution from a hostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo greybodies32 (Methods and Extended Data Fig. 1), the dust tempera- ture is substantially higher (655.53 K and 71.5 K) than what is typically observedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand warm gas dominates the IR emission, with negligible evidence of star formationactivity.Thisisincontrasttothemajorityofdust-obscured galaxies at high redshift, which often exhibit signs of powerful star- bursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1 , whichiscomparabletotheAGNbolometricluminosity.Theestimated dust mass Mdust is ~2.95 × 106 M⊙, which suggests that LID-568 con- tains less dust than the optically faint, dust-obscured galaxies at z ≈ 3 (thatis,H-dropouts,HST-dark,NIR-dark)33,34 thathavedustmassesof ~1–4 × 108 M⊙. Assuming the dust-to-stellar mass ratios of HST-dark, dust-obscuredgalaxiesatsimilarredshifts33 ,theinferredstellarmassof LID-568is~2 × 108 M⊙,whichimpliesalow-mass(thatis,dwarf)galaxy. The single-epoch virial black hole mass (MBH), derived from the broad Hα emission line, is 7.2 (−5.4 + 10.8) × 106 M⊙, which indicates a rather low-mass black hole (Methods and the left panel of Extended Data Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which impliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow that the black hole mass of LID-568 is comparable with those of faint AGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo- metricluminosityofthisobjectplacesitwithinapreviouslyunexplored extremeaccretionregime.Ontheotherhand,thereisgrowingevidence thatAGNswithhighaccretionratesappeartohavesmallerbroad-line region(BLR)sizesthanthosepredictedbythecanonicalradius–lumi- nosityrelationshipofsub-EddingtonAGNs35,36 .Thisdiscrepancycould potentially lead to an overestimation of the single-epoch black hole massbyasmuchas~0.3 dex,resultinginahigherEddingtonratio. The ionized gas in LID-568 shows signs of a spatially unresolved nuclearoutflowwithvelocitiesof~−540 km s−1 (Methodsandtheright panelofExtendedDataFig.2),whicharesimilartothevelocitiestraced by the spatially extended Hα emission. In Fig. 3, we present NIRSpec/ Integral Field Unit (IFU) channel maps of the Hα emission at differ- ent velocity ranges chosen to best highlight the multiple kinematic components observed around the central black hole (Extended Data Fig. 3). The blue-shifted Hα emission (~−600–−500 km s−1 ) peaks at a projected distance of 0.4″ (~3 kpc) to the north (B component) and 1″ (~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line component(Ccomponent),whereasthenorth-easterncomponentAis foundatasimilarvelocitytothecentralcomponentC.Thecontinuum emissionassociatedwiththespatiallyextendedHαemissioncompo- nents are not detected. Although these components could be part of theoutflow,amergerorigincannotbeexcluded. IftheextendedHαemissionsareassociatedwithoutflows,wecan infer the AGN lifetime using the outflow velocity and radius. Consid- ering that the outflow reaches ~7 kpc from the central black hole, we obtain the AGN lifetime as t = (7 kpc)/(540 km s−1 ) ≈ 1.2 × 107 yr. This lifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales set by Soltan arguments (that is, 107–9 yr (ref. 37)) and indirect meas- urements of AGN phase timescales (~107–9 yr (ref. 38)). Furthermore, –0.2 0 0.2 0.4 0.6 Flux (µJy) –494 km s–1 0 km s–1 A B C D +494 km s–1 –3,000 –2,000 –1,000 0 1,000 2,000 3,000 Velocity (km s–1 ) 0 1 2 3 4 Flux (µJy) A B C D Fig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion. Top:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins. ThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets of~−600–−500 km s−1 withrespecttothecentralbroad-linecomponent(C), whereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom: NIRSpecspectraofeachcomponentareshownintheHαemissionlineregion, extractedfromcircularapertureswitharadiusof0.2″. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide4" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-3" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 theoretical studies39 suggest that super-Eddington phases might be sustained over timescales of a few tens of million years. This lifetime suggeststhatasubstantialfractionofthemassgrowthofLID-568may haveoccurredinasingle,super-Eddingtonaccretionepisode. To estimate the preburst mass of the black hole, we calculated themassgrowthduringsuper-Eddingtonaccretionover12 Myrusing theequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where tEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack hole mass before super-Eddington accretion is ~102 M⊙ (that is, light seed). We note that this growth scenario is feasible only if the black hole remains embedded within a giant molecular cloud and accretes theentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto feedback. As such, this represents a lower limit on the pre-accretion black hole mass, which is consistent with a light seed but does not excludethepossibilityofamorenuancedgrowthhistorywithshorter accretioneventshappeningonaheavierseed.Infact,itisalsopossible thattheoutflowcouldbeassociatedwithstellarfeedback-drivenout- flowsfromastarbursteventprecedingtheactivityintheblackhole. The presence of potentially AGN-driven outflows, along with the lack of star-forming activity in LID-568, suggests that AGN feedback mayplayacrucialroleinregulatingand/orquenchingstarformation in this low-mass system at high redshift. This indicates the possibil- ity of rapid and efficient growth of black holes relative to their host galaxies. Theoretical models predict a ‘blowout’ dusty red quasar phase transitioning from a heavily obscured starburst, during which AGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby quenching the star formation40 . It is possible that LID-568 represents atransientphasecharacterizedbyextremelyhighaccretionrateswith powerful outflows suppressing the star formation in its host galaxy. This could explain the presence of overmassive black holes hosted in low-mass galaxies in the local Universe41 , as well as those found by JWST at z &gt; 4 (ref. 25). Furthermore, the powerful AGN could produce dustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42 ,and thiscouldpotentiallyaccountfortheabundantdustyAGNsobserved withJWSTathighredshifts. LID-568 could potentially represent the long-sought-after low-massblackholeundergoingrapidgrowththroughsuper-Eddington accretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat z ≈ 4 unveils a missing key parameter space of the extreme accretion and provides new insights into the rapidly growing mechanisms of theearlygrowthofblackholes43–45 .Althoughtherarest,mostmassive SMBHsatz &gt; 6–7couldbeexplainedbyanoriginfromheavyseedswith sub-Eddingtonaccretion,theystillrequirecontinuousaccretionover severalhundredmillionyears.Thepresenceofovermassiveblackhole populationssuggeststhepossibilitythattheycouldexperienceinter- mittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey originate from heavy or light seeds45,46 . Super-Eddington accretion is likelytooccurepisodically,andthedetectionofLID-568mayrepresent onesuchepisodicaccretionphase.Futurestudiesonalargesampleof such objects will help to constrain the duty cycle of super-Eddington accretion and deepen our understanding of the mechanisms driving suchhighlevelsofaccretion. Methods Parent sample The parent sample comprised a previously undiscovered population of black holes, identified as near-IR-dropout X-ray sources (that is, invisible in the optical/near-IR bands) from the Chandra-COSMOS Legacy Survey27,28 , which consists of 4,016 X-ray sources over a large area of ~2.2 deg2 . We used the multiwavelength photometry from the mostrecentphotometriccataloguefromCOSMOS202047 andHELP48 , containing GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam (HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera (IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging PhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector ArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec- tralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho- tometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified those without any optical counterparts within a 2″ radius, which cor- responded to the uncertainty of the Chandra position. We excluded sources whose flux was contaminated by nearby bright sources and possible diffuse X-ray emission. This resulted in a final sample of 62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof Spitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected in Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR detections.NoneofthesesourceshadacounterpartintheVeryLarge Array3 GHzsourcecatalogue49 . ALMAobservations Spitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations for all 62 IR-dropout X-ray sources were carried out in four observing blocks in November 2019 and January 2022 under the Cycle 7 pro- gramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The observations were centred on the Chandra X-ray positions with an integration time of ~5 minutes per source. The data reduction was performedusingthestandardALMApipelinev.2021.2.0.128(Common AstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe integrated flux of all our targets using the imfit procedure from the CASA pipeline. The sources were modelled with a circular Gaussian profile of variable total flux, centroid, width, axis and position angle. The 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the 870 μmemissionasmeasuredfromALMAwasingoodagreementwith those of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband images of LID-568, which are invisible in the Subaru/HSC optical and UltraVISTAnear-IRimages. JWSTobservations WeobtainedJWST/NIRSpec50,51 andMIRI/LRS52 observationsofLID-568 undertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/ IFUobservationsweretakeninApril2023withthegrating/filtercom- binationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm with an average spectral resolution of R ≈ 1,000. The field of view of the IFU mode was ~3″ × 3″, with each spatial element in the resulting IFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which improvessignal-to-noiseratioandreducesdatavolume.Theobserva- tions were taken with 18 groups and one integration per exposure, using a four-point medium cycling dither pattern, resulting in a total exposuretimeof1.45 h. The NIRSpec/IFU data reduction was performed with the JWST ScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149. pmap. We also added additional steps to improve the quality of the reduced data53 . The reduction process consisted of three stages. The first stage accounted for detector-related issues, such as bias and dark subtraction, and cosmic ray flagging. At the end of this stage, the groups were fitted to create two-dimensional count rate images (thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection, wavelength and flux calibration. The calibrated exposures were then processedinthethirdstage,whereafurtherflaggingofcosmicrayswas appliedbeforebuildingthefinaldatacube.Beforerunningthesecond stage, we removed the detector low frequency noise 1/f affecting the rate files by subtracting from each spectral column its median value after applying a sigma clipping54–56 . We fixed a pipeline bug reported bytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels withbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral outliers from the calibrated exposures. We removed the remaining outliers from the datacube by filtering out all the voxels with a jump overcontiguouschannelspersistingforlessthanfourchannels,which is the typical width of these features. Finally, we subtracted the back- groundasafunctionofthewavelengthbycalculatingthemedianover ten spectra extracted from empty regions in the cube field of view in " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide5" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-4" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 each channel. We note that the background increases as a function of the wavelength, an expected effect due to an increase in the zodiacal and stray light57 . We thus subtracted it channel by channel to obtain a background-freedatacube. The MIRI/LRS slit spectroscopy observations were conducted in January 2023 using a P750 disperser, covering a wavelength range of 5–12 μm with a spectral resolution of R ≈ 100. The observations were performedwith360groupsperintegrationinFAST/FULLmode,with two integrations per exposure using a two-point dither along the slit. This resulted in a total exposure time of 1.1 h. The fully reduced data were retrieved from the Mikulski Archive for Space Telescope, which were processed using the JWST Science Calibration pipeline v.1.12.5, withtheCRDScontextjwst_1135.pmap. X-rayluminosity To compute the intrinsic X-ray luminosity in the 2–10 keV band, we used the XSpec software (v.12.13.0)58 to fit the Chandra spectrum usingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9, modified by both Galactic absorption (NH = 2.6 × 1020 cm−2 (ref. 59)) and absorption at the redshift of the source, NH(z). The second absorption component accounted for both nuclear absorption due to the gas orbiting in the proximity of the SMBH (that is, torus) and absorption due to the interstellar medium in the host galaxy. The columndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe absorption-correctedrest-frame2–10 keVluminositywasdetermined aslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2). Totakeintoaccountthemorecomplexabsorptionandreflection processes in the case of Compton-thick obscuration (NH &gt; 1024 cm−2 ), wealsoderivedthecolumndensityandintrinsicX-rayluminosityusing theMYtorusmodel60,61 .Thismodelconsistsofthreecomponents:the obscuration along the line of sight, including Compton scattering, appliedtotheprimarypowerlaw,thereflectionandthefluorescence emission line complex. The relative strength of these components wasfixedtobethesame,andtheinclinationanglebetweenthelineof sight and the axis of the torus was set to 75° to ensure interception of theobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed. The column density and intrinsic X-ray luminosity derived from the MYtorus model were consistent with the standard power-law model, wellintheCompton-thinregime.Ifweallowedthephotonindextobe a free parameter, the fit tended toward a softer power law (Γ = 2.4 for MYtorus and 2.9 for the simple power law) and, consequently, even highercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08 forMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9 wasconservativeinestimatingintrinsicluminosity. SEDfitting The SED fitting was performed using a modified approach based on ref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63 .Addition- ally, we independently fitted the SED using CIGALE64 and X-CIGALE65 , thelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari- ous parametrizations and models for stellar populations, star forma- tion history, dust emission and attenuation, and AGN emission from differentSEDfittingcodes,wefoundthattheSEDofLID-568showsan unusuallyredIRcontinuumthatcannotbereproducedbyanycombina- tionofthemodelsandparametersused. We further fitted the dust emission using the modified IR SED fitting code developed in ref. 32. We employed a composite mid-IR power law and two-temperature greybodies. We used a fixed value of the emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as a free parameter. The rest-frame observed photometric data (black) are presented alongside the best-fit IR SED (yellow) in the left panel of Extended Data Fig. 1. The SED is well fitted by a power law, and hot greybody (655.5 K) and warm greybody (71.5 K) components, which are much hotter than what is typically observed in star-forming gal- axies (10–60 K). From the best fit, we derived the total IR luminosity (L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1, we show the SED of LID-568 overlaid on the SED templates66 of the AGN-dominated local ULIRG (Mrk 231), the extreme local starburst ULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965. The IR SED shape of LID-568 seems to be consistent with the torus model spectrum, but cannot be explained by currently available IR SEDtemplatesofobscuredAGN/ULIRGs. AGNbolometricluminosity The bolometric luminosity of AGNs can be estimated from the X-ray luminositybyapplyingasuitablebolometriccorrection67 .Toaccurately estimate the total intrinsic luminosity radiated by the AGN accretion disc, it is necessary to constrain the absorption-corrected intrinsic X-rayluminosity,asX-raysareoftenobscuredandmayincluderepro- cessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1 is derived using the absorption-corrected rest-frame 2–10 keV lumi- nosity by applying a luminosity-dependent bolometric correction as describedinref.67. We also computed the AGN luminosity from the SED by integrat- ing absorption-corrected total X-ray luminosity (L0.1–100keV) and the best-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert the IR luminosity into a proxy for the intrinsic nuclear luminosity, we considered the geometry of the torus and its orientation by apply- ing the following correction factors: the first correction is related to the covering factor, which represents the fraction of the primary UV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the second correction is due to the anisotropy of the IR dust emission, whichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN bolometricluminositywasLbol = 46.68 erg s−1 ,whichisconsistentwith theX-ray-derivedbolometricluminosity. We additionally derived the bolometric luminosity using the Hα luminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi- nosityfromHαluminosityusingtheequationinref.70.Thebolometric luminosity was estimated using the bolometric correction factor in ref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1 ,whichis~1 dexlowerthan that derived from other methods (that is, X-ray luminosity and SED fitting). This indicates that the Hα emission could possibly be highly obscured, potentially leading to an underestimate of the Hα-derived black hole mass by a factor of a few. However, we point out that when estimatingtheEddingtonratiousinganinternallyconsistentmethod basedontheHαemissionforbothAGNbolometricluminosityandthe blackholemass,theblackholeisstillaccretingatthesuper-Eddington accretion level of ~4.4. We note that the bolometric correction factor for Hα luminosity could be uncertain for those obscured AGNs with super-Eddington accretion at high redshifts. The estimated bolo- metric luminosities obtained using various methods are shown in SupplementaryFig.3. Blackholemassandoutflows Thesingle-epochvirialblackholemasswasestimatedusingthebroad Hαemissionlinewidthandthelineluminosityfromtherest-frameUV/ opticalspectraasaproxyforthecharacteristicvelocityandthesizeof theBLR.TheNIRSpecspectrawereextractedfromacircularaperture centred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We utilized the mpfit routine for fitting the emission lines, employing a Levenberg–Marquardtleast-squaresminimizationalgorithmtoderive thebest-fitparametersandassesstheoverallfitquality72 .Specifically, we fitted and subtracted a power-law continuum (fλ) as a function of wavelength(λ),fλ ∝λ−a ,fromthespectraandperformedasimultaneous fitwithacombinationofmultiplenarrowandbroadGaussiancompo- nentstobestcharacterizethelineshape.Forthenarrowemissionlines, wefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas the[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained thelinewidthsandrelativelinecentresofthenarrow-linecomponents tothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide6" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-5" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 broad Gaussian components: one for the BLR and the other for the blue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad Gaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet. Additionally, we investigated the inclusion of additional broad Gaussian components for the [N ii] 6,548, 6,583 Å lines as outflow components. We also tested the fit both with and without constrain- ing the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However, we found no meaningful statistical improvement from adding these broad Gaussian components. For the former, this lack of meaningful improvementinthefitislikelytobeduetothe[N ii]componentsbeing overwhelmed by the much stronger Hα emission. For the latter, the blueward [S ii] emission appears to dominate the fit in that spectral region, and, given the lower signal-to-noise ratio of both features, it is not surprising that a similar goodness of fit is returned by forcing the ratio of the strength of the two components within the canonical allowablerange.Furthermore,changesinthefittingapproachdidnot appreciably affect the inferred black hole mass beyond the inherent randomandsystematicuncertainties. Finally,wemeasuredthebroad-linewidthandthelineluminosity fromthebest-fitspectra.Theblackholemasswascomputedusingthe equation from ref. 70. Although the measurement uncertainties on MBH were relatively small (~0.1 dex), systematic uncertainties associ- ated with different single-epoch virial calibrations carried a scatter of ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be 7.2 (−5.4 + 10.8) × 106 M⊙. The uncertainties of the black hole mass were determined by the sum of the statistical and intrinsic scatter of thecalibrations. ExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα, [N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis- sion lines trace gas with different kinematics, potentially indicating outflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii] lines because [O iii], which typically serves as a tracer of outflows, is notcoveredbyourdataset.InExtendedDataFig.2(right),wecompare the blue-shifted Hα emission line with that of the [S ii] line compo- nents. Although we left the line widths and relative line centres of the blue-shifted components as free parameters, the broad blue-shifted emissionisevidentinboththeHαand[S ii]lines,exhibitingthesame broad-line width and velocity offsets, which suggests that they are kinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially unresolvedoutflowvelocityof~−540 km s−1 .Similarvelocitiesareasso- ciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3), which could be part of the outflow or indicate ongoing merger activ- ity. The mass of the ionized outflow as inferred from the blue-shifted outflow component of the broad Hα emission was 1.4 × 107 M⊙, using equation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1 and that the extended Hα emission is representative of the outflow radius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1 . Environment We measured the environmental density surrounding LID-568 by employing the Voronoi tessellation Monte Carlo mapping described in refs. 75,76. Briefly, this technique uses a weighted combination of spectroscopic and photometric redshifts to construct a galaxy over- densitycubeinthin(7.5properMpc)slicesrunningfrom2 &lt; z &lt; 5.The mapping leverages the wealth of panchromatic imaging data from COSMOS, as well as a large number of spectroscopic redshifts drawn from public surveys and proprietary data. The particular instance of the Voronoi tessellation Monte Carlo mapping used in this work was identicaltothatofref.77. After an overdensity cube had been constructed over the full redshift range, a source extractor-based post-processing technique, as described in ref. 76, was used to link detections of overdensities across contiguous slices to search for coherent structure and esti- matethemassofthedetectedstructure.Fordensitymappingatz &gt; 2, this post-processing technique was trained on mock observations of custom-built light cones to maximize the purity and completeness associatedwiththedetectionofprotogroupsandprotoclusters.Atthe spatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS field was fairly sparse, and we estimated that our method was &gt;50% complete only for structures with z = 0 masses greater than 1014.5 M⊙, thatis,massiveprotoclusters,atz ≈ 4. We find no evidence that LID-568 is associated with an overden- sity of galaxies. The local overdensity at the location of LID-568 was log (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the mean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe average overdensity in a cylindrical aperture of radius 1 proper Mpc and depth of Δz = 0.02 centred on the redshift of LID-568 recovered a consistent value. Additionally, we detected no associated coherent structurewithinΔz = 0.04andR &lt; 5properMpcofLID-568,whichindi- catesthatitisnotlikelytobeembeddedinamassiveformingcluster. However,giventhepaucityofspectroscopicredshiftsinproximityto LID-568, we cannot rule out membership in a lower mass structure. Wealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto detectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78 . Future spectroscopic observations of the surroundings of LID-568 and similar sources will help to better quantify the environments in whichtheyreside. Dataavailability The data for ALMA and JWST used in this study are publicly available throughtheirrespectivedataarchives.Theseobservationsareassoci- atedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme no. 2019.1.01275.S. Other data generated and/or analysed during the study are available from the corresponding author upon reasonable request. References 1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085. Nature 474, 616 (2011). 2. Bañados, E. et al. An 800-million-solar-mass black hole in a significant neutral Universe at a redshift of 7.5. Nature 553, 473 (2018). 3. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3&lt;z&lt;7.64. Astrophys. J. 923, 262 (2021). 4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. 907, 1 (2021). 5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. II. Black hole masses, Eddington ratios, and the formation of the first quasars. Astrophys. J. 941, 106 (2022). 6. Fan, X., Bañados, E. &amp; Simcoe, R. A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61, 373 (2023). 7. Rees, M. F. Quasars. Observatory 98, 210 (1978). 8. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012). 9. Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014). 10. Volonteri, M. &amp; Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624 (2005). 11. Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762 (2018). 12. Volonteri, M., Lodato, G. &amp; Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079 (2008). 13. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017). " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide7" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-6" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 14. Volonteri, M., Habouzit, M. &amp; Colpi, M. The origins of massive black holes. Nat. Rev. Phys 3, 732 (2021). 15. Kashlinsky, A. LIGO gravitational wave detection, primordial black holes, and the near-IR cosmic infrared background anisotropies. Astrophys. J. Lett. 823, 25 (2016). 16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter. J. Cosmol. Astropart. Phys. 07, 022 (2020). 17. Cappelluti, N., Hasinger, G. &amp; Natarajan, P. Exploring the high-redshift PBH-ΛCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds. Astrophys. J. 926, 205 (2022). 18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z=4–7: detection of 10 faint AGNs with MBH=106 –108 M⊙ and their host galaxy properties. Astrophys. J. 959, 39 (2023). 19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z&gt;5 with CEERS. Astrophys. J. 954, 4 (2023). 20. Maiolino, R., et al. JADES. The diverse population of infant black holes at 4&lt;z&lt;11: merging, tiny, poor, but mighty. Preprint at https://arxiv.org/abs/2308.01230 (2023) 21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, 145 (2023). 22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed AGN in the early Universe. Nature 628, 57 (2024). 23. Greene, J. E. et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z&gt;5. Astrophys. J. 964, 39 (2024). 24. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z~5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024). 25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. &amp; Fan, X. JWST CEERS and JADES active galaxies at z=4–7 violate the local M●–M★ relation at &gt;3σ: implications for low-mass black holes and seeding models. Astrophys. J. 957, 3 (2003). 26. Kocevski, D. D., et al. The rise of faint, red AGN at z&gt;4: a sample of little red dots in the JWST extragalactic legacy fields. Preprint at https://arxiv.org/abs/2404.03576 (2024). 27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016). 28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/ IR identifications. Astrophys. J. 817, 34 (2016). 29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. &amp; Bertemes, C. Searching for super-Eddington quasars using a photon trapping accretion disc model. Mon. Not. R. Astron. Soc. 492, 4058 (2020). 30. Done, C., Davis, S. W., Jin, C., Blaes, O. &amp; Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848 (2012). 31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the Universe: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron. Soc. 484, 2575 (2019). 32. Casey, C. M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012). 33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at z&gt;3: bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023). 34. Gentile, F. et al. Illuminating the dark side of Cosmic star formation. III. Building the largest homogeneous sample of radio-selected dusty star-forming galaxies in COSMOS with PhoEBO. Astrophys. J. 962, 26 (2024). 35. Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. V. A new size-luminosity scaling relation for the broad-line region. Astrophys. J. 825, 126 (2016). 36. GRAVITY Collaboration et al. The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region. Astron. Astrophys. 684, 167 (2024). 37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115 (1982). 38. Martini, P. &amp; Weinberg, D. H. Quasar clustering and the lifetime of quasars. Astrophys. J. 547, 12 (2001). 39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. &amp; Regan, J. A. Sustained super-Eddington accretion in high-redshift quasars. Astron. Astrophys. 686, 256 (2024). 40. Hopkins, P. F., Hernquist, L., Cox, T. J. &amp; Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and Quasar activity. Astrophys. J. Suppl. 175, 356 (2008). 41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to z~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023). 42. Elvis, M., Marengo, M. &amp; Karovska, M. Smoking quasars: a new source for cosmic dust. Astrophys. J. 567, 107 (2002). 43. Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892 (2019). 44. Massonneau, W., Volonteri, M., Dubois, Y. &amp; Beckmann, R. S. How the super-Eddington regime regulates black hole growth in high-redshift galaxies. Astron. Astrophys. 670, A180 (2023). 45. Volonteri, M., Silk, J. &amp; Dubus, G. The case for supercritical accretion onto massive black holes at high redshift. Astrophys. J. 804, 148 (2015). 46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early universe. Preprint at https://arxiv.org/abs/2403.03872 (2024). 47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z~10 from two complementary catalogs. Astrophys. J. Suppl. 258, 11 (2022). 48. Shirley, R. et al. HELP: the herschel extragalactic legacy project. Mon. Not. R. Astron. Soc. 507, 129 (2021). 49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, 1 (2017). 50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022). 51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, 82 (2022). 52. Kendrew, S. et al. The mid-infrared instrument for the James Webb Space Telescope, IV: the low-resolution spectrometer. Publ. Astron. Soc. Pac. 127, 623 (2015). 53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, 121 (2024). 54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting galaxies at 5.3&lt;z&lt;6.9 and direct evidence for local reionization by galaxies. Astrophys. J. 950, 66 (2023). 55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, 89 (2023). 56. Rauscher, B. J. NSClean: an algorithm for removing correlated noise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136, 015001 (2024). 57. Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023). 58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw. Syst. 101, 17 (1996). 59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775 (2005). " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide8" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-7" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 60. Murphy, K. D. &amp; Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549 (2009). 61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey: Compton-thick AGN at high redshift. Mon. Not. R. Astron. Soc. 480, 2578 (2018). 62. Suh, H. et al. Multi-wavelength properties of type 1 and type 2 AGN host galaxies in the Chandra-COSMOS Legacy Survey. Astrophys. J. 872, 168 (2019). 63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. &amp; Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distribution of AGNs. Astrophys. J. 833, 98 (2016). 64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy Emission. Astron. Astrophys. 622, 103 (2019). 65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740 (2020). 66. Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton medium deep survey. Astrophys. J. 663, 81 (2007). 67. Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169 (2004). 68. Gilli, R., Comastri, A. &amp; Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79 (2007). 69. Lusso, E. et al. The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astron. Astrophys. 534, 110 (2011). 70. Greene, J. E. &amp; Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122 (2005). 71. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. 166, 470 (2006). 72. Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z~2.5. Astrophys. J. 889, 32 (2020). 73. Trakhtenbrot, B. &amp; Netzer, H. Black hole growth to z=2 − I. Improved virial methods for measuring MBH and L/LEdd. Mon. Not. R. Astron. Soc. 427, 1096 (2012). 