CINXE.COM
A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST | PDF | Free Download
<!DOCTYPE html><html lang="en"><script id="gtm"> performance.mark('gtm.start'); (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({ 'gtm.start': new Date().getTime(), event: 'gtm.js' }); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; j.onload = function () { performance.mark('gtm.end'); performance.measure('gtm', 'gtm.start', 'gtm.end'); }; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M36RG8PT'); </script><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width"/><link rel="shortcut icon" href="https://public.slidesharecdn.com/_next/static/media/favicon.7bc3d920.ico"/><script> window.eventsToSend = window.eventsToSend || [] window.eventsToSend.push({ name: "page_rendering", timestamp: new Date().toISOString(), value: JSON.stringify({ time: performance?.now() }) }) </script><script type="speculationrules">{"prerender":[{"where":{"and":[{"href_matches":"/slideshow/*"}]},"eagerness":"moderate"}]}</script><title>A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST | PDF | Free Download</title><meta name="robots" content="index, follow"/><meta name="title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><link rel="canonical" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="alternate" hrefLang="en" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="alternate" hrefLang="x-default" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><link rel="preconnect" href="https://a.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://b.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://c.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://d.pub.network/" crossorigin="anonymous"/><link rel="preconnect" href="https://c.amazon-adsystem.com" crossorigin="anonymous"/><link rel="preconnect" href="https://s.amazon-adsystem.com" crossorigin="anonymous"/><link rel="preconnect" href="https://secure.quantserve.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://rules.quantcount.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://pixel.quantserve.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://btloader.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://api.btloader.com/" crossorigin="anonymous"/><link rel="preconnect" href="https://confiant-integrations.global.ssl.fastly.net" crossorigin="anonymous"/><link rel="preload" href="https://a.pub.network/slideshare-net/pubfig.min.js" as="script"/><script> window.freestarReactCompontentLoaded = true; // Prevents Freestar from appending the script a second time; typo is theirs window.freestar = window.freestar || { queue: [] }; window.freestar.config = freestar.config || {}; window.freestar.config.disabledProducts = { googleInterstitial: false, }; window.eventsToSend = window.eventsToSend || []; window.freestar.queue.push(function () { window.eventsToSend.push({ name: "freestar_queue_start", timestamp: new Date().toISOString() }) }); </script><meta name="twitter:site" content="@SlideShare"/><meta name="twitter:card" content="player"/><meta name="twitter:title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="twitter:description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><meta name="twitter:image" content="https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640&height=640&fit=bounds"/><meta name="twitter:image:alt" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta name="twitter:player" content="https://www.slideshare.net/slideshow/embed_code/key/oiy1E5SIQXjS5R"/><meta name="twitter:player:width" content="670"/><meta name="twitter:player:height" content="715"/><meta name="twitter:app:name:googleplay" content="SlideShare Android"/><meta name="twitter:app:id:googleplay" content="net.slideshare.mobile"/><meta name="twitter:app:name:iphone" content="SlideShare iOS"/><meta name="twitter:app:id:iphone" content="917418728"/><meta name="twitter:app:url:iphone" content="slideshare-app://ss/165952101"/><meta name="twitter:app:name:ipad" content="SlideShare iOS"/><meta name="twitter:app:id:ipad" content="917418728"/><meta name="twitter:app:url:ipad" content="slideshare-app://ss/165952101"/><meta property="og:site_name" content="SlideShare"/><meta property="og:type" content="website"/><meta property="og:url" content="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"/><meta property="og:title" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta property="og:description" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST - Download as a PDF or view online for free"/><meta property="og:image" content="https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640&height=640&fit=bounds"/><meta property="og:image:alt" content="A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST"/><meta property="og:image:type" content="image/webp"/><meta property="og:image:width" content="640"/><meta property="og:image:height" content="360"/><script type="application/ld+json">{"@context":"http://schema.org","@type":"CreativeWork","name":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","description":"Recent James Webb Space Telescope ( JWST) observations have revealed\na surprisingly abundant population of faint, dusty active galactic nuclei at\nz ≈ 4–7. Together with the presence of supermassive black holes at z \u003e 6,\nthis raises questions about the formation and growth histories of early black\nholes. Current theories for the formation of seed black holes from the death\nof the frst stars (that is, light seeds) and/or the direct collapse of primordial\ngas clouds (that is, heavy seeds) still lack observational confrmation. Here\nwe present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful\noutfows that is observed in an extreme phase of rapid growth at redshift\nz ≈ 4. This object is similar to other JWST-discovered faint active galactic\nnuclei populations, but is bright in X-ray emission and accreting at more\nthan 4,000% of the limit at which radiation pressure exceeds the force of\ngravitational attraction of the black hole (that is, super-Eddington accretion).\nAnalysis of JWST Near-Infrared Spectrograph integral feld unit data reveals\nspatially extended Hα emission with velocities of ~−600–−500 km s−1 relative\nto the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington\naccretion as invoked by models of early black hole formation. This discovery\nshowcases a previously undiscovered key parameter space and ofers crucial\ninsights into rapid black hole growth mechanisms in the early universe.","url":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","datePublished":"2024-11-04 20:44:17 UTC","publisher":{"@type":"Organization","name":"Slideshare","url":"https://www.slideshare.net/"},"encodingFormat":"application/pdf","fileFormat":"pdf","inLanguage":"en","mainEntityOfPage":{"@type":"WebPage","@id":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"}}</script><script type="application/ld+json">{"@context":"https://schema.org/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.slideshare.net"},{"@type":"ListItem","position":2,"name":"Science","item":"https://www.slideshare.net/category/science"},{"@type":"ListItem","position":3,"name":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","item":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912"}]}</script><script> freestar.queue.push(function() { googletag.pubads().setTargeting('test', []); }); </script><meta name="next-head-count" content="56"/><link rel="preload" href="https://public.slidesharecdn.com/_next/static/media/9c20d643cc03e499-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="https://public.slidesharecdn.com/_next/static/media/a9b61b60c2d733b4-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><noscript data-n-css=""></noscript><link rel="preload" href="https://cmp.osano.com/AzZdHGSGtpxCq1Cpt/079b27eb-bb3f-48dd-9bd9-3feb8aec3c38/osano.js" as="script"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/webpack-fca657b2df1193b1.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/framework-0dfcca9a5dec51b3.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/main-4b9e5138f827276f.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/pages/_app-d3e96b184f52081b.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/5121-c12bfd4bed7c2139.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/5581-c31338dd77890eb2.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/4740-639dc16ecd764905.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/6229-23a3a93a4fd8bda9.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/chunks/pages/slideshow/%5Btitle%5D/%5Bid%5D-451dcf877ad69f2b.