74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec view of the z=1.59 obscured quasar XID2028. Astron. Astrophys. 672, 128 (2023). 75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from the dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615, 77 (2018). 76. Hung, D. et al. Establishing a new technique for discovering large-scale structure using the ORELSE survey. Mon. Not. R. Astron. Soc. 491, 5524 (2020). 77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal of the star-formation rate – density relation at 2&lt;z&lt;5. Astron. Astrophys. 662, 33 (2022). 78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters detected in absorption. Nature 606, 475 (2022). Acknowledgements H.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international Gemini Observatory, a program of NSF NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea and the United States. F.L. acknowledges support from the INAF 2023 mini-grant ‘Exploiting the powerful capabilities of JWST/NIRSpec to unveil the distant Universe’. M.M. acknowledges support from the Spanish Ministry of Science and Innovation through the project PID2021-124243NB-C22. This work was partially supported by the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support from the Korean National Research Foundation (2020R1A2C3003769, 2022R1A6A1A03053472) and the IBS computing centre for the super-Eddington accretion project. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme no. 1760. Support for programme no. 1760 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Authorcontributions H.S. was the principal investigator of the JWST and ALMA proposals, led the analysis and interpretation of the results, and drafted the paper. H.S. and G.H. performed the sample selection. J.S. contributed to the analysis of the JWST NIRSpec IFU data and the interpretation of the results. F.L. reduced the JWST NIRSpec IFU data and wrote the relevant section. G.L. and S.M. analysed the X-ray data and wrote the relevant section. B.C.L. and D.H. performed all analysis relating to the environment and B.C.L. wrote the relevant section. S.K.Y. and S.H. performed simulations and provided discussions on black hole growth. E.P.F., M.M., R.D. and M.V. helped with the interpretation of the results and provided comments on the analysis. All authors contributed to the discussion of the presented results and the preparation of the paper. Competinginterests The authors declare no competing interests. Additionalinformation Extended data is available for this paper at https://doi.org/10.1038/ s41550-024-02402-9. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41550- 024-02402-9. Correspondence and requests for materialsshould be addressed to Hyewon Suh. Peer review information Nature Astronomy thanks John Regan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions informationis available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide9" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-8" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. © The Author(s) 2024 1 International Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy. 3 Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4 DESY, Hamburg, Germany. 5 Deutsches Zentrum für Astrophysik, Görlitz, Germany. 6 Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7 Dipartimento di Fisica e Astronomia (DIFA) Augusto Righi, Università di Bologna, Firenze, Italy. 8 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9 Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10 Department of Physics and Astronomy, University of California, Davis, Davis, CA, USA. 11 Institut d’Astrophysique de Paris (UMR 7095: CNRS &amp; Sorbonne Universite), Paris, France. 12 NASA Goddard Space Flight Center, Greenbelt, MD, USA. 13 Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide10" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-9" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata (black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel includesapower-law(greendashed),ahotgreybody(655 K;greendotted),anda warmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata (black)withtheSEDtemplates61 oftheAGN-dominatedlocalULIRG(Mrk231), theextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat redshiftz = 3.965. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide11" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-10" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum (grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular apertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law continuum(black),narrow-linecomponents(green),broad-linecomponents (orange),andoutflowcomponents(blue)areindicated.Dottedverticallines markthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe blue-shifted(outflow)lineprofilesoftheH𝛼 + [NII]and[SII]invelocityspace. Theblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s relativetosystemic. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide12" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-11" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission aroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels. Themapsareshowninsingle-channelstepscorrespondingtovelocitystepsof 165 km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe 3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets inarcsecondsareshownrelativetotheAGNlocation. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div></div></div></div><!--$--><div class="RelatedContent_root__29Np1"><div class="RelatedContent_wrapper__riU7l"><h2 class="Heading_heading__3MAvZ Heading_h2__f9yvs RelatedContent_title__QUhpL">More Related Content</h2><div></div><div></div><div id="between-recs-ad-1-container" class="freestar-ad-container FreestarAdContainer_root__qPPC_" style="--fallback-aspect-ratio:undefined / undefined"><div><div class="" id="between-recs-ad-1"></div></div></div><div></div><div id="between-recs-ad-2-container" class="freestar-ad-container FreestarAdContainer_root__qPPC_" style="--fallback-aspect-ratio:undefined / undefined"><div><div class="" id="between-recs-ad-2"></div></div></div></div></div><!--/$--><div class="Transcript_root__Vrf6Q"><h2 class="Transcript_title__YgAka"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/file.5db1ba24.svg);background-color:currentColor"></span><span class="sr-only"></span></span>A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST</h2><div><ul class="Transcript_list__faItj"><div><li>1. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#1">Nature Astronomy natureastronomy https://doi.org/10.1038/s41550-024-02402-9 Article Asuper-Eddington-accretingblackhole ~1.5 GyraftertheBigBangobservedwith JWST Hyewon </a> Suh 1 , Julia Scharwächter 1 , Emanuele Paolo Farina 1 , Federica Loiacono 2 , Giorgio Lanzuisi 2 , Günther Hasinger 3,4,5 , Stefano Marchesi 2,6,7 , Mar Mezcua 8,9 , Roberto Decarli 2 , Brian C. Lemaux 1,10 , Marta Volonteri11 , Francesca Civano12 , Sukyoung K. Yi 13 , San Han13 , Mark Rawlings 1 &amp; Denise Hung 1 RecentJamesWebbSpaceTelescope(JWST)observationshaverevealed asurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat z ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz &gt; 6, thisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack holes.Currenttheoriesfortheformationofseedblackholesfromthedeath ofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial gasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here wepresentLID-568,alow-mass(7.2 × 106 M⊙)blackholehostingpowerful outflowsthatisobservedinanextremephaseofrapidgrowthatredshift z ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic nucleipopulations,butisbrightinX-rayemissionandaccretingatmore than4,000%ofthelimitatwhichradiationpressureexceedstheforceof gravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion). AnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals spatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1 relative tothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID- 568representsanelusivelow-massblackholeexperiencingsuper-Eddington accretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery showcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial insightsintorapidblackholegrowthmechanismsintheearlyuniverse. Observational surveys have identified several hundreds of luminous quasars at redshift z &gt; 6–7 (refs. 1–6). The presence of supermassive black holes (SMBHs) with masses of 109–10 M⊙ at such early cosmic epochschallengesmodelsofSMBHformationandgrowth,andraises questionsabouttheoriginofseedblackholesandthemechanismsfor theirrapidandextremegrowth.Althoughtheformationofseedblack holes remains observationally unconstrained, they are commonly thoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar physicalprocessesthatcangenerateblackholeswithmassesinexcess of102 M⊙ (ref.7).Historically,modelshavebeendividedintolightand heavyseeds,withademarcationatabout103 M⊙.Thelightestseedsare generallyassociatedwiththedeathofthefirststarswithinitialmasses of102–3 M⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime intotheobservedpopulationofSMBHsatslightlylatertimeischalleng- ing,becauseblackholesformedinthismannerwouldhavetoaccrete attheEddingtonlimitfromthetimetheyareformeduptotheredshift Received: 1 April 2024 Accepted: 1 October 2024 Published online: xx xx xxxx Check for updates A full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu </li></div><div><li>2. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#2">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 andPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568 are </a> shown in Fig. 1. However, LID-568 stands out as uniquely bright in theX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby JWST, which indicates a higher level of central accretion activity. The observed 0.5–10 keV flux is 5.16 × 10−15 erg cm−2 s−1 (ref. 27). Analysis of the X-ray spectrum (as inferred from the emission measured in the 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura- tion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2 ) a ndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth- ods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo- metricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1 ,afactorof~100 higher than the average bolometric luminosities of JWST-discovered faintAGNs. Theshapeofthemid-tofar-IRspectralenergydistribution(SED) ofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle power law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac- teristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates atwhichtheyareobserved10 ,whichappearstobedifficult11 .Thedirect collapseofprimordialgascloudsintosupermassivestarsturninginto black holes with initial masses of 104–6 M⊙ (that is, heavy seed)12,13 is an attractive alternative, as these heavy seeds can more rapidly grow intoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How- ever, the expected number densities for the sites where such super- massive stars can form are low. Intermediate pathways where seeds of 103–4 M⊙ form from very massive stars in pristine rapidly growing halosorthroughstellarmergers,hierarchicalblackholemergersand stellar captures in dense stellar systems bridge these two extremes14 . It is also possible that heavy seeds originate from primordial black holes,eliminatingtheneedforthestellarandgas-basedprocesses15–17 . WiththeunprecedentedsensitivityoftheJamesWebbSpaceTel- escope (JWST), it is now possible to extend studies to faint, low-mass sources at high redshifts (that is, z &gt; 3–4), an epoch when both black holesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser- vation can provide insights into the mechanisms seeding early black holes. JWST has recently discovered a new population of relatively faint,compact,dust-reddenedsourcesatz &gt; 4usingvariousselection techniquesinawidevarietyofextragalacticsurveys18–24 .Theyarefound to have overmassive black holes with respect to the local black hole mass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times higherMBH/Mstellar ratios25 .Mostofthesesourceshavenotbeendetected inX-rayobservations18–24 ;onlytwosourceswithX-ray-detectionshave beenrecentlyreported26 .Thisfaintpopulationislikelytorepresentthe moderate accretion phase of active galactic nuclei (AGNs), which are accreting at ~20% of the Eddington rates, and are hosted by relatively low-mass galaxies. Some of these sources are referred to as ‘little red dots’andarecharacterizedbyaredcontinuumintherest-frameopti- calandamodestblueUVcontinuum.Suchsourcesexhibitprominent broad Balmer emission lines, which implies that they are powered by AGNs.Theseredcompactsourcesaresurprisinglyabundant,being100 timesmorecommonthanUV-selectedquasarsatsimilarredshifts23 . LID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole population identified as near-infrared-dropout (near-IR-dropout) X-ray sources from the Chandra-COSMOS Legacy Survey27,28 . Similar to other faint AGNs discovered by JWST, LID-568 appears extremely red and compact in the IR, yet it remains invisible in any optical wave- lengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble Space Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was determined from JWST Near-Infrared Spectrograph (NIRSpec) and (Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii] 10 Observed wavelength (µm) 0.1 1.0 10.0 100.0 log Flux (µJy) GB + PL (Tdust = 655 K) JWST NIRSpec JWST MIRI 3.0 3.5 4.0 4.5 5.0 Observed wavelength (µm) 0 2 4 6 Hα [SII] OI CaII Paη Paζ Paε [SIII] [CI] Paδ [SII] FeII 6 8 10 12 0 50 100 150 200 Paα Brγ z = 3.965 Fig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8 and8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue), includingapowerlaw(bluedotted)andgreybody(bluedashed)components, ataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars representthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange) spectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top) andNIRSpec(bottom),withthedetectedemissionlinesmarked. 6 7 8 9 10 log MBH/M 44 45 46 47 48 log L bol (erg s –1 ) LID-568 L bol /L Edd = 1 0.1 0.01 JWST AGNs Matthee+24 (4 &lt; z &lt; 6) Harikane+23 (4 &lt; z &lt; 7) Maiolino+23 (4 &lt; z &lt; 7) Greene+24 (z &gt; 5) UV-selected quasars Farina+22 (z &gt; 5.8) Fig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs athighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4, isshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately afactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack holes18,20,23,24 recentlyfoundbyJWSTobservations.Forreference,UV-selected quasars5 atz &gt; 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith differentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error barsrepresent1σuncertainties. </li></div><div><li>3. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#3">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 forobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis substantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST (whichexhibitapower-lawslopeα𝜆 </a> ≈ 2.0onaverage)19 .Thedetection ofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda heavilyobscuredAGN,withoutanapparentpresenceoftheunderlying host galaxy features. The model SEDs for super-Eddington accretion suggest a notable absence of rest-frame UV or even optical emission, withatendencytobecomeprogressivelyredderintheIRastheEdding- ton ratio increases29 . However, contrasting perspectives have been presentedinotherstudies,indicatingthatsuper-Eddingtonaccretion mightleadtoanexcessofUVradiation,resultinginasignificantlybluer continuumslopeintherest-frameUV30,31 . Giventhepoint-like,compactnatureofthissource,theextremely red colour primarily arises from the thermal emission originating in a dust-obscured accretion disk, with negligible contribution from a hostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo greybodies32 (Methods and Extended Data Fig. 1), the dust tempera- ture is substantially higher (655.53 K and 71.5 K) than what is typically observedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand warm gas dominates the IR emission, with negligible evidence of star formationactivity.Thisisincontrasttothemajorityofdust-obscured galaxies at high redshift, which often exhibit signs of powerful star- bursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1 , whichiscomparabletotheAGNbolometricluminosity.Theestimated dust mass Mdust is ~2.95 × 106 M⊙, which suggests that LID-568 con- tains less dust than the optically faint, dust-obscured galaxies at z ≈ 3 (thatis,H-dropouts,HST-dark,NIR-dark)33,34 thathavedustmassesof ~1–4 × 108 M⊙. Assuming the dust-to-stellar mass ratios of HST-dark, dust-obscuredgalaxiesatsimilarredshifts33 ,theinferredstellarmassof LID-568is~2 × 108 M⊙,whichimpliesalow-mass(thatis,dwarf)galaxy. The single-epoch virial black hole mass (MBH), derived from the broad Hα emission line, is 7.2 (−5.4 + 10.8) × 106 M⊙, which indicates a rather low-mass black hole (Methods and the left panel of Extended Data Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which impliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow that the black hole mass of LID-568 is comparable with those of faint AGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo- metricluminosityofthisobjectplacesitwithinapreviouslyunexplored extremeaccretionregime.Ontheotherhand,thereisgrowingevidence thatAGNswithhighaccretionratesappeartohavesmallerbroad-line region(BLR)sizesthanthosepredictedbythecanonicalradius–lumi- nosityrelationshipofsub-EddingtonAGNs35,36 .Thisdiscrepancycould potentially lead to an overestimation of the single-epoch black hole massbyasmuchas~0.3 dex,resultinginahigherEddingtonratio. The ionized gas in LID-568 shows signs of a spatially unresolved nuclearoutflowwithvelocitiesof~−540 km s−1 (Methodsandtheright panelofExtendedDataFig.2),whicharesimilartothevelocitiestraced by the spatially extended Hα emission. In Fig. 3, we present NIRSpec/ Integral Field Unit (IFU) channel maps of the Hα emission at differ- ent velocity ranges chosen to best highlight the multiple kinematic components observed around the central black hole (Extended Data Fig. 3). The blue-shifted Hα emission (~−600–−500 km s−1 ) peaks at a projected distance of 0.4″ (~3 kpc) to the north (B component) and 1″ (~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line component(Ccomponent),whereasthenorth-easterncomponentAis foundatasimilarvelocitytothecentralcomponentC.Thecontinuum emissionassociatedwiththespatiallyextendedHαemissioncompo- nents are not detected. Although these components could be part of theoutflow,amergerorigincannotbeexcluded. IftheextendedHαemissionsareassociatedwithoutflows,wecan infer the AGN lifetime using the outflow velocity and radius. Consid- ering that the outflow reaches ~7 kpc from the central black hole, we obtain the AGN lifetime as t = (7 kpc)/(540 km s−1 ) ≈ 1.2 × 107 yr. This lifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales set by Soltan arguments (that is, 107–9 yr (ref. 37)) and indirect meas- urements of AGN phase timescales (~107–9 yr (ref. 38)). Furthermore, –0.2 0 0.2 0.4 0.6 Flux (µJy) –494 km s–1 0 km s–1 A B C D +494 km s–1 –3,000 –2,000 –1,000 0 1,000 2,000 3,000 Velocity (km s–1 ) 0 1 2 3 4 Flux (µJy) A B C D Fig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion. Top:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins. ThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets of~−600–−500 km s−1 withrespecttothecentralbroad-linecomponent(C), whereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom: NIRSpecspectraofeachcomponentareshownintheHαemissionlineregion, extractedfromcircularapertureswitharadiusof0.2″. </li></div><div><li>4. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#4">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 theoretical </a> studies39 suggest that super-Eddington phases might be sustained over timescales of a few tens of million years. This lifetime suggeststhatasubstantialfractionofthemassgrowthofLID-568may haveoccurredinasingle,super-Eddingtonaccretionepisode. To estimate the preburst mass of the black hole, we calculated themassgrowthduringsuper-Eddingtonaccretionover12 Myrusing theequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where tEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack hole mass before super-Eddington accretion is ~102 M⊙ (that is, light seed). We note that this growth scenario is feasible only if the black hole remains embedded within a giant molecular cloud and accretes theentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto feedback. As such, this represents a lower limit on the pre-accretion black hole mass, which is consistent with a light seed but does not excludethepossibilityofamorenuancedgrowthhistorywithshorter accretioneventshappeningonaheavierseed.Infact,itisalsopossible thattheoutflowcouldbeassociatedwithstellarfeedback-drivenout- flowsfromastarbursteventprecedingtheactivityintheblackhole. The presence of potentially AGN-driven outflows, along with the lack of star-forming activity in LID-568, suggests that AGN feedback mayplayacrucialroleinregulatingand/orquenchingstarformation in this low-mass system at high redshift. This indicates the possibil- ity of rapid and efficient growth of black holes relative to their host galaxies. Theoretical models predict a ‘blowout’ dusty red quasar phase transitioning from a heavily obscured starburst, during which AGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby quenching the star formation40 . It is possible that LID-568 represents atransientphasecharacterizedbyextremelyhighaccretionrateswith powerful outflows suppressing the star formation in its host galaxy. This could explain the presence of overmassive black holes hosted in low-mass galaxies in the local Universe41 , as well as those found by JWST at z &gt; 4 (ref. 25). Furthermore, the powerful AGN could produce dustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42 ,and thiscouldpotentiallyaccountfortheabundantdustyAGNsobserved withJWSTathighredshifts. LID-568 could potentially represent the long-sought-after low-massblackholeundergoingrapidgrowththroughsuper-Eddington accretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat z ≈ 4 unveils a missing key parameter space of the extreme accretion and provides new insights into the rapidly growing mechanisms of theearlygrowthofblackholes43–45 .Althoughtherarest,mostmassive SMBHsatz &gt; 6–7couldbeexplainedbyanoriginfromheavyseedswith sub-Eddingtonaccretion,theystillrequirecontinuousaccretionover severalhundredmillionyears.Thepresenceofovermassiveblackhole populationssuggeststhepossibilitythattheycouldexperienceinter- mittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey originate from heavy or light seeds45,46 . Super-Eddington accretion is likelytooccurepisodically,andthedetectionofLID-568mayrepresent onesuchepisodicaccretionphase.Futurestudiesonalargesampleof such objects will help to constrain the duty cycle of super-Eddington accretion and deepen our understanding of the mechanisms driving suchhighlevelsofaccretion. Methods Parent sample The parent sample comprised a previously undiscovered population of black holes, identified as near-IR-dropout X-ray sources (that is, invisible in the optical/near-IR bands) from the Chandra-COSMOS Legacy Survey27,28 , which consists of 4,016 X-ray sources over a large area of ~2.2 deg2 . We used the multiwavelength photometry from the mostrecentphotometriccataloguefromCOSMOS202047 andHELP48 , containing GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam (HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera (IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging PhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector ArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec- tralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho- tometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified those without any optical counterparts within a 2″ radius, which cor- responded to the uncertainty of the Chandra position. We excluded sources whose flux was contaminated by nearby bright sources and possible diffuse X-ray emission. This resulted in a final sample of 62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof Spitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected in Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR detections.NoneofthesesourceshadacounterpartintheVeryLarge Array3 GHzsourcecatalogue49 . ALMAobservations Spitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations for all 62 IR-dropout X-ray sources were carried out in four observing blocks in November 2019 and January 2022 under the Cycle 7 pro- gramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The observations were centred on the Chandra X-ray positions with an integration time of ~5 minutes per source. The data reduction was performedusingthestandardALMApipelinev.2021.2.0.128(Common AstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe integrated flux of all our targets using the imfit procedure from the CASA pipeline. The sources were modelled with a circular Gaussian profile of variable total flux, centroid, width, axis and position angle. The 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the 870 μmemissionasmeasuredfromALMAwasingoodagreementwith those of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband images of LID-568, which are invisible in the Subaru/HSC optical and UltraVISTAnear-IRimages. JWSTobservations WeobtainedJWST/NIRSpec50,51 andMIRI/LRS52 observationsofLID-568 undertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/ IFUobservationsweretakeninApril2023withthegrating/filtercom- binationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm with an average spectral resolution of R ≈ 1,000. The field of view of the IFU mode was ~3″ × 3″, with each spatial element in the resulting IFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which improvessignal-to-noiseratioandreducesdatavolume.Theobserva- tions were taken with 18 groups and one integration per exposure, using a four-point medium cycling dither pattern, resulting in a total exposuretimeof1.45 h. The NIRSpec/IFU data reduction was performed with the JWST ScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149. pmap. We also added additional steps to improve the quality of the reduced data53 . The reduction process consisted of three stages. The first stage accounted for detector-related issues, such as bias and dark subtraction, and cosmic ray flagging. At the end of this stage, the groups were fitted to create two-dimensional count rate images (thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection, wavelength and flux calibration. The calibrated exposures were then processedinthethirdstage,whereafurtherflaggingofcosmicrayswas appliedbeforebuildingthefinaldatacube.Beforerunningthesecond stage, we removed the detector low frequency noise 1/f affecting the rate files by subtracting from each spectral column its median value after applying a sigma clipping54–56 . We fixed a pipeline bug reported bytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels withbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral outliers from the calibrated exposures. We removed the remaining outliers from the datacube by filtering out all the voxels with a jump overcontiguouschannelspersistingforlessthanfourchannels,which is the typical width of these features. Finally, we subtracted the back- groundasafunctionofthewavelengthbycalculatingthemedianover ten spectra extracted from empty regions in the cube field of view in </li></div><div><li>5. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#5">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 each </a> channel. We note that the background increases as a function of the wavelength, an expected effect due to an increase in the zodiacal and stray light57 . We thus subtracted it channel by channel to obtain a background-freedatacube. The MIRI/LRS slit spectroscopy observations were conducted in January 2023 using a P750 disperser, covering a wavelength range of 5–12 μm with a spectral resolution of R ≈ 100. The observations were performedwith360groupsperintegrationinFAST/FULLmode,with two integrations per exposure using a two-point dither along the slit. This resulted in a total exposure time of 1.1 h. The fully reduced data were retrieved from the Mikulski Archive for Space Telescope, which were processed using the JWST Science Calibration pipeline v.1.12.5, withtheCRDScontextjwst_1135.pmap. X-rayluminosity To compute the intrinsic X-ray luminosity in the 2–10 keV band, we used the XSpec software (v.12.13.0)58 to fit the Chandra spectrum usingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9, modified by both Galactic absorption (NH = 2.6 × 1020 cm−2 (ref. 59)) and absorption at the redshift of the source, NH(z). The second absorption component accounted for both nuclear absorption due to the gas orbiting in the proximity of the SMBH (that is, torus) and absorption due to the interstellar medium in the host galaxy. The columndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe absorption-correctedrest-frame2–10 keVluminositywasdetermined aslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2). Totakeintoaccountthemorecomplexabsorptionandreflection processes in the case of Compton-thick obscuration (NH &gt; 1024 cm−2 ), wealsoderivedthecolumndensityandintrinsicX-rayluminosityusing theMYtorusmodel60,61 .Thismodelconsistsofthreecomponents:the obscuration along the line of sight, including Compton scattering, appliedtotheprimarypowerlaw,thereflectionandthefluorescence emission line complex. The relative strength of these components wasfixedtobethesame,andtheinclinationanglebetweenthelineof sight and the axis of the torus was set to 75° to ensure interception of theobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed. The column density and intrinsic X-ray luminosity derived from the MYtorus model were consistent with the standard power-law model, wellintheCompton-thinregime.Ifweallowedthephotonindextobe a free parameter, the fit tended toward a softer power law (Γ = 2.4 for MYtorus and 2.9 for the simple power law) and, consequently, even highercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08 forMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9 wasconservativeinestimatingintrinsicluminosity. SEDfitting The SED fitting was performed using a modified approach based on ref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63 .Addition- ally, we independently fitted the SED using CIGALE64 and X-CIGALE65 , thelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari- ous parametrizations and models for stellar populations, star forma- tion history, dust emission and attenuation, and AGN emission from differentSEDfittingcodes,wefoundthattheSEDofLID-568showsan unusuallyredIRcontinuumthatcannotbereproducedbyanycombina- tionofthemodelsandparametersused. We further fitted the dust emission using the modified IR SED fitting code developed in ref. 32. We employed a composite mid-IR power law and two-temperature greybodies. We used a fixed value of the emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as a free parameter. The rest-frame observed photometric data (black) are presented alongside the best-fit IR SED (yellow) in the left panel of Extended Data Fig. 1. The SED is well fitted by a power law, and hot greybody (655.5 K) and warm greybody (71.5 K) components, which are much hotter than what is typically observed in star-forming gal- axies (10–60 K). From the best fit, we derived the total IR luminosity (L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1, we show the SED of LID-568 overlaid on the SED templates66 of the AGN-dominated local ULIRG (Mrk 231), the extreme local starburst ULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965. The IR SED shape of LID-568 seems to be consistent with the torus model spectrum, but cannot be explained by currently available IR SEDtemplatesofobscuredAGN/ULIRGs. AGNbolometricluminosity The bolometric luminosity of AGNs can be estimated from the X-ray luminositybyapplyingasuitablebolometriccorrection67 .Toaccurately estimate the total intrinsic luminosity radiated by the AGN accretion disc, it is necessary to constrain the absorption-corrected intrinsic X-rayluminosity,asX-raysareoftenobscuredandmayincluderepro- cessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1 is derived using the absorption-corrected rest-frame 2–10 keV lumi- nosity by applying a luminosity-dependent bolometric correction as describedinref.67. We also computed the AGN luminosity from the SED by integrat- ing absorption-corrected total X-ray luminosity (L0.1–100keV) and the best-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert the IR luminosity into a proxy for the intrinsic nuclear luminosity, we considered the geometry of the torus and its orientation by apply- ing the following correction factors: the first correction is related to the covering factor, which represents the fraction of the primary UV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the second correction is due to the anisotropy of the IR dust emission, whichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN bolometricluminositywasLbol = 46.68 erg s−1 ,whichisconsistentwith theX-ray-derivedbolometricluminosity. We additionally derived the bolometric luminosity using the Hα luminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi- nosityfromHαluminosityusingtheequationinref.70.Thebolometric luminosity was estimated using the bolometric correction factor in ref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1 ,whichis~1 dexlowerthan that derived from other methods (that is, X-ray luminosity and SED fitting). This indicates that the Hα emission could possibly be highly obscured, potentially leading to an underestimate of the Hα-derived black hole mass by a factor of a few. However, we point out that when estimatingtheEddingtonratiousinganinternallyconsistentmethod basedontheHαemissionforbothAGNbolometricluminosityandthe blackholemass,theblackholeisstillaccretingatthesuper-Eddington accretion level of ~4.4. We note that the bolometric correction factor for Hα luminosity could be uncertain for those obscured AGNs with super-Eddington accretion at high redshifts. The estimated bolo- metric luminosities obtained using various methods are shown in SupplementaryFig.3. Blackholemassandoutflows Thesingle-epochvirialblackholemasswasestimatedusingthebroad Hαemissionlinewidthandthelineluminosityfromtherest-frameUV/ opticalspectraasaproxyforthecharacteristicvelocityandthesizeof theBLR.TheNIRSpecspectrawereextractedfromacircularaperture centred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We utilized the mpfit routine for fitting the emission lines, employing a Levenberg–Marquardtleast-squaresminimizationalgorithmtoderive thebest-fitparametersandassesstheoverallfitquality72 .Specifically, we fitted and subtracted a power-law continuum (fλ) as a function of wavelength(λ),fλ ∝λ−a ,fromthespectraandperformedasimultaneous fitwithacombinationofmultiplenarrowandbroadGaussiancompo- nentstobestcharacterizethelineshape.Forthenarrowemissionlines, wefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas the[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained thelinewidthsandrelativelinecentresofthenarrow-linecomponents tothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo </li></div><div><li>6. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#6">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 broad </a> Gaussian components: one for the BLR and the other for the blue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad Gaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet. Additionally, we investigated the inclusion of additional broad Gaussian components for the [N ii] 6,548, 6,583 Å lines as outflow components. We also tested the fit both with and without constrain- ing the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However, we found no meaningful statistical improvement from adding these broad Gaussian components. For the former, this lack of meaningful improvementinthefitislikelytobeduetothe[N ii]componentsbeing overwhelmed by the much stronger Hα emission. For the latter, the blueward [S ii] emission appears to dominate the fit in that spectral region, and, given the lower signal-to-noise ratio of both features, it is not surprising that a similar goodness of fit is returned by forcing the ratio of the strength of the two components within the canonical allowablerange.Furthermore,changesinthefittingapproachdidnot appreciably affect the inferred black hole mass beyond the inherent randomandsystematicuncertainties. Finally,wemeasuredthebroad-linewidthandthelineluminosity fromthebest-fitspectra.Theblackholemasswascomputedusingthe equation from ref. 70. Although the measurement uncertainties on MBH were relatively small (~0.1 dex), systematic uncertainties associ- ated with different single-epoch virial calibrations carried a scatter of ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be 7.2 (−5.4 + 10.8) × 106 M⊙. The uncertainties of the black hole mass were determined by the sum of the statistical and intrinsic scatter of thecalibrations. ExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα, [N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis- sion lines trace gas with different kinematics, potentially indicating outflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii] lines because [O iii], which typically serves as a tracer of outflows, is notcoveredbyourdataset.InExtendedDataFig.2(right),wecompare the blue-shifted Hα emission line with that of the [S ii] line compo- nents. Although we left the line widths and relative line centres of the blue-shifted components as free parameters, the broad blue-shifted emissionisevidentinboththeHαand[S ii]lines,exhibitingthesame broad-line width and velocity offsets, which suggests that they are kinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially unresolvedoutflowvelocityof~−540 km s−1 .Similarvelocitiesareasso- ciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3), which could be part of the outflow or indicate ongoing merger activ- ity. The mass of the ionized outflow as inferred from the blue-shifted outflow component of the broad Hα emission was 1.4 × 107 M⊙, using equation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1 and that the extended Hα emission is representative of the outflow radius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1 . Environment We measured the environmental density surrounding LID-568 by employing the Voronoi tessellation Monte Carlo mapping described in refs. 75,76. Briefly, this technique uses a weighted combination of spectroscopic and photometric redshifts to construct a galaxy over- densitycubeinthin(7.5properMpc)slicesrunningfrom2 &lt; z &lt; 5.The mapping leverages the wealth of panchromatic imaging data from COSMOS, as well as a large number of spectroscopic redshifts drawn from public surveys and proprietary data. The particular instance of the Voronoi tessellation Monte Carlo mapping used in this work was identicaltothatofref.77. After an overdensity cube had been constructed over the full redshift range, a source extractor-based post-processing technique, as described in ref. 76, was used to link detections of overdensities across contiguous slices to search for coherent structure and esti- matethemassofthedetectedstructure.Fordensitymappingatz &gt; 2, this post-processing technique was trained on mock observations of custom-built light cones to maximize the purity and completeness associatedwiththedetectionofprotogroupsandprotoclusters.Atthe spatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS field was fairly sparse, and we estimated that our method was &gt;50% complete only for structures with z = 0 masses greater than 1014.5 M⊙, thatis,massiveprotoclusters,atz ≈ 4. We find no evidence that LID-568 is associated with an overden- sity of galaxies. The local overdensity at the location of LID-568 was log (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the mean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe average overdensity in a cylindrical aperture of radius 1 proper Mpc and depth of Δz = 0.02 centred on the redshift of LID-568 recovered a consistent value. Additionally, we detected no associated coherent structurewithinΔz = 0.04andR &lt; 5properMpcofLID-568,whichindi- catesthatitisnotlikelytobeembeddedinamassiveformingcluster. However,giventhepaucityofspectroscopicredshiftsinproximityto LID-568, we cannot rule out membership in a lower mass structure. Wealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto detectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78 . Future spectroscopic observations of the surroundings of LID-568 and similar sources will help to better quantify the environments in whichtheyreside. Dataavailability The data for ALMA and JWST used in this study are publicly available throughtheirrespectivedataarchives.Theseobservationsareassoci- atedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme no. 2019.1.01275.S. Other data generated and/or analysed during the study are available from the corresponding author upon reasonable request. References 1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085. Nature 474, 616 (2011). 2. Bañados, E. et al. An 800-million-solar-mass black hole in a significant neutral Universe at a redshift of 7.5. Nature 553, 473 (2018). 3. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3&lt;z&lt;7.64. Astrophys. J. 923, 262 (2021). 4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. 907, 1 (2021). 5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. II. Black hole masses, Eddington ratios, and the formation of the first quasars. Astrophys. J. 941, 106 (2022). 6. Fan, X., Bañados, E. &amp; Simcoe, R. A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61, 373 (2023). 7. Rees, M. F. Quasars. Observatory 98, 210 (1978). 8. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012). 9. Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014). 10. Volonteri, M. &amp; Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624 (2005). 11. Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762 (2018). 12. Volonteri, M., Lodato, G. &amp; Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079 (2008). 13. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017). </li></div><div><li>7. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#7">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 14. </a> Volonteri, M., Habouzit, M. &amp; Colpi, M. The origins of massive black holes. Nat. Rev. Phys 3, 732 (2021). 15. Kashlinsky, A. LIGO gravitational wave detection, primordial black holes, and the near-IR cosmic infrared background anisotropies. Astrophys. J. Lett. 823, 25 (2016). 16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter. J. Cosmol. Astropart. Phys. 07, 022 (2020). 17. Cappelluti, N., Hasinger, G. &amp; Natarajan, P. Exploring the high-redshift PBH-ΛCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds. Astrophys. J. 926, 205 (2022). 18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z=4–7: detection of 10 faint AGNs with MBH=106 –108 M⊙ and their host galaxy properties. Astrophys. J. 959, 39 (2023). 19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z&gt;5 with CEERS. Astrophys. J. 954, 4 (2023). 20. Maiolino, R., et al. JADES. The diverse population of infant black holes at 4&lt;z&lt;11: merging, tiny, poor, but mighty. Preprint at https://arxiv.org/abs/2308.01230 (2023) 21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, 145 (2023). 22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed AGN in the early Universe. Nature 628, 57 (2024). 23. Greene, J. E. et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z&gt;5. Astrophys. J. 964, 39 (2024). 24. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z~5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024). 25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. &amp; Fan, X. JWST CEERS and JADES active galaxies at z=4–7 violate the local M●–M★ relation at &gt;3σ: implications for low-mass black holes and seeding models. Astrophys. J. 957, 3 (2003). 26. Kocevski, D. D., et al. The rise of faint, red AGN at z&gt;4: a sample of little red dots in the JWST extragalactic legacy fields. Preprint at https://arxiv.org/abs/2404.03576 (2024). 27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016). 28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/ IR identifications. Astrophys. J. 817, 34 (2016). 29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. &amp; Bertemes, C. Searching for super-Eddington quasars using a photon trapping accretion disc model. Mon. Not. R. Astron. Soc. 492, 4058 (2020). 30. Done, C., Davis, S. W., Jin, C., Blaes, O. &amp; Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848 (2012). 31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the Universe: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron. Soc. 484, 2575 (2019). 32. Casey, C. M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012). 33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at z&gt;3: bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023). 34. Gentile, F. et al. Illuminating the dark side of Cosmic star formation. III. Building the largest homogeneous sample of radio-selected dusty star-forming galaxies in COSMOS with PhoEBO. Astrophys. J. 962, 26 (2024). 35. Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. V. A new size-luminosity scaling relation for the broad-line region. Astrophys. J. 825, 126 (2016). 36. GRAVITY Collaboration et al. The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region. Astron. Astrophys. 684, 167 (2024). 37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115 (1982). 38. Martini, P. &amp; Weinberg, D. H. Quasar clustering and the lifetime of quasars. Astrophys. J. 547, 12 (2001). 39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. &amp; Regan, J. A. Sustained super-Eddington accretion in high-redshift quasars. Astron. Astrophys. 686, 256 (2024). 40. Hopkins, P. F., Hernquist, L., Cox, T. J. &amp; Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and Quasar activity. Astrophys. J. Suppl. 175, 356 (2008). 41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to z~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023). 42. Elvis, M., Marengo, M. &amp; Karovska, M. Smoking quasars: a new source for cosmic dust. Astrophys. J. 567, 107 (2002). 43. Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892 (2019). 44. Massonneau, W., Volonteri, M., Dubois, Y. &amp; Beckmann, R. S. How the super-Eddington regime regulates black hole growth in high-redshift galaxies. Astron. Astrophys. 670, A180 (2023). 45. Volonteri, M., Silk, J. &amp; Dubus, G. The case for supercritical accretion onto massive black holes at high redshift. Astrophys. J. 804, 148 (2015). 46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early universe. Preprint at https://arxiv.org/abs/2403.03872 (2024). 47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z~10 from two complementary catalogs. Astrophys. J. Suppl. 258, 11 (2022). 48. Shirley, R. et al. HELP: the herschel extragalactic legacy project. Mon. Not. R. Astron. Soc. 507, 129 (2021). 49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, 1 (2017). 50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022). 51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, 82 (2022). 52. Kendrew, S. et al. The mid-infrared instrument for the James Webb Space Telescope, IV: the low-resolution spectrometer. Publ. Astron. Soc. Pac. 127, 623 (2015). 53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, 121 (2024). 54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting galaxies at 5.3&lt;z&lt;6.9 and direct evidence for local reionization by galaxies. Astrophys. J. 950, 66 (2023). 55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, 89 (2023). 56. Rauscher, B. J. NSClean: an algorithm for removing correlated noise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136, 015001 (2024). 57. Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023). 58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw. Syst. 101, 17 (1996). 59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775 (2005). </li></div><div><li>8. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#8">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 60. </a> Murphy, K. D. &amp; Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549 (2009). 61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey: Compton-thick AGN at high redshift. Mon. Not. R. Astron. Soc. 480, 2578 (2018). 62. Suh, H. et al. Multi-wavelength properties of type 1 and type 2 AGN host galaxies in the Chandra-COSMOS Legacy Survey. Astrophys. J. 872, 168 (2019). 63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. &amp; Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distribution of AGNs. Astrophys. J. 833, 98 (2016). 64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy Emission. Astron. Astrophys. 622, 103 (2019). 65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740 (2020). 66. Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton medium deep survey. Astrophys. J. 663, 81 (2007). 67. Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169 (2004). 68. Gilli, R., Comastri, A. &amp; Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79 (2007). 69. Lusso, E. et al. The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astron. Astrophys. 534, 110 (2011). 70. Greene, J. E. &amp; Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122 (2005). 71. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. 166, 470 (2006). 72. Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z~2.5. Astrophys. J. 889, 32 (2020). 73. Trakhtenbrot, B. &amp; Netzer, H. Black hole growth to z=2 − I. Improved virial methods for measuring MBH and L/LEdd. Mon. Not. R. Astron. Soc. 427, 1096 (2012). 74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec view of the z=1.59 obscured quasar XID2028. Astron. Astrophys. 672, 128 (2023). 75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from the dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615, 77 (2018). 76. Hung, D. et al. Establishing a new technique for discovering large-scale structure using the ORELSE survey. Mon. Not. R. Astron. Soc. 491, 5524 (2020). 77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal of the star-formation rate – density relation at 2&lt;z&lt;5. Astron. Astrophys. 662, 33 (2022). 78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters detected in absorption. Nature 606, 475 (2022). Acknowledgements H.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international Gemini Observatory, a program of NSF NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea and the United States. F.L. acknowledges support from the INAF 2023 mini-grant ‘Exploiting the powerful capabilities of JWST/NIRSpec to unveil the distant Universe’. M.M. acknowledges support from the Spanish Ministry of Science and Innovation through the project PID2021-124243NB-C22. This work was partially supported by the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support from the Korean National Research Foundation (2020R1A2C3003769, 2022R1A6A1A03053472) and the IBS computing centre for the super-Eddington accretion project. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme no. 1760. Support for programme no. 1760 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Authorcontributions H.S. was the principal investigator of the JWST and ALMA proposals, led the analysis and interpretation of the results, and drafted the paper. H.S. and G.H. performed the sample selection. J.S. contributed to the analysis of the JWST NIRSpec IFU data and the interpretation of the results. F.L. reduced the JWST NIRSpec IFU data and wrote the relevant section. G.L. and S.M. analysed the X-ray data and wrote the relevant section. B.C.L. and D.H. performed all analysis relating to the environment and B.C.L. wrote the relevant section. S.K.Y. and S.H. performed simulations and provided discussions on black hole growth. E.P.F., M.M., R.D. and M.V. helped with the interpretation of the results and provided comments on the analysis. All authors contributed to the discussion of the presented results and the preparation of the paper. Competinginterests The authors declare no competing interests. Additionalinformation Extended data is available for this paper at https://doi.org/10.1038/ s41550-024-02402-9. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41550- 024-02402-9. Correspondence and requests for materialsshould be addressed to Hyewon Suh. Peer review information Nature Astronomy thanks John Regan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions informationis available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and </li></div><div><li>9. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#9">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 reproduction </a> in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. © The Author(s) 2024 1 International Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy. 3 Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4 DESY, Hamburg, Germany. 5 Deutsches Zentrum für Astrophysik, Görlitz, Germany. 6 Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7 Dipartimento di Fisica e Astronomia (DIFA) Augusto Righi, Università di Bologna, Firenze, Italy. 8 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9 Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10 Department of Physics and Astronomy, University of California, Davis, Davis, CA, USA. 11 Institut d’Astrophysique de Paris (UMR 7095: CNRS &amp; Sorbonne Universite), Paris, France. 12 NASA Goddard Space Flight Center, Greenbelt, MD, USA. 13 Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu </li></div><div><li>10. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#10">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata (black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel includesapower-law(greendashed),ahotgreybody(655 </a> K;greendotted),anda warmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata (black)withtheSEDtemplates61 oftheAGN-dominatedlocalULIRG(Mrk231), theextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat redshiftz = 3.965. </li></div><div><li>11. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#11">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum (grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular apertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law continuum(black),narrow-linecomponents(green),broad-linecomponents (orange),andoutflowcomponents(blue)areindicated.Dottedverticallines markthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe blue-shifted(outflow)lineprofilesoftheH𝛼 </a> + [NII]and[SII]invelocityspace. Theblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s relativetosystemic. </li></div><div><li>12. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#12">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission aroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels. Themapsareshowninsingle-channelstepscorrespondingtovelocitystepsof 165 </a> km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe 3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets inarcsecondsareshownrelativetotheAGNlocation. </li></div></ul></div></div><div class="actions-menu-container ActionsMenu_root__4k507" data-cy="actions-menu-mobile"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="Save A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST for later" data-saved="false" data-cy="loggedout-save-slideshow-button" aria-haspopup="dialog" aria-controls=":Ricf6:" popovertarget=":Ricf6:" style="anchor-name:--popover-Ricf6"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button><div class="Tooltip_root__7FS0Y" id=":Ricf6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-Ricf6"></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis" aria-haspopup="dialog" aria-controls=":R2qcf6:" popovertarget=":R2qcf6:" style="anchor-name:--popover-R2qcf6"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="anchor-name:--popover-Rqqcf6" aria-haspopup="dialog" aria-controls=":Rqqcf6:" popovertarget=":Rqqcf6:"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span><div class="Tooltip_root__7FS0Y" id=":Rqqcf6:" popover="manual" data-popover-position="top" style="position-anchor:--popover-Rqqcf6"></div></button><div class="" id=":R2qcf6:" popover="manual" data-popover-position="bottom-start" style="position-anchor:--popover-R2qcf6"></div><div class="DownloadButton_root__adY00 ActionsMenu_downloadButton__s7Iqj"><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_contained__gyjai Button_large__Yv_oe" data-testid="download-button" data-cy="download-button-actions-menu"><span><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/download.b1b2622c.svg);background-color:currentColor"></span><span class="sr-only"></span></span>Download</span></button></div></div><dialog class="Modal_root__TYkzh FullscreenModal_root__efM9m" id=":R2sf6:"><div class="Modal_wrapper__4UTGq"><div class="modal-content Modal_content__R1F4d FullscreenModal_content__bQ6mt"></div></div></dialog><div class="ad textads banner-ads banner_ads ad-unit ad-zone ad-space adsbox ads prebid" style="position:absolute;height:1px"></div><footer class="Footer_footer__N3WmV"><div class="FooterTop_wrapper__RuYz5" data-testid="footer-top"><div class="FooterTop_links__9J65v"><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="/about">About</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/categories/360004792932-SlideShare?userType=SlideShare">Support</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/articles/210129326-General-Terms-of-Use">Terms</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/articles/210129366-Privacy-policy">Privacy</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="/copyright-policy">Copyright</a><button class="FooterTop_cookiePreferenceButton__xmSox" type="button">Cookie Preferences</button><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en-us/articles/360038016931-Privacy-Rights-Request-Form">Do not sell or share my personal information</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://www.everand.com">Everand</a></div></div><hr class="Footer_separator__Qa1tj"/><div class="FooterBottom_wrapper__Gj9p_" data-testid="footer-bottom"><span class="FooterBottom_copyright__xltkG">© 2025 SlideShare from Scribd </span><div class="FooterBottom_icons__wEEhc"><a class="Link_root__vn3ab Link_light__mcUPh Link_size-large__W0PAv Link_weight-regular__yPpnB" aria-label="Slideshare on Twitter" href="https://twitter.com/slideshare"><span class="Icon_root__AjZyv" style="--size:18px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/twitter.89a06630.svg);background-color:currentColor"></span><span class="sr-only"></span></span></a><span class="FooterBottom_separator__181dN"></span><a class="Link_root__vn3ab Link_light__mcUPh Link_size-large__W0PAv Link_weight-regular__yPpnB" aria-label="Slideshare on RSS Feed" href="https://www.slideshare.net/rss/latest"><span class="Icon_root__AjZyv" style="--size:16px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/rss.5c914539.svg);background-color:currentColor"></span><span class="sr-only"></span></span></a></div></div></footer><div id="portals-container" style="z-index:1"><div id="banner-portal" class="PortalsContainer_bannerRoot__Q_sNw"></div></div></div></div><script src="https://cmp.osano.com/AzZdHGSGtpxCq1Cpt/079b27eb-bb3f-48dd-9bd9-3feb8aec3c38/osano.js"></script><script> // This script assumes the Osano script is synchronously loaded window.eventsToSend = window.eventsToSend || [] if (window.Osano) { window.eventsToSend.push({ name: "osano_loaded", timestamp: new Date().toISOString(), value: JSON.stringify({ time: performance?.now() }) }) } </script><script defer="" nomodule="" src="https://public.slidesharecdn.com/_next/static/chunks/polyfills-42372ed130431b0a.js"></script><script src="https://public.slidesharecdn.com/_next/static/chunks/webpack-0599b13ea250d156.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/framework-5a981bd1af7edc76.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/main-9d633b45c44c4167.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/pages/_app-5316d509336a6820.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/5121-c12bfd4bed7c2139.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/5227-d715f91eabfbc7cb.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/pages/slideshow/%5Btitle%5D/%5Bid%5D-e7f20cb7621a4a8d.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/6cf5707a372b9e8ab0c6a000683653819317f919/_buildManifest.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/6cf5707a372b9e8ab0c6a000683653819317f919/_ssgManifest.js" defer=""></script><script id="__NEXT_DATA__" type="application/json">{"props":{"pageProps":{"name":"slideshow","edgeTestAssignments":[{"name":"example","variant":"A"},{"name":"expressive_search","variant":"A"},{"name":"fullscreen_view","variant":"C"},{"name":"gallery_view","variant":"B"},{"name":"nextjs_profile","variant":"B"},{"name":"nextjs_profile_v2","variant":"B"},{"name":"reading_modes","variant":"A"},{"name":"recs_placement","variant":"A"},{"name":"recs_placement_v2","variant":"A"},{"name":"single_slide_view_v2","variant":"A"}],"layout":{"currentUser":null,"fullPath":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","osanoId":"079b27eb-bb3f-48dd-9bd9-3feb8aec3c38","featureFlags":[{"name":"disable_facebook","enabled":true},{"name":"document_interstitials_flag","enabled":true},{"name":"recommendation_impression_tracking","enabled":true},{"name":"search_results_tracking","enabled":true},{"name":"view_restriction_without_subscription_after_five","enabled":true},{"name":"disable_lazy_hydration","enabled":false}]},"countryCodeFromFastly":"SG","slideshow":{"username":"sacani","allowDownloads":true,"allowDownloadOriginalFile":false,"allowEmbeds":true,"canonicalUrl":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","categories":[{"id":"42","name":"Science","url":"science"}],"createdAt":"2024-11-04 20:44:17 UTC","description":"Recent James Webb Space Telescope ( JWST) observations have revealed\na surprisingly abundant population of faint, dusty active galactic nuclei at\nz ≈ 4–7. Together with the presence of supermassive black holes at z \u003e 6,\nthis raises questions about the formation and growth histories of early black\nholes. Current theories for the formation of seed black holes from the death\nof the frst stars (that is, light seeds) and/or the direct collapse of primordial\ngas clouds (that is, heavy seeds) still lack observational confrmation. Here\nwe present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful\noutfows that is observed in an extreme phase of rapid growth at redshift\nz ≈ 4. This object is similar to other JWST-discovered faint active galactic\nnuclei populations, but is bright in X-ray emission and accreting at more\nthan 4,000% of the limit at which radiation pressure exceeds the force of\ngravitational attraction of the black hole (that is, super-Eddington accretion).\nAnalysis of JWST Near-Infrared Spectrograph integral feld unit data reveals\nspatially extended Hα emission with velocities of ~−600–−500 km s−1 relative\nto the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington\naccretion as invoked by models of early black hole formation. This discovery\nshowcases a previously undiscovered key parameter space and ofers crucial\ninsights into rapid black hole growth mechanisms in the early universe.","downloadKey":"9b1100c51eb0ac043b35f2ecca805aa13892472b8abb588f927753c2ddde0768","editorsNotes":[],"emailShareUrl":"mailto:?subject=Check out this SlideShare document\u0026body=https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","extension":"pdf","facebookShareUrl":"https://facebook.com/sharer.php?u=https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912\u0026t=A+super-Eddington-accreting+black+hole+~1.5%E2%80%89Gyr+after+the+Big+Bang+observed+with+JWST","genaiDescriptionCreatedAt":null,"genaiTest":"control","id":"273014912","iframeEmbed":{"url":"https://www.slideshare.net/slideshow/embed_code/key/oiy1E5SIQXjS5R","height":715,"width":670},"isIndexable":true,"isLikedByCurrentUser":false,"isPrivate":false,"isViewable":true,"language":"en","likes":0,"linkedinShareUrl":"https://www.linkedin.com/cws/share?url=https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912\u0026trk=SLIDESHARE","downloadCount":3,"recommendationsByLocation":{"rightRail":[{"algorithmId":"3","displayTitle":"A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy","isSavedByCurrentUser":false,"pageCount":12,"score":0.5544,"slideshowId":"270124291","sourceName":"cm_text","strippedTitle":"a-mature-quasar-at-cosmic-dawn-revealed-by-jwst-rest-frame-infrared-spectroscopy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02273-0-240708131450-72f83c99-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The rapid assembly of the first supermassive black holes is an enduring mystery. Until now, it was not known whether quasar ‘feeding’ structures (the ‘hot torus’) could assemble as fast as the smaller-scale quasar structures. We present JWST/MRS (rest-frame infrared) spectroscopic observations of the quasar J1120+0641 at z = 7.0848 (well within the epoch of reionization). The hot torus dust was clearly detected at λrest ≃ 1.3 μm, with a black-body temperature of \n K, slightly elevated compared to similarly luminous quasars at lower redshifts. Importantly, the supermassive black hole mass of J1120+0641 based on the Hα line (accessible only with JWST), MBH = 1.52 ± 0.17 × 109 M⊙, is in good agreement with previous ground-based rest-frame ultraviolet Mg II measurements. Comparing the ratios of the Hα, Paα and Paβ emission lines to predictions from a simple one-phase Cloudy model, we find that they are consistent with originating from a common broad-line region with physical parameters that are consistent with lower-redshift quasars. Together, this implies that J1120+0641’s accretion structures must have assembled very quickly, as they appear fully ‘mature’ less than 760 Myr after the Big Bang.","tags":["quasar","james webb","cosmic dawn"],"url":"https://www.slideshare.net/slideshow/a-mature-quasar-at-cosmic-dawn-revealed-by-jwst-rest-frame-infrared-spectroscopy/270124291","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2337},{"algorithmId":"3","displayTitle":"JWST/NIRCam detections of dusty subsolar-mass young stellar objects in the Sm...","isSavedByCurrentUser":false,"pageCount":8,"score":0.4974,"slideshowId":"257636641","sourceName":"cm_text","strippedTitle":"jwstnircam-detections-of-dusty-subsolarmass-young-stellar-objects-in-the-small-magellanic-cloud","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01945-7-230430225223-fb91a376-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Low-mass stars are the most numerous stellar objects in the Universe. Before\nthe James Webb Space Telescope (JWST), we had limited knowledge of how\nplanetary systems around low-mass stars could form at subsolar metallicities.\nHere we present JWST observations of NGC 346, a star-forming region in\nthe metal-poor Small Magellanic Cloud, revealing a substantial population\nof subsolar-mass young stellar objects (YSOs) with an infrared excess. We\nnotice that continuing low-mass star formation is concentrated along dust\nfilaments. We detected roughly 500 YSOs and pre-main-sequence (PMS)\nstars from more than 45,000 unique sources, using all four NIRCam wide\nfilters with deep, high-resolution imaging. From these observations, we\nconstruct detailed near-infrared colour–magnitude diagrams with which\npreliminary categorizations of YSO classes are made. For the youngest,\nmost deeply embedded objects, JWST/NIRCam is ten magnitudes more\nsensitive than Spitzer observations at comparable wavelengths, and reaches\ntwo magnitudes fainter than Hubble Space Telescope for more evolved\nPMS sources, corresponding to roughly 0.1 M⊙. The infrared sensitivity and\nresolution of JWST allows us to detect embedded low-mass star formation in\nan extragalactic environment. Furthermore, evidence of infrared excesses and\naccretion suggests that the dust required for rocky planet formation is present\nat metallicities as low as 0.2 Z⊙, which are akin to those in place at cosmic noon.","tags":["james webb","planet formation"],"url":"https://www.slideshare.net/slideshow/jwstnircam-detections-of-dusty-subsolarmass-young-stellar-objects-in-the-small-magellanic-cloud/257636641","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1113},{"algorithmId":"3","displayTitle":"An excess of dusty starbursts related to the Spiderweb galaxy","isSavedByCurrentUser":false,"pageCount":19,"score":0.4882,"slideshowId":"40324618","sourceName":"cm_text","strippedTitle":"an-excess-of-dusty-starbursts-related-to-the-spiderweb-galaxy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/eso1431a-141015181357-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes a study that used the LABOCA instrument on the APEX telescope to observe a field around the high-redshift radio galaxy MRC1138-262 at z=2.16. 16 submillimeter galaxies (SMGs) were detected in the field, with fluxes between 3-11 mJy, indicating a density up to 4 times higher than blank field surveys. Photometric redshifts using Herschel, Spitzer, and VLT data show that at least 8 of the SMGs have z~2.2 and are part of the protocluster associated with MRC1138-262. This corresponds to a star formation rate density 1500 times higher than blank fields at this redshift, concentrated","tags":[],"url":"https://www.slideshare.net/slideshow/an-excess-of-dusty-starbursts-related-to-the-spiderweb-galaxy/40324618","userLogin":"GOASA","userName":"GOASA ","viewCount":747},{"algorithmId":"3","displayTitle":"An excess of_dusty_starbusts_related_to_the_spiderweb_galaxy","isSavedByCurrentUser":false,"pageCount":19,"score":0.4882,"slideshowId":"41018617","sourceName":"cm_text","strippedTitle":"an-excess-ofdustystarbustsrelatedtothespiderwebgalaxy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/anexcessofdustystarbustsrelatedtothespiderwebgalaxy-141102102457-conversion-gate02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo que descreve as últimas observações do APEX revelando como se dá a formação de estrelas e a construção do Aglomerado de Galáxias da Teia de Aranha.","tags":["astronomia","apex","eso"],"url":"https://www.slideshare.net/slideshow/an-excess-ofdustystarbustsrelatedtothespiderwebgalaxy/41018617","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":600},{"algorithmId":"3","displayTitle":"Isolated compact elliptical_galaxies_stellar_systems_that_ran_away","isSavedByCurrentUser":false,"pageCount":5,"score":0.4724,"slideshowId":"47390903","sourceName":"cm_text","strippedTitle":"isolated-compact-ellipticalgalaxiesstellarsystemsthatranaway","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/isolatedcompactellipticalgalaxiesstellarsystemsthatranaway-150424184837-conversion-gate02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes a study that identified 195 compact elliptical galaxies across different environments using data from optical and ultraviolet sky surveys. The researchers constructed the sample by selecting galaxies that were outliers from the universal color-magnitude relation and had small sizes and high stellar velocity dispersions based on spectral modeling. They found that 7 of the galaxies were isolated, not belonging to any known galaxy groups. For these isolated galaxies, the researchers identified possible host galaxies located up to 3.3 Mpc away. The stellar populations of the isolated compact elliptical galaxies were found to be similar to those in galaxy groups and clusters, suggesting a common formation mechanism.","tags":["astronomia","galáxias","estrelas"],"url":"https://www.slideshare.net/slideshow/isolated-compact-ellipticalgalaxiesstellarsystemsthatranaway/47390903","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":897},{"algorithmId":"3","displayTitle":"A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634","isSavedByCurrentUser":false,"pageCount":5,"score":0.4654,"slideshowId":"19029884","sourceName":"cm_text","strippedTitle":"a-dust-obscuredmassivemaximumstarburstgalaxyataredshift634","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/adustobscuredmassivemaximumstarburstgalaxyataredshift634-130417193438-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes the discovery of a massive, intensely star-forming galaxy located at a redshift of 6.34, approximately 880 million years after the Big Bang. Observations revealed a suite of molecular and atomic emission and absorption lines that unambiguously determined the galaxy's redshift. Analysis shows the galaxy contains over 100 billion solar masses of chemically evolved interstellar medium, constituting at least 40% of its baryonic mass. It is forming new stars at a rate over 2,000 times that of the Milky Way, making it a \"maximum starburst\" galaxy. Despite an overall decline in cosmic star formation at the highest redshifts, this discovery shows that environments capable of hosting the most massive starbursts existed very early","tags":[],"url":"https://www.slideshare.net/slideshow/a-dust-obscuredmassivemaximumstarburstgalaxyataredshift634/19029884","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":407},{"algorithmId":"3","displayTitle":"Spitzer bright ultravista_faint_sources_in_cosmos_the_contribution_to_the_ove...","isSavedByCurrentUser":false,"pageCount":17,"score":0.4632,"slideshowId":"55269609","sourceName":"cm_text","strippedTitle":"spitzer-bright-ultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz37","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/spitzerbrightultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz-151118210308-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"O telescópio de rastreio VISTA do ESO encontrou uma horda de galáxias massivas anteriormente ocultas por poeira, que existiram quando o Universo era ainda bebê. Ao descobrir e estudar uma grande quantidade deste tipo de galáxias, os astrônomos descobriram, exatamente e pela primeira vez, quando é que tais monstros apareceram pela primeira vez no Universo.\r\nO simples fato de contar o número de galáxias que existem em determinada área do céu permite aos astrônomos testar teorias de formação e evolução galática. No entanto, uma tarefa aparentemente tão fácil torna-se mais difícil quando tentamos contar galáxias cada vez mais distantes e tênues e é mais complicada ainda devido ao fato das galáxias mais brilhantes e fáceis de observar — as mais massivas no Universo — se tornarem mais raras à medida que os astrônomos observam o passado do Universo, enquanto que as galáxias menos brilhantes, mas muito mais numerosas, são ainda mais difíceis de detectar.\r\n\r\nUma equipe de astrônomos liderada por Karina Caputi do Instituto Astronômico Kapteyn da Universidade de Groningen, descobriu muitas galáxias distantes que não tinham sido detectadas anteriormente. A equipe utilizou imagens do rastreioUltraVISTA, um dos seis projetos que usam o VISTA para mapear o céu no infravermelho próximo, e fez um censo das galáxias tênues quando a idade do Universo estava compreendida entre 0,75 e 2,1 bilhões de anos. \r\n","tags":["eso","universo","galáxias"],"url":"https://www.slideshare.net/sacani/spitzer-bright-ultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz37","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":799},{"algorithmId":"3","displayTitle":" Black hole growth in the early universe is self regulated and largely hidde...","isSavedByCurrentUser":false,"pageCount":3,"score":0.4617,"slideshowId":"8320995","sourceName":"cm_text","strippedTitle":"black-hole-growth-in-the-early-universe-is-self-regulated-and-largely-hidden-from-vie","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/blackholegrowthintheearlyuniverseisself-regulatedandlargelyhiddenfromvie-110615181035-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The study analyzed X-ray data from the Chandra X-ray Observatory to measure black hole growth in galaxies between redshifts 6-8 (0.95-0.7 billion years after the Big Bang). It found:\n\n1) A stacked signal from 197 galaxies at z\u003c6 detected significant X-ray emission, implying black holes grew in tandem with their host galaxies throughout cosmic history. \n\n2) Most vigorously accreting black holes at these early epochs were obscured by significant gas and dust, absorbing most radiation except high-energy X-rays. \n\n3) The obscured black hole growth suggests growth was significantly more than previously thought, but the obscuration prevented contribution to reionizing the Universe.","tags":[],"url":"https://www.slideshare.net/slideshow/black-hole-growth-in-the-early-universe-is-self-regulated-and-largely-hidden-from-vie/8320995","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":421}],"whatsHot":[],"alsoLiked":[],"similarTo":[{"algorithmId":"3","displayTitle":"Direct imaging of active galactic nucleus outflows and their origin with the ...","isSavedByCurrentUser":false,"pageCount":15,"score":0.4602,"slideshowId":"274936686","sourceName":"cm_text","strippedTitle":"direct-imaging-of-active-galactic-nucleus-outflows-and-their-origin-with-the-23-m-large-binocular-telescope","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02461-y-250117150544-05c9fb2a-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Active galactic nuclei (AGNs) are a key component of galaxy evolution owing\nto feedback on the host from its supermassive black hole. The morphology\nof warm infowing and outfowing dusty material can reveal the nature of\nthe onset of feedback, AGN feeding and the unifed model of AGN. Here we\nuse the Large Binocular Telescope Interferometer (LBTI) to image the\ndense, obscuring disk and extended dusty outfow region of NGC 1068. In\nFizeau imaging mode, the LBTI synthesizes the equivalent resolution of a\n22.8 m telescope. The 8.7 μm Fizeau images of NGC 1068 have an efective\nresolution of 47 × 90 mas (3.3 × 6.2 pc) in a 5″ feld of view after performing\npoint spread function deconvolution techniques described here. This is the\nonly extragalactic source to be Fizeau imaged using the LBTI, and the images\nbridge the scales measured with the Very Large Telescope Interferometer\n(0.5–5 pc) and those of single telescopes such as James Webb Space\nTelescope and Keck (\u003e15 pc). The images detect and spatially resolve the low\nsurface brightness mid-infrared features in the AGN disk/wind region that are\noverresolved by the Very Large Telescope Interferometer. The images show\nstrong correlation between mid-infrared dust emission and near-infrared\nemission of highly excited atomic lines observed by SINFONI. Such LBTI\nimaging is a precursor to infrared imaging using the upcoming generation\nof extremely large telescopes, with angular resolutions up to six times better\nthan James Webb Space Telescope, the largest space telescope in orbit.","tags":["agn","ngc 1068","binnocular telescope"],"url":"https://www.slideshare.net/slideshow/direct-imaging-of-active-galactic-nucleus-outflows-and-their-origin-with-the-23-m-large-binocular-telescope/274936686","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":328},{"algorithmId":"3","displayTitle":"Quasar quartet embedded_in_a_giant_nebula_reveals_rare_massive_structure_in_d...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4554,"slideshowId":"48235025","sourceName":"cm_text","strippedTitle":"quasar-quartet-embeddedinagiantnebularevealsraremassivestructureindistantuniverse","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/quasarquartetembeddedinagiantnebularevealsraremassivestructureindistantuniverse-150516234453-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo descreve a fantástica descoberta de um quasar quádruplo pelos astrônomos, usando os telescópios de 10 metros do Keck.","tags":["galáxias","buracos negros","universo"],"url":"https://www.slideshare.net/slideshow/quasar-quartet-embeddedinagiantnebularevealsraremassivestructureindistantuniverse/48235025","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1451},{"algorithmId":"3","displayTitle":"The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...","isSavedByCurrentUser":false,"pageCount":30,"score":0.453,"slideshowId":"259313252","sourceName":"cm_text","strippedTitle":"the-massive-relic-galaxy-ngc-1277-is-dark-matter-deficient-from-dynamical-models-of-integralfield-stellar-kinematics-out-to-five-effective-radii","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa46291-23-230720101021-21a3c732-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"According to the Λ cold dark matter (ΛCDM) cosmology, present-day galaxies with stellar masses M? \u003e 1011 M\f should contain\na sizable fraction of dark matter within their stellar body. Models indicate that in massive early-type galaxies (ETGs) with M? ≈\n1.5 × 1011 M\f, dark matter should account for ∼15% of the dynamical mass within one effective radius (1 Re) and for ∼60% within\n5 Re\n. Most massive ETGs have been shaped through a two-phase process: the rapid growth of a compact core was followed by the\naccretion of an extended envelope through mergers. The exceedingly rare galaxies that have avoided the second phase, the so-called\nrelic galaxies, are thought to be the frozen remains of the massive ETG population at z \u0026 2. The best relic galaxy candidate discovered\nto date is NGC 1277, in the Perseus cluster. We used deep integral field George and Cynthia Mitchel Spectrograph (GCMS) data to\nrevisit NGC 1277 out to an unprecedented radius of 6 kpc (corresponding to 5 Re). By using Jeans anisotropic modelling, we find\na negligible dark matter fraction within 5 Re (fDM(5 Re) \u003c 0.05; two-sigma confidence level), which is in tension with the ΛCDM\nexpectation. Since the lack of an extended envelope would reduce dynamical friction and prevent the accretion of an envelope, we\npropose that NGC 1277 lost its dark matter very early or that it was dark matter deficient ab initio. We discuss our discovery in the\nframework of recent proposals, suggesting that some relic galaxies may result from dark matter stripping as they fell in and interacted\nwithin galaxy clusters. Alternatively, NGC 1277 might have been born in a high-velocity collision of gas-rich proto-galactic fragments,\nwhere dark matter left behind a disc of dissipative baryons. We speculate that the relative velocities of ≈2000 km s−1\nrequired for the\nlatter process to happen were possible in the progenitors of the present-day rich galaxy clusters.","tags":["galaxy","dark matter"],"url":"https://www.slideshare.net/slideshow/the-massive-relic-galaxy-ngc-1277-is-dark-matter-deficient-from-dynamical-models-of-integralfield-stellar-kinematics-out-to-five-effective-radii/259313252","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1749},{"algorithmId":"3","displayTitle":"Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5","isSavedByCurrentUser":false,"pageCount":42,"score":0.4463,"slideshowId":"42879464","sourceName":"cm_text","strippedTitle":"chandra-deep-observationofxdcpj004402033amassivegalaxyclusteratz15","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/chandradeepobservationofxdcpj004402033amassivegalaxyclusteratz15-141219135104-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo apresenta os resultados obtidos pelo Chandra ao medir com precisão a massa do mais massivo aglomerado de galáxias do universo distante, o Aglomerado Gioiello.","tags":["aglomerado de galáxias","astronomia","chandra"],"url":"https://www.slideshare.net/slideshow/chandra-deep-observationofxdcpj004402033amassivegalaxyclusteratz15/42879464","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":669},{"algorithmId":"3","displayTitle":"A spectroscopic redshift_measurement_for_a_luminous_lyman_break_galaxy_at_z _...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4392,"slideshowId":"47806179","sourceName":"cm_text","strippedTitle":"a-spectroscopic-redshiftmeasurementforaluminouslymanbreakgalaxyatz-7730usingkeckmosfire","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aspectroscopicredshiftmeasurementforaluminouslymanbreakgalaxyatz7730usingkeckmosfire-150505232229-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document presents the spectroscopic confirmation of a luminous Lyman break galaxy (LBG) at a redshift of z = 7.7302 ± 0.0006, as observed using the MOSFIRE instrument on the Keck I telescope. The galaxy, named EGS-zs8-1, was pre-selected as a promising candidate for spectroscopic follow-up based on its bright apparent magnitude of H = 25.0 and very red Spitzer/IRAC colors suggestive of strong emission lines. Spectroscopic observations revealed a clear detection of the Lyman-alpha emission line at a observed wavelength of 1.06 microns, reliably confirming the high photometric redshift of z~7.7. Analysis of the","tags":["spitzer","hubble","keck"],"url":"https://www.slideshare.net/sacani/a-spectroscopic-redshiftmeasurementforaluminouslymanbreakgalaxyatz-7730usingkeckmosfire","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":642},{"algorithmId":"3","displayTitle":"A higher efficiency_of_converting_gas_to_stars_push_galaxies_at_z_1_6_well_ab...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4391,"slideshowId":"54007937","sourceName":"cm_text","strippedTitle":"a-higher-efficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/ahigherefficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence-151016062510-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Galáxias formando estrelas em taxas extremas a nove bilhões de anos atrás eram mais eficientes do que a média das galáxias atuais, descobriram os pesquisadores.\r\nA maioria das estrelas acredita-se localizam-se na sequência principal onde quanto maior a massa da galáxia, mais eficiente ela é na formação de novas estrelas. Contudo, de vez em quando uma galáxia apresentará uma explosão de novas estrelas que brilham mais do que o resto. Uma colisão entre duas grandes galáxias é normalmente a causa dessas fases de explosões de formação de estrelas, onde o gás frio que reside nas grandes nuvens moleculares torna-se o combustível para sustentar essas altas taxas de formação de estrelas.\r\nA questão que os astrônomos têm feito é se essas explosões de estrelas no início o universo foram o resultado de se ter um suprimento de gás abundante, ou se as galáxias convertiam o gás de maneira mais eficiente.\r\nUm novo estudo, publicado no Astrophysical Journal Letters de 15 de Outubro, liderado por John Silverman, do Kavli Institute for Physics and Mathematics of the Universe, estudou o conteúdo do gás monóxido de carbono (CO) em sete galáxias de explosão de estrelas muito distantes, quando o universo tinha apenas 4 bilhões de anos de vida. Isso foi possível devido a capacidade do Atacama Large Millimiter/Submillimiter Array (ALMA), localizado no platô no topo da montanha no Chile, que trabalha para detectar as ondas eletromagnéticas no comprimento de onda milimétrico (importante para se estudar o gás molecular) e um nível de sensibilidade que só agora começa a ser explorado pelos astrônomos.\r\nOs pesquisadores descobriram que a quantidade de gás CO emitido já tinha diminuído, mesmo apesar da galáxia continuar a formar estrelas em altas taxas. Essas observações são similares àquelas registradas para as galáxias de explosões de estrelas próximas da Terra atualmente, mas a quantidade da depleção de gás não foi tão rápida quanto se esperava. Isso levou os pesquisadores a concluírem que poderia haver um contínuo aumento na eficiência, dependendo em de quanto acima da taxa de se formar estrelas ela está da sequência principal.\r\n","tags":["alma","astronomia","estrelas"],"url":"https://www.slideshare.net/slideshow/a-higher-efficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence/54007937","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":543},{"algorithmId":"3","displayTitle":"Measurements of a_massive_galaxy_cluster","isSavedByCurrentUser":false,"pageCount":9,"score":0.4367,"slideshowId":"13462883","sourceName":"cm_text","strippedTitle":"measurements-of-amassivegalaxycluster","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/measurementsofamassivegalaxycluster-120626165724-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document reports on observations of IDCS J1426.5+3508, a galaxy cluster located at a redshift of 1.75. A Sunyaev-Zeldovich decrement was detected towards this cluster, indicating a total mass of 4.3×1014 solar masses. This makes it the most distant cluster detected via the Sunyaev-Zeldovich effect to date and the most massive cluster found at a redshift greater than 1.4. Despite its rarity, the cluster is not unexpected given cosmological models and the large area surveyed. However, it remains one of the rarest and most extreme clusters discovered and provides insight into the early formation of the most massive clusters.","tags":[],"url":"https://www.slideshare.net/slideshow/measurements-of-amassivegalaxycluster/13462883","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":553},{"algorithmId":"3","displayTitle":"A giant galaxy in the young Universe with a massive ring","isSavedByCurrentUser":false,"pageCount":8,"score":0.4359,"slideshowId":"234559781","sourceName":"cm_text","strippedTitle":"a-giant-galaxy-in-the-young-universe-with-a-massive-ring","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-020-1102-7-200525181833-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"In the local (redshift z ≈ 0) Universe, collisional ring galaxies make up only ~0.01% of galaxies1 and are formed by head-on galactic collisions that trigger radially propagating density waves2–4. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe5–9. However, not much is known about distant (z \u003e 0.1) collisional rings10–14. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z = 2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5–2.2 times larger and is forming stars 50 times faster. The extended, dif- fuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved15,16, the implied large bar in a giant disk would be inconsistent with the current understand- ing of the earliest formation of barred spirals17–21. Contrary to previous predictions10–12, this work suggests that massive col- lisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.","tags":["galaxy","ring"],"url":"https://www.slideshare.net/slideshow/a-giant-galaxy-in-the-young-universe-with-a-massive-ring/234559781","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":429},{"algorithmId":"3","displayTitle":"GOALS-JWST: Unveiling Dusty Compact Sources in the Merging Galaxy IIZw096","isSavedByCurrentUser":false,"pageCount":7,"score":0.4331,"slideshowId":"257595265","sourceName":"cm_text","strippedTitle":"goalsjwst-unveiling-dusty-compact-sources-in-the-merging-galaxy-iizw096","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/inami2022apjl940l6-230427122533-3b6ac9b2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first\nspatially resolved, mid-infrared images of IIZw096, a merging luminous infrared galaxy (LIRG) at z = 0.036.\nPrevious observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity\n(LIR) of the system originated from a small region outside of the two merging nuclei. New observations with\nJWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is\nresponsible for the bulk of the IR emission. We estimate that 40%–70% of the IR bolometric luminosity, or\n3–5 × 1011 Le, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least\n3–5 × 1012 Le kpc−2\n. In addition, we detect 11 other star-forming sources, five of which were previously\nunknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the\nbulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power\nof JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.","tags":["james webb","galaxies","engine"],"url":"https://www.slideshare.net/slideshow/goalsjwst-unveiling-dusty-compact-sources-in-the-merging-galaxy-iizw096/257595265","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":8840},{"algorithmId":"3","displayTitle":"A Simultaneous dual-site technosignature search using international LOFAR sta...","isSavedByCurrentUser":false,"pageCount":19,"score":0.433,"slideshowId":"262856080","sourceName":"cm_text","strippedTitle":"a-simultaneous-dualsite-technosignature-search-using-international-lofar-stations","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2310-231029184538-69b6f877-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The Search for Extraterrestrial Intelligence (SETI) aims to find evidence of technosignatures, which\ncan point towards the possible existence of technologically advanced extraterrestrial life. Radio signals\nsimilar to those engineered on Earth may be transmitted by other civilizations, motivating technosignature searches across the entire radio spectrum. In this endeavor, the low-frequency radio band\nhas remained largely unexplored; with prior radio searches primarily above 1 GHz. In this survey at\n110 − 190 MHz, observations of 1,631,198 targets from TESS and Gaia are reported. Observations\ntook place simultaneously with two international stations (non-interferometric) of the Low Frequency\nArray in Ireland and Sweden. We can reject the presence of any Doppler drifting narrow-band transmissions in the barycentric frame of reference, with equivalent isotropic radiated power of 1017 W, for\n0.4 million (or 1.3 million) stellar systems at 110 (or 190) MHz. This work demonstrates the effectiveness of using multi-site simultaneous observations for rejecting anthropogenic signals in the search for\ntechnosignatures.\n","tags":["seti","astrobiology","exoplanets"],"url":"https://www.slideshare.net/slideshow/a-simultaneous-dualsite-technosignature-search-using-international-lofar-stations/262856080","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":436},{"algorithmId":"3","displayTitle":"Submillimeter follow up_of_wise_selected_hyperluminous_galaxies","isSavedByCurrentUser":false,"pageCount":46,"score":0.4317,"slideshowId":"14112612","sourceName":"cm_text","strippedTitle":"submillimeter-follow-upofwiseselectedhyperluminousgalaxies","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/submillimeterfollowupofwiseselectedhyperluminousgalaxies-120829195038-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes follow-up observations of galaxies selected from WISE as being hyperluminous. The authors observed 14 galaxies at 350-850 μm with SHARC-II and 18 galaxies at 1.1 mm with Bolocam, detecting 9 and 5 galaxies respectively. They also observed 25 targets at 3.6 and 4.5 μm with Spitzer and obtained optical spectra for 12 targets. By combining these data with WISE observations, they constructed mid-IR to millimeter spectral energy distributions that showed hotter dust temperatures than galaxy templates, estimated to be 60-120 K. These galaxies have infrared luminosities over 10^13 solar luminosities and represent an extreme population of luminous, hot dust-ob","tags":[],"url":"https://www.slideshare.net/slideshow/submillimeter-follow-upofwiseselectedhyperluminousgalaxies/14112612","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":341},{"algorithmId":"3","displayTitle":"The most luminous_galaxies_discovered_by_wise","isSavedByCurrentUser":false,"pageCount":17,"score":0.431,"slideshowId":"48458042","sourceName":"cm_text","strippedTitle":"the-most-luminousgalaxiesdiscoveredbywise","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/themostluminousgalaxiesdiscoveredbywise-150521223435-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document presents a sample of 20 extremely luminous galaxies discovered by the Wide-field Infrared Survey Explorer (WISE). Five of these galaxies have infrared luminosities exceeding 1014 solar luminosities, the highest infrared luminosity threshold yet observed. They were selected using criteria requiring weak or no detection in the first two WISE bands but strong detections in the third and fourth bands. Spectral energy distribution modeling suggests their high luminosities are powered by obscured active galactic nuclei with hot dust temperatures around 450 Kelvin. The existence of such luminous galaxies at redshifts above 3 provides constraints on the early growth of supermassive black holes through rapid accretion.","tags":["galáxias","astronomia","buracos negros"],"url":"https://www.slideshare.net/slideshow/the-most-luminousgalaxiesdiscoveredbywise/48458042","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":619},{"algorithmId":"3","displayTitle":"s41550-023-01995-x-230625184331-6b69a9d0.pdf","isSavedByCurrentUser":false,"pageCount":18,"score":0.4274,"slideshowId":"258706240","sourceName":"cm_text","strippedTitle":"s4155002301995x2306251843316b69a9d0pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01995-x-230625184331-6b69a9d0-230629001506-da4c46a2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays\nWhite dwarf stars are the most common stellar fossils. When in binaries, they\nmake up the dominant form of compact object binary within the Galaxy and\ncan ofer insight into diferent aspects of binary formation and evolution.\nOne of the most remarkable white dwarf binary systems identifed to date\nis AR Scorpii (AR Sco). AR Sco is composed of an M dwarf star and a rapidly\nspinning white dwarf in a 3.56 h orbit. It shows pulsed emission with a period\nof 1.97 min over a broad range of wavelengths, which led to it being known as\na white dwarf pulsar. Both the pulse mechanism and the evolutionary origin\nof AR Sco provide challenges to theoretical models. Here we report the\ndiscovery of a sibling of AR Sco, J191213.72-441045.1, which harbours a white\ndwarf in a 4.03 h orbit with an M dwarf and exhibits pulsed emission with a\nperiod of 5.30 min. This discovery establishes binary white dwarf pulsars as\na class and provides support for proposed formation models for white\ndwarf pulsars.","tags":["a 5.3-min-period pulsing white","facebook","whatsapp"],"url":"https://www.slideshare.net/slideshow/s4155002301995x2306251843316b69a9d0pdf/258706240","userLogin":"RanaArshadTechnical","userName":"RanaArshadTechnical","viewCount":18},{"algorithmId":"3","displayTitle":"A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays","isSavedByCurrentUser":false,"pageCount":18,"score":0.4274,"slideshowId":"258619681","sourceName":"cm_text","strippedTitle":"a-53minperiod-pulsing-white-dwarf-in-a-binary-detected-from-radio-to-xrays","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01995-x-230625184331-6b69a9d0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"White dwarf stars are the most common stellar fossils. When in binaries, they\nmake up the dominant form of compact object binary within the Galaxy and\ncan ofer insight into diferent aspects of binary formation and evolution.\nOne of the most remarkable white dwarf binary systems identifed to date\nis AR Scorpii (AR Sco). AR Sco is composed of an M dwarf star and a rapidly\nspinning white dwarf in a 3.56 h orbit. It shows pulsed emission with a period\nof 1.97 min over a broad range of wavelengths, which led to it being known as\na white dwarf pulsar. Both the pulse mechanism and the evolutionary origin\nof AR Sco provide challenges to theoretical models. Here we report the\ndiscovery of a sibling of AR Sco, J191213.72-441045.1, which harbours a white\ndwarf in a 4.03 h orbit with an M dwarf and exhibits pulsed emission with a\nperiod of 5.30 min. This discovery establishes binary white dwarf pulsars as\na class and provides support for proposed formation models for white\ndwarf pulsars.","tags":["pulsar","white dwarf","star"],"url":"https://www.slideshare.net/slideshow/a-53minperiod-pulsing-white-dwarf-in-a-binary-detected-from-radio-to-xrays/258619681","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":6045},{"algorithmId":"3","displayTitle":"A fast-rotator post-starburst galaxy quenched by supermassive black-hole feed...","isSavedByCurrentUser":false,"pageCount":14,"score":0.4266,"slideshowId":"272228502","sourceName":"cm_text","strippedTitle":"a-fast-rotator-post-starburst-galaxy-quenched-by-supermassive-black-hole-feedback-at-z-3","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02345-1-241007001227-27932be9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The most massive galaxies in the Universe stopped forming stars due to the\ntime-integrated feedback from central supermassive black holes (SMBHs).