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/34d87f1e259ccc2522816c4af0afbdd34048dee6/_buildManifest.js"/><link rel="preload" as="script" href="https://public.slidesharecdn.com/_next/static/34d87f1e259ccc2522816c4af0afbdd34048dee6/_ssgManifest.js"/><style>:root{--black:#000;--white:#fff;--alice-blue-100:#f5fcff;--alice-blue-200:#f2faff;--alice-blue-600:#ddf1f9;--celadon-blue:#027eb0;--celadon-blue-dark:#026c97;--midnight-green-dark:#002e3c;--light-gray:#e9edf8;--pale-gray:#fdfdfd;--snow-gray:#f3f6fd;--snow-gray-100:#f9faff;--blue-gray-100:#f5f6fa;--blue-gray-200:#e3e6f0;--blue-gray-300:#d0d6e6;--blue-gray-400:#b4bbd1;--blue-gray-500:#989fbc;--blue-gray-600:#636c8b;--blue-gray-700:#424766;--blue-gray-800:#212240;--blue-gray-900:#0e0f25;--blue-300:#005e93;--blue-200:#0076b9;--blue-100:#e7f5fc;--gray-500:#303133;--tangerine-100:#fbedd8;--color-info:#3aa7ea;--color-error:#bf3131;--color-success:#337c41;--color-warning:#cd5308;--color-error-red-100:#f2dede;--celadon-blue-rgb:2,126,176;--blue-gray-600-rgb:99,108,139;--color-twitter:#1da1f2;--color-twitter-hover:#1a91da;--color-facebook:#3b5998;--color-facebook-hover:#3c5586;--color-linkedin:#337ab1;--color-linkedin-hover:#2e6e9f;--color-scribd:#1e7b85;--color-scribd-hover:#1d7680;--color-sms:#3b3835;--color-email:#bbc4c8;color-scheme:only light;--header-height:64px;--toolbar-height:54px;--progress-bar-height:8px;--pushdown-height:90px;--adhesion-height:0px;--key-moments-size:140px;--sidebar-size:404px;--metadata-toolbar-height:100px;--metadata-toolbar-offset:0px;--metadata-toolbar-shadow-opacity:0;--actions-menu-height:74px;--max-content-width:1688px;--border-radius:8px;--sticky-index:8;--header-index:11;--dropdown-index:99;--freestar-index:999;--progress-bar-index:9999;--popup-index:9999;--toast-index:99999;--pointly-index:2;--slide-actions-index:3;--font-weight-light:300;--font-weight-regular:400;--font-weight-medium:600;--font-weight-bold:700;--font-weight-black:900;--font-size-large:16px;--font-size-medium:14px;--font-size-small:12px;--font-size-xsmall:10px;--line-height-relax:1.5;--line-height-compact:1.15;--line-height-tight:1;--ease:cubic-bezier(0.2,0,0,1)}@media screen and (max-width:1249px){:root{--sidebar-size:364px}}@media screen and (max-width:1024px){:root{--header-height:75px}}@media screen and (max-width:767px){:root{--pushdown-height:50px}}@media only screen and (min-width:929px){:root{--actions-menu-height:0}}*,:after,:before{box-sizing:border-box}*{margin:0}:focus-visible{outline:2px solid rgba(2,126,176,.7);outline-offset:2px}body,html{min-height:100%}html{scroll-behavior:smooth;scrollbar-gutter:stable}body{background-color:var(--white);font-family:var(--font-family);font-size:var(--font-size-medium);line-height:var(--line-height-relax);overflow:clip scroll;text-rendering:optimizeLegibility;-webkit-text-size-adjust:100%;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}canvas,img,picture,video{display:block;max-width:100%}button,input,select,textarea{font-family:var(--font-family)}h1,h2,h3,h4,h5,h6,p{overflow-wrap:break-word}#__next,#root{isolation:isolate;min-height:100%;height:-moz-max-content;height:max-content}::-moz-selection{color:var(--blue-gray-900);background-color:var(--blue-gray-200)}::selection{color:var(--blue-gray-900);background-color:var(--blue-gray-200)}body:has(dialog[open]){overflow:clip}header:has(+aside.visible){box-shadow:none}header:has(+aside:not(.visible)){box-shadow:0 1px 0 0 var(--blue-gray-200)}.content-wrapper{width:100%;max-width:var(--max-content-width);margin-inline:auto}.clamp-lines{-webkit-box-orient:vertical;-webkit-line-clamp:2;line-clamp:2;display:-webkit-box}.clamp-lines,.ellipsis{text-overflow:ellipsis;overflow:hidden}.ellipsis{white-space:nowrap}.seo-only,.sr-only{position:absolute!important;width:1px;height:1px;border:0;clip:rect(1px,1px,1px,1px);clip-path:inset(50%);padding:0;margin:-1px;overflow:hidden;white-space:nowrap}.no-scroll,body[class^=no-scroll-for-]{overflow:hidden;touch-action:none}.hide-scrollbar{-ms-overflow-style:none;scrollbar-width:none}.hide-scrollbar::-webkit-scrollbar{display:none}.unstyled-button{background:none;border:none;padding:0}body:has(#slideshare_pushdown-pushdown-cls iframe){--pushdown-height:90px}body:has(.fs-pushdown-sticky:empty){--pushdown-height:0px}@media only screen and (max-width:928px){#fs-sticky-footer{bottom:var(--actions-menu-height)}}@media only screen and (min-width:1051px){body:has(#slideshare_pushdown-pushdown-cls.fs-pushdown-sticky){--metadata-toolbar-offset:0px!important}}.metadata-toolbar{top:var(--metadata-toolbar-offset)}body:has(#fs-sticky-footer iframe) #fixed-download-container{bottom:var(--adhesion-height,0)}body:not(:has(#fs-sticky-footer iframe)) #fs-sticky-footer{min-height:0!important}dialog[open]{display:grid;opacity:1}dialog[open]::backdrop{opacity:.6}dialog{width:auto;height:auto;max-width:100dvw;max-height:100dvh;box-shadow:0 0 0 1px rgba(9,30,66,.08),0 2px 1px rgba(9,30,66,.08),0 0 20px -6px rgba(9,30,66,.3);border:0;padding:0;overflow:clip}dialog,dialog::backdrop{opacity:0;transition:opacity .3s ease-out,transform .3s ease-out,translate .3s ease-out,display allow-discrete .3s,overlay allow-discrete .3s}dialog::backdrop{background-color:#000}@starting-style{dialog[open],dialog[open]::backdrop{opacity:0}}.popover.open,[popover]:popover-open{opacity:1;scale:1}[popover]:popover-open::backdrop{opacity:0}.popover{display:none;z-index:var(--popup-index)}.popover.open{display:block;opacity:1}.popover,[popover]{position:absolute;inset:auto;color:var(--blue-gray-800);background-color:canvas;border:0;border-radius:4px;box-shadow:0 1px 5px rgba(0,0,0,.05),0 4px 12px rgba(0,0,0,.2);overscroll-behavior:contain;overflow:clip auto;padding:0;margin-block:1ch;scale:.96}.popover,[popover],[popover]::backdrop{transition:opacity .3s,scale .3s,display allow-discrete .2s,overlay allow-discrete .2s;opacity:0}@starting-style{.popover.open,[popover]:popover-open,[popover]:popover-open::backdrop{opacity:0}.popover.open,[popover]:popover-open{scale:.96}}.popover [data-popover-list],[popover] [data-popover-list]{display:flex;flex-direction:column;list-style:none;padding-inline:0;padding-block:8px}.popover [data-popover-item],[popover] [data-popover-item]{width:100%;display:flex;align-items:center;gap:8px;padding-block:12px;padding-inline:16px;color:inherit;text-decoration:none}.popover [data-popover-item]:hover,[popover] [data-popover-item]:hover{background-color:var(--blue-gray-100)}.popover [role=separator],[popover] [role=separator]{margin-block:8px;margin-inline:16px}@supports (anchor-name:--foo-bar){[popover]{position-try-order:most-height;position-visibility:anchors-visible}[popover][data-popover-position=bottom]{top:anchor(bottom);left:anchor(center);translate:-50% 0;transform-origin:top center;position-try:flip-block}[popover][data-popover-position=bottom-start]{top:anchor(bottom);left:anchor(start);transform-origin:top left;position-try:flip-block,flip-inline}[popover][data-popover-position=bottom-end]{top:anchor(bottom);right:anchor(end);transform-origin:top right;position-try:flip-block,flip-inline}[popover][data-popover-position=top]{bottom:anchor(top);left:anchor(center);transform-origin:bottom center;position-try:flip-block}[popover][data-popover-position=top-start]{bottom:anchor(top);left:anchor(start);transform-origin:bottom left;position-try:flip-block,flip-inline}[popover][data-popover-position=top-end]{bottom:anchor(top);right:anchor(end);transform-origin:bottom right;position-try:flip-block,flip-inline}}#fs-sticky-footer,.orp-player-wrapper{z-index:var(--freestar-index)!important}.fs-sticky-parent{position:static!important}.fs-sticky-wrapper{padding-right:0!important;display:block!important}#slideshare_pushdown-pushdown-cls.fs-pushdown-sticky{position:static!important}body.no-scroll-mobile #slideshare_pushdown-pushdown-cls{height:auto}body.gallery-view #slideshare_pushdown-pushdown-cls{display:none}#pushdown-ad-large{display:grid;justify-content:center;align-items:center}#above-recs-desktop-ad-sm,#above-recs-mobile,#below-reader-ad,#between-recs-ad-1,#between-recs-ad-2{height:280px}@media screen and (min-width:929px){#below-reader-ad,#between-recs-ad-1,#between-recs-ad-2{height:250px}#above-recs-desktop-ad-sm,#above-recs-desktop-ad-sm-2{aspect-ratio:336/280;height:280px;margin-bottom:32px}#above-recs-desktop-ad-sm_container{justify-content:left!important}}@media only screen and (min-width:1051px){body{--padding-x-offset:clamp(1rem,-1.6rem + 8vw,8rem);--margin-x-offset:0px;--end:calc(var(--padding-x-offset) + var(--sidebar-size) + var(--margin-x-offset))}#fs-sticky-footer:has(#slideshare_adhesion){left:0;width:calc(100% - var(--end))}#fs-sticky-footer:has(#slideshare_adhesion2){width:var(--end);left:unset;right:0}}@media only screen and (min-width:1689px){body{--margin-x-offset:calc(calc(100% - var(--max-content-width)) / 2)}}div:has(>#between-recs-ad-1),div:has(>#between-recs-ad-2),div:has(>#interstitial-ad-1),div:has(>[id^=slideshare_docs_incontent]){display:grid;justify-content:center}div:has(>#interstitial-ad-1.video-interstitial-ad){display:block}@media screen and (max-width:928px){div:has(>#above-recs-mobile),div:has(>#below-reader-ad){display:grid;justify-content:center}}#fs-sticky-footer.hidden,.orp-player-wrapper.hidden{display:none!important}@media only screen and (max-width:928px){#fs-sticky-footer.hidden-on-mobile,.orp-player-wrapper.hidden-on-mobile{display:none!important}}div[id^=FreeStarVideoAdContainer_]{width:100%}#freestar-video-child:not(:empty){margin-bottom:24px}div[id^=FreeStarVideoAdContainer_FloatingOnly]{width:auto;aspect-ratio:auto}:root{--shadow-color:rgba(122,61,143,.15);--osano-dialog-shadow:drop-shadow(var(--shadow-color) 0.5px 1px 1px) drop-shadow(var(--shadow-color) 1px 2px 2px) drop-shadow(var(--shadow-color) 2px 4px 4px) drop-shadow(var(--shadow-color) 4px 8px 8px) drop-shadow(var(--shadow-color) 8px 16px 16px)}.osano-cm-dialog{background-color:#212240;color:var(--white)}.osano-cm-dialog__close{color:inherit;stroke:var(--white)}.osano-cm-dialog--eu{display:grid;grid-template-columns:1fr 