\nHowever, the exact quenching mechanism is not yet understood, because\nlocal massive galaxies were quenched billions of years ago. Here we present\nJWST/NIRSpec integral-feld spectroscopy observations of GS-10578,\na massive, quiescent galaxy at redshift z = 3.064 ± 0.002. From its spectrum,\nwe measure a stellar mass M⋆ = 1.6 ± 0.2 × 1011 M⊙ and a dynamical mass\nMdyn = 2.0 ± 0.5 × 1011 M⊙. Half of its stellar mass formed at z = 3.7–4.6, and the\nsystem is now quiescent, with a current star-formation rate of less than\n19 M⊙ yr−1. We detect ionized- and neutral-gas outfows traced by [O iii]\nemission and Na i absorption, with mass outfow rates 0.14–2.9 and\n30–100 M⊙ yr−1, respectively. Outfow velocities reach vout ≈ 1,000 km s−1,\ncomparable to the galaxy escape velocity. GS-10578 hosts an active galactic\nnucleus, evidence that these outfows are due to SMBH feedback. The\nneutral outfow rate is higher than the star-formation rate. Hence, this is\ndirect evidence for ejective SMBH feedback, with a mass loading capable of\ninterrupting star formation by rapidly removing its fuel. Stellar kinematics\nshow ordered rotation, with spin parameter λRe = 0.62 ± 0.07, meaning\nGS-10578 is rotation-supported. This study presents direct evidence for\nejective active galactic nucleus feedback in a massive, recently quenched\ngalaxy, thus helping to clarify how SMBHs quench their hosts. The high value\nof λRe\n implies that quenching can occur without destroying the stellar disk.","tags":["black hole","galaxy","james webb"],"url":"https://www.slideshare.net/slideshow/a-fast-rotator-post-starburst-galaxy-quenched-by-supermassive-black-hole-feedback-at-z-3/272228502","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":720},{"algorithmId":"3","displayTitle":"2041 8205 743-2_l37","isSavedByCurrentUser":false,"pageCount":6,"score":0.4251,"slideshowId":"10423357","sourceName":"cm_text","strippedTitle":"2041-8205-7432l37","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2041-82057432l37-111201173436-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes evidence that a galaxy at a redshift of 1.35 contains three accreting black holes. Hubble Space Telescope observations reveal the galaxy has a clumpy morphology with four distinct components, labeled A, B, C, and D. Spectroscopy of the three brightest components (A, B, and C) shows high [O iii]/Hβ line ratios indicative of active galactic nuclei. This provides evidence that each of the three components contains a rapidly growing black hole of mass 106–107 solar masses. The black holes could have formed via early mergers or grown more recently within the galaxy.","tags":[],"url":"https://www.slideshare.net/slideshow/2041-8205-7432l37/10423357","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":292},{"algorithmId":"3","displayTitle":"Clarkson","isSavedByCurrentUser":false,"pageCount":35,"score":0.4243,"slideshowId":"8118235","sourceName":"cm_text","strippedTitle":"clarkson","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/clarkson-110526184549-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document reports the first detections of Blue Straggler Stars (BSS) in the Milky Way bulge. Proper motions and variability measurements from Hubble Space Telescope observations were used to separate a clean bulge sample and identify BSS candidates. Of 42 candidate BSS identified, variability measurements indicate that at least 18 are genuine BSS, while contamination estimates suggest the true BSS population could be as high as 37 objects. This establishes for the first time that BSS exist as a population in the Milky Way bulge.","tags":[],"url":"https://www.slideshare.net/slideshow/clarkson/8118235","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":518},{"algorithmId":"3","displayTitle":"Discovery and timing of ten new millisecond pulsars in the globular cluster T...","isSavedByCurrentUser":false,"pageCount":23,"score":0.4242,"slideshowId":"270814857","sourceName":"cm_text","strippedTitle":"discovery-and-timing-of-ten-new-millisecond-pulsars-in-the-globular-cluster-terzan-5","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa49303-24-240806171537-e7a7b2b6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT\n(TRAPUM) Large Survey Project. We observed Terzan 5 at L-band (856–1712 MHz) with the MeerKAT radio telescope for four\nhours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We\nobtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the\nGreen Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital\nperiod Pb = 57.55 d) system. We were able to measure the rate of advance of periastron ( ˙ω) for this system allowing us to determine a\ntotal mass of 3.17 ± 0.02 M\f. With a minimum companion mass (Mc) of ∼0.8 M\f, PSR J1748−2446ao is a candidate double neutron\nstar (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period\nmeasured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905)\nand for this system we can measure the total mass (1.997 ± 0.006 M\f) and estimate the pulsar and companion masses, (1.700+0.015\n−0.045 M\f\nand 0.294+0.046\n−0.014 M\f, respectively). PSR J1748−2446ar is an eclipsing redback (minimum Mc ∼ 0.34 M\f) system whose properties\nconfirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detect\nω˙ for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 M\f and indicating that the system is likely the result of\nCase A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any\nglobular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper\nunderstanding of binary stellar evolution, cluster dynamics and ensemble population studies.","tags":["terzan 5","pulsars","universe"],"url":"https://www.slideshare.net/slideshow/discovery-and-timing-of-ten-new-millisecond-pulsars-in-the-globular-cluster-terzan-5/270814857","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":464},{"algorithmId":"3","displayTitle":"A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing","isSavedByCurrentUser":false,"pageCount":7,"score":0.4241,"slideshowId":"81728444","sourceName":"cm_text","strippedTitle":"a-dusty-starforming-galaxy-at-z-6-revealed-by-strong-gravitational-lensing","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-017-0297-8-171107224000-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Since their discovery, submillimetre-selected galaxies1,2\r\nhave revolutionized the field of galaxy formation and evolution.\r\nFrom the hundreds of square degrees mapped at submillimetre\r\nwavelengths3–5\r\n, only a handful of sources have\r\nbeen confirmed to lie at z\u003e 5 (refs 6–10) and only two at z ≥ 6\r\n(refs 11,12). All of these submillimetre galaxies are rare examples\r\nof extreme starburst galaxies with star formation rates\r\nof ≳1,000 M⊙ yr−1\r\n and therefore are not representative\r\nof the general population of dusty star-forming galaxies.\r\nConsequently, our understanding of the nature of these\r\nsources, at the earliest epochs, is still incomplete. Here, we\r\nreport the spectroscopic identification of a gravitationally\r\namplified (μ= 9.3 ± 1.0) dusty star-forming galaxy at z= 6.027.\r\nAfter correcting for gravitational lensing, we derive an intrinsic\r\nless-extreme star formation rate of 380 ± 50 M⊙ yr−1\r\nfor this source and find that its gas and dust properties are\r\nsimilar to those measured for local ultra luminous infrared\r\ngalaxies, extending the local trends to a poorly explored territory\r\nin the early Universe. The star-formation efficiency\r\nof this galaxy is similar to those measured in its local analogues13,\r\ndespite a ~12 Gyr difference in cosmic time.","tags":["galaxy","z=6","."],"url":"https://www.slideshare.net/slideshow/a-dusty-starforming-galaxy-at-z-6-revealed-by-strong-gravitational-lensing/81728444","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":476},{"algorithmId":"3","displayTitle":"DISSERTATIONJOAKIM676951","isSavedByCurrentUser":false,"pageCount":33,"score":0.4233,"slideshowId":"52993575","sourceName":"cm_text","strippedTitle":"dissertationjoakim676951","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/80a63dd8-58c4-4922-aa78-01236f5fb980-150920220648-lva1-app6892-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document is a dissertation by Joakim Carlsen submitted in 2014/2015 for a Bsc(Honours) in Applied Physics. It investigates detecting massive galaxies at high redshift (z \u003e 4) using photometric data from the Dark Energy Survey (DES). The dissertation aims to identify massive galaxy candidates at z \u003e 4 based on their colors and fit their spectral energy distributions using photometric redshift modeling software. Several high redshift massive galaxy candidates were identified and their properties were analyzed, with the most promising candidates to be proposed for follow-up spectroscopy to confirm their redshifts.","tags":[],"url":"https://www.slideshare.net/slideshow/dissertationjoakim676951/52993575","userLogin":"JoakimCarlsen","userName":"Joakim Carlsen","viewCount":264}],"moreFromUser":[{"algorithmId":"","displayTitle":"Gravitational Effects of a Small Primordial Black Hole Passing Through the Hu...","isSavedByCurrentUser":false,"pageCount":3,"score":0,"slideshowId":"275772871","sourceName":"MORE_FROM_USER","strippedTitle":"gravitational-effects-of-a-small-primordial-black-hole-passing-through-the-human-body","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2502-250218104059-84100ed6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The gravitational effects of a primordial black hole (PBH) passing through the human body are examined, with the goal of determining the minimum mass necessary to produce significant injury or death. Two effects are examined: the damage caused by a shock wave propagating outward from the black hole trajectory, and the dissociation of brain cells from tidal forces produced by the black hole on its passage through the human body. It is found that the former is the dominant effect, with a cutoff mass for serious injury or death of approximately MPBH \u003e 1.4×1017g. The number density of primordial black holes with a mass above this cutoff is far too small to produce any observable effects on the human population.","tags":["black holes","primoridal black holes","human body"],"url":"https://www.slideshare.net/slideshow/gravitational-effects-of-a-small-primordial-black-hole-passing-through-the-human-body/275772871","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"A reassessment of the “hard-steps” model for theevolution of intelligent life","isSavedByCurrentUser":false,"pageCount":17,"score":0,"slideshowId":"275719826","sourceName":"MORE_FROM_USER","strippedTitle":"a-reassessment-of-the-hard-steps-model-for-theevolution-of-intelligent-life","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/sciadv-250217023047-334e24e4-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"According to the “hard-steps” model, the origin of humanity required “successful passage through a number ofintermediate steps” (so-called “hard steps”) that were intrinsically improbable in the time available for biologicalevolution on Earth. This model similarly predicts that technological life analogous to human life on Earth is “ex-ceedingly rare” in the Universe. Here, we critically reevaluate core assumptions of the hard-steps model throughthe lens of historical geobiology. Specifically, we propose an alternative model where there are no hard steps, andevolutionary singularities required for human origins can be explained via mechanisms outside of intrinsic im-probability. Furthermore, if Earth’s surface environment was initially inhospitable not only to human life, but alsoto certain key intermediate steps required for human existence, then the timing of human origins was controlledby the sequential opening of new global environmental windows of habitability over Earth history.","tags":["harde steps","lifepr","evolution"],"url":"https://www.slideshare.net/slideshow/a-reassessment-of-the-hard-steps-model-for-theevolution-of-intelligent-life/275719826","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"A Case Study of Interstellar Material Delivery: α Centauri","isSavedByCurrentUser":false,"pageCount":15,"score":0,"slideshowId":"275711513","sourceName":"MORE_FROM_USER","strippedTitle":"a-case-study-of-interstellar-material-delivery-centauri","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2502-250216201152-0e7c00e9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Interstellar material has been discovered in our Solar System, yet its origins and details of its transport are unknown. Here we present α Centauri as a case study of the delivery of interstellar material to our Solar System. α Centauri is a mature triple star system that likely harbours planets, and is moving towards us with the point of closest approach approximately 28,000 years in the future. Assuming a current ejection model for the system, we find that such material can reach our Solar System and may currently be present here. The material that does reach us is mostly a product of low (\u003c 2 km s−1) ejection velocities, and the rate at which it enters our Solar System is expected to peak around the time of α Centauri’s closest approach. If α Centauri ejects material at a rate comparable to our own Solar System, we estimate the current number of α Centauri particles larger than 100 m in diameter within our Oort Cloud to be 106, and during α Centauri’s closest approach, this will increase by an order of magnitude. However, the observable fraction of such objects remains low as there is only a probability of 10−6 that one of them is within 10 au of the Sun. A small number (∼ 10) meteors \u003e 100 µm from α Centauri may currently be entering Earth’s atmosphere every year: this number is very sensitive to the assumed ejected mass distribution, but the flux is expected to increase as α Centauri approaches.","tags":["alpha centauri","material","solar ssytem"],"url":"https://www.slideshare.net/slideshow/a-case-study-of-interstellar-material-delivery-centauri/275711513","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"Constraining the equation of state in neutron-star cores via the long-ringdow...","isSavedByCurrentUser":false,"pageCount":9,"score":0,"slideshowId":"275703428","sourceName":"MORE_FROM_USER","strippedTitle":"constraining-the-equation-of-state-in-neutron-star-cores-via-the-long-ringdown-signal","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41467-025-56500-x-250216135442-ed5cee71-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Multimessenger signals from binary neutron star (BNS) mergers are promising\ntools to infer the properties of nuclear matter at densities inaccessible to\nlaboratory experiments. Gravitational waves (GWs) from BNS merger remnants can constrain the neutron-star equation of state (EOS) complementing\nconstraints from late inspiral, direct mass-radius measurements, and ab-initio\ncalculations. We perform a series of general-relativistic simulations of BNS\nsystems with EOSs constructed to comprehensively cover the high-density\nregime. We identify a tight correlation between the ratio of the energy and\nangular-momentum losses in the late-time portion of the post-merger signal,\ncalled the long ringdown, and the EOS at the highest pressures and densities in\nneutron-star cores. Applying this correlation to post-merger GW signals significantly reduces EOS uncertainty at densities several times the nuclear\nsaturation density, where no direct constraints are currently available. Hence,\nthe long ringdown can provide stringent constraints on material properties of\nneutron stars cores.","tags":["neutron stars","engineering","ringtone"],"url":"https://www.slideshare.net/slideshow/constraining-the-equation-of-state-in-neutron-star-cores-via-the-long-ringdown-signal/275703428","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"Emergence of opposing arrows of time in open quantum systems","isSavedByCurrentUser":false,"pageCount":18,"score":0,"slideshowId":"275702611","sourceName":"MORE_FROM_USER","strippedTitle":"emergence-of-opposing-arrows-of-time-in-open-quantum-systems","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41598-025-87323-x-250216131426-100e715a-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open\nproblem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics\nand statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum\nsystems and study precisely how time-reversal symmetry is broken. This derivation involves the\nMarkov approximation applied to a system interacting with an infinite heat bath.We find that the\nMarkov approximation does not imply a violation of time-reversal symmetry. Our results show\ninstead that the time-reversal symmetry is maintained in the derived equations of motion. This\nimposes a time-symmetric formulation of quantum Brownian motion, Lindblad and Pauli master\nequations, which hence describe thermalisation that may occur into two opposing time directions. As\na consequence, we argue that these dynamics are better described by a time-symmetric definition of\nMarkovianity. Our results may reflect on the formulations of the arrow of time in thermodynamics,\ncosmology, and quantum mechanics.","tags":["arrow of time","quantum realm","physics"],"url":"https://www.slideshare.net/slideshow/emergence-of-opposing-arrows-of-time-in-open-quantum-systems/275702611","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"Observation of an ultra-high-energy cosmic neutrino with KM3NeT","isSavedByCurrentUser":false,"pageCount":20,"score":0,"slideshowId":"275694475","sourceName":"MORE_FROM_USER","strippedTitle":"observation-of-an-ultra-high-energy-cosmic-neutrino-with-km3net","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41586-024-08543-11-250216051128-9c6b2060-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The detection of cosmic neutrinos with energies above a teraelectronvolt (TeV) ofers\na unique exploration into astrophysical phenomena1–3\n. Electrically neutral and\ninteracting only by means of the weak interaction, neutrinos are not defected by\nmagnetic felds and are rarely absorbed by interstellar matter: their direction\nindicates that their cosmic origin might be from the farthest reaches of the Universe.\nHigh-energy neutrinos can be produced when ultra-relativistic cosmic-ray protons or\nnuclei interact with other matter or photons, and their observation could be a\nsignature of these processes. Here we report an exceptionally high-energy event\nobserved by KM3NeT, the deep-sea neutrino telescope in the Mediterranean Sea4\n,\nwhich we associate with a cosmic neutrino detection. We detect a muon with an\nestimated energy of 120−60 +110 petaelectronvolts (PeV). In light of its enormous energy\nand near-horizontal direction, the muon most probably originated from the\ninteraction of a neutrino of even higher energy in the vicinity of the detector. The\ncosmic neutrino energy spectrum measured up to now5–7\n falls steeply with energy.\nHowever, the energy of this event is much larger than that of any neutrino detected\nso far. This suggests that the neutrino may have originated in a diferent cosmic\naccelerator than the lower-energy neutrinos, or this may be the frst detection of a\ncosmogenic neutrino8\n, resulting from the interactions of ultra-high-energy cosmic\nrays with background photons in the Universe.","tags":["ultra-high energy","cosmic neutrino","km3net"],"url":"https://www.slideshare.net/slideshow/observation-of-an-ultra-high-energy-cosmic-neutrino-with-km3net/275694475","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":0},{"algorithmId":"","displayTitle":"Coronal hole picoflare jets are progenitors of both fast and Alfvénic slow so...","isSavedByCurrentUser":false,"pageCount":17,"score":0,"slideshowId":"275565549","sourceName":"MORE_FROM_USER","strippedTitle":"coronal-hole-picoflare-jets-are-progenitors-of-both-fast-and-alfvenic-slow-solar-wind","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa52737-24-250212011641-a69fb8ef-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Solar wind, classified by its bulk speed and the Alfvénic nature of its fluctuations, generates the heliosphere. The elusive physical processes responsible for the generation of the di erent types of this wind are a topic of active debate. Recent observations reveal intermittent jets, with kinetic energy in the picoflare range, emerging from dark areas of a polar coronal hole threaded by open magnetic field lines. These could substantially contribute to solar wind. However, their ubiquity and direct links to solar wind have not been established. Here, we report a unique set of remote-sensing and in situ observations from the Solar Orbiter spacecraft that establish a unified picture of fast and Alfvénic slow wind, connected to the similar widespread picoflare jet activity in two coronal holes. Radial expansion of coronal holes ultimately regulates the speed of the emerging wind.","tags":["picoflare","sun","solar wind"],"url":"https://www.slideshare.net/slideshow/coronal-hole-picoflare-jets-are-progenitors-of-both-fast-and-alfvenic-slow-solar-wind/275565549","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":138},{"algorithmId":"","displayTitle":"Abundant ammonia and nitrogen-rich soluble organic matter in samples from ast...","isSavedByCurrentUser":false,"pageCount":20,"score":0,"slideshowId":"275324449","sourceName":"MORE_FROM_USER","strippedTitle":"abundant-ammonia-and-nitrogen-rich-soluble-organic-matter-in-samples-from-asteroid-101955-bennu","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02472-9-250203023356-8ef934a0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Organic matter in meteorites reveals clues about early Solar System\nchemistry and the origin of molecules important to life, but terrestrial\nexposure complicates interpretation. Samples returned from the\nB-type asteroid Bennu by the Origins, Spectral Interpretation, Resource\nIdentifcation, and Security–Regolith Explorer mission enabled us to study\npristine carbonaceous astromaterial without uncontrolled exposure to\nEarth’s biosphere. Here we show that Bennu samples are volatile rich, with\nmore carbon, nitrogen and ammonia than samples from asteroid Ryugu and\nmost meteorites. Nitrogen-15 isotopic enrichments indicate that ammonia\nand other N-containing soluble molecules formed in a cold molecular cloud\nor the outer protoplanetary disk. We detected amino acids (including 14\nof the 20 used in terrestrial biology), amines, formaldehyde, carboxylic\nacids, polycyclic aromatic hydrocarbons and N-heterocycles (including\nall fve nucleobases found in DNA and RNA), along with ~10,000 N-bearing\nchemical species. All chiral non-protein amino acids were racemic or nearly\nso, implying that terrestrial life’s left-handed chirality may not be due to\nbias in prebiotic molecules delivered by impacts. The relative abundances\nof amino acids and other soluble organics suggest formation and alteration\nby low-temperature reactions, possibly in NH3-rich fuids. Bennu’s parent\nasteroid developed in or accreted ices from a reservoir in the outer Solar\nSystem where ammonia ice was stable.","tags":["organic matter","bennu","amonia"],"url":"https://www.slideshare.net/slideshow/abundant-ammonia-and-nitrogen-rich-soluble-organic-matter-in-samples-from-asteroid-101955-bennu/275324449","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":878},{"algorithmId":"","displayTitle":"An evaporite sequence from ancient brine recorded in Bennu samples","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"275324413","sourceName":"MORE_FROM_USER","strippedTitle":"an-evaporite-sequence-from-ancient-brine-recorded-in-bennu-samples","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41586-024-08495-6-250203023027-1d196960-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Evaporation or freezing of water-rich fuids with dilute concentrations of dissolved\nsalts can produce brines, as observed in closed basins on Earth1\n and detected by\nremote sensing on icy bodies in the outer Solar System2,3\n. The mineralogical evolution\nof these brines is well understood in regard to terrestrial environments4\n, but poorly\nconstrained for extraterrestrial systems owing to a lack of direct sampling. Here we\nreport the occurrence of salt minerals in samples of the asteroid (101955) Bennu\nreturned by the OSIRIS-REx mission5\n. These include sodium-bearing phosphates and\nsodium-rich carbonates, sulfates, chlorides and fuorides formed during evaporation\nof a late-stage brine that existed early in the history of Bennu’s parent body. Discovery\nof diverse salts would not be possible without mission sample return and careful\ncuration and storage, because these decompose with prolonged exposure to Earth’s\natmosphere. Similar brines probably still occur in the interior of icy bodies Ceres\nand Enceladus, as indicated by spectra or measurement of sodium carbonate on the\nsurface or in plumes2,3\n.","tags":["bennu","evaporite","life"],"url":"https://www.slideshare.net/slideshow/an-evaporite-sequence-from-ancient-brine-recorded-in-bennu-samples/275324413","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":893},{"algorithmId":"","displayTitle":"The Atacama Cosmology Telescope DR6 and DESI: structure formation over cosmic...","isSavedByCurrentUser":false,"pageCount":49,"score":0,"slideshowId":"275321128","sourceName":"MORE_FROM_USER","strippedTitle":"the-atacama-cosmology-telescope-dr6-and-desi-structure-formation-over-cosmic-time-with-a-measurement-of-the-cross-correlation-of-cmb-lensing-and-luminous-red-galaxies","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/kim2024j-250202225338-b52a3653-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Abstract: We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey spectroscopically calibrated by DESI. We detect this cross-correlation at a significance of 38σ; combining our measurement with the Planck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50σ. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy with σ8, we perform a tomographic analysis in four LRG redshift bins spanning 0.4 ≤ z ≤ 1.0 to constrain the amplitude of matter density fluctuations through the parameter combination S× 8 = σ8(Ωm/0.3)0.4. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective f ield theory (HEFT) model that allows scales as small as kmax = 0.6 h/Mpc, we obtain a 3.3% constraint on S× 8 = σ8(Ωm/0.3)0.4 = 0.792+0.024 −0.028 from ACT data, as well as constraints on S× 8(z) that probe structure formation over cosmic time. Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured by Planck PR4 within 1.2σ. Jointly fitting ACT and Planck lensing cross-correlations we obtain a 2.7% constraint of S× 8 = 0.776+0.019 −0.021, which is consistent with the Planck early-universe extrapolation within 2.1σ, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses at z \u003c 0.6 to assess the impact of potential systematics or the consistency of the ΛCDM model over cosmic time.","tags":["cosmological parameters","gravitational lensing","power spectrum"],"url":"https://www.slideshare.net/slideshow/the-atacama-cosmology-telescope-dr6-and-desi-structure-formation-over-cosmic-time-with-a-measurement-of-the-cross-correlation-of-cmb-lensing-and-luminous-red-galaxies/275321128","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":18278},{"algorithmId":"","displayTitle":"Star Cluster Population of High Mass Black Hole Mergers in Gravitational Wave...","isSavedByCurrentUser":false,"pageCount":7,"score":0,"slideshowId":"275318761","sourceName":"MORE_FROM_USER","strippedTitle":"star-cluster-population-of-high-mass-black-hole-mergers-in-gravitational-wave-data","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/physrevlett-250202190642-09f458b2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Stellar evolution theories predict a gap in the black hole birth mass spectrum as the result of pair instability processes in the cores of massive stars. This gap, however, is not seen in the binary black hole masses inferred from gravitational wave data. One explanation is that black holes form dynamically in dense star clusters where smaller black holes merge to form more massive black holes, populating the mass gap. Weshowthat this model predicts a distribution of the effective and precessing spin parameters, χeff and χp, within the mass gap that is insensitive to assumptions about black hole natal spins and other astrophysical parameters. We analyze the distribution of χeff as a function of primary mass for the black hole binaries in the third gravitational wave transient catalog. We infer the presence of a high mass and isotropically spinning population of black holes that is consistent with hierarchical formation in dense star clusters and a pair-instability mass gap with a lower edge at 44þ6 −4M⊙. Wecompute a Bayes factor B \u003e 104 relative to models that do not allow for a high mass population with a distinct χeff distribution. Upcoming data will enable us to tightly constrain the hierarchical formation hypothesis and refine our understanding of binary black hole formation.","tags":["star cluster","black holes","gravitational waves"],"url":"https://www.slideshare.net/slideshow/star-cluster-population-of-high-mass-black-hole-mergers-in-gravitational-wave-data/275318761","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":638},{"algorithmId":"","displayTitle":"Gravitational Communication: Fundamentals, State-of-the-Art and Future Vision","isSavedByCurrentUser":false,"pageCount":26,"score":0,"slideshowId":"275283688","sourceName":"MORE_FROM_USER","strippedTitle":"gravitational-communication-fundamentals-state-of-the-art-and-future-vision","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2501-250131183426-3fb487b0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Abstract—This paper provides a comprehensive overview of fundamentals and the latest research progress in gravitational communication, with a detailed historical review of gravitational wave generation and detection. Key aspects covered include the evolution of detection sensitivity and generation methods, modulation techniques, and gravitational communication channel. While gravitational wave communication holds promise for overcoming limitations in traditional electromagnetic communication, significant challenges remain, particularly in wave generation and detection. The paper also explores various modulation techniques and examines environmental influences on gravitational wave transmission. A comparative discussion is provided between gravitational and classical communication modalities—including electromagnetic, quantum, particle, acoustic, and optical communications—highlighting the strengths and limitations of each. Furthermore, potential application and future vision for gravitational communication are also envisioned. Finally, Potential research directions to bridge the gap between theoretical and practical applications of gravitational wave communication are investigated. Index Terms—Gravitational communications, space communication, multi-messenger astronomy","tags":["gravitational waves","communications","black holes"],"url":"https://www.slideshare.net/slideshow/gravitational-communication-fundamentals-state-of-the-art-and-future-vision/275283688","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":18},{"algorithmId":"","displayTitle":"Hα-X-ray Surface Brightness Correlation for Filaments in Cooling Flow Clusters","isSavedByCurrentUser":false,"pageCount":32,"score":0,"slideshowId":"275282001","sourceName":"MORE_FROM_USER","strippedTitle":"h-x-ray-surface-brightness-correlation-for-filaments-in-cooling-flow-clusters","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2501-250131163349-3d59cfbd-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Evidence of AGN feedback can be observed in cooling flow clusters, where powerful radio-emitting jets from the central galaxy create bubbles in the surrounding ICM [1, 2, 3, 4, 5, 6, 7, 8]. Multiphase filaments extended from the central galaxy may result from hot gas condensation triggered by AGN feedback [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 119, 20, 21, 22, 23]. Spatial correlations between the X-ray and Hα filaments in coolingf low clusters have been observed since the 1990s [24, 25, 26, 27, 28]. However, those earlier observations did not establish a quantitative correlation between X-ray and Hα surface brightness. Inspired by the universal X-ray to Hα surface brightness correlation found in the stripped tails of jellyfish galaxies [1], we present a quantitative comparison of H-alpha and X-ray surface brightness in the filaments observed in multiple cooling f low clusters (Fig. 1). These clusters were uniformly analyzed with a novel technique that allows the measurement of X-ray filament surface brightness over a large dynamic range. We analyzed the deep Chandra observations of 7 strong cooling flow clustersPerseus, M87, Centaurus, Abell2597, Abell1795, Hydra-A, and PKS0745-191– that display prominent multiphase filamentary structures (see Table 1). We first isolated the X-ray filamentary components from the underlying X-ray bright cool core and the complicated substructures at cluster centers such as X-ray cavities and sloshing cold fronts (see Section Methods). This was achieved by using a novel imaging decomposition method called the General Morphological Component Analysis (GMCA, [30]), along with its updated versions pGMCA (Poisson Generalized Morphological Component Analysis [31]) and [32] (which is designed to exploit X-ray data). The pGMCA method provides distinct X-ray components for each pixel, consisting of spatial and spectral information that make up the total X-ray emission of each cluster, including X-ray filaments, a diffuse X-ray halo that generally reveals a sloshing spiral, and X-ray cavities. Each of these components can be visually and spectrally identified (see Section Methods). All clusters have deep Hα data (which traces the ∼ 10,000 K gas phase) from MUSE (Multi Unit Spectroscopic Explorer) or SITELLE (Spectrom`etre Imageur `a Transform´ ee de Fourier pour l’Etude en Long et en Large de raies d’Emission) integral field spectrograph (IFS) observations.","tags":["agn","black hole","stars"],"url":"https://www.slideshare.net/slideshow/h-x-ray-surface-brightness-correlation-for-filaments-in-cooling-flow-clusters/275282001","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":575},{"algorithmId":"","displayTitle":"MUSEQuBES: Unveiling Cosmic Web Filaments at z ≈ 3.6 through Dual Absorption ...","isSavedByCurrentUser":false,"pageCount":9,"score":0,"slideshowId":"275263853","sourceName":"MORE_FROM_USER","strippedTitle":"musequbes-unveiling-cosmic-web-filaments-at-z-3-6-through-dual-absorption-and-emission-line-analysis","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2412-250130180325-7ee1c304-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"According to modern cosmological models, galaxies are embedded within cosmic filaments, which supply a continuous flow of pristine gas, fueling star formation and driving their evolution. However, due to\ntheir low density, the direct detection of diffuse gas in cosmic filaments remains elusive. Here, we report\nthe discovery of an extremely metal-poor ([X/H] ≈ −3.7), low-density (log10 nH/cm−3 ≈ −4, corresponding to an overdensity of ≈ 5) partial Lyman limit system (pLLS) at z ≈ 3.577 along the quasar\nsightline Q1317–0507, probing cosmic filaments. Additionally, two other low-metallicity ([X/H]≲ −2)\nabsorption systems are detected at similar redshifts, one of which is also a pLLS. VLT/MUSE observations reveal a significant overdensity of Lyα emitters (LAEs) associated with these absorbers. The\nspatial distribution of the LAEs strongly suggests the presence of an underlying filamentary structure.\nThis is further supported by the detection of a large Lyα emitting nebula with a surface brightness of\n≥ 10−19 erg cm−2\ns\n−1 arcsec−2\n, with a maximum projected linear size of ≈ 260 pkpc extending along\nthe LAEs. This is the first detection of giant Lyα emission tracing cosmic filaments, linked to normal\ngalaxies and likely powered by in-situ recombination.","tags":["cosmic filaments","evolution","galaxies"],"url":"https://www.slideshare.net/slideshow/musequbes-unveiling-cosmic-web-filaments-at-z-3-6-through-dual-absorption-and-emission-line-analysis/275263853","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":12388},{"algorithmId":"","displayTitle":"Episodic warm climates on early Mars primed by crustal hydration","isSavedByCurrentUser":false,"pageCount":10,"score":0,"slideshowId":"275241716","sourceName":"MORE_FROM_USER","strippedTitle":"episodic-warm-climates-on-early-mars-primed-by-crustal-hydration","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41561-024-01626-8-250129193141-d624acee-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Geological records indicate that the surface of ancient Mars harboured \nsubstantial volumes of liquid water, a resource gradually diminished \nby processes such as the chemical alteration of crustal materials by \nhydration and atmospheric escape. However, how a relatively warm climate \nexisted on early Mars to support liquid water under a fainter young Sun \nis debated. Greenhouse gases such as H2 in a CO2-rich atmosphere could \nhave contributed to warming through collision-induced absorption, but \nwhether sufcient H2 was available to sustain warming remains unclear. \nHere we use a combined climate and photochemical model to simulate how \natmospheric chemistry on early Mars responded to water–rock reactions and \nclimate variations, as constrained by existing observations. We fnd that H2\noutgassing from crustal hydration and oxidation, supplemented by transient \nvolcanic activity, could have generated sufcient H2 fuxes to transiently \nfoster warm, humid climates. We estimate that Mars experienced episodic \nwarm periods of an integrated duration of ~40 million years, with each event \nlasting ≥105\n years, consistent with the formation timescale of valley networks. \nDeclining atmospheric CO2 via surface oxidant sinks or variations in the \nplanet’s axial tilt could have led to abrupt shifts in the planet’s redox state and \ntransition to a CO-dominated atmosphere and cold climate.","tags":["climate change","mars","episodic"],"url":"https://www.slideshare.net/slideshow/episodic-warm-climates-on-early-mars-primed-by-crustal-hydration/275241716","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":33},{"algorithmId":"","displayTitle":"Architecture Classification for Extrasolar Planetary Systems","isSavedByCurrentUser":false,"pageCount":36,"score":0,"slideshowId":"275239665","sourceName":"MORE_FROM_USER","strippedTitle":"architecture-classification-for-extrasolar-planetary-systems","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2501-250129172036-8512b64b-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This paper presents a classification framework for the architectures of planetary systems based on\na complete survey of the confirmed exoplanet population. With nearly 6000 confirmed exoplanets\ndiscovered, including more than 300 multiplanet systems with N ≥3 planets, the current observational\nsample has reached the point where it is both feasible and useful to build a classification system that\ndivides the observed population into meaningful categories. This framework provides a criterion to split\nplanetary systems into inner and outer regimes, and then further divides inner systems into dynamical\nclasses. The resulting categories include “peas-in-a-pod systems” with uniformly small planets and\n“warm Jupiter systems” with a mix of large and small planets, as well as “closely-spaced systems”\nand “gapped systems,” with further subdivisions based on the locations of gaps and other features.\nThese categories can classify nearly all of the confirmed N ≥3 systems with minimal ambiguity. We\nqualitatively examine the relative prevalence of each type of system, subject to observational selection\neffects, as well as other notable features such as the presence of hot Jupiters. A small number of outlier\nsystems are also discussed. Potential additional classes of systems yet to be discovered are proposed.\n","tags":["exoplanet classification","architecture","universe"],"url":"https://www.slideshare.net/slideshow/architecture-classification-for-extrasolar-planetary-systems/275239665","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":629},{"algorithmId":"","displayTitle":"Irregular Moons Possibly Injected from the Outer Solar System by a Stellar Flyby","isSavedByCurrentUser":false,"pageCount":5,"score":0,"slideshowId":"275222681","sourceName":"MORE_FROM_USER","strippedTitle":"irregular-moons-possibly-injected-from-the-outer-solar-system-by-a-stellar-flyby-ac02","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/pfalzner2024apjl972l21-250129022528-cee51398-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The irregular moons orbit the giant planets on distant, inclined, and eccentric trajectories, in sharp contrast with the coplanar and quasicircular orbits of the regular moons. The origin of these irregular moons is still an open question, but these moons have a lot in common with the objects beyond Neptune (trans-Neptunian objects—TNOs), suggestive of a common origin. Here, we show that the close flyby of a star may be the connecting element. A stellar flyby can simultaneously reproduce the complex TNO dynamics quantitatively while explaining the origin of the irregular moons and the color distributions of both populations. This flyby would have catapulted 7.2% of the original TNO population into the region of the planets, many on retrograde orbits. Most injected TNOs would have been subsequently ejected from the solar system (85%). However, a considerable fraction would have had the potential to be captured by the planets. The exclusively distant origin of the injected TNOs may also explain the lack of very red irregular moons.","tags":["irregular moon","solar system","star encounter"],"url":"https://www.slideshare.net/slideshow/irregular-moons-possibly-injected-from-the-outer-solar-system-by-a-stellar-flyby-ac02/275222681","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":861},{"algorithmId":"","displayTitle":"Ceres: Organic‐Rich Sites of Exogenic Origin?","isSavedByCurrentUser":false,"pageCount":17,"score":0,"slideshowId":"275195735","sourceName":"MORE_FROM_USER","strippedTitle":"ceres-organic-rich-sites-of-exogenic-origin","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aguadvances-2025-sarkar-ceresorganicrichsitesofexogenicorigin-250128023511-c5b210b8-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Ceres, the largest object in the asteroid belt, is the only potential ocean world in the inner SolarSystem. Previous studies identified deposits of aliphatic organics in and around the Ernutet crater, and at smalllocations at Inamahari and Urvara craters. The origin of organics, either endogenic or exogenic, in these freshexposures is still under debate. This study addresses the origin of the organics by analyzing their globaldistribution and geologic context. Our first step involved a global search for organic‐rich sites that might haveescaped previous detections. We achieved this by using a deep neural network, utilizing spectral redness in theDawn's Framing Camera multispectral data to identify potential organic‐rich sites. The identified sites werefurther studied by using IR spectrometer data to infer the compositions of materials showing spectral redness. Ofthe newly identified red‐sloped sites, only two can be considered certain to be organic‐rich. We also identifiedsites with spectral redness, but without any signature of organics in their infrared spectra. These sites could beattributed to the aqueous alteration of magnetite into ferric‐iron bearing phases. At Ernutet, Inamahari, andUrvara, the organic‐rich material is confined to the near surface only. Additionally, the absence of tectonic/volcanic features at these sites makes an endogenic origin questionable. The global rarity of detectable organicsalso supports this assessment. Consequently, we suggest that organics at these sites were originally delivered bylow‐velocity, organic‐rich impactor(s) from the main belt and subsequently excavated, rather than originatingfrom endogenous processes","tags":["ceres","organic material","origin"],"url":"https://www.slideshare.net/slideshow/ceres-organic-rich-sites-of-exogenic-origin/275195735","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":417},{"algorithmId":"","displayTitle":"A Disintegrating Rocky Planet with Prominent Comet-like Tails Around a Bright...","isSavedByCurrentUser":false,"pageCount":24,"score":0,"slideshowId":"275193802","sourceName":"MORE_FROM_USER","strippedTitle":"a-disintegrating-rocky-planet-with-prominent-comet-like-tails-around-a-bright-star","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2501-250128005804-55169fd3-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We report the discovery of BD+054868Ab, a transiting exoplanet orbiting a bright (V = 10.16) K-dwarf (TIC 466376085) with a period of 1.27 days. Observations from NASA’s Transiting Exoplanet Survey Satellite (TESS) reveal variable transit depths and asymmetric transit profiles that are characteristic of comet-like tails formed by dusty effluents emanating from a disintegrating planet. Unique to BD+054868Ab is the presence of prominent dust tails in both the trailing and leading directions that contribute to the extinction of starlight from the host star. By fitting the observed transit profile and analytically modeling the drift of dust grains within both dust tails, we infer large grain sizes (∼ 1−10µm) and a mass loss rate of 10M⊕Gyr−1, suggestive of a lunar-mass object with a disintegration timescale of only several Myr. The host star is probably older than the Sun and is accompanied by an M-dwarf companion at a projected physical separation of 130 AU. The brightness of the host star, combined with the planet’s relatively deep transits (0.8−2.0%), presents BD+054868Ab as a prime target for compositional studies of rocky exoplanets and investigations into the nature of catastrophically evaporating planets.","tags":["exoplanets","desintegration","tail"],"url":"https://www.slideshare.net/slideshow/a-disintegrating-rocky-planet-with-prominent-comet-like-tails-around-a-bright-star/275193802","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":234},{"algorithmId":"","displayTitle":"Comprehensive analysis of the Apertif fast radio burst sample Similarities wi...","isSavedByCurrentUser":false,"pageCount":30,"score":0,"slideshowId":"275189504","sourceName":"MORE_FROM_USER","strippedTitle":"comprehensive-analysis-of-the-apertif-fast-radio-burst-sample-similarities-with-young-energetic-neutron-stars","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa50953-24-250127205504-7093eba0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Understanding the origin of energetic fast radio bursts (FRBs) has become the main science driver of recent dedicated FRB surveys\npowered by real-time instrumentation. Between July 2019 and February 2022, we carried out ALERT, an FRB survey at 1370 MHz\nusing the Apertif Radio Transient System (ARTS) installed at the Westerbork Synthesis Radio Telescope (WSRT). Here we report\nthe detection of 18 new FRBs. We studied the properties of the entire 24-burst sample that were detected during the survey. For five\nbursts, we identified host galaxy candidates within their error regions with \u003e50% probability association. We observed an average\nlinear polarisation fraction of ∼43% and an average circular polarisation fraction consistent with 0%. One-third of the FRBs display\nmultiple components. These burst structures and the polarisation fractions are strikingly similar to those observed in young energetic\npulsars and magnetars. The Apertif FRBs next reveal a population of highly scattered bursts. Given the observing frequency and time\nresolution, the scattering of most FRBs is likely to have been produced in the immediate circumburst environment. Furthermore, two\nFRBs show evidence of high rotation measure values, which could reach |RM| \u003e 103\nrad m−2\nin the source reference frames. This\ncorroborates that some source environments are dominated by magneto-ionic effects. Together, the scattering and rotation measures\nthat ALERT has found prove that a large fraction of FRBs are embedded in complex media such as star-forming regions or supernova\nremnants. Through the discovery of FRB 20200719A, the third most dispersed FRB so far, we further show that one-off FRBs emit\nat frequencies in excess of 6 GHz, the highest known to date. We compare this to the radio-bright high-frequency emission seen\nin magnetars. Finally, we determine an FRB all-sky rate of 459+208\n−155 sky−1 day−1\nabove a fluence limit of 4.1 Jy ms, and a fluence\ncumulative distribution with a power-law index γ = −1.23 ± 0.06 ± 0.2, which is roughly consistent with the Euclidean Universe\npredictions. Through the high resolution in time, frequency, polarisation, and localisation that ALERT featured, we were able to\ndetermine the morphological complexity, polarisation, local scattering and magnetic environment, and high-frequency luminosity of\nFRBs. We find all of these parameters strongly resemble those seen in young, energetic, highly magnetised neutron stars.\n","tags":["frb","neutron star","galaxies"],"url":"https://www.slideshare.net/slideshow/comprehensive-analysis-of-the-apertif-fast-radio-burst-sample-similarities-with-young-energetic-neutron-stars/275189504","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":231}],"featured":null,"latest":[{"algorithmId":"4","displayTitle":"Chapter 4 Algebra for all those who want to read something stupid","isSavedByCurrentUser":false,"pageCount":71,"score":0,"slideshowId":"275575908","sourceName":"LATEST","strippedTitle":"chapter-4-algebra-for-all-those-who-want-to-read-something-stupid","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/chapter4algebra-250212080852-f33ecda1-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"really nothing at all","tags":[],"url":"https://www.slideshare.net/slideshow/chapter-4-algebra-for-all-those-who-want-to-read-something-stupid/275575908","userLogin":"ssuser1cacc0","userName":"ssuser1cacc0","viewCount":8},{"algorithmId":"4","displayTitle":"mushroom cultivation of agaricus bisporus and oyster mushroom","isSavedByCurrentUser":false,"pageCount":20,"score":0,"slideshowId":"275496978","sourceName":"LATEST","strippedTitle":"mushroom-cultivation-of-agaricus-bisporus-and-oyster-mushroom","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/mushroomcultivation-250209193331-1de7c595-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Mushroom cultivation ","tags":[],"url":"https://www.slideshare.net/slideshow/mushroom-cultivation-of-agaricus-bisporus-and-oyster-mushroom/275496978","userLogin":"DhanushT17","userName":"DhanushT17","viewCount":11},{"algorithmId":"4","displayTitle":"ThrombUS_2025_02_04_ClusteringEvent_Brussels_LINO.pdf","isSavedByCurrentUser":false,"pageCount":36,"score":0,"slideshowId":"275492884","sourceName":"LATEST","strippedTitle":"thrombus_2025_02_04_clusteringevent_brussels_lino-pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/thrombus20250204clusteringeventbrusselslino-250209142331-bfb10df7-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The ThrombUS+ project presentation for the seminar and networking reception \"Towards Sustainable and Healthy Living with the Use of AI and Other Digital Solutions,\" organized by the Lithuanian RDI Liaison Office in Brussels.","tags":[],"url":"https://www.slideshare.net/slideshow/thrombus_2025_02_04_clusteringevent_brussels_lino-pdf/275492884","userLogin":"vaimaro123","userName":"vaimaro123","viewCount":7},{"algorithmId":"4","displayTitle":"corrosion.pdf..It is in the form of ppt.","isSavedByCurrentUser":false,"pageCount":69,"score":0,"slideshowId":"275486852","sourceName":"LATEST","strippedTitle":"corrosion-pdf-it-is-in-the-form-of-ppt","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/corrosion-250209035854-40894af1-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This is the notes of corrosion..Which is useful to study the pharmaceutical Engineering subject.","tags":["it is most important notes"],"url":"https://www.slideshare.net/slideshow/corrosion-pdf-it-is-in-the-form-of-ppt/275486852","userLogin":"BhoomikaAdarshe","userName":"BhoomikaAdarshe","viewCount":25},{"algorithmId":"4","displayTitle":"Fertilization of Fish ponds (Types/forms of Fertilizers, Method).pptx","isSavedByCurrentUser":false,"pageCount":18,"score":0,"slideshowId":"275540593","sourceName":"LATEST","strippedTitle":"fertilization-of-fish-ponds-types-forms-of-fertilizers-method-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/fertilizationoffishponds-250211071943-f53928e2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Fertilization of Fish Ponds\r\n*Types of Fertilizers\r\n**Inorganic fertilizers\r\n*Primary Nutrients (Phosphorus, Nitrogen, Potassium)\r\n*Secondary nutrients (Calcium, Magnesium, Sulphur)\r\n*Trace elements\r\n**Organic Fertilizers\r\n**Forms of fertilizers (Solid fertilizers, Liquid fertilizers, Instantly soluble fertilizers)\r\n*Frequency of Application\r\n**Method of Application of Fertilizers (Broadcast method, platform method, using porous bags)","tags":["fish biology","fisheries","aqua culture"],"url":"https://www.slideshare.net/slideshow/fertilization-of-fish-ponds-types-forms-of-fertilizers-method-pptx/275540593","userLogin":"nidagulal1989","userName":"Educator","viewCount":6},{"algorithmId":"4","displayTitle":"Q3-SCIENCE 7-LC 4.pptx physical sciences","isSavedByCurrentUser":false,"pageCount":47,"score":0,"slideshowId":"275570109","sourceName":"LATEST","strippedTitle":"q3-science-7-lc-4-pptx-physical-sciences","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/q3-science7-lc4-250212043026-0d336bb6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"ppt","tags":["ppt"],"url":"https://www.slideshare.net/slideshow/q3-science-7-lc-4-pptx-physical-sciences/275570109","userLogin":"AizaRazonado","userName":"AizaRazonado","viewCount":7},{"algorithmId":"4","displayTitle":"Chest xray - overview on mechanism of xray.pptx","isSavedByCurrentUser":false,"pageCount":75,"score":0,"slideshowId":"275577906","sourceName":"LATEST","strippedTitle":"chest-xray-overview-on-mechanism-of-xray-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/cxr-250212092255-f8fa3b3f-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Chest xray","tags":[],"url":"https://www.slideshare.net/slideshow/chest-xray-overview-on-mechanism-of-xray-pptx/275577906","userLogin":"blessojoel678","userName":"blessojoel678","viewCount":10},{"algorithmId":"4","displayTitle":"Sedimentary Rocks geology \u0026 engineering(1).ppt","isSavedByCurrentUser":false,"pageCount":53,"score":0,"slideshowId":"275494034","sourceName":"LATEST","strippedTitle":"sedimentary-rocks-geology-engineering-1-ppt","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/8sedimentaryrocks1-250209154035-d60ec4a8-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"this slide contains the brief discussion of sedimentary rock and their physical properties and formation","tags":["rock system geology"],"url":"https://www.slideshare.net/slideshow/sedimentary-rocks-geology-engineering-1-ppt/275494034","userLogin":"am40825","userName":"am40825","viewCount":10},{"algorithmId":"4","displayTitle":"INTRODUCTION TO ORGANIC CHEMISTRY - POC-I","isSavedByCurrentUser":false,"pageCount":27,"score":0,"slideshowId":"275578618","sourceName":"LATEST","strippedTitle":"introduction-to-organic-chemistry-poc-i","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/unit-1poc-250212095000-9fbe81b9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"NA ","tags":[],"url":"https://www.slideshare.net/slideshow/introduction-to-organic-chemistry-poc-i/275578618","userLogin":"AnamikaSingh427","userName":"AnamikaSingh427","viewCount":57},{"algorithmId":"4","displayTitle":"Year7_Combined_Science_Cells.pptx plant and animal cells","isSavedByCurrentUser":false,"pageCount":8,"score":0,"slideshowId":"275530963","sourceName":"LATEST","strippedTitle":"year7_combined_science_cells-pptx-plant-and-animal-cells","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/year7combinedsciencecells-250211000517-16364502-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"A topic on plant and Animal cell","tags":[],"url":"https://www.slideshare.net/slideshow/year7_combined_science_cells-pptx-plant-and-animal-cells/275530963","userLogin":"VictorAmune1","userName":"VictorAmune1","viewCount":39},{"algorithmId":"4","displayTitle":"Threats to wildlife biodiversity and-its conservation","isSavedByCurrentUser":false,"pageCount":16,"score":0,"slideshowId":"275495684","sourceName":"LATEST","strippedTitle":"threats-to-wildlife-biodiversity-and-its-conservation","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/1607104624-threats-to-wildlife-biodiversity-and-its-conservation-for-201-250209174100-20f207c0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This file is about Wildlife Threats and it's Conservation and about Wildlife Parks of Pakistan.","tags":["#wildlife","#biodiversity","#conservation"],"url":"https://www.slideshare.net/slideshow/threats-to-wildlife-biodiversity-and-its-conservation/275495684","userLogin":"SubhanAli754632","userName":"Subhan Ali","viewCount":70},{"algorithmId":"4","displayTitle":"Sedative and hynotics- Medicinal Chemistry","isSavedByCurrentUser":false,"pageCount":50,"score":0,"slideshowId":"275578685","sourceName":"LATEST","strippedTitle":"sedative-and-hynotics-medicinal-chemistry","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/unit-4sedativeandhynotics-250212095251-633c8320-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"NA","tags":[],"url":"https://www.slideshare.net/slideshow/sedative-and-hynotics-medicinal-chemistry/275578685","userLogin":"AnamikaSingh427","userName":"AnamikaSingh427","viewCount":65},{"algorithmId":"4","displayTitle":"Antibiotics: B lactam Antibiotics. MC III UNT 1 PPT","isSavedByCurrentUser":false,"pageCount":37,"score":0,"slideshowId":"275541125","sourceName":"LATEST","strippedTitle":"antibiotics-b-lactam-antibiotics-mc-iii-unt-1-ppt","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/antibiotics-250211074557-43a77b80-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Antibiotics are the chemicals produced by microorganisms, semisynthetic, or synthetic products that either kill or inhibit the growth of bacteria \u0026 fungi at low concentrations. \nAntibiotics, also known as antimicrobial agents, are medications that destroy or slow down the growth of other species of microorganisms. \nThey include a range of powerful drugs and are used to treat diseases caused by bacteria, fungi, actinomycetes, etc.\nAntibiotics are classified in many ways based on chemical structure, source, its spectrum of activity and mechanism of action (MOA).\nBased on the chemical structure\n1. B-lactam antibiotics: Penicillins, Cephalosporins, carbapenams, monobactams.\n2. Amino glycoside antibiotics: Streptomycin, Neomycin, Kanamycin, Gentamycin, Tobramycin, Amikacin.\n3.Tetracyclines: Tetracycline, Chlortetracycline, Oxytetracycline, Doxycycline, Minocycline, Methacycline, Meclocycline.\n4. Macrolide antibiotics: (i.e. large macrolide structure): Erythromycin, Clarithromycin, Azithromycin, Roxithromycin.\n5. Polypeptide antibiotics: Actinomycin, Bacitracin, Colistin, Polymyxin B, tyrothricin.\nβ-Lactam Antibiotics are majorly divided into four categories-\n Penicillins\n Cephalosporins\n Monobactams\n Carbapenems\nFollowing are the structural features of Penicillins: \n1. Basic nucleus: β –lactam, a four membered cyclic amide fused with a five membered \nthiazolidine ring. \n2. Penicillins are the derivatives of 6-aminopenicillanic acid (6-APA) which contains two \nfused rings: \na. A 4-membered β –lactam ring. \nb. A 5-membered thiazolidine ring. \n3. It contains an aminoacyl side chain at 6th position. \n\n\n\n","tags":["history of antibiotics","conditions to be an antibiotic","β-lactam antibiotics"],"url":"https://www.slideshare.net/slideshow/antibiotics-b-lactam-antibiotics-mc-iii-unt-1-ppt/275541125","userLogin":"hrutujawagh","userName":"HRUTUJA WAGH","viewCount":168},{"algorithmId":"4","displayTitle":"Theories and types of tooth movement .pptx","isSavedByCurrentUser":false,"pageCount":44,"score":0,"slideshowId":"275575448","sourceName":"LATEST","strippedTitle":"theories-and-types-of-tooth-movement-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/toothmovement-250212075126-8c6dc559-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"orthodontic tooth movement\ntheories of tooth movement","tags":["orthodontic","tooth movement","theories of tooth movement"],"url":"https://www.slideshare.net/slideshow/theories-and-types-of-tooth-movement-pptx/275575448","userLogin":"emansaad85","userName":"emansaad85","viewCount":112},{"algorithmId":"4","displayTitle":"Capture the growth kinetics of CVD growth of two-dimensional MoS2","isSavedByCurrentUser":false,"pageCount":8,"score":0,"slideshowId":"275596363","sourceName":"LATEST","strippedTitle":"capture-the-growth-kinetics-of-cvd-growth-of-two-dimensional-mos2","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41699-017-0010-x-250212221531-c1252ce5-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Capture the growth kinetics of CVD growth of two-dimensional MoS2","tags":[],"url":"https://www.slideshare.net/slideshow/capture-the-growth-kinetics-of-cvd-growth-of-two-dimensional-mos2/275596363","userLogin":"OmarDosky2","userName":"OmarDosky2","viewCount":33},{"algorithmId":"4","displayTitle":"Diabetes Mellitus and cardiovascular complication","isSavedByCurrentUser":false,"pageCount":29,"score":0,"slideshowId":"275559065","sourceName":"LATEST","strippedTitle":"diabetes-mellitus-and-cardiovascular-complication","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/dmcvd-250211195012-2bfa0789-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"complication cardiovascular in diabetes melitus","tags":["diabetes","cardiovascular complixation"],"url":"https://www.slideshare.net/slideshow/diabetes-mellitus-and-cardiovascular-complication/275559065","userLogin":"rakyanganendra","userName":"bagus pramono","viewCount":49},{"algorithmId":"4","displayTitle":"Parasitism and disease development in plants","isSavedByCurrentUser":false,"pageCount":21,"score":0,"slideshowId":"275497020","sourceName":"LATEST","strippedTitle":"parasitism-and-disease-development-in-plants","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aaa-250209193638-da471292-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Parasitsam and disease development steps","tags":[],"url":"https://www.slideshare.net/slideshow/parasitism-and-disease-development-in-plants/275497020","userLogin":"DhanushT17","userName":"DhanushT17","viewCount":52},{"algorithmId":"4","displayTitle":"-constellations- it is the pattern of stars that form any object or descripti...","isSavedByCurrentUser":false,"pageCount":51,"score":0,"slideshowId":"275561092","sourceName":"LATEST","strippedTitle":"constellations-it-is-the-pattern-of-stars-that-form-any-object-or-description-in-the-universe","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/constellations-powerpoint-250211214641-60acaac6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Constellation a pattern of stars at night and it can be our zodiac sign or another term zodiac constellation","tags":["is all about science"],"url":"https://www.slideshare.net/slideshow/constellations-it-is-the-pattern-of-stars-that-form-any-object-or-description-in-the-universe/275561092","userLogin":"edlynpags34","userName":"edlynpags34","viewCount":23},{"algorithmId":"4","displayTitle":"Management of CLEFT LIP AND PALATE SEMINAR","isSavedByCurrentUser":false,"pageCount":102,"score":0,"slideshowId":"275544321","sourceName":"LATEST","strippedTitle":"management-of-cleft-lip-and-palate-seminar","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/cleftlipandpalateseminar-250211101833-341700da-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"management of cleft lip and palate","tags":[],"url":"https://www.slideshare.net/slideshow/management-of-cleft-lip-and-palate-seminar/275544321","userLogin":"Sherin403093","userName":"Sherin403093","viewCount":47},{"algorithmId":"4","displayTitle":"Q4- SCIENCE 7- WEEK 1_LC 1.pptx quarter 4","isSavedByCurrentUser":false,"pageCount":43,"score":0,"slideshowId":"275541060","sourceName":"LATEST","strippedTitle":"q4-science-7-week-1_lc-1-pptx-quarter-4","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/q4-science7-week1lc1-250211074242-2f0ef2ab-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"ppt","tags":["ppt"],"url":"https://www.slideshare.net/slideshow/q4-science-7-week-1_lc-1-pptx-quarter-4/275541060","userLogin":"AizaRazonado","userName":"AizaRazonado","viewCount":372}]},"secretUrl":"oiy1E5SIQXjS5R","shouldShowAds":true,"slides":{"host":"https://image.slidesharecdn.com","title":"A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST","imageLocation":"s41550-024-02402-9-241104204417-8217e623","imageSizes":[{"quality":85,"width":320,"format":"jpg"},{"quality":85,"width":638,"format":"jpg"},{"quality":75,"width":2048,"format":"webp"}]},"smsShareUrl":"sms:?body=Check out this SlideShare : https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","strippedTitle":"a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640\u0026height=640\u0026fit=bounds","title":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","totalSlides":12,"transcript":["Nature Astronomy\nnatureastronomy\nhttps://doi.org/10.1038/s41550-024-02402-9\nArticle\nAsuper-Eddington-accretingblackhole\n~1.5 GyraftertheBigBangobservedwith\nJWST\nHyewon Suh 1\n, Julia Scharwächter 1\n, Emanuele Paolo Farina 1\n,\nFederica Loiacono 2\n, Giorgio Lanzuisi 2\n, Günther Hasinger 3,4,5\n,\nStefano Marchesi 2,6,7\n, Mar Mezcua 8,9\n, Roberto Decarli 2\n,\nBrian C. Lemaux 1,10\n, Marta Volonteri11\n, Francesca Civano12\n, Sukyoung K. Yi 13\n,\nSan Han13\n, Mark Rawlings 1\n\u0026 Denise Hung 1\nRecentJamesWebbSpaceTelescope(JWST)observationshaverevealed\nasurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat\nz ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz \u003e 6,\nthisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack\nholes.Currenttheoriesfortheformationofseedblackholesfromthedeath\nofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial\ngasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here\nwepresentLID-568,alow-mass(7.2 × 106\nM⊙)blackholehostingpowerful\noutflowsthatisobservedinanextremephaseofrapidgrowthatredshift\nz ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic\nnucleipopulations,butisbrightinX-rayemissionandaccretingatmore\nthan4,000%ofthelimitatwhichradiationpressureexceedstheforceof\ngravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion).\nAnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals\nspatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1\nrelative\ntothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID-\n568representsanelusivelow-massblackholeexperiencingsuper-Eddington\naccretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery\nshowcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial\ninsightsintorapidblackholegrowthmechanismsintheearlyuniverse.\nObservational surveys have identified several hundreds of luminous\nquasars at redshift z \u003e 6–7 (refs. 1–6). The presence of supermassive\nblack holes (SMBHs) with masses of 109–10\nM⊙ at such early cosmic\nepochschallengesmodelsofSMBHformationandgrowth,andraises\nquestionsabouttheoriginofseedblackholesandthemechanismsfor\ntheirrapidandextremegrowth.Althoughtheformationofseedblack\nholes remains observationally unconstrained, they are commonly\nthoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar\nphysicalprocessesthatcangenerateblackholeswithmassesinexcess\nof102\nM⊙ (ref.7).Historically,modelshavebeendividedintolightand\nheavyseeds,withademarcationatabout103\nM⊙.Thelightestseedsare\ngenerallyassociatedwiththedeathofthefirststarswithinitialmasses\nof102–3\nM⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime\nintotheobservedpopulationofSMBHsatslightlylatertimeischalleng-\ning,becauseblackholesformedinthismannerwouldhavetoaccrete\nattheEddingtonlimitfromthetimetheyareformeduptotheredshift\nReceived: 1 April 2024\nAccepted: 1 October 2024\nPublished online: xx xx xxxx\nCheck for updates\nA full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nandPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568\nare shown in Fig. 1. However, LID-568 stands out as uniquely bright in\ntheX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby\nJWST, which indicates a higher level of central accretion activity. The\nobserved 0.5–10 keV flux is 5.16 × 10−15\nerg cm−2\ns−1\n(ref. 27). Analysis\nof the X-ray spectrum (as inferred from the emission measured in\nthe 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura-\ntion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2\n) a\nndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth-\nods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo-\nmetricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1\n,afactorof~100\nhigher than the average bolometric luminosities of JWST-discovered\nfaintAGNs.\nTheshapeofthemid-tofar-IRspectralenergydistribution(SED)\nofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle\npower law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac-\nteristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates\natwhichtheyareobserved10\n,whichappearstobedifficult11\n.Thedirect\ncollapseofprimordialgascloudsintosupermassivestarsturninginto\nblack holes with initial masses of 104–6\nM⊙ (that is, heavy seed)12,13\nis\nan attractive alternative, as these heavy seeds can more rapidly grow\nintoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How-\never, the expected number densities for the sites where such super-\nmassive stars can form are low. Intermediate pathways where seeds\nof 103–4\nM⊙ form from very massive stars in pristine rapidly growing\nhalosorthroughstellarmergers,hierarchicalblackholemergersand\nstellar captures in dense stellar systems bridge these two extremes14\n.\nIt is also possible that heavy seeds originate from primordial black\nholes,eliminatingtheneedforthestellarandgas-basedprocesses15–17\n.