200px;grid-column-gap:48px;-moz-column-gap:48px;column-gap:48px;max-height:95dvh;font-family:Source Sans Pro,sans-serif;color:var(--blue-gray-600,#636c8b);background-color:var(--white,#fff);border-top-left-radius:var(--border-radius,8px);border-top-right-radius:var(--border-radius,8px);filter:var(--osano-dialog-shadow);padding-block-start:32px;padding-block-end:20px;padding-inline:5%;.osano-cm-dialog__content{max-height:calc(95dvh - 52px)}.osano-cm-dialog__close{display:none}.osano-cm-dialog__title{font-size:24px;font-weight:700;color:var(--blue-gray-900,#0e0f25);margin-block-end:16px}.osano-cm-content__usage-list{font-size:16px}.osano-cm-usage-list__list{margin-block-start:8px;margin-block-end:16px;margin-inline-start:8px;.osano-cm-list__list-item{font-size:16px}}.osano-cm-link,.osano-cm-message{font-size:16px}.osano-cm-message{display:flex}.osano-cm-drawer-links,.osano-cm-link{display:inline}.osano-cm-link{color:var(--celadon-blue,#027eb0);font-weight:600;text-decoration:none;&:hover{color:var(--celadon-blue-dark,#026c97)}&:after{content:"|";padding-inline:12px}&:last-child:after{content:""}}.osano-cm-dialog__list{line-height:normal;margin-block-start:24px;.osano-cm-list__list-item{display:inline-flex;align-items:center;&:after{content:"|";padding-inline:16px;color:var(--blue-gray-200,#e3e6f0);font-size:28px}&:last-child:after{content:""}}}.osano-cm-toggle__switch{display:none}.osano-cm-toggle__input{width:16px;height:16px;margin:unset;overflow:unset;accent-color:var(--blue-gray-900,#0e0f25);position:static;opacity:1}.osano-cm-toggle__label.osano-cm-label{color:var(--blue-gray-600,#636c8b);font-size:18px;font-weight:600;margin-left:8px;margin-inline-end:0}.osano-cm-dialog__buttons{min-width:unset;align-self:flex-end;display:grid;grid-row-gap:8px;row-gap:8px;justify-content:stretch;align-items:center;margin:unset;.osano-cm-buttons__button{height:-moz-max-content;height:max-content;min-height:40px;font-size:16px;font-weight:600;margin:unset}.osano-cm-accept-all{order:-1}.osano-cm-accept-all,.osano-cm-manage{background-color:var(--celadon-blue,#027eb0)}.osano-cm-deny,.osano-cm-denyAll,.osano-cm-save{background-color:transparent;color:var(--celadon-blue,#027eb0);border:1px solid var(--celadon-blue,#027eb0)}}}.osano-cm-dialog--eu.osano-cm-dialog--br{.osano-cm-dialog__title{font-size:26px;font-weight:600}.osano-cm-dialog__buttons{row-gap:12px}}.osano-cm-window:has(>.osano-cm-dialog--br-overlay):before{content:"";position:fixed;inset:0;background-color:rgba(0,0,0,.6);z-index:-1}@media screen and (max-width:768px){.osano-cm-dialog--eu{-moz-column-gap:24px;column-gap:24px;grid-template-columns:1fr;padding-block-end:32px;padding-inline:16px;.osano-cm-dialog__buttons{display:flex;flex-wrap:nowrap;align-items:center;justify-content:flex-start;gap:16px;.osano-cm-buttons__button{width:-moz-max-content;width:max-content}}}.osano-cm-dialog--eu.osano-cm-dialog--br{.osano-cm-link,.osano-cm-message{font-size:16px;width:auto}.osano-cm-dialog__buttons{margin-block-start:24px;row-gap:16px}}}@media screen and (max-width:520px){.osano-cm-dialog--eu{font-size:14px;padding-block-start:16px;padding-block-end:16px;.osano-cm-dialog__title{font-size:20px;margin-block-end:8px}.osano-cm-link,.osano-cm-message{font-size:inherit}.osano-cm-usage-list__list{font-size:12px;.osano-cm-list__list-item{font-size:inherit}}.osano-cm-toggle__label.osano-cm-label{font-size:15px}.osano-cm-dialog__list{width:100%;display:flex;flex-direction:column;margin-block-start:8px;.osano-cm-list__list-item{display:grid;border-bottom:1px solid var(--blue-gray-200,#e3e6f0);padding-block:4px;&:last-child{border-bottom:unset}}.osano-cm-list__list-item:after{content:unset}.osano-cm-list-item__toggle{align-self:baseline;justify-content:space-between;.osano-cm-toggle__label{order:-1;margin:unset}}}.osano-cm-dialog__buttons{display:grid;grid-template-columns:1fr 1fr;grid-column-gap:16px;-moz-column-gap:16px;column-gap:16px;grid-row-gap:12px;row-gap:12px;margin-block-start:0;.osano-cm-buttons__button{min-width:-moz-max-content;min-width:max-content;width:unset;justify-self:stretch}.osano-cm-accept-all{grid-column:1/span 2}}}.osano-cm-dialog--eu.osano-cm-dialog--br{padding-block-start:32px;padding-block-end:32px;.osano-cm-dialog__title{font-size:26px;margin-block-end:16px}.osano-cm-link,.osano-cm-message{font-size:16px;width:auto}.osano-cm-dialog__buttons{margin-block-start:24px;row-gap:16px}}}@media screen and (min-width:929px){.osano-cm-widget{display:none}.osano-cm-content__message{margin-bottom:8px;padding-bottom:0;width:90%}.osano-cm-message{font-size:12px}.osano-cm-drawer-links{margin:0}.osano-cm-link{color:var(--celadon-blue);font-size:12px}.osano-cm-list__list-item{font-size:12px}.osano-cm-dialog__buttons{display:flex;align-items:center;gap:6px}.osano-cm-button{height:44px;font-size:14px;background-color:var(--celadon-blue);border-color:var(--celadon-blue);color:var(--white);padding:10px;margin:3px 0}.osano-cm-denyAll{background-color:var(--blue-gray-800);border-color:var(--white);color:var(--white)}}.osano-cm-widget{display:none}.osano-cm-content__message{margin-bottom:8px;padding-bottom:0;width:90%}.osano-cm-message{font-size:12px}.osano-cm-drawer-links{margin:0}.osano-cm-link{color:var(--celadon-blue);font-size:12px}.osano-cm-list__list-item{font-size:12px}.osano-cm-dialog__buttons{display:flex;align-items:center;gap:6px}.osano-cm-button{height:44px;font-size:14px;background-color:var(--celadon-blue);border-color:var(--celadon-blue);color:var(--white);padding:10px;margin:3px 0}.osano-cm-denyAll{background-color:var(--blue-gray-800);border-color:var(--white);color:var(--white)}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/bccb245ee3362e85-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c8a,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/4117e16a89310b23-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/2a041df68de43fa6-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/17c5807503b61094-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/7572a3f8628c1f19-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/9c20d643cc03e499-s.p.woff2) format("woff2");unicode-range:u+0100-02ba,u+02bd-02c5,u+02c7-02cc,u+02ce-02d7,u+02dd-02ff,u+0304,u+0308,u+0329,u+1d00-1dbf,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Source_Sans_3_4d9a39;font-style:normal;font-weight:200 900;font-display:swap;src:url(https://public.slidesharecdn.com/_next/static/media/a9b61b60c2d733b4-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Source_Sans_3_Fallback_4d9a39;src:local("Arial");ascent-override:109.21%;descent-override:42.66%;line-gap-override:0.00%;size-adjust:93.76%}.__className_4d9a39{font-family:__Source_Sans_3_4d9a39,__Source_Sans_3_Fallback_4d9a39,Inter,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,sans-serif;font-style:normal}.__variable_4d9a39{--font-family:"__Source_Sans_3_4d9a39","__Source_Sans_3_Fallback_4d9a39",Inter,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,sans-serif}.PageProgressBar_root__1y_Q3{position:fixed;top:0;left:0;width:100%;z-index:var(--progress-bar-index);pointer-events:none}.PageProgressBar_bar__Kyoem{width:100%;height:3px;background-color:var(--celadon-blue);transform:scaleX(0);transform-origin:left;transition:transform .4s cubic-bezier(.4,0,.2,1),opacity .5s ease;opacity:1}.PageProgressBar_complete__KhJy3{opacity:0}.ErrorShell_root__zYUH8{min-height:100vh;display:flex;flex-direction:column}.Header_root__8A86O{--fluid-16-24:clamp(1rem,0.7373rem + 1.3136vi,1.5rem);position:relative;height:var(--header-height);display:grid;grid-template-columns:auto 1fr;align-items:center;grid-gap:24px;gap:24px;background-color:var(--white);font-family:inherit;padding-inline:var(--fluid-16-24)}.Header_root__8A86O.Header_sticky__NGNE7{position:sticky;top:0;transition:box-shadow .3s ease-in-out;z-index:var(--header-index)}.Header_root__8A86O button{font-size:14px;white-space:nowrap}.Header_wrapper___zBfP{display:flex;align-items:center;flex-shrink:0;gap:12px}@media screen and (min-width:768px){.Header_root__8A86O{grid-template-columns:repeat(3,minmax(min-content,1fr))}}.Hamburger_root__tHlgC{display:grid;place-content:center;background:transparent;border:0;border-radius:2px;color:var(--blue-gray-600);padding:0;margin:0;cursor:pointer}@media screen and (min-width:768px){.Hamburger_root__tHlgC{display:none}}.SidebarFallback_loggedOutRoot__oKMfe{display:grid;grid-template-rows:170px 1fr}.SidebarFallback_loggedOutContainer__Tpr_u{display:flex;flex-direction:column;padding:16px}.SidebarFallback_loggedInRoot__r1CEd{display:grid;grid-template-rows:64px 1fr}.SidebarFallback_loggedInContainer__dw_ML{display:flex;flex-direction:column;gap:16px;padding:16px}.SidebarFallback_loggedInLinks__C2NaL{display:grid;grid-gap:24px;gap:24px}.SidebarFallback_loggedInUser__b8i41{display:flex;align-items:center;gap:8px;margin-block-start:12px;margin-block-end:auto}.Skeleton_root__U4QqL{--skeleton-bg:rgba(0,0,0,.1);--shimmer-bg:linear-gradient(90deg,transparent,rgba(0,0,0,.04),transparent);position:relative;display:block;height:1.2rem;flex-shrink:0;background:var(--skeleton-bg);overflow:hidden}.Skeleton_root__U4QqL:after{content:"";position:absolute;inset:0;translate:-100% 0;background:var(--shimmer-bg);animation:Skeleton_shimmer__hGst9 2s ease-in-out .5s