\nWiththeunprecedentedsensitivityoftheJamesWebbSpaceTel-\nescope (JWST), it is now possible to extend studies to faint, low-mass\nsources at high redshifts (that is, z \u003e 3–4), an epoch when both black\nholesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser-\nvation can provide insights into the mechanisms seeding early black\nholes. JWST has recently discovered a new population of relatively\nfaint,compact,dust-reddenedsourcesatz \u003e 4usingvariousselection\ntechniquesinawidevarietyofextragalacticsurveys18–24\n.Theyarefound\nto have overmassive black holes with respect to the local black hole\nmass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times\nhigherMBH/Mstellar ratios25\n.Mostofthesesourceshavenotbeendetected\ninX-rayobservations18–24\n;onlytwosourceswithX-ray-detectionshave\nbeenrecentlyreported26\n.Thisfaintpopulationislikelytorepresentthe\nmoderate accretion phase of active galactic nuclei (AGNs), which are\naccreting at ~20% of the Eddington rates, and are hosted by relatively\nlow-mass galaxies. Some of these sources are referred to as ‘little red\ndots’andarecharacterizedbyaredcontinuumintherest-frameopti-\ncalandamodestblueUVcontinuum.Suchsourcesexhibitprominent\nbroad Balmer emission lines, which implies that they are powered by\nAGNs.Theseredcompactsourcesaresurprisinglyabundant,being100\ntimesmorecommonthanUV-selectedquasarsatsimilarredshifts23\n.\nLID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole\npopulation identified as near-infrared-dropout (near-IR-dropout)\nX-ray sources from the Chandra-COSMOS Legacy Survey27,28\n. Similar\nto other faint AGNs discovered by JWST, LID-568 appears extremely\nred and compact in the IR, yet it remains invisible in any optical wave-\nlengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble\nSpace Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was\ndetermined from JWST Near-Infrared Spectrograph (NIRSpec) and\n(Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii]\n10\nObserved wavelength (µm)\n0.1\n1.0\n10.0\n100.0\nlog\nFlux\n(µJy)\nGB + PL (Tdust = 655 K)\nJWST NIRSpec\nJWST MIRI\n3.0 3.5 4.0 4.5 5.0\nObserved wavelength (µm)\n0\n2\n4\n6\nHα\n[SII]\nOI\nCaII Paη\nPaζ\nPaε\n[SIII] [CI]\nPaδ\n[SII]\nFeII\n6 8 10 12\n0\n50\n100\n150\n200\nPaα\nBrγ\nz = 3.965\nFig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8\nand8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue),\nincludingapowerlaw(bluedotted)andgreybody(bluedashed)components,\nataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars\nrepresentthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange)\nspectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top)\nandNIRSpec(bottom),withthedetectedemissionlinesmarked.\n6 7 8 9 10\nlog MBH/M\n44\n45\n46\n47\n48\nlog\nL\nbol\n(erg\ns\n–1\n)\nLID-568\nL bol\n/L Edd\n= 1\n0.1\n0.01\nJWST AGNs\nMatthee+24 (4 \u003c z \u003c 6)\nHarikane+23 (4 \u003c z \u003c 7)\nMaiolino+23 (4 \u003c z \u003c 7)\nGreene+24 (z \u003e 5)\nUV-selected quasars\nFarina+22 (z \u003e 5.8)\nFig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs\nathighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4,\nisshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately\nafactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack\nholes18,20,23,24\nrecentlyfoundbyJWSTobservations.Forreference,UV-selected\nquasars5\natz \u003e 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith\ndifferentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error\nbarsrepresent1σuncertainties.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nforobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis\nsubstantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST\n(whichexhibitapower-lawslopeα𝜆 ≈ 2.0onaverage)19\n.Thedetection\nofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda\nheavilyobscuredAGN,withoutanapparentpresenceoftheunderlying\nhost galaxy features. The model SEDs for super-Eddington accretion\nsuggest a notable absence of rest-frame UV or even optical emission,\nwithatendencytobecomeprogressivelyredderintheIRastheEdding-\nton ratio increases29\n. However, contrasting perspectives have been\npresentedinotherstudies,indicatingthatsuper-Eddingtonaccretion\nmightleadtoanexcessofUVradiation,resultinginasignificantlybluer\ncontinuumslopeintherest-frameUV30,31\n.\nGiventhepoint-like,compactnatureofthissource,theextremely\nred colour primarily arises from the thermal emission originating in\na dust-obscured accretion disk, with negligible contribution from a\nhostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo\ngreybodies32\n(Methods and Extended Data Fig. 1), the dust tempera-\nture is substantially higher (655.53 K and 71.5 K) than what is typically\nobservedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand\nwarm gas dominates the IR emission, with negligible evidence of star\nformationactivity.Thisisincontrasttothemajorityofdust-obscured\ngalaxies at high redshift, which often exhibit signs of powerful star-\nbursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1\n,\nwhichiscomparabletotheAGNbolometricluminosity.Theestimated\ndust mass Mdust is ~2.95 × 106\nM⊙, which suggests that LID-568 con-\ntains less dust than the optically faint, dust-obscured galaxies at z ≈ 3\n(thatis,H-dropouts,HST-dark,NIR-dark)33,34\nthathavedustmassesof\n~1–4 × 108\nM⊙. Assuming the dust-to-stellar mass ratios of HST-dark,\ndust-obscuredgalaxiesatsimilarredshifts33\n,theinferredstellarmassof\nLID-568is~2 × 108\nM⊙,whichimpliesalow-mass(thatis,dwarf)galaxy.\nThe single-epoch virial black hole mass (MBH), derived from the\nbroad Hα emission line, is 7.2 (−5.4 + 10.8) × 106\nM⊙, which indicates a\nrather low-mass black hole (Methods and the left panel of Extended\nData Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which\nimpliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow\nthat the black hole mass of LID-568 is comparable with those of faint\nAGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo-\nmetricluminosityofthisobjectplacesitwithinapreviouslyunexplored\nextremeaccretionregime.Ontheotherhand,thereisgrowingevidence\nthatAGNswithhighaccretionratesappeartohavesmallerbroad-line\nregion(BLR)sizesthanthosepredictedbythecanonicalradius–lumi-\nnosityrelationshipofsub-EddingtonAGNs35,36\n.Thisdiscrepancycould\npotentially lead to an overestimation of the single-epoch black hole\nmassbyasmuchas~0.3 dex,resultinginahigherEddingtonratio.\nThe ionized gas in LID-568 shows signs of a spatially unresolved\nnuclearoutflowwithvelocitiesof~−540 km s−1\n(Methodsandtheright\npanelofExtendedDataFig.2),whicharesimilartothevelocitiestraced\nby the spatially extended Hα emission. In Fig. 3, we present NIRSpec/\nIntegral Field Unit (IFU) channel maps of the Hα emission at differ-\nent velocity ranges chosen to best highlight the multiple kinematic\ncomponents observed around the central black hole (Extended Data\nFig. 3). The blue-shifted Hα emission (~−600–−500 km s−1\n) peaks at a\nprojected distance of 0.4″ (~3 kpc) to the north (B component) and 1″\n(~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line\ncomponent(Ccomponent),whereasthenorth-easterncomponentAis\nfoundatasimilarvelocitytothecentralcomponentC.Thecontinuum\nemissionassociatedwiththespatiallyextendedHαemissioncompo-\nnents are not detected. Although these components could be part of\ntheoutflow,amergerorigincannotbeexcluded.\nIftheextendedHαemissionsareassociatedwithoutflows,wecan\ninfer the AGN lifetime using the outflow velocity and radius. Consid-\nering that the outflow reaches ~7 kpc from the central black hole, we\nobtain the AGN lifetime as t = (7 kpc)/(540 km s−1\n) ≈ 1.2 × 107\nyr. This\nlifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales\nset by Soltan arguments (that is, 107–9\nyr (ref. 37)) and indirect meas-\nurements of AGN phase timescales (~107–9\nyr (ref. 38)). Furthermore,\n–0.2\n0\n0.2\n0.4\n0.6\nFlux\n(µJy)\n–494 km s–1\n0 km s–1\nA B\nC\nD\n+494 km s–1\n–3,000 –2,000 –1,000 0 1,000 2,000 3,000\nVelocity (km s–1\n)\n0\n1\n2\n3\n4\nFlux\n(µJy)\nA\nB\nC\nD\nFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion.\nTop:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins.\nThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets\nof~−600–−500 km s−1\nwithrespecttothecentralbroad-linecomponent(C),\nwhereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom:\nNIRSpecspectraofeachcomponentareshownintheHαemissionlineregion,\nextractedfromcircularapertureswitharadiusof0.2″.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\ntheoretical studies39\nsuggest that super-Eddington phases might be\nsustained over timescales of a few tens of million years. This lifetime\nsuggeststhatasubstantialfractionofthemassgrowthofLID-568may\nhaveoccurredinasingle,super-Eddingtonaccretionepisode.\nTo estimate the preburst mass of the black hole, we calculated\nthemassgrowthduringsuper-Eddingtonaccretionover12 Myrusing\ntheequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where\ntEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack\nhole mass before super-Eddington accretion is ~102\nM⊙ (that is, light\nseed). We note that this growth scenario is feasible only if the black\nhole remains embedded within a giant molecular cloud and accretes\ntheentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto\nfeedback. As such, this represents a lower limit on the pre-accretion\nblack hole mass, which is consistent with a light seed but does not\nexcludethepossibilityofamorenuancedgrowthhistorywithshorter\naccretioneventshappeningonaheavierseed.Infact,itisalsopossible\nthattheoutflowcouldbeassociatedwithstellarfeedback-drivenout-\nflowsfromastarbursteventprecedingtheactivityintheblackhole.\nThe presence of potentially AGN-driven outflows, along with the\nlack of star-forming activity in LID-568, suggests that AGN feedback\nmayplayacrucialroleinregulatingand/orquenchingstarformation\nin this low-mass system at high redshift. This indicates the possibil-\nity of rapid and efficient growth of black holes relative to their host\ngalaxies. Theoretical models predict a ‘blowout’ dusty red quasar\nphase transitioning from a heavily obscured starburst, during which\nAGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby\nquenching the star formation40\n. It is possible that LID-568 represents\natransientphasecharacterizedbyextremelyhighaccretionrateswith\npowerful outflows suppressing the star formation in its host galaxy.\nThis could explain the presence of overmassive black holes hosted\nin low-mass galaxies in the local Universe41\n, as well as those found by\nJWST at z \u003e 4 (ref. 25). Furthermore, the powerful AGN could produce\ndustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42\n,and\nthiscouldpotentiallyaccountfortheabundantdustyAGNsobserved\nwithJWSTathighredshifts.\nLID-568 could potentially represent the long-sought-after\nlow-massblackholeundergoingrapidgrowththroughsuper-Eddington\naccretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat\nz ≈ 4 unveils a missing key parameter space of the extreme accretion\nand provides new insights into the rapidly growing mechanisms of\ntheearlygrowthofblackholes43–45\n.Althoughtherarest,mostmassive\nSMBHsatz \u003e 6–7couldbeexplainedbyanoriginfromheavyseedswith\nsub-Eddingtonaccretion,theystillrequirecontinuousaccretionover\nseveralhundredmillionyears.Thepresenceofovermassiveblackhole\npopulationssuggeststhepossibilitythattheycouldexperienceinter-\nmittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey\noriginate from heavy or light seeds45,46\n. Super-Eddington accretion is\nlikelytooccurepisodically,andthedetectionofLID-568mayrepresent\nonesuchepisodicaccretionphase.Futurestudiesonalargesampleof\nsuch objects will help to constrain the duty cycle of super-Eddington\naccretion and deepen our understanding of the mechanisms driving\nsuchhighlevelsofaccretion.\nMethods\nParent sample\nThe parent sample comprised a previously undiscovered population\nof black holes, identified as near-IR-dropout X-ray sources (that is,\ninvisible in the optical/near-IR bands) from the Chandra-COSMOS\nLegacy Survey27,28\n, which consists of 4,016 X-ray sources over a large\narea of ~2.2 deg2\n. We used the multiwavelength photometry from the\nmostrecentphotometriccataloguefromCOSMOS202047\nandHELP48\n,\ncontaining GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam\n(HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera\n(IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging\nPhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector\nArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec-\ntralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho-\ntometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified\nthose without any optical counterparts within a 2″ radius, which cor-\nresponded to the uncertainty of the Chandra position. We excluded\nsources whose flux was contaminated by nearby bright sources and\npossible diffuse X-ray emission. This resulted in a final sample of\n62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof\nSpitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected\nin Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR\ndetections.NoneofthesesourceshadacounterpartintheVeryLarge\nArray3 GHzsourcecatalogue49\n.\nALMAobservations\nSpitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations\nfor all 62 IR-dropout X-ray sources were carried out in four observing\nblocks in November 2019 and January 2022 under the Cycle 7 pro-\ngramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The\nobservations were centred on the Chandra X-ray positions with an\nintegration time of ~5 minutes per source. The data reduction was\nperformedusingthestandardALMApipelinev.2021.2.0.128(Common\nAstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe\nintegrated flux of all our targets using the imfit procedure from the\nCASA pipeline. The sources were modelled with a circular Gaussian\nprofile of variable total flux, centroid, width, axis and position angle.\nThe 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the\n870 μmemissionasmeasuredfromALMAwasingoodagreementwith\nthose of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband\nimages of LID-568, which are invisible in the Subaru/HSC optical and\nUltraVISTAnear-IRimages.\nJWSTobservations\nWeobtainedJWST/NIRSpec50,51\nandMIRI/LRS52\nobservationsofLID-568\nundertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/\nIFUobservationsweretakeninApril2023withthegrating/filtercom-\nbinationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm\nwith an average spectral resolution of R ≈ 1,000. The field of view of\nthe IFU mode was ~3″ × 3″, with each spatial element in the resulting\nIFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which\nimprovessignal-to-noiseratioandreducesdatavolume.Theobserva-\ntions were taken with 18 groups and one integration per exposure,\nusing a four-point medium cycling dither pattern, resulting in a total\nexposuretimeof1.45 h.\nThe NIRSpec/IFU data reduction was performed with the JWST\nScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149.\npmap. We also added additional steps to improve the quality of the\nreduced data53\n. The reduction process consisted of three stages. The\nfirst stage accounted for detector-related issues, such as bias and\ndark subtraction, and cosmic ray flagging. At the end of this stage,\nthe groups were fitted to create two-dimensional count rate images\n(thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection,\nwavelength and flux calibration. The calibrated exposures were then\nprocessedinthethirdstage,whereafurtherflaggingofcosmicrayswas\nappliedbeforebuildingthefinaldatacube.Beforerunningthesecond\nstage, we removed the detector low frequency noise 1/f affecting the\nrate files by subtracting from each spectral column its median value\nafter applying a sigma clipping54–56\n. We fixed a pipeline bug reported\nbytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels\nwithbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral\noutliers from the calibrated exposures. We removed the remaining\noutliers from the datacube by filtering out all the voxels with a jump\novercontiguouschannelspersistingforlessthanfourchannels,which\nis the typical width of these features. Finally, we subtracted the back-\ngroundasafunctionofthewavelengthbycalculatingthemedianover\nten spectra extracted from empty regions in the cube field of view in\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\neach channel. We note that the background increases as a function of\nthe wavelength, an expected effect due to an increase in the zodiacal\nand stray light57\n. We thus subtracted it channel by channel to obtain a\nbackground-freedatacube.\nThe MIRI/LRS slit spectroscopy observations were conducted in\nJanuary 2023 using a P750 disperser, covering a wavelength range of\n5–12 μm with a spectral resolution of R ≈ 100. The observations were\nperformedwith360groupsperintegrationinFAST/FULLmode,with\ntwo integrations per exposure using a two-point dither along the slit.\nThis resulted in a total exposure time of 1.1 h. The fully reduced data\nwere retrieved from the Mikulski Archive for Space Telescope, which\nwere processed using the JWST Science Calibration pipeline v.1.12.5,\nwiththeCRDScontextjwst_1135.pmap.\nX-rayluminosity\nTo compute the intrinsic X-ray luminosity in the 2–10 keV band, we\nused the XSpec software (v.12.13.0)58\nto fit the Chandra spectrum\nusingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9,\nmodified by both Galactic absorption (NH = 2.6 × 1020\ncm−2\n(ref. 59))\nand absorption at the redshift of the source, NH(z). The second\nabsorption component accounted for both nuclear absorption due\nto the gas orbiting in the proximity of the SMBH (that is, torus) and\nabsorption due to the interstellar medium in the host galaxy. The\ncolumndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe\nabsorption-correctedrest-frame2–10 keVluminositywasdetermined\naslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2).\nTotakeintoaccountthemorecomplexabsorptionandreflection\nprocesses in the case of Compton-thick obscuration (NH \u003e 1024\ncm−2\n),\nwealsoderivedthecolumndensityandintrinsicX-rayluminosityusing\ntheMYtorusmodel60,61\n.Thismodelconsistsofthreecomponents:the\nobscuration along the line of sight, including Compton scattering,\nappliedtotheprimarypowerlaw,thereflectionandthefluorescence\nemission line complex. The relative strength of these components\nwasfixedtobethesame,andtheinclinationanglebetweenthelineof\nsight and the axis of the torus was set to 75° to ensure interception of\ntheobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed.\nThe column density and intrinsic X-ray luminosity derived from the\nMYtorus model were consistent with the standard power-law model,\nwellintheCompton-thinregime.Ifweallowedthephotonindextobe\na free parameter, the fit tended toward a softer power law (Γ = 2.4 for\nMYtorus and 2.9 for the simple power law) and, consequently, even\nhighercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08\nforMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9\nwasconservativeinestimatingintrinsicluminosity.\nSEDfitting\nThe SED fitting was performed using a modified approach based on\nref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63\n.Addition-\nally, we independently fitted the SED using CIGALE64\nand X-CIGALE65\n,\nthelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari-\nous parametrizations and models for stellar populations, star forma-\ntion history, dust emission and attenuation, and AGN emission from\ndifferentSEDfittingcodes,wefoundthattheSEDofLID-568showsan\nunusuallyredIRcontinuumthatcannotbereproducedbyanycombina-\ntionofthemodelsandparametersused.\nWe further fitted the dust emission using the modified IR SED\nfitting code developed in ref. 32. We employed a composite mid-IR\npower law and two-temperature greybodies. We used a fixed value of\nthe emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as\na free parameter. The rest-frame observed photometric data (black)\nare presented alongside the best-fit IR SED (yellow) in the left panel\nof Extended Data Fig. 1. The SED is well fitted by a power law, and hot\ngreybody (655.5 K) and warm greybody (71.5 K) components, which\nare much hotter than what is typically observed in star-forming gal-\naxies (10–60 K). From the best fit, we derived the total IR luminosity\n(L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1,\nwe show the SED of LID-568 overlaid on the SED templates66\nof the\nAGN-dominated local ULIRG (Mrk 231), the extreme local starburst\nULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965.\nThe IR SED shape of LID-568 seems to be consistent with the torus\nmodel spectrum, but cannot be explained by currently available IR\nSEDtemplatesofobscuredAGN/ULIRGs.\nAGNbolometricluminosity\nThe bolometric luminosity of AGNs can be estimated from the X-ray\nluminositybyapplyingasuitablebolometriccorrection67\n.Toaccurately\nestimate the total intrinsic luminosity radiated by the AGN accretion\ndisc, it is necessary to constrain the absorption-corrected intrinsic\nX-rayluminosity,asX-raysareoftenobscuredandmayincluderepro-\ncessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1\nis derived using the absorption-corrected rest-frame 2–10 keV lumi-\nnosity by applying a luminosity-dependent bolometric correction as\ndescribedinref.67.\nWe also computed the AGN luminosity from the SED by integrat-\ning absorption-corrected total X-ray luminosity (L0.1–100keV) and the\nbest-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert\nthe IR luminosity into a proxy for the intrinsic nuclear luminosity, we\nconsidered the geometry of the torus and its orientation by apply-\ning the following correction factors: the first correction is related\nto the covering factor, which represents the fraction of the primary\nUV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the\nsecond correction is due to the anisotropy of the IR dust emission,\nwhichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN\nbolometricluminositywasLbol = 46.68 erg s−1\n,whichisconsistentwith\ntheX-ray-derivedbolometricluminosity.\nWe additionally derived the bolometric luminosity using the Hα\nluminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi-\nnosityfromHαluminosityusingtheequationinref.70.Thebolometric\nluminosity was estimated using the bolometric correction factor in\nref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1\n,whichis~1 dexlowerthan\nthat derived from other methods (that is, X-ray luminosity and SED\nfitting). This indicates that the Hα emission could possibly be highly\nobscured, potentially leading to an underestimate of the Hα-derived\nblack hole mass by a factor of a few. However, we point out that when\nestimatingtheEddingtonratiousinganinternallyconsistentmethod\nbasedontheHαemissionforbothAGNbolometricluminosityandthe\nblackholemass,theblackholeisstillaccretingatthesuper-Eddington\naccretion level of ~4.4. We note that the bolometric correction factor\nfor Hα luminosity could be uncertain for those obscured AGNs with\nsuper-Eddington accretion at high redshifts. The estimated bolo-\nmetric luminosities obtained using various methods are shown in\nSupplementaryFig.3.\nBlackholemassandoutflows\nThesingle-epochvirialblackholemasswasestimatedusingthebroad\nHαemissionlinewidthandthelineluminosityfromtherest-frameUV/\nopticalspectraasaproxyforthecharacteristicvelocityandthesizeof\ntheBLR.TheNIRSpecspectrawereextractedfromacircularaperture\ncentred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We\nutilized the mpfit routine for fitting the emission lines, employing a\nLevenberg–Marquardtleast-squaresminimizationalgorithmtoderive\nthebest-fitparametersandassesstheoverallfitquality72\n.Specifically,\nwe fitted and subtracted a power-law continuum (fλ) as a function of\nwavelength(λ),fλ ∝λ−a\n,fromthespectraandperformedasimultaneous\nfitwithacombinationofmultiplenarrowandbroadGaussiancompo-\nnentstobestcharacterizethelineshape.Forthenarrowemissionlines,\nwefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas\nthe[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained\nthelinewidthsandrelativelinecentresofthenarrow-linecomponents\ntothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nbroad Gaussian components: one for the BLR and the other for the\nblue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad\nGaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet.\nAdditionally, we investigated the inclusion of additional broad\nGaussian components for the [N ii] 6,548, 6,583 Å lines as outflow\ncomponents. We also tested the fit both with and without constrain-\ning the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However,\nwe found no meaningful statistical improvement from adding these\nbroad Gaussian components. For the former, this lack of meaningful\nimprovementinthefitislikelytobeduetothe[N ii]componentsbeing\noverwhelmed by the much stronger Hα emission. For the latter, the\nblueward [S ii] emission appears to dominate the fit in that spectral\nregion, and, given the lower signal-to-noise ratio of both features, it\nis not surprising that a similar goodness of fit is returned by forcing\nthe ratio of the strength of the two components within the canonical\nallowablerange.Furthermore,changesinthefittingapproachdidnot\nappreciably affect the inferred black hole mass beyond the inherent\nrandomandsystematicuncertainties.\nFinally,wemeasuredthebroad-linewidthandthelineluminosity\nfromthebest-fitspectra.Theblackholemasswascomputedusingthe\nequation from ref. 70. Although the measurement uncertainties on\nMBH were relatively small (~0.1 dex), systematic uncertainties associ-\nated with different single-epoch virial calibrations carried a scatter\nof ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be\n7.2 (−5.4 + 10.8) × 106\nM⊙. The uncertainties of the black hole mass\nwere determined by the sum of the statistical and intrinsic scatter of\nthecalibrations.\nExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα,\n[N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis-\nsion lines trace gas with different kinematics, potentially indicating\noutflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii]\nlines because [O iii], which typically serves as a tracer of outflows, is\nnotcoveredbyourdataset.InExtendedDataFig.2(right),wecompare\nthe blue-shifted Hα emission line with that of the [S ii] line compo-\nnents. Although we left the line widths and relative line centres of the\nblue-shifted components as free parameters, the broad blue-shifted\nemissionisevidentinboththeHαand[S ii]lines,exhibitingthesame\nbroad-line width and velocity offsets, which suggests that they are\nkinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially\nunresolvedoutflowvelocityof~−540 km s−1\n.Similarvelocitiesareasso-\nciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3),\nwhich could be part of the outflow or indicate ongoing merger activ-\nity. The mass of the ionized outflow as inferred from the blue-shifted\noutflow component of the broad Hα emission was 1.4 × 107\nM⊙, using\nequation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1\nand that the extended Hα emission is representative of the outflow\nradius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1\n.\nEnvironment\nWe measured the environmental density surrounding LID-568 by\nemploying the Voronoi tessellation Monte Carlo mapping described\nin refs. 75,76. Briefly, this technique uses a weighted combination of\nspectroscopic and photometric redshifts to construct a galaxy over-\ndensitycubeinthin(7.5properMpc)slicesrunningfrom2 \u003c z \u003c 5.The\nmapping leverages the wealth of panchromatic imaging data from\nCOSMOS, as well as a large number of spectroscopic redshifts drawn\nfrom public surveys and proprietary data. The particular instance of\nthe Voronoi tessellation Monte Carlo mapping used in this work was\nidenticaltothatofref.77.\nAfter an overdensity cube had been constructed over the full\nredshift range, a source extractor-based post-processing technique,\nas described in ref. 76, was used to link detections of overdensities\nacross contiguous slices to search for coherent structure and esti-\nmatethemassofthedetectedstructure.Fordensitymappingatz \u003e 2,\nthis post-processing technique was trained on mock observations of\ncustom-built light cones to maximize the purity and completeness\nassociatedwiththedetectionofprotogroupsandprotoclusters.Atthe\nspatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS\nfield was fairly sparse, and we estimated that our method was \u003e50%\ncomplete only for structures with z = 0 masses greater than 1014.5\nM⊙,\nthatis,massiveprotoclusters,atz ≈ 4.\nWe find no evidence that LID-568 is associated with an overden-\nsity of galaxies. The local overdensity at the location of LID-568 was\nlog (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the\nmean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe\naverage overdensity in a cylindrical aperture of radius 1 proper Mpc\nand depth of Δz = 0.02 centred on the redshift of LID-568 recovered\na consistent value. Additionally, we detected no associated coherent\nstructurewithinΔz = 0.04andR \u003c 5properMpcofLID-568,whichindi-\ncatesthatitisnotlikelytobeembeddedinamassiveformingcluster.\nHowever,giventhepaucityofspectroscopicredshiftsinproximityto\nLID-568, we cannot rule out membership in a lower mass structure.\nWealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto\ndetectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78\n.\nFuture spectroscopic observations of the surroundings of LID-568\nand similar sources will help to better quantify the environments in\nwhichtheyreside.\nDataavailability\nThe data for ALMA and JWST used in this study are publicly available\nthroughtheirrespectivedataarchives.Theseobservationsareassoci-\natedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme\nno. 2019.1.01275.S. Other data generated and/or analysed during the\nstudy are available from the corresponding author upon reasonable\nrequest.\nReferences\n1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085.\nNature 474, 616 (2011).\n2. Bañados, E. et al. An 800-million-solar-mass black hole in a\nsignificant neutral Universe at a redshift of 7.5. Nature 553,\n473 (2018).\n3. Yang, J. et al. Probing early supermassive black hole growth\nand quasar evolution with near-infrared spectroscopy of\n37 reionization-era quasars at 6.3\u003cz\u003c7.64. Astrophys. J. 923,\n262 (2021).\n4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J.\n907, 1 (2021).\n5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the\nepoch of reionization. II. Black hole masses, Eddington ratios, and\nthe formation of the first quasars. Astrophys. J. 941, 106 (2022).\n6. Fan, X., Bañados, E. \u0026 Simcoe, R. A. Quasars and the intergalactic\nmedium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61,\n373 (2023).\n7. Rees, M. F. Quasars. Observatory 98, 210 (1978).\n8. Volonteri, M. The formation and evolution of massive black holes.\nScience 337, 544 (2012).\n9. Natarajan, P. Seeds to monsters: tracing the growth of black holes\nin the universe. Gen. Relativ. Gravit. 46, 1702 (2014).\n10. Volonteri, M. \u0026 Rees, M. J. Rapid growth of high-redshift black\nholes. Astrophys. J. 633, 624 (2005).\n11. Smith, B. D. et al. The growth of black holes from Population III\nremnants in the Renaissance simulations. Mon. Not. R. Astron.\nSoc. 480, 3762 (2018).\n12. Volonteri, M., Lodato, G. \u0026 Natarajan, P. The evolution of\nmassive black hole seeds. Mon. Not. R. Astron. Soc. 383,\n1079 (2008).\n13. Natarajan, P. et al. Unveiling the first black holes with JWST:\nmulti-wavelength spectral predictions. Astrophys. J. 838, 117\n(2017).\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\n14. Volonteri, M., Habouzit, M. \u0026 Colpi, M. The origins of massive\nblack holes. Nat. Rev. Phys 3, 732 (2021).\n15. Kashlinsky, A. LIGO gravitational wave detection, primordial black\nholes, and the near-IR cosmic infrared background anisotropies.\nAstrophys. J. Lett. 823, 25 (2016).\n16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds\nfrom accretion onto primordial black hole dark matter. J. Cosmol.\nAstropart. Phys. 07, 022 (2020).\n17. Cappelluti, N., Hasinger, G. \u0026 Natarajan, P. Exploring the\nhigh-redshift PBH-ΛCDM Universe: early black hole seeding, the\nfirst stars and cosmic radiation backgrounds. Astrophys. J. 926,\n205 (2022).\n18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs\nat z=4–7: detection of 10 faint AGNs with MBH=106\n–108\nM⊙ and their\nhost galaxy properties. Astrophys. J. 959, 39 (2023).\n19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic\nidentification of low-mass, broad-line AGNs at z\u003e5 with CEERS.\nAstrophys. J. 954, 4 (2023).\n20. Maiolino, R., et al. JADES. The diverse population of infant black\nholes at 4\u003cz\u003c11: merging, tiny, poor, but mighty. Preprint at\nhttps://arxiv.org/abs/2308.01230 (2023)\n21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity\nAGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys.\n677, 145 (2023).\n22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed\nAGN in the early Universe. Nature 628, 57 (2024).\n23. Greene, J. E. et al. UNCOVER spectroscopy confirms the\nsurprising ubiquity of active galactic nuclei in red sources at z\u003e5.\nAstrophys. J. 964, 39 (2024).\n24. Matthee, J. et al. Little red dots: an abundant population of faint\nactive galactic nuclei at z~5 revealed by the EIGER and FRESCO\nJWST surveys. Astrophys. J. 963, 129 (2024).\n25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. \u0026 Fan, X. JWST\nCEERS and JADES active galaxies at z=4–7 violate the local\nM●–M★ relation at \u003e3σ: implications for low-mass black holes and\nseeding models. Astrophys. J. 957, 3 (2003).\n26. Kocevski, D. D., et al. The rise of faint, red AGN at z\u003e4: a sample of\nlittle red dots in the JWST extragalactic legacy fields. Preprint at\nhttps://arxiv.org/abs/2404.03576 (2024).\n27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview\nand point source catalog. Astrophys. J. 819, 62 (2016).\n28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/\nIR identifications. Astrophys. J. 817, 34 (2016).\n29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. \u0026\nBertemes, C. Searching for super-Eddington quasars using a\nphoton trapping accretion disc model. Mon. Not. R. Astron. Soc.\n492, 4058 (2020).\n30. Done, C., Davis, S. W., Jin, C., Blaes, O. \u0026 Ward, M. Intrinsic disc\nemission and the soft X-ray excess in active galactic nuclei. Mon.\nNot. R. Astron. Soc. 420, 1848 (2012).\n31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the\nUniverse: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron.\nSoc. 484, 2575 (2019).\n32. Casey, C. M. Far-infrared spectral energy distribution fitting for\ngalaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012).\n33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at\nz\u003e3: bridging optically dark and Lyman-break galaxies with\nGOODS-ALMA. Astron. Astrophys. 672, A18 (2023).\n34. Gentile, F. et al. Illuminating the dark side of Cosmic star\nformation. III. Building the largest homogeneous sample of\nradio-selected dusty star-forming galaxies in COSMOS with\nPhoEBO. Astrophys. J. 962, 26 (2024).\n35. Du, P. et al. Supermassive black holes with high accretion rates in\nactive galactic nuclei. V. A new size-luminosity scaling relation for\nthe broad-line region. Astrophys. J. 825, 126 (2016).\n36. GRAVITY Collaboration et al. The size-luminosity relation of local\nactive galactic nuclei from interferometric observations of the\nbroad-line region. Astron. Astrophys. 684, 167 (2024).\n37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200,\n115 (1982).\n38. Martini, P. \u0026 Weinberg, D. H. Quasar clustering and the lifetime of\nquasars. Astrophys. J. 547, 12 (2001).\n39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. \u0026 Regan, J. A.\nSustained super-Eddington accretion in high-redshift quasars.\nAstron. Astrophys. 686, 256 (2024).\n40. Hopkins, P. F., Hernquist, L., Cox, T. J. \u0026 Kereš, D. A cosmological\nframework for the co-evolution of quasars, supermassive black\nholes, and elliptical galaxies. I. Galaxy mergers and Quasar\nactivity. Astrophys. J. Suppl. 175, 356 (2008).\n41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to\nz~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023).\n42. Elvis, M., Marengo, M. \u0026 Karovska, M. Smoking quasars: a new\nsource for cosmic dust. Astrophys. J. 567, 107 (2002).\n43. Regan, J. A. et al. Super-Eddington accretion and feedback from\nthe first massive seed black holes. Mon. Not. R. Astron. Soc. 486,\n3892 (2019).\n44. Massonneau, W., Volonteri, M., Dubois, Y. \u0026 Beckmann, R. S.\nHow the super-Eddington regime regulates black hole growth in\nhigh-redshift galaxies. Astron. Astrophys. 670, A180 (2023).\n45. Volonteri, M., Silk, J. \u0026 Dubus, G. The case for supercritical\naccretion onto massive black holes at high redshift. Astrophys. J.\n804, 148 (2015).\n46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early\nuniverse. Preprint at https://arxiv.org/abs/2403.03872 (2024).\n47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the\nUniverse to z~10 from two complementary catalogs. Astrophys. J.\nSuppl. 258, 11 (2022).\n48. Shirley, R. et al. HELP: the herschel extragalactic legacy project.\nMon. Not. R. Astron. Soc. 507, 129 (2021).\n49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum\ndata and source catalog release. Astron. Astrophys. 602, 1 (2017).\n50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on\nthe James Webb Space Telescope. I. Overview of the instrument\nand its capabilities. Astron. Astrophys. 661, 80 (2022).\n51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the\nJames Webb Space Telescope. III. Integral-field spectroscopy.\nAstron. Astrophys. 661, 82 (2022).\n52. Kendrew, S. et al. The mid-infrared instrument for the James Webb\nSpace Telescope, IV: the low-resolution spectrometer. Publ.\nAstron. Soc. Pac. 127, 623 (2015).\n53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole\nmass and quasar properties from the NIRSpec spectrum. Astron.\nAstrophys. 685, 121 (2024).\n54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting\ngalaxies at 5.3\u003cz\u003c6.9 and direct evidence for local reionization by\ngalaxies. Astrophys. J. 950, 66 (2023).\n55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment\nof a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron.\nAstrophys. 679, 89 (2023).\n56. Rauscher, B. J. NSClean: an algorithm for removing correlated\nnoise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136,\n015001 (2024).\n57. Rigby, J. et al. The science performance of JWST as characterized\nin commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023).\n58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw.\nSyst. 101, 17 (1996).\n59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey\nof Galactic HI. Final data release of the combined LDS and\nIAR surveys with improved stray-radiation corrections. Astron.\nAstrophys. 440, 775 (2005).\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\n60. Murphy, K. D. \u0026 Yaqoob, T. An X-ray spectral model for\nCompton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc.\n397, 1549 (2009).\n61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey:\nCompton-thick AGN at high redshift. Mon. Not. R. Astron. Soc.\n480, 2578 (2018).\n62. Suh, H. et al. Multi-wavelength properties of type 1 and type\n2 AGN host galaxies in the Chandra-COSMOS Legacy Survey.\nAstrophys. J. 872, 168 (2019).\n63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. \u0026 Hogg, D. W.\nAGNfitter: a Bayesian MCMC approach to fitting spectral energy\ndistribution of AGNs. Astrophys. J. 833, 98 (2016).\n64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy\nEmission. Astron. Astrophys. 622, 103 (2019).\n65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to\ninfrared. Mon. Not. R. Astron. Soc. 491, 740 (2020).\n66. Polletta, M. et al. Spectral energy distributions of hard X-ray\nselected active galactic nuclei in the XMM-Newton medium deep\nsurvey. Astrophys. J. 663, 81 (2007).\n67. Marconi, A. et al. Local supermassive black holes, relics of active\ngalactic nuclei and the X-ray background. Mon. Not. R. Astron.\nSoc. 351, 169 (2004).\n68. Gilli, R., Comastri, A. \u0026 Hasinger, G. The synthesis of the cosmic\nX-ray background in the Chandra and XMM-Newton era. Astron.\nAstrophys. 463, 79 (2007).\n69. Lusso, E. et al. The bolometric output and host-galaxy properties\nof obscured AGN in the XMM-COSMOS survey. Astron. Astrophys.\n534, 110 (2011).\n70. Greene, J. E. \u0026 Ho, L. C. Estimating black hole masses in active\ngalaxies using the Hα emission line. Astrophys. J. 630, 122 (2005).\n71. Richards, G. T. et al. Spectral energy distributions and\nmultiwavelength selection of type 1 quasars. Astrophys. J. Suppl.\n166, 470 (2006).\n72. Suh, H. et al. No significant evolution of relations between black\nhole mass and galaxy total stellar mass up to z~2.5. Astrophys. J.\n889, 32 (2020).\n73. Trakhtenbrot, B. \u0026 Netzer, H. Black hole growth to z=2 − I.\nImproved virial methods for measuring MBH and L/LEdd. Mon. Not.\nR. Astron. Soc. 427, 1096 (2012).\n74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec\nview of the z=1.59 obscured quasar XID2028. Astron. Astrophys.\n672, 128 (2023).\n75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from\nthe dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615,\n77 (2018).\n76. Hung, D. et al. Establishing a new technique for discovering\nlarge-scale structure using the ORELSE survey. Mon. Not. R.\nAstron. Soc. 491, 5524 (2020).\n77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal\nof the star-formation rate – density relation at 2\u003cz\u003c5. Astron.\nAstrophys. 662, 33 (2022).\n78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters\ndetected in absorption. Nature 606, 475 (2022).\nAcknowledgements\nH.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international\nGemini Observatory, a program of NSF NOIRLab, which is managed\nby the Association of Universities for Research in Astronomy (AURA)\nunder a cooperative agreement with the National Science Foundation,\non behalf of the Gemini partnership of Argentina, Brazil, Canada,\nChile, the Republic of Korea and the United States. F.L. acknowledges\nsupport from the INAF 2023 mini-grant ‘Exploiting the powerful\ncapabilities of JWST/NIRSpec to unveil the distant Universe’. M.M.\nacknowledges support from the Spanish Ministry of Science and\nInnovation through the project PID2021-124243NB-C22. This work\nwas partially supported by the programme Unidad de Excelencia\nMaría de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support\nfrom the Korean National Research Foundation (2020R1A2C3003769,\n2022R1A6A1A03053472) and the IBS computing centre for the\nsuper-Eddington accretion project. This work is based on observations\nmade with the NASA/ESA/CSA JWST. The data were obtained from\nthe Mikulski Archive for Space Telescopes at the Space Telescope\nScience Institute, which is operated by the Association of Universities\nfor Research in Astronomy, Inc., under NASA contract NAS 5-03127 for\nJWST. These observations are associated with programme no. 1760.\nSupport for programme no. 1760 was provided by NASA through a\ngrant from the Space Telescope Science Institute, which is operated\nby the Association of Universities for Research in Astronomy, Inc.,\nunder NASA contract NAS 5-03127. This paper makes use of the\nfollowing ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a\npartnership of ESO (representing its member states), NSF (United\nStates) and NINS (Japan), together with NRC (Canada), MOST and\nASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the\nRepublic of Chile. The Joint ALMA Observatory is operated by ESO,\nAUI/NRAO and NAOJ. The National Radio Astronomy Observatory\nis a facility of the National Science Foundation operated under\ncooperative agreement by Associated Universities, Inc.\nAuthorcontributions\nH.S. was the principal investigator of the JWST and ALMA proposals,\nled the analysis and interpretation of the results, and drafted the\npaper. H.S. and G.H. performed the sample selection. J.S. contributed\nto the analysis of the JWST NIRSpec IFU data and the interpretation\nof the results. F.L. reduced the JWST NIRSpec IFU data and wrote the\nrelevant section. G.L. and S.M. analysed the X-ray data and wrote\nthe relevant section. B.C.L. and D.H. performed all analysis relating\nto the environment and B.C.L. wrote the relevant section. S.K.Y. and\nS.H. performed simulations and provided discussions on black hole\ngrowth. E.P.F., M.M., R.D. and M.V. helped with the interpretation\nof the results and provided comments on the analysis. All authors\ncontributed to the discussion of the presented results and the\npreparation of the paper.\nCompetinginterests\nThe authors declare no competing interests.\nAdditionalinformation\nExtended data is available for this paper at https://doi.org/10.1038/\ns41550-024-02402-9.\nSupplementary information The online version contains\nsupplementary material available at https://doi.org/10.1038/s41550-\n024-02402-9.\nCorrespondence and requests for materialsshould be addressed to\nHyewon Suh.\nPeer review information Nature Astronomy thanks John Regan and the\nother, anonymous, reviewer(s) for their contribution to the peer review\nof this work.\nReprints and permissions informationis available at\nwww.nature.com/reprints.\nPublisher’s note Springer Nature remains neutral with regard to\njurisdictional claims in published maps and institutional affiliations.\nOpen Access This article is licensed under a Creative Commons\nAttribution-NonCommercial-NoDerivatives 4.0 International License,\nwhich permits any non-commercial use, sharing, distribution and\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nreproduction in any medium or format, as long as you give appropriate\ncredit to the original author(s) and the source, provide a link to the\nCreative Commons licence, and indicate if you modified the licensed\nmaterial. You do not have permission under this licence to share\nadapted material derived from this article or parts of it. The images\nor other third party material in this article are included in the article’s\nCreative Commons licence, unless indicated otherwise in a credit\nline to the material. If material is not included in the article’s Creative\nCommons licence and your intended use is not permitted by statutory\nregulation or exceeds the permitted use, you will need to obtain\npermission directly from the copyright holder. To view a copy of this\nlicence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.\n© The Author(s) 2024\n1\nInternational Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2\nINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy.\n3\nInstitute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4\nDESY, Hamburg, Germany. 5\nDeutsches Zentrum für Astrophysik, Görlitz,\nGermany. 6\nDepartment of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7\nDipartimento di Fisica e Astronomia (DIFA) Augusto Righi,\nUniversità di Bologna, Firenze, Italy. 8\nInstitute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9\nInstitut d’Estudis Espacials de\nCatalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10\nDepartment of Physics and Astronomy, University of California, Davis, Davis, CA, USA.\n11\nInstitut d’Astrophysique de Paris (UMR 7095: CNRS \u0026 Sorbonne Universite), Paris, France. 12\nNASA Goddard Space Flight Center, Greenbelt, MD, USA.\n13\nDepartment of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata\n(black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel\nincludesapower-law(greendashed),ahotgreybody(655 K;greendotted),anda\nwarmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata\n(black)withtheSEDtemplates61\noftheAGN-dominatedlocalULIRG(Mrk231),\ntheextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat\nredshiftz = 3.965.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum\n(grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular\napertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law\ncontinuum(black),narrow-linecomponents(green),broad-linecomponents\n(orange),andoutflowcomponents(blue)areindicated.Dottedverticallines\nmarkthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe\nblue-shifted(outflow)lineprofilesoftheH𝛼 + [NII]and[SII]invelocityspace.\nTheblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s\nrelativetosystemic.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission\naroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels.\nThemapsareshowninsingle-channelstepscorrespondingtovelocitystepsof\n165 km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe\n3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets\ninarcsecondsareshownrelativetotheAGNlocation.\n "],"twitterShareUrl":"https://twitter.com/intent/tweet?via=SlideShare\u0026text=A+super-Eddington-accreting+black+hole+~1.5%E2%80%89Gyr+after+the+Big+Bang+observed+w...+by+%40Cienctec1+https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912","type":"document","viewStats":{"views":380,"viewsFromEmbeds":23920,"topEmbeds":[]},"slideDimensions":{"height":791,"width":595},"topReadSlides":[],"user":{"id":"25614791","isFollowing":false,"login":"sacani","name":"Sérgio Sacani","occupation":"Supervisor de Geologia na Halliburton","organization":"Halliburton","photo":"https://cdn.slidesharecdn.com/profile-photo-sacani-48x48.jpg?cb=1735405912","photoExists":true,"shortName":"Sérgio Sacani"},"views":24300},"_nextI18Next":{"initialI18nStore":{"en":{"common":{"ad":{"fallbackText":"Ad for Scribd subscription","label":"Ad","close":"Close Ad","dismiss_in":"Dismiss in","ad_info_title":"Why are you seeing this?","ad_info_description":"We use ads to keep content free and accessible for everyone. You can remove them by \u003c2\u003esigning up\u003c/2\u003e for a SlideShare subscription."},"error":{"favorite_add":"We couldn't add SlideShare to favorites","favorite_remove":"We couldn't remove SlideShare from favorites","follow":"There was a problem following this user","unfollow":"There was a problem un-following this user","save":"Unable to save this item at this time.","remove_save":"We couldn't remove from your saved items"},"header":{"hamburger_menu_aria_label":"Open navigation menu","logo":{"alt":"SlideShare a Scribd company logo","title":"Return to the homepage"},"home":"Home","explore":"Explore","search":{"placeholder":"Search","aria_label":"Search SlideShare","button":"Submit Search","suggestion_1":"business model canvas example","suggestion_2":"social media strategy outline","suggestion_3":"marketing principles diagram","suggestion_4":"ai in healthcare presentation","suggestion_5":"writing skills checklist","suggestion_6":"21st century literature talk","tooltip":"For better results, use descriptive keywords to find the most relevant presentations. \u003cb\u003eExample:\u003c/b\u003e\u003cem\u003e Instead of 'Artificial Intelligence', try 'AI in healthcare trends'\u003c/em\u003e."},"upload":"Upload","login":"Login","signup":{"label":"Download free for 30 days","title":"Signup now for a SlideShare account"},"user":{"aria_label":"User Settings","clipboards":"My Clipboards","uploads":"My Uploads","analytics":"Analytics","settings":"Account Settings","support":"Support","logout":"Logout"}},"footer":{"link":{"about":"About","support":"Support","terms":"Terms","privacy":"Privacy","copyright":"Copyright","cookie":"Cookie Preferences","privacyRights":"Do not sell or share my personal information"},"language_selector":{"aria_label":"Change Language","hidden_text":"Current Language"},"copyright":"SlideShare from Scribd","social":{"rss":{"aria_label":"Slideshare on RSS Feed","title":"RSS"},"twitter":{"aria_label":"Slideshare on Twitter","title":"Twitter"}}},"app_notification_banner":{"notification_text":"We've updated our privacy policy.","notification_link_text_desktop":"Click here to review the details.","notification_link_text_mobile":"Tap here to review the details."},"privacy_policy_explicit_opt_in_modal":{"modal_title":"We've updated our privacy policy.","modal_content_paragraph_one":"We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.","modal_content_paragraph_two":"You can read the details below. By accepting, you agree to the updated privacy policy.","modal_content_paragraph_three":"Thank you!","modal_action_assertive":"Accept and continue","modal_action":"View updated privacy policy","modal_action_error":"We've encountered a problem, please try again."},"actions":{"addToSaved":"Save for later","addToSavedA11y":"Save {{title}} for later","all_saved":"All Saved","back":"Back","close":"Close","cancel":"Cancel","save":"Save","saved":"Saved","submit":"Submit","next":"Next","previous":"Previous","removeSaved":"Remove from saved","removeSavedA11y":"Remove {{title}} from saved","scrollLeft":"Scroll Left","scrollRight":"Scroll Right","save_to_new_list_success":"Saved to "},"filter":{"apply":"Apply"},"form":{"required":"Required"},"slideshow_card":{"slideshow_type":{"document":"Document","infographic":"Infographic","presentation":"Presentation","documents":"Documents","infographics":"Infographics","presentations":"Presentations","downloads":"Downloads","likes":"Likes"},"slideshow_type_unit":{"presentation":"Slide","document":"Page","infographic":"Page"},"pages_count_one":"{{count}} page","pages_count_other":"{{count}} pages","slides_count_one":"{{count}} slide","slides_count_other":"{{count}} slides","screen_reader_text":"{{title}} by {{author}}","screen_reader_text_extended":"{{title}} by {{author}}, has {{slideCount}} slides with {{viewCount}} views.","view_one":"view","view_other":"views"},"image_alt":{"studying":"Abstract image of a woman sitting on books and studying on a laptop"},"items":{"count_one":"{{count}} item","count_other":"{{count}} items"},"time":{"second_one":"{{count}} second","second_other":"{{count}} seconds"},"timeSince":{"minutes_ago":"{{count}} min. ago","hours_ago_one":"{{count}} hour ago","hours_ago_other":"{{count}} hours ago","days_ago_one":"{{count}} day ago","days_ago_other":"{{count}} days ago","months_ago_one":"{{count}} month ago","months_ago_other":"{{count}} months ago","years_ago_one":"{{count}} year ago","years_ago_other":"{{count}} years ago"},"see_more":"See more","see_less":"See Less","yes":"Yes","no":"No","signup":"Sign Up","next_label":"Next","previous_label":"Previous"},"player":{"actions":{"all_saved":"All Saved","clip":"Clip Slide","copy_text":"Copy text","copy_text_success":"Text copied to clipboard","copy_text_error":"Failed to copy the text. Please try again!","download_presentation":"Download presentation","download_slide":"Download slide","download_document":"Download document","download_page":"Download page","download_now":"Download now","download":"Download","favorite":"Favorite","remove_favorite":"Remove favorite","remove_like":"Remove like","like":"Like","follow":"Follow","unfollow":"Unfollow","more_options":"More options","share":"Share","save_slide":"Save slide","saved":"Saved","remove_from_list":"Remove from list {{listname}}","removed_from_list":"Saved item has been removed from the List","removed_from_list_error":"Could not remove the saved item from list","save_error":"Unable to save this item at this time.","save_to_new_list":"New list","save_to_list":"Save to list {{listname}}","scroll_view":"Scroll view","scroll_view_description":"Vertically scroll through all slides","slideshow_view":"Slideshow view","slideshow_view_description":"View one slide at a time","no_saved_lists":"You don't have any lists created yet."},"ads":{"label":"Ad","skip":"Skip to next slide","skip_countdown":"You can skip to the next slide in","continue_in":"Continue in","change_volume":"Change Volume","download_read_ad_free":"Download to read ad-free","scroll":"Scroll to read more"},"ad_block_interstitial":{"title_1":"Keep SlideShare free —","title_2":"please disable your ad blocker.","button_label":"Show me how","message":"Hate ads? Join Scribd to browse SlideShare and Scribd ad-free.","cta":"Try Scribd for free"},"author":{"by":"by","follow":"Follow","following":"Following","keynoteAuthor":"Keynote Author"},"download":{"success":"Your SlideShare is downloading."},"editors_notes":"Editor's Notes","end_of_reading":{"loading":"Loading in","title":"Check these out next","next_slideshares":"Next SlideShares","upcoming_slideshare":"Upcoming SlideShare"},"first_clip":{"title":"You just clipped your first slide!","description":"Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips."},"metadata":{"at":"at","aiTag":{"descriptionLabel":"AI-enhanced description","descriptionTooltipTitle":"AI-Enhanced Description","descriptionTooltip":"Leveraging AI technology, we've optimized the description for improved clarity.","titleLabel":"AI-enhanced title","titleTooltipTitle":"AI-Enhanced Title","titleTooltip":"Leveraging AI technology, we've optimized the title for improved clarity.","titleAndDescriptionLabel":"AI-enhanced title and description","titleAndDescriptionTooltipTitle":"AI-Enhanced Title and Description","titleAndDescriptionTooltip":"Leveraging AI technology, we've optimized the title and description for improved clarity."},"download":{"bottomSheetTitle":"Download format","label_short":"Download","label":"Download now","description":"Download to read offline","download_count":"Downloaded {{count}} times"},"download_as":"Download as {{formatTypes}}","readMore":"Read more","readLess":"Read less","more":"more","category":{"label":"Category","description":"View the featured presentations, documents and infographics in the"},"dateFormat":"MMM. D, YYYY","most_read":"Most read","pages":"Pages","page":"Page"},"navigation":{"next_slide":"Next Slide","previous_slide":"Previous Slide","slide_count_of_total_count":"\u003cspan data-cy='current-slide-number' class='current-slide-number j-current-slide'\u003e{{slideCount}}\u003c/span\u003e of \u003cspan class='total-slides j-total-slides'\u003e{{totalCount}}\u003c/span\u003e","view_fullscreen":"View Fullscreen","zoom_in":"Zoom In","zoom_out":"Zoom Out"},"new_clipboard_modal":{"title":"Create a clipboard","name":{"label":"Name","placeholder":"Best of Slides","error":"Name cannot be blank"},"description":{"label":"Description","placeholder":"Add a brief description so other know what your clipboard is about."},"visibility":{"label":"Visibility","description":"Others can see my Clipboard"}},"select_clipboard_modal":{"title":"Select a clipboard","message":"Looks like you've already clipped this slide","button":"Create a clipboard"},"share":"Share SlideShare","rec":{"related":"Related slideshows","recommended_for_you":"Recommended for you","descTooltipTitle":"About the slideshow","recommended":{"title":"Recommended","shortTitle":"Recommended"},"relatedContent":{"title":"More Related Content","shortTitle":"More Related Content"},"featured":{"title":"Featured","shortTitle":"Featured"},"forYou":{"title":"Slideshows for you","shortTitle":"Slideshows for you"},"alsoLiked":{"title":"Viewers also liked","shortTitle":"Viewers also liked"},"latest":{"title":"Recently uploaded","shortTitle":"Recently uploaded"},"moreFromUser":{"title":"More from {{name}}","shortTitle":"More from uploader"},"similarTo":{"title":"Similar to {{title}}","shortTitle":"Similar to"},"whatsHot":{"title":"What's hot","shortTitle":"What's hot"}},"scribd":{"books":{"label":"Ebook","title":"Related Books"},"audioBooks":{"label":"Audiobook","title":"Related Audiobooks"},"error":{"title":"Oops! Something went wrong.","description":"We're sorry, but we can't find any related content at this time.","button":"Try again"},"freeWithTrial":"Free with a 30 day trial from {{brand}}","viewAll":"View All"},"error":{"clipboard":"We couldn't create your clipboard","save":"We couldn't save this item","unsave":"We couldn't remove from your saved items","blocked":"This user has blocked you","private_content":"Private content!","privacy_explanation":"This content has been marked as private by the uploader.","enter_password":"Enter password","file_protected":"This file is password protected.","password_incorrect":"The password is incorrect.","private_presentation":"Private Presentation","private_content_message":"This uploaded file has been marked private by the author. Sorry!","removed_content_title":"Uploaded Content Removed","removed_content_message":"The uploaded content has been removed and is no longer available.","redirect_message":"Redirecting to the homepage in","something_went_wrong_title":"Sorry! The page could not be loaded.","something_went_wrong_message":"This is probably a temporary error. Just refresh the page and retry. If the problem continues, please check back in 5-10 minutes.","not_found_title":"Sorry! We could not find what you were looking for.","not_found_message":"Don't worry, we will help you get to the right place. Are you looking for:"},"save_to_new_list_modal":{"title":"Add to a new list","list_name_input_label":"What would you like to name this list?","list_privacy_label":"Make list private","cancel_button_label":"Cancel","save_list_button_label":"Save","success":"Saved to ","error":"We couldn't save this item to {{listname}}"},"confirm_remove_save_modal":{"title":"This saved item is also in a list.","description":"Removing from saved will also delete the item from your lists","cancel_button_label":"Cancel","delete_button_label":"Delete"},"seo_metadata_test":{"description_suffix":"Download as a PDF or view online for free"},"slide_actions_menu":{"title":"What would you like to do?"}},"metadata":{"gallery_view":"Gallery","gallery_view_label":"Gallery View","like_one":"like","like_other":"likes","likeWithCount_one":"{{count}} like","likeWithCount_other":"{{count}} likes","view_one":"view","view_other":"views","saved_one":"saved","saved_other":"saved","from_embeds":"From embeds","number_of_embeds":"Number of embeds","on_slideshare":"On Slideshare","total_views":"Total views","split_char":",","decimal_point":".","show_more":"Show More","likes":{"empty_message":"Be the first to like this","loading_message":"Loading..."},"slide_one":"slide","slide_other":"slides","slide_count_of_total":"of","study_guide":{"cta":"Convert to study guide","beta_label":"BETA","description":"Transform any presentation into a summarized study guide, highlighting the most important points and key insights.","button_cta":"Convert","label":"Study guide","modal_title":"Coming soon!","modal_description":"We're working on bringing automatic study guide generation to presentations. Help us shape this feature by sharing your feedback.","modal_question":"How often would you convert presentations into study guides if this feature was available?","modal_complete":"We appreciate you taking the time to share your thoughts. Your input will help us build a feature that better meets your needs. Stay tuned as we work to bring this to life!","modal_options":{"option_1":"Frequently (4+ times per month)","option_2":"Occasionally (1-3 times per month)","option_3":"Rarely (few times per year)","option_4":"Not interested"}},"study_materials":{"cta":"Convert to study materials","label":"Convert","description":"Transform any presentation into ready-made study material—select from outputs like summaries, definitions, and practice questions.","modal_description":"We're working on introducing automatic content conversion to help transform presentations into customized study materials. Help us shape this feature by sharing your feedback.","modal_question":"What output would be most helpful for your conversion use case?","modal_options":{"option_1":"Summaries of main concepts","option_2":"Key definitions or terms","option_3":"Real-world examples","option_4":"Practice questions or exercises"}}},"report":{"more":"More options","share":"Share","report":"Report","edit":"Edit","viewAnalytics":"View Analytics","flag_as_inappropriate":"Report as inappropriate","error":"There was an error while reporting this slideshow. Please try again.","flag":"Flag","copyright_complaint":"Copyright Complaint","select_a_reason":"Select a reason","select_your_reason":"Select your reason for reporting this presentation as inappropriate.","none":"None","porn":"Pornographic","defamatory":"Defamatory","ultraviolence":"Extremely Violent or Promotes Terrorism","hate_speech":"Hate Speech","offensive":"Offensive Language or Threatening","spam":"Spam or Scam","form":{"title":"Report content","description":"If you are the copyright owner of this document and want to report it, please visit the \u003cCustomLink href='example.com'\u003ecopyright infringement notice page\u003c/CustomLink\u003e to submit a report.","error_category":"Select a category to submit your report","error_subtype":"Select a sub-category to submit your report","default_subtype":"Select an option...","category":{"illegal":{"label":"Illegal","description":"Content that breaks the law or promotes illegal activities.","subtypes":{"child_exploitation":"Minor Exploitation","child_sexual_abuse_material":"Child Sexual Abuse","dangerous_products_or_services":"Dangerous Products/Services","non_violent_crime":"Non-Violent Offenses","sex_related_crime":"Sexual Offenses","violent_crime":"Violent Offenses","terrorism":"Terrorism","general":"Other"}},"explicit":{"label":"Explicit","description":"Content that is graphic, offensive, or disturbing.","subtypes":{"sexually_explicit_content":"Sexually Explicit","shocking_content":"Shocking or Disturbing","general":"Other"}},"dangerous_and_deragatory":{"label":"Dangerous \u0026 Derogatory","description":"Content that encourages harmful, threatening, or hateful behavior.","subtypes":{"menacing":"Threatening Behavior","incitement":"Inciting Violence or Hatred","self_harm":"Self-harm","general":"Other"}},"deceptive_and_fraudulent":{"label":"Deceptive \u0026 Fraudulent","description":"Content that intentionally misleads, deceives, or engages in fraudulent activities.","subtypes":{"academic_integrity":"Academic Dishonesty","misinformation":"Spreading False Information","general":"Other"}},"guideline_ignoring":{"label":"Intellectual Property","description":"Content that uses someone else's protected work without permission.","subtypes":{"ip_infringement_copyright":"IP infringement (copyright)","ip_infringement_non_copyright":"IP infringement (non-copyright)","general":"Other"}},"privacy":{"label":"Privacy","description":"Content that misuses personal information.","subtypes":{"privacy_general":"General Privacy","privacy_child":"Child Privacy"}},"spam":{"label":"Spam","description":"Unsolicited and repetitive content that disrupts your experience."},"low_quality":{"label":"Low Quality","description":"Content that fails to meet minimum standards for clarity, relevance, or completeness."}}}},"share_modal":{"close":"Close","embed_title":"Embed","embed_size":"Size (px)","link":"Link","start":"Start on","title":"Share this SlideShare","share_facebook":"Share on Facebook","share_linkedin":"Share on Linkedin","share_twitter":"Tweet on Twitter"},"next_slideshow":{}}},"initialLocale":"en","ns":["common","player","metadata","report","share_modal","next_slideshow"],"userConfig":null},"_sentryTraceData":"b2e17caced90400bb950bb54b6f06199-4188569edd1c0d9c-1","_sentryBaggage":"sentry-environment=production,sentry-public_key=7e7cafa2920448ed81ac67de08abbeed,sentry-trace_id=b2e17caced90400bb950bb54b6f06199,sentry-sample_rate=1,sentry-transaction=%2Fslideshow%2F%5Btitle%5D%2F%5Bid%5D,sentry-sampled=true"},"__N_SSP":true},"page":"/slideshow/[title]/[id]","query":{"title":"a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst","id":"273014912"},"buildId":"6cf5707a372b9e8ab0c6a000683653819317f919","assetPrefix":"https://public.slidesharecdn.com","runtimeConfig":{"assetPrefix":"https://public.slidesharecdn.com"},"isFallback":false,"isExperimentalCompile":false,"gssp":true,"locale":"en","locales":["en","de","es","pt","fr"],"defaultLocale":"en","domainLocales":[{"domain":"www.slideshare.net","defaultLocale":"en"},{"domain":"de.slideshare.net","defaultLocale":"de"},{"domain":"es.slideshare.net","defaultLocale":"es"},{"domain":"pt.slideshare.net","defaultLocale":"pt"},{"domain":"fr.slideshare.net","defaultLocale":"fr"}],"scriptLoader":[]}</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10