infinite}.Skeleton_circle___fxTG{aspect-ratio:1/1;border-radius:100vmax;height:unset}.Skeleton_rectangle__UY3OD{border-radius:0}.Skeleton_rounded__BLBq2{border-radius:4px}.Skeleton_text___JusF{border-radius:4px;font-size:1rem;scale:1 .6}.Skeleton_text___JusF:before{content:"\00a0"}.Skeleton_list__xNehW{display:flex;flex-direction:column;gap:6px;padding-inline:8px;padding-block:10px}.Skeleton_copy__qgw2R{display:flex;flex-direction:column;padding-block:12px;padding-inline:16px}.Skeleton_copy__qgw2R .skeleton:first-child{margin-block-end:8px}@keyframes Skeleton_shimmer__hGst9{0%{translate:-100% 0}50%{translate:100% 0}to{translate:100% 0}}.Icon_root__AjZyv{--size:24px;position:relative;display:flex;align-items:center;justify-content:center}.Icon_icon__4zzsG{flex-shrink:0;display:inline-block;width:var(--size);height:var(--size);-webkit-mask-position:center;mask-position:center;-webkit-mask-repeat:no-repeat;mask-repeat:no-repeat;-webkit-mask-size:cover;mask-size:cover;vertical-align:middle}.Drawer_root__ob4ZM[open]{translate:0 0}.Drawer_root__ob4ZM{position:fixed;inset:0;border-radius:0;translate:var(--slide-from)}@starting-style{.Drawer_root__ob4ZM[open]{translate:var(--slide-from)}}.Drawer_root__ob4ZM[data-placement=left]{--slide-from:-100% 0;inset-inline-end:auto;border-top-right-radius:var(--border-radius);border-bottom-right-radius:var(--border-radius)}.Drawer_root__ob4ZM[data-placement=right]{--slide-from:100% 0;inset-inline-start:unset;border-top-left-radius:var(--border-radius);border-bottom-left-radius:var(--border-radius)}.Drawer_root__ob4ZM[data-placement=bottom]{--slide-from:0 100%;inset-block-start:unset;border-top-left-radius:var(--border-radius);border-top-right-radius:var(--border-radius)}.Drawer_content__ye6ZB{display:grid;overflow:auto}.Drawer_root__ob4ZM[data-placement=left],.Drawer_root__ob4ZM[data-placement=right]{width:min(280px,80vw);height:100dvh}.Drawer_root__ob4ZM[data-placement=bottom]{width:100dvw;max-height:80dvh}.CloseButton_root__JCTRm{position:absolute;right:16px;top:16px;width:40px;height:40px;display:grid;place-content:center;color:var(--blue-gray-600);border-radius:100vmax;background-color:transparent;border:0;padding:0;margin:0;transition:background-color .2s ease-in-out;cursor:pointer}.CloseButton_root__JCTRm:hover{background-color:rgba(var(--blue-gray-600-rgb),.05)}.Logo_root__Qba3h{flex-shrink:0}.SearchForm_root__usp4s{position:relative;justify-self:center;width:min(100%,440px)}.SearchForm_root__usp4s form{display:grid}.SearchForm_root__usp4s input{height:40px;border-radius:100vmax;border:1px solid var(--blue-gray-600);margin:0;padding:0 40px 0 16px;color:var(--blue-gray-900);background-color:var(--white);width:100%}.SearchForm_root__usp4s input::-moz-placeholder{color:var(--blue-gray-600)}.SearchForm_root__usp4s input::placeholder{color:var(--blue-gray-600)}.SearchForm_submit__U8kPR{width:32px;height:32px;position:absolute;right:14px;top:50%;display:grid;place-content:center;border:none;background:transparent;border-radius:100vmax;color:var(--blue-gray-400);padding:0;margin:0;translate:0 -50%;cursor:pointer}@media screen and (max-width:768px){.SearchForm_root__usp4s{justify-self:flex-end}}.HeaderActions_root__11_ai{display:flex;align-items:center;justify-self:flex-end;gap:16px}@media screen and (max-width:768px){.HeaderActions_root__11_ai{display:none}}.Footer_footer__N3WmV{width:100%;display:flex;flex-direction:column;background-color:var(--midnight-green-dark);color:var(--blue-gray-400);padding:24px;margin-top:auto}.Footer_separator__Qa1tj{border:1px solid var(--white);opacity:.2;margin:24px 0}.FooterTop_wrapper__RuYz5{display:flex;justify-content:space-between;align-items:center;gap:24px}.FooterTop_links__9J65v{color:inherit;display:flex;align-items:center;flex-wrap:wrap;-moz-column-gap:40px;column-gap:40px;row-gap:12px;padding:0;margin:0}.FooterTop_cookiePreferenceButton__xmSox{background-color:transparent;border:none;color:inherit;font-size:inherit;font-weight:800;cursor:pointer}@media screen and (max-width:768px){.FooterTop_links__9J65v{-moz-column-gap:24px;column-gap:24px}}.Link_root__vn3ab{display:inline-flex;align-items:center;gap:4px;border-radius:2px;color:inherit;font-size:inherit;font-weight:inherit;text-decoration:none;-webkit-text-decoration-color:transparent;text-decoration-color:transparent;transition:color .2s ease-in-out,-webkit-text-decoration-color .2s ease-in-out .2s;transition:color .2s ease-in-out,text-decoration-color .2s ease-in-out .2s;transition:color .2s ease-in-out,text-decoration-color .2s ease-in-out .2s,-webkit-text-decoration-color .2s ease-in-out .2s}.Link_primary__Iq4CI{color:var(--celadon-blue-dark)}.Link_primary__Iq4CI:focus,.Link_primary__Iq4CI:focus-visible,.Link_primary__Iq4CI:hover{color:var(--celadon-blue)}.Link_gray__Efpxa{color:var(--blue-gray-600)}.Link_gray__Efpxa:focus,.Link_gray__Efpxa:focus-visible,.Link_gray__Efpxa:hover{color:var(--blue-gray-700)}.Link_light__mcUPh{color:var(--blue-gray-400)}.Link_light__mcUPh:focus,.Link_light__mcUPh:focus-visible,.Link_light__mcUPh:hover{color:var(--blue-gray-100)}.Link_dark__Ql4LW{color:var(--blue-gray-800)}.Link_dark__Ql4LW:focus,.Link_dark__Ql4LW:focus-visible,.Link_dark__Ql4LW:hover{color:var(--celadon-blue)}.Link_weight-regular__yPpnB{font-weight:400}.Link_weight-medium__h0ic3{font-weight:600}.Link_weight-bold__me4nt{font-weight:700}.Link_size-small__wSSrC{font-size:12px}.Link_size-medium__ZLo12{font-size:14px}.Link_size-large__W0PAv{font-size:16px}.Link_size-xLarge__Dq0j8{font-size:18px}.Link_hoverUnderline__QMNau:hover,.Link_underline__RoQbh{text-decoration:underline;-webkit-text-decoration-color:inherit;text-decoration-color:inherit}.Link_hoverUnderline__QMNau:hover{text-decoration-thickness:1.5px;text-underline-offset:2px}.FooterBottom_wrapper__Gj9p_{height:51px;display:flex;align-items:center;gap:24px}.FooterBottom_copyright__xltkG{font-size:14px;line-height:24px;margin-right:auto}.FooterBottom_icons__wEEhc{display:flex;align-items:center;gap:16px}.FooterBottom_separator__181dN{width:2px;height:22px;background-color:var(--white);opacity:.2}.PrivateContentMessage_root__IEx17{flex-grow:1;width:100%;height:100%;display:flex;align-items:flex-start}.PrivateContentMessage_box__YG0Bp{width:100%;max-width:960px;background-color:#f2dede;border-color:#eed3d7;border-radius:8px;color:#b94a48;font-size:14px;font-weight:400;padding:16px 24px;margin:100px auto}@media screen and (max-width:960px){.PrivateContentMessage_box__YG0Bp{margin-left:16px;margin-right:16px}}.RemovedContentMessage_root__rtN5X{flex-grow:1;width:100%;display:flex;align-items:flex-start}.RemovedContentMessage_box__pw1z3{width:100%;max-width:960px;background-color:#fcf8e3;border:1px solid #fbeed5;border-radius:4px;color:#c09853;font-size:14px;font-weight:400;text-shadow:0 1px 0 hsla(0,0%,100%,.5);padding:16px 24px;margin:100px auto}.RemovedContentMessage_title__vwHjN{color:#504c48;font-size:25px;font-weight:300;line-height:35px;margin-bottom:4px}@media screen and (max-width:960px){.RemovedContentMessage_box__pw1z3{margin-left:16px;margin-right:16px}}.ErrorDisplay_root__bY_Qo{height:100%;display:flex;flex-direction:column;align-items:center;justify-content:center;background:var(--white);font-family:-system-ui,sans-serif;color:var(--blue-gray-800)}.ErrorDisplay_smiley__o9HSN{width:129px;height:122px;margin:60px auto 30px}.ErrorDisplay_errorBox__jL_9h{max-width:800px;width:100%;height:290px;background:var(--white) url(/images/fadedlogo.jpg) no-repeat left top;background-position:14px 20px;margin:0 auto 120px}.ErrorDisplay_errorCode__AlZal{border-right:1px solid var(--blue-gray-100);color:var(--blue-gray-500);float:left;font-size:1.3em;height:290px;line-height:370px;margin:0 25px 0 0;vertical-align:bottom;text-align:center;width:200px}.ErrorDisplay_errorBox__jL_9h h1{font-weight:400;margin-bottom:0}.ErrorDisplay_errorBox__jL_9h h2{font-size:.9em;font-weight:400;margin-top:0}.ErrorDisplay_errorBox__jL_9h h3{font-size:1em;font-weight:700;margin:10px 0}.ErrorDisplay_errorBox__jL_9h ul{list-style-type:none}.ErrorDisplay_errorBox__jL_9h ul li{background:transparent url(/images/arrow.png) no-repeat left 6px;float:left;font-size:.813em;font-weight:400;list-style-type:none;margin:.313em;padding-left:20px;width:110px}.ErrorDisplay_middle__espDJ{padding-right:3.5em}.ErrorDisplay_searchSection__1J_EK{background:var(--blue-gray-100) url(/images/searchbg.jpg) repeat-x left top;border:1px solid var(--blue-gray-300);float:left;padding:10px;margin-top:20px}.ErrorDisplay_searchSection__1J_EK form{display:flex}.ErrorDisplay_searchSection__1J_EK button{background:url(/images/searchbutton.jpg) repeat-x scroll 0 0 #ffb762;border:1px solid #db9b51;color:var(--blue-gray-800);cursor:pointer;float:left;font-size:1em;margin:0 0 0 .8px;padding:9px 15px;outline:0 none;text-decoration:none;text-shadow:1px 1px 1px var(--white);vertical-align:top}.ErrorDisplay_searchSection__1J_EK button span{background:#ffb762 url(/images/magnifier.jpg) no-repeat 0 0;padding:0 8px;margin-left:5px;text-decoration:none}.ErrorDisplay_errorSearchBox__Uglib{border-color:var(--blue-gray-500) var(--blue-gray-400) var(--blue-gray-400) var(--blue-gray-500);border-width:1px;color:var(--blue-gray-600);float:left;font-size:13px;margin-left:2px;padding:9px;vertical-align:top;width:350px}@media screen and (max-width:768px){.ErrorDisplay_searchSection__1J_EK{width:calc(100% - 240px)}.ErrorDisplay_errorSearchBox__Uglib{width:calc(100% - 128px);margin:0 auto}}.ToastManager_root__mVUMQ{position:fixed;inset-block-end:0;inset-inline:0;display:grid;justify-items:flex-end;justify-content:flex-end;grid-gap:1vh;gap:1vh;padding-block-end:5vh;padding-right:1rem;pointer-events:none;z-index:var(--toast-index)}@media only screen and (max-width:928px){.ToastManager_root__mVUMQ{justify-items:center;justify-content:center;padding-right:0;top:0;padding-block-start:2vh;inset-block-end:unset}}.Toast_root__ZhPa4{min-width:360px;max-width:360px;display:grid;grid-template-columns:max-content 1fr repeat(2,max-content);grid-gap:4px;gap:4px;background-color:var(--background);border-radius:8px;color:var(--white);padding-block:28px;padding-inline:24px;pointer-events:all;opacity:1;transition:opacity .3s ease-in-out}@starting-style{.Toast_root__ZhPa4{opacity:0}}.Toast_info__g9NV8{--background:var(--midnight-green-dark)}.Toast_success__sWJ1E{--background:var(--color-success)}.Toast_error__SQpXK{--background:var(--color-error)}.Toast_warning__7GyxY{--background:var(--color-warning)}.Toast_root__ZhPa4>svg{flex-shrink:0;margin-top:2px}.Toast_content__whMkq{font-weight:400;font-size:16px;line-height:24px;word-wrap:break-word}.Toast_separator__dUZVN{width:1px;background-color:var(--blue-gray-500);opacity:.3;margin-inline:8px}.Toast_dismiss___YbdO{color:var(--blue-gray-300);cursor:pointer}.Toast_dismiss___YbdO:hover{color:var(--white)}.PortalsContainer_drawerRoot__esMLC{position:fixed;top:0;left:0}.PortalsContainer_bannerRoot__Q_sNw{position:relative}.PortalsContainer_drawerRoot__esMLC{z-index:101} /*# sourceMappingURL=72ab5910a3b55ae9.css.map*/</style><style>.SlideshowScreen_root__k9j1_{width:100%;max-width:var(--max-content-width);position:relative;display:grid;place-content:flex-start;grid-template-columns:minmax(0,1fr) var(--sidebar-size);grid-template-rows:auto auto 1fr;background-color:var(--white);padding-block:1px;padding-inline:clamp(1rem,-1.6rem + 8vw,8rem);margin-inline:auto}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:var(--key-moments-size) minmax(0,1fr) var(--sidebar-size)}.SlideshowScreen_root__k9j1_.SlideshowScreen_withAdSidebar__iVE05{--sidebar-size:calc(1px + 300px + 56px)}.SlideshowScreen_root__k9j1_:before{content:"";position:absolute;inset:0 0 auto;height:1px;background-color:var(--blue-gray-200);margin-inline:-50vw}.SlideshowScreen_root__k9j1_ .sidebar{border-left:1px solid var(--blue-gray-200);grid-row:1/-1;grid-column:2}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .sidebar{grid-column:3}.SlideshowScreen_root__k9j1_ .metadata{grid-column:1/-2;grid-row:1}.SlideshowScreen_root__k9j1_ .metadata-toolbar{grid-column:1/-2;grid-row:2}.SlideshowScreen_root__k9j1_ .player{grid-column:1}@media screen and (min-width:929px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .player{grid-column:2;grid-row:3}}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .key-moments{grid-column:1;grid-row:3}@media screen and (min-width:929px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .player{border-left:1px solid var(--blue-gray-200)}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata{padding-inline-end:24px}}@media screen and (min-width:929px) and (max-width:1050px){.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:var(--key-moments-size) minmax(0,1fr);padding-inline:0}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata,.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe .metadata-toolbar{grid-column:1/-1;padding-inline:16px}}@media screen and (max-width:928px){.SlideshowScreen_root__k9j1_:before{display:none}.SlideshowScreen_root__k9j1_.SlideshowScreen_withKeyMoments__RbHLe{grid-template-columns:minmax(0,1fr)!important}.SlideshowScreen_root__k9j1_ .metadata,.SlideshowScreen_root__k9j1_ .metadata-toolbar,.SlideshowScreen_root__k9j1_ .player{grid-column:1/-1}}.PrivateContentScreen_root__qdfD9{gap:30px}.PasswordForm_root__Pnyoo,.PrivateContentScreen_root__qdfD9{min-height:calc(100svh - 2 * var(--header-height));background-color:var(--blue-gray-100);display:flex;flex-direction:column;align-items:center;justify-content:center}.PasswordForm_root__Pnyoo{gap:20px}.Form_root__NTbyO{display:flex;flex-direction:column;gap:10px}.Form_root__NTbyO button[type=submit]{align-self:flex-start}.Button_root__i1yp0{--size:44px;--foreground:var(--white);--background:var(--celadon-blue);--border:var(--celadon-blue);--fontSize:16px;--padding-x:14px;position:relative;min-width:48px;min-height:var(--size);display:flex;align-items:center;border-radius:4px;border:none;background-color:var(--background);color:var(--foreground);font-size:var(--fontSize);font-weight:var(--font-weight-medium);padding-inline:var(--padding-x);transition:color .2s ease-in-out,background-color .2s ease-in-out;cursor:pointer}.Button_root__i1yp0 span{display:flex;align-items:center;gap:4px;opacity:1;transition:opacity .2s ease-in-out}.Button_large__Yv_oe{--fontSize:18px;--size:48px;--padding-x:20px}.Button_regular__i28NX{--fontSize:18px;--size:44px}.Button_medium__H8pKi{--size:40px}.Button_small__sqsEx{--size:32px;--padding-x:12px}.Button_xsmall__jBPCG{--fontSize:14px;--size:24px;--padding-x:8px}.Button_root__i1yp0.Button_icon__1C4qi{justify-content:center;min-width:24px;padding:0}.Button_icon__1C4qi{width:var(--size);height:var(--size)}.Button_spinner__iLPXf{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out}.Button_loading__ZYqeE .Button_spinner__iLPXf{opacity:1;visibility:visible;transition-delay:0s}.Button_loading__ZYqeE span{opacity:0}.Button_fullWidth__dRbM6{width:100%;justify-content:center}.Button_fullWidth__dRbM6 span{justify-content:center}.Button_disabled__M5jJf{opacity:.8;pointer-events:none;-webkit-user-select:none;-moz-user-select:none;user-select:none}.Button_primary__K25Gq.Button_contained__gyjai{--foreground:var(--white);--background:var(--celadon-blue);--border:var(--celadon-blue)}.Button_primary__K25Gq.Button_contained__gyjai:active,.Button_primary__K25Gq.Button_contained__gyjai:hover{--background:var(--celadon-blue-dark);--border:var(--celadon-blue-dark)}.Button_primary__K25Gq.Button_outlined__oZHqK{border:1px solid var(--border);--foreground:var(--celadon-blue-dark);--background:transparent;--border:var(--celadon-blue-dark)}.Button_primary__K25Gq.Button_outlined__oZHqK:hover{--foreground:var(--blue-gray-800);--background:rgba(var(--celadon-blue-rgb),0.05);--border:var(--blue-gray-800)}.Button_primary__K25Gq.Button_outlined__oZHqK:active{--foreground:var(--celadon-blue-dark);--background:rgba(var(--celadon-blue-rgb),0.1);--border:var(--celadon-blue)}.Button_primary__K25Gq.Button_text__ZT_3O{--foreground:var(--celadon-blue-dark);--background:transparent;--border:transparent}.Button_primary__K25Gq.Button_text__ZT_3O:hover{--foreground:var(--celadon-blue-dark);--background:rgba(var(--celadon-blue-rgb),0.05);--border:transparent}.Button_primary__K25Gq.Button_text__ZT_3O:active{--foreground:var(--celadon-blue);--background:rgba(var(--celadon-blue-rgb),0.1);--border:transparent}.Button_secondary__hHiHI.Button_contained__gyjai{--foreground:var(--white);--background:var(--blue-gray-600);--border:var(--blue-gray-600)}.Button_secondary__hHiHI.Button_contained__gyjai:hover{--background:var(--blue-gray-700);--border:var(--blue-gray-700)}.Button_secondary__hHiHI.Button_contained__gyjai:active{--background:var(--blue-gray-500);--border:var(--blue-gray-500)}.Button_secondary__hHiHI.Button_outlined__oZHqK{border:1px solid var(--border);--foreground:var(--blue-gray-600);--background:transparent;--border:var(--blue-gray-600)}.Button_secondary__hHiHI.Button_outlined__oZHqK:hover{--foreground:var(--blue-gray-700);--background:rgba(var(--blue-gray-600-rgb),0.05);--border:var(--blue-gray-700)}.Button_secondary__hHiHI.Button_outlined__oZHqK:active{--foreground:var(--blue-gray-600);--background:rgba(var(--blue-gray-600-rgb),0.1);--border:var(--blue-gray-500)}.Button_secondary__hHiHI.Button_regular__i28NX{border:1px solid var(--border);--foreground:var(--blue-gray-700);--background:var(--white);--border:var(--blue-gray-200)}.Button_secondary__hHiHI.Button_regular__i28NX:hover{--background:var(--blue-gray-100)}.Button_secondary__hHiHI.Button_text__ZT_3O{--foreground:var(--blue-gray-600);--background:transparent;--border:transparent}.Button_secondary__hHiHI.Button_text__ZT_3O:hover{--foreground:var(--blue-gray-700);--background:rgba(var(--blue-gray-600-rgb),0.05);--border:transparent}.Button_secondary__hHiHI.Button_text__ZT_3O:active{--foreground:var(--blue-gray-600);--background:rgba(var(--blue-gray-600-rgb),0.1);--border:transparent}.Button_tertiary__ae6C5{--foreground:var(--blue-gray-700);--background:var(--white);border:1px solid var(--blue-gray-200)}.Button_tertiary__ae6C5:hover{--background:var(--blue-gray-100)}.Button_tertiary__ae6C5.Button_active__YNf7E,.Button_tertiary__ae6C5:active{--background:var(--blue-gray-200)}.Dropdown_container__NBOZ_{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Dropdown_select__8pQOA{border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);margin:0;padding:8px 20px 8px 8px;background:transparent}.Dropdown_select__8pQOA:hover{border:1px solid var(--blue-gray-600);background:transparent}.Dropdown_select__8pQOA:focus{outline:none;border:1px solid var(--celadon-blue)}.Dropdown_footerText__NChWz{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Dropdown_error__QI4FY{border:1px solid var(--color-error)}.Label_label__KH246{font-weight:600;font-size:14px;font-family:var(--font-family);color:var(--blue-gray-600);margin:0;-webkit-user-select:none;-moz-user-select:none;user-select:none}.Label_error__jqh1I{color:var(--color-error)}.RequiredNotice_required___q_RJ{display:flex;align-items:center;gap:8px;color:var(--blue-gray-600);font-size:11px;font-weight:400}.RequiredNotice_error__eBy3b{color:var(--color-error)}.Input_container__QSkRF{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Input_input__Q0qP2{padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);margin:0;height:46px}.Input_input__Q0qP2:hover{border:1px solid var(--blue-gray-600)}.Input_input__Q0qP2:focus{outline:none;border:1px solid var(--celadon-blue)}.Input_error__l9OaT{border:1px solid var(--color-error)}.Input_characterLimit__4NkYE{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Input_characterLimitError__ZByP3{color:var(--color-error)}.Input_footer__55AdV{display:flex;justify-content:space-between}.Input_footerAlignRight__DG8UZ{justify-content:flex-end}.Text_root__is73U{display:inline-block;padding:0;margin:0}.Text_primary__rZf7F{color:var(--blue-gray-900)}.Text_secondary__EPWj0{color:var(--blue-gray-600)}.Text_success__Mcw5I{color:var(--color-success)}.Text_error__pdEO6{color:var(--color-error)}.Text_warning__xCiZk{color:var(--color-warning)}.Text_white__Sb1IU{color:#fff}.Text_rowTitle__U1gB1{font-size:28px;line-height:35px}.Text_xlarge__X3NtK{font-size:20px;line-height:26px}.Text_large__c_Tar{font-size:18px;line-height:26px}.Text_medium__rk8Tn{font-size:16px;line-height:22px}.Text_small__S0zKm{font-size:14px;line-height:18px}.Text_xsmall__vYp9p{font-size:12px;line-height:15px}.Text_xxsmall__kOJdm{font-size:11px;line-height:14px}.Text_disabled___vAZA{color:var(--blue-gray-500)}.Text_italic__ZZFbJ{font-style:italic}.Text_weight-light__Rh8tc{font-weight:300}.Text_weight-regular__gWC16{font-weight:400}.Text_weight-medium__oIdYz{font-weight:500}.Text_weight-strong__yEO2S{font-weight:600}.Text_weight-bold__xnsIS{font-weight:700}.Text_ellipsis__QNjvO{max-width:100%;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.Text_lineClamp__SO_Pl{overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-box-orient:vertical}.TextArea_container__oc_q4{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.TextArea_textarea__VyrNQ{padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);font-family:var(--font-family);min-height:150px;margin:0}.TextArea_textarea__VyrNQ:hover{border:1px solid var(--blue-gray-600)}.TextArea_textarea__VyrNQ:focus{outline:none;border:1px solid var(--celadon-blue);background:transparent}.TextArea_error__o_XpL{border:1px solid var(--color-error)}.TextArea_characterLimit__hm9El{color:var(--blue-gray-600);font-size:11px;font-weight:400}.TextArea_characterLimitError__UbPM9{color:var(--color-error)}.TextArea_footer__EG4wA{display:flex;justify-content:space-between}.TextArea_footerAlignRight__PmO7Z{justify-content:flex-end}.TagInput_container__4lPGD{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.TagInput_input__lsGqa{border:none;flex:1 1;min-width:100px;height:30px}.TagInput_tag__9BE6f{border-radius:20px;padding:4px 8px;border:1px solid var(--blue-gray-300);display:flex;gap:8px;font-size:14px;color:var(--blue-gray-600);font-weight:600;align-items:center}.TagInput_closeTag__oeDgn{border:none;background-color:transparent;padding:0;color:var(--blue-gray-500);font-size:10px;margin:0}.TagInput_closeTag__oeDgn:hover{opacity:.75;cursor:pointer}.TagInput_inputContainer__dl2dW{box-sizing:border-box;padding:8px;border:1px solid var(--blue-gray-500);border-radius:4px;font-size:16px;font-weight:400;color:var(--blue-gray-900);width:100%;display:flex;gap:8px}.TagInput_inputContainer__dl2dW:hover{border:1px solid var(--blue-gray-600)}.TagInput_input__lsGqa:focus{outline:none;border-radius:4px;border:1px solid var(--celadon-blue)}.TagInput_error__INAMJ{border:1px solid var(--color-error)}.TagInput_errorText__Dq2QW{display:flex;align-items:center;gap:8px;color:var(--color-error);font-size:11px;font-weight:400}.TagInput_autocompleteContainer__RgOvw{position:relative}.TagInput_autocomplete__nGD9D{background-color:var(--white);display:flex;flex-direction:column;width:100%;position:absolute;left:0;right:0;top:-8px;box-shadow:0 .5px 5px rgba(0,0,0,.039),0 3.75px 11px rgba(0,0,0,.19);border-radius:4px;overflow-y:scroll;z-index:3}.TagInput_suggestion__k4kfh{padding:8px;color:var(--blue-gray-600);font-weight:600;text-decoration:underline;text-underline-offset:1.5px}.TagInput_suggestion__k4kfh:hover{cursor:pointer;color:var(--blue-gray-600)}.TagInput_focusedSuggestion__QnSXo,.TagInput_suggestion__k4kfh:hover{background-color:var(--blue-gray-200)}.TagInput_tagContainer__LflB5{display:flex;gap:8px;flex-wrap:wrap;width:100%}.TagInput_footerText__O_1t4{color:var(--blue-gray-600);font-size:11px;font-weight:400}.Selector_container__v2jVr{display:flex;flex-direction:column;gap:8px;font-family:var(--font-family);width:100%;max-width:280px}.Selector_selector__U2foh{border-radius:4px;display:flex;width:100%}.Selector_selector__U2foh button{border:1px solid var(--blue-gray-500);padding:6px 0;flex:1 1;margin:0;background-color:transparent}.Selector_selector__U2foh button:enabled:hover{cursor:pointer;background-color:var(--blue-gray-300)}.Selector_selector__U2foh button:first-child{border-radius:4px 0 0 4px}.Selector_selector__U2foh button:last-child{border-radius:0 4px 4px 0}.Selector_selector__U2foh button.Selector_selected__nyxjH{border:1px solid var(--celadon-blue);background-color:var(--celadon-blue)}.Selector_selector__U2foh button.Selector_selected__nyxjH .Selector_text__Rs7F7{color:var(--white)}.Selector_selector__U2foh button.Selector_selected__nyxjH:focus{outline-offset:4px}.Selector_selectorContainer__h4Mg1{display:flex;align-items:center;gap:4px}.Selector_icon__Y9S90{color:var(--blue-gray-500)}.Selector_text__Rs7F7{margin:0;font-weight:400;font-size:16px;font-family:Source Sans Pro,sans-serif}.IconWithExplanation_container__21T3S{position:relative;display:inline-flex}.IconWithExplanation_explanation___qwbw{position:absolute;top:50%;transform:translateY(-50%);left:120%;background-color:#fff;border-radius:4px;box-shadow:0 .5px 5px rgba(0,0,0,.039),0 3.75px 11px rgba(0,0,0,.19);z-index:3;padding:8px;width:150px}.IconWithExplanation_container__21T3S:hover .IconWithExplanation_explanation___qwbw{display:block}.IconWithExplanation_arrow__fCL_Y{content:"";position:absolute;left:-10px;margin-left:-5px;top:50%;transform:translateY(-50%);border:10px solid transparent;border-right-color:#fff}@media (max-width:768px){.IconWithExplanation_arrow__fCL_Y{margin-right:-5px;margin-left:0;border-color:transparent transparent transparent #fff;left:auto;right:-10px}.IconWithExplanation_explanation___qwbw{left:auto;right:120%}}.Checkbox_wrapper__HI5JR{display:flex;gap:10px;align-items:center}.Checkbox_input__RZSBL:hover,.Checkbox_label__7BF2Y:hover,.Checkbox_wrapper__HI5JR:hover{cursor:pointer}.Checkbox_wrapper__HI5JR .Checkbox_label__7BF2Y{font-weight:400;color:var(--blue-gray-900);margin:0}.Checkbox_wrapper__HI5JR .Checkbox_input__RZSBL{width:20px;height:20px;accent-color:var(--celadon-blue);margin:0}.Checkbox_wrapper__HI5JR:hover .Checkbox_input__RZSBL{accent-color:var(--celadon-blue-dark)}.Checkbox_wrapper__HI5JR:hover .Checkbox_label__7BF2Y{color:var(--celadon-blue-dark)}.RadioButton_root__592m2{--size:16px;--borderSize:2px;display:inline-flex;align-items:center;justify-content:flex-start;gap:12px;padding-block:8px;cursor:pointer}.RadioButton_root__592m2.RadioButton_large__K_9NI{--size:24px}.RadioButton_root__592m2.RadioButton_rtl__rAcql{font-size:16px;justify-content:space-between}.RadioButton_root__592m2:hover:not(.RadioButton_labelOnLeft__nb96s){font-weight:600}.RadioButton_root__592m2 input[type=radio]{position:relative;width:var(--size);height:var(--size);-webkit-appearance:none;-moz-appearance:none;appearance:none;background-color:transparent;margin:0;border:var(--borderSize) solid var(--blue-gray-500);border-radius:100vmax}.RadioButton_root__592m2 input[type=radio]:before{content:"";position:absolute;top:50%;left:50%;display:block;width:calc(var(--size) / 2);height:calc(var(--size) / 2);background-color:var(--celadon-blue);border-radius:100vmax;translate:-50% -50%;transition:scale .2s;scale:0}.RadioButton_root__592m2.RadioButton_checked__dJL5R input[type=radio]{border-color:var(--celadon-blue)}.RadioButton_root__592m2.RadioButton_checked__dJL5R input[type=radio]:before{scale:1}.Banner_root__pOnAN{--background:var(--celadon-blue-dark);width:100vw;height:40px;display:flex;align-items:center;justify-content:center;background-color:var(--background);color:var(--white);font-size:var(--font-size-medium);font-weight:var(--font-weight-medium);opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out;z-index:1}.Banner_visible__q1NMx{opacity:1;visibility:visible;transition-delay:0s}.Banner_aboveHeader__hC_i_{position:static;top:0}.Banner_belowHeader__Mcfew{position:absolute;top:var(--header-height)}.Banner_info__7SXSI{--background:var(--color-info)}.Banner_success__wveEs{--background:var(--color-success)}.Banner_error__lW5NB{--background:var(--color-error)}.Banner_warning__pEEt7{--background:var(--color-warning)}.Metadata_root__oCstk{display:grid;grid-template-columns:repeat(2,minmax(0,1fr));place-content:flex-start;padding-inline-end:20px;padding-block-start:32px}.Metadata_root__oCstk .author{grid-column:1;grid-row:3;align-content:flex-start}.Metadata_root__oCstk .description,.Metadata_root__oCstk .pills-list,.Metadata_root__oCstk .stats,.Metadata_root__oCstk .title{grid-column:1/span 2}.Metadata_root__oCstk .title{margin-bottom:8px}.Metadata_root__oCstk .stats{margin-bottom:12px}.Metadata_root__oCstk .description{margin-top:12px}.Metadata_root__oCstk .pills-list{margin-block-start:20px;margin-block-end:18px}.Metadata_root__oCstk .actions{display:none}@media screen and (max-width:928px){.Metadata_root__oCstk{margin-block:8px 20px}.Metadata_root__oCstk .stats{margin-bottom:16px}.Metadata_root__oCstk .description{margin-top:0}.Metadata_root__oCstk .author{grid-column:2;grid-row:5;margin-block-start:12px;margin-block-end:6px;justify-content:end}.Metadata_root__oCstk.Metadata_authorInDescription__hW1wb:not(.Metadata_expanded__uLdy4) .author{display:none}.Metadata_root__oCstk.Metadata_authorInDescription__hW1wb.Metadata_expanded__uLdy4 .author{display:flex;grid-column:1/span 2;grid-row:5;justify-content:flex-start;margin-block-start:12px}.Metadata_root__oCstk .actions{display:none}.Metadata_root__oCstk .pills-list{margin-block-start:16px;margin-block-end:0}}.Metadata_root__oCstk .metadata-recs{grid-column:1/-1}.Title_root__svkHQ{font-size:clamp(26px,1vw + 1rem,28px);font-weight:600;line-height:1.25;min-width:0;word-break:break-word}.Heading_heading__3MAvZ,.Title_root__svkHQ{color:var(--blue-gray-900)}.Heading_h1__3k7S2{font-size:32px;font-weight:700}.Heading_h2__f9yvs{font-size:28px;font-weight:600}.Heading_h3__f1djd{font-size:24px}.Heading_h4__7tfLE{font-size:20px}.Heading_h5__jVM0l{font-size:16px;font-weight:400}.Heading_h6__uUTrd{font-size:14px;font-weight:400}.Stats_root__p_BoZ{flex-wrap:wrap;display:flex;align-items:center;-moz-column-gap:6px;column-gap:6px;color:var(--blue-gray-600);font-size:16px}.Stats_leftContent__588PR,.Stats_rightContent__8d0AF{display:flex;gap:6px}@media screen and (max-width:928px){.Stats_root__p_BoZ.Stats_extendedMetadata__wb62p .Stats_leftContent__588PR{width:100%}.Stats_root__p_BoZ.Stats_extendedMetadata__wb62p .Stats_formatTypesBullet__xDv0L{display:none}}.Likes_root__WVQ1_{cursor:pointer;transition:color .2s ease-in-out;border-radius:4px}.Likes_root__WVQ1_:hover{color:var(--blue-gray-700)}.Author_root___6Bx5{--link-color:var(--blue-gray-800);position:relative;display:flex;align-items:center;gap:8px}.Author_link___lVxw{z-index:1;color:var(--link-color);font-weight:600;display:block}.Author_link___lVxw:before{content:"";position:absolute;inset:0}.Author_follow__Lw4TS{z-index:1}@media screen and (max-width:928px){.Author_link___lVxw:hover{color:var(--blue-gray-800)}}.Avatar_root__GNWHY{display:inline-flex;align-items:center;justify-content:center;flex-shrink:0;background-color:var(--white);color:var(--blue-gray-300);border-radius:50%;font-size:16px;font-weight:600;text-align:center;-webkit-user-select:none;-moz-user-select:none;user-select:none;overflow:hidden}.Avatar_initials__EJfVt{color:var(--white);transition:background-color .2s ease-in-out}.Avatar_initials__EJfVt,.Avatar_initials__EJfVt:hover{background-color:var(--blue-gray-600)}.Avatar_image__Bbtll{width:100%;height:100%;-o-object-fit:cover;object-fit:cover}.FollowButton_root__FxpBi{display:inline-flex;background-color:transparent;border:1px solid transparent;border-radius:4px;font-size:12px;padding:1px 6px;transition:background-color .2s ease-in-out,border-color .2s ease-in-out;cursor:pointer}.FollowButton_following__xKCww{border-color:#bf5905;color:#bf5905}.FollowButton_following__xKCww:hover{background-color:#ffead7;border-color:rgba(191,89,5,.5)}.FollowButton_follow__d_6u5{border-color:var(--celadon-blue-dark);color:var(--celadon-blue-dark)}.FollowButton_follow__d_6u5:hover{background-color:#eaf7ff;border-color:rgba(2,126,176,.5)}@media screen and (max-width:928px){.FollowButton_root__FxpBi{display:none}}.Description_root__kt4uq{--line-height:26px;position:relative}.Description_root__kt4uq.Description_clamped__PaV_1{padding-bottom:25px}.Description_root__kt4uq.Description_clamped__PaV_1 .Description_wrapper__hYE9_{mask-image:linear-gradient(to bottom,var(--white),transparent);-webkit-mask-image:linear-gradient(to bottom,var(--white),transparent)}.Description_wrapper__hYE9_{min-height:var(--line-height);display:-webkit-box;overflow:hidden;text-overflow:ellipsis;-webkit-box-orient:vertical;-webkit-line-clamp:2}.Description_noClamp__1z7c5,.Description_wrapper__hYE9_.Description_expanded__lRamt{-webkit-line-clamp:unset;-webkit-mask-image:none;mask-image:none}.Description_wrapper__hYE9_.Description_expanded__lRamt{height:auto}.Description_wrapper__hYE9_ p{color:var(--blue-gray-600);font-size:18px;line-height:var(--line-height);white-space:pre-wrap;word-break:break-word}.Description_root__kt4uq button{padding-inline:0}.Description_root__kt4uq .Description_more__ChrRK{position:absolute;padding:0;bottom:0;height:26px}.Description_root__kt4uq .Description_less__BvWbY{display:none}@media screen and (max-width:928px){.Description_root__kt4uq .Description_more__ChrRK{right:0;background-color:#fff}.Description_root__kt4uq.Description_clamped__PaV_1{padding-bottom:0}.Description_root__kt4uq .Description_less__BvWbY,.Description_root__kt4uq .Description_more__ChrRK{display:flex;height:var(--line-height)}}.Description_root__kt4uq .Description_less__BvWbY.Description_hidden__a9QZJ,.Description_root__kt4uq .Description_more__ChrRK.Description_hidden__a9QZJ{display:none}.PillsList_root__2EydN{display:flex;flex-wrap:wrap;align-items:center;gap:8px}.Pill_root__IqOYH{--bg:color-mix(in srgb,var(--celadon-blue-dark),90% transparent);--color:var(--blue-gray-800);height:40px;display:inline-flex;align-items:center;gap:6px;background-color:var(--bg);border-radius:100vmax;color:var(--color);font-size:16px;font-weight:600;padding-inline:16px;transition:color .2s ease-in-out,background-color .2s ease-in-out,filter .2s ease-in-out;cursor:pointer;-webkit-user-select:none;-moz-user-select:none;user-select:none;text-decoration:none;white-space:nowrap}.Pill_root__IqOYH:not(.Pill_selected__VPtHm):hover{filter:brightness(.6)}.Pill_root__IqOYH.Pill_selected__VPtHm{--bg:var(--blue-gray-900);--color:var(--white)}@media screen and (max-width:520px){.Pill_root__IqOYH{height:28px;padding-inline:12px;gap:4px;font-size:12px}.Pill_icon__xE_Cg{--size:18px!important}}.Actions_root__00yIC{display:flex;gap:6px;align-items:baseline;min-height:44px}@media screen and (max-width:928px){.Actions_root__00yIC{min-height:35px}.Actions_root__00yIC .gallery-view-button{padding-inline:0;margin-inline-end:auto}}@media (min-width:929px){.Actions_root__00yIC .fullscreen-button,.Actions_root__00yIC .like-button,.Actions_root__00yIC .more-button,.Actions_root__00yIC .save-button{--size:44px;border:1px solid var(--blue-gray-200)}}button.GalleryViewButton_root__s4Nw4{--size:32px;color:var(--blue-gray-700)}button.GalleryViewButton_root__s4Nw4:hover{background-color:transparent}@media only screen and (min-width:929px){button.GalleryViewButton_root__s4Nw4{display:none}}.Tooltip_root__7FS0Y{background:var(--midnight-green-dark);border-radius:4px;box-shadow:0 .5px 5px rgba(0,0,0,.04),0 4px 11px rgba(0,0,0,.2);color:var(--white);font-weight:400;font-size:12px;line-height:15px;padding:6px 8px;opacity:0;visibility:hidden;animation:Tooltip_show__qVG5k .2s ease-in-out forwards;z-index:var(--popup-index)}.Tooltip_triggerWrapper___S2HG{flex-shrink:0;position:relative;align-items:center;justify-content:center}@keyframes Tooltip_show__qVG5k{to{opacity:1;visibility:visible}}.Tooltip_large__J4Fvl{padding:16px;display:flex;flex-direction:column;background:#fff;color:var(--black)}.SaveLoggedIn_icon__lk74r{color:var(--blue-gray-700)}.SaveOptionsDrawer_drawerTrigger__Gb7nK{box-shadow:none;border:none;border-radius:4px;position:relative;z-index:7}.SaveOptionsDrawer_drawerTrigger__Gb7nK:active,.SaveOptionsDrawer_drawerTrigger__Gb7nK:active:focus,.SaveOptionsDrawer_drawerTrigger__Gb7nK:hover{border:none;box-shadow:none;background-color:transparent}.SaveOptionsDrawer_drawerTrigger__Gb7nK:focus{background:transparent}.SaveOptionsDrawerContent_drawerContent__J5JTL{margin:16px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_separator__UW5Rz{margin:8px 0}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_itemsContainer__tCXw5{display:flex;flex-direction:column;margin-top:0;max-height:144px;overflow-y:auto}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j{font-weight:400;line-height:24px;padding:0 8px;margin:8px 0;width:100%}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j span{color:var(--blue-gray-800);justify-content:space-between;gap:30px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR span{gap:14px}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR{color:var(--blue-gray-800);display:flex;font-weight:400;line-height:24px;align-items:center;justify-content:flex-start;padding:8px 4px;margin:14px 0}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionPrimary____QuR.SaveOptionsDrawerContent_newListButton__VzhfD{font-size:16px;font-weight:600}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_addIcon__Wb2cq{color:var(--blue-gray-800)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_drawerActionSecondary__7cq8j span.SaveOptionsDrawerContent_clampLines__zfkfI{display:inline-block;overflow:hidden;text-align:left;text-overflow:ellipsis;white-space:nowrap;width:calc(100vw - 115px)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_listIcon__5dcfC{color:var(--blue-gray-900)}.SaveOptionsDrawerContent_drawerContent__J5JTL .SaveOptionsDrawerContent_noSavedLists__cpUBY{color:var(--blue-gray-600);font-weight:400;font-size:16px;line-height:24px;padding:12px 16px;text-align:center}.Separator_root__70Ime{--orientationMargin:0;background-color:var(--blue-gray-200);flex-shrink:0}.Separator_horizontal__czVEa{width:calc(100% - var(--orientationMargin) * 2);height:1px}.Separator_vertical__JYCCK{width:1px;height:calc(100% - var(--orientationMargin) * 2)}.SaveLoggedOut_icon__ny9X2{color:var(--blue-gray-700)}.MoreDropdownButton_root__ciXL6{width:100%;padding:0 16px}.MoreDropdownButton_list__VI5Ah{list-style-type:none;padding:0;margin:0}.MoreDropdownButton_item__t4HmI{margin:8px 0}.MoreDropdownButton_actionButton__gJ41E{color:var(--black);display:flex;align-items:center;font-size:16px;height:48px;gap:12px}.MoreDropdownButton_actionButton__gJ41E:focus{outline:none}.MoreDropdownButton_drawerHeading__chh4X{margin:24px 0;display:flex;align-items:center}.MoreDropdownButton_moreOptionsIcon__TpJLA{color:var(--blue-gray-700)}.MoreDropdownButton_icon__DxfY4{color:var(--blue-gray-800)}.MoreDropdownButton_tooltip__az4od{white-space:nowrap}.MoreDropdownButton_trigger__x7wGs{width:44px;height:44px;border-radius:4px}@media (max-width:928px){.MoreDropdownButton_trigger__x7wGs{width:32px;height:32px}}.ReportForm_root__REyLj{display:grid;grid-gap:12px;gap:12px;font-size:1rem;color:var(--blue-gray-800)}.ReportForm_root__REyLj label,.ReportForm_row__dXO5W{display:flex;align-items:center;gap:12px}.ReportForm_root__REyLj label{gap:8px}.ReportForm_root__REyLj label:has(input[type=radio]:checked){font-weight:600;color:var(--blue-gray-900)}.ReportForm_root__REyLj input[type=radio]{accent-color:var(--celadon-blue)}.ReportForm_root__REyLj select{width:100%;display:block;height:40px;-webkit-appearance:none;-moz-appearance:none;appearance:none;background:url('data:image/svg+xml;utf8,<svg fill="lightgray" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="24px" height="24px"><path d="M7 10l5 5 5-5z"/></svg>') no-repeat right 8px center;border:1px solid var(--blue-gray-300);border-radius:4px;color:var(--blue-gray-600);font-size:1rem;padding-block:4px;padding-inline:16px;margin-block-start:8px}.ReportForm_root__REyLj select.changed{background-image:url('data:image/svg+xml;utf8,<svg fill="lightgray" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="24px" height="24px"><path d="M7 10l5 5 5-5z"/></svg>');color:var(--blue-gray-900)}.ReportForm_root__REyLj a{color:var(--celadon-blue);font-weight:600;text-decoration:none}.ReportForm_root__REyLj p{color:var(--blue-gray-700)}.ReportForm_actions__LPSXn{display:flex;gap:12px;justify-content:flex-end;margin-block-start:8px}.ReportForm_copyrightPolicy__z8QMf{display:unset}.ReportForm_info__2Xs_1{max-width:200px;padding-inline:16px;padding-block:20px}.ReportForm_error__bC3zN{display:flex;align-items:center;gap:8px;border-radius:8px;background-color:#f2dede;color:var(--blue-gray-800);padding-inline:16px;padding-block:12px;margin-block-end:16px}.Modal_root__TYkzh[open]{transform:translateY(0)}.Modal_root__TYkzh{--max-height:calc(100dvb - var(--header-height));--title-size:80px;width:-moz-max-content;width:max-content;max-height:var(--max-height);place-self:center;border-radius:var(--border-radius);transform:translateY(8px)}@starting-style{.Modal_root__TYkzh[open]{transform:translateY(8px)}}.Modal_root__TYkzh.Modal_small__hupRE{width:400px}.Modal_root__TYkzh.Modal_medium__j8NOV{width:600px}.Modal_root__TYkzh.Modal_large__ygVmr{width:800px}.Modal_root__TYkzh.Modal_xlarge__HeXWk{width:960px}.Modal_wrapper__4UTGq{position:relative;display:grid}.Modal_wrapper__4UTGq .modal-content{flex:1 1;max-height:calc(var(--max-height) - var(--title-size));overflow:clip auto}@media screen and (max-width:520px){.Modal_root__TYkzh,.Modal_root__TYkzh.Modal_large__ygVmr,.Modal_root__TYkzh.Modal_medium__j8NOV,.Modal_root__TYkzh.Modal_small__hupRE,.Modal_root__TYkzh.Modal_xlarge__HeXWk{width:100vw}}@media screen and (max-width:928px){.Modal_root__TYkzh.Modal_bottomPlacement__BUbfp{width:100vw;top:unset;bottom:0;border-bottom-left-radius:0;border-bottom-right-radius:0}}.Modal_title__xhSfl{height:var(--title-size);display:flex;align-items:center;color:var(--blue-gray-900);font-size:20px;font-weight:600;border-bottom:1px solid var(--blue-gray-200);padding-inline-start:20px;padding-inline-end:60px}.Modal_title__xhSfl:first-letter{text-transform:capitalize}.Modal_content__R1F4d{padding-inline:20px;padding-block:24px}.Modal_root__TYkzh:has(.Modal_actions__t63hZ) .Modal_content__R1F4d{padding-block-end:96px}.Modal_actions__t63hZ{position:absolute;inset-inline:0;bottom:0;display:flex;align-items:center;justify-content:flex-end;gap:24px;background-color:var(--white);padding-inline:20px;padding-block:16px}.MetadataToolbar_root__c03ao{--shadow-opacity:0;position:sticky;display:grid;height:var(--metadata-toolbar-height);background-color:var(--white);z-index:var(--header-index)}.MetadataToolbar_wrapper__r7XEc{position:relative;display:grid;grid-template-columns:minmax(0,1fr) max-content 1fr;align-items:center;padding-inline-end:20px;padding-block:16px}.MetadataToolbar_underline__QQn0C{grid-column:1/-1;grid-row:2;height:1px;position:absolute;bottom:0;right:-20px;left:-30vw;background-color:var(--blue-gray-200);box-shadow:0 2px 4px 0 rgba(0 0 0/var(--shadow-opacity));animation:MetadataToolbar_reveal-shadow__5yBxP linear both;animation-timeline:scroll(block);animation-range:150px 450px}.MetadataToolbar_title__jfTWv{font-size:18px;font-weight:600}.MetadataToolbar_actions__FB33C{width:-moz-max-content;width:max-content;justify-self:flex-end;align-self:flex-start;display:flex;grid-column-end:-1}.MetadataToolbar_pageNumber__i6Bhj{display:inline-flex;align-items:center;margin-inline:1em;height:44px}@media screen and (max-width:928px){.MetadataToolbar_root__c03ao{display:none}}@keyframes MetadataToolbar_reveal-shadow__5yBxP{to{--shadow-opacity:0.122}}.DownloadButton_root__adY00{margin-left:auto;display:inline-grid;gap:6px;justify-items:center;flex-shrink:0;text-align:center}.DownloadButton_savedStyling__k18od{font-weight:600;font-size:18px}.DownloadMultipleFormatDrawer_root__CWFxX{width:100%;padding:0 24px}.DownloadMultipleFormatDrawer_drawerHeading__8LnFw{margin:16px 0}.DownloadMultipleFormatDrawer_drawerContent__y815X{width:100%;padding:24px 0}.DownloadMultipleFormatDrawer_drawerRadioButtons__I_lQ4 label{margin-bottom:20px}.DownloadMultipleFormatDrawer_drawerRadioButtons__I_lQ4{margin-bottom:4px}.Fieldset_root__L2NQU{display:grid;padding:0;border:0}.Fieldset_root__L2NQU legend{display:none}.DownloadMultipleFormatPopover_popoverContent__IJudF{min-width:185px}.PopoverMenuContent_root__MsRtR{background:var(--white);box-shadow:0 .5px 5px rgba(0,0,0,.04),0 4px 11px rgba(0,0,0,.2);border-radius:4px;opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out;z-index:1000}.PopoverMenuContent_root__MsRtR.PopoverMenuContent_visible__O86I_{opacity:1;visibility:visible;transition-delay:0s}.PopoverMenuItem_item__iazpP{width:100%;display:flex;align-items:center;background-color:transparent;color:inherit;cursor:pointer;font-size:inherit;line-height:24px;padding:12px 16px;white-space:nowrap}.PopoverMenuItem_item__iazpP.PopoverMenuItem_highlight__inbqK,.PopoverMenuItem_item__iazpP:hover{background-color:var(--blue-gray-100)}.PopoverMenuSeparator_separator__UpSGw{width:calc(100% - 32px);height:1px;background-color:var(--blue-gray-300);margin:8px 16px}.Player_root__L1AmF{position:relative;min-width:0;background-color:var(--snow-gray);padding:20px}.Player_root__L1AmF.Player_isInfographic__iQpvH{background-color:unset;padding-inline-start:1px;padding-inline-end:20px}@media (max-width:928px){.Player_root__L1AmF,.Player_root__L1AmF.Player_isInfographic__iQpvH{background-color:unset;padding-inline:2px}}.VerticalPlayer_root__K8_YS{position:relative;display:grid;grid-template-columns:minmax(0,1fr);grid-gap:24px;gap:24px}@media screen and (max-width:928px){.VerticalPlayer_root__K8_YS{gap:8px}}.VerticalSlide_root__jU_9r{position:relative}.VerticalSlide_root__jU_9r .vertical-slide-image{position:absolute;inset:0}.VerticalSlide_root__jU_9r>.save-slide{position:absolute;top:12px;right:12px}@media only screen and (max-width:928px){.VerticalSlide_root__jU_9r .save-slide-button{--size:32px;background-color:var(--blue-gray-100)}}.VerticalSlideImage_root__64KSA{position:relative;width:100%;height:100%;box-shadow:0 0 0 1px var(--blue-gray-200);border-radius:8px;overflow:clip}.VerticalSlideImage_image__VtE4p{-o-object-fit:contain;object-fit:contain;opacity:0;transition:opacity .3s var(--ease)}.VerticalSlideImage_image__VtE4p.VerticalSlideImage_loaded__Q7FLb{opacity:1}.VerticalSlideActions_root__azvaH{display:flex;flex-direction:column;gap:12px;position:absolute;top:12px;right:12px;bottom:12px;opacity:1;transition:opacity .3s ease-in .1s;z-index:1}@starting-style{.VerticalSlideActions_root__azvaH{opacity:0}}button.VerticalSlideActions_downloadButton__ancDu{border-radius:4px;color:var(--blue-gray-700);background-color:var(--blue-gray-100)}button.VerticalSlideActions_fullscreen__5CkK_{background-color:var(--blue-gray-100);color:var(--blue-gray-700);margin-block-start:auto}@media (max-width:928px){.VerticalSlideActions_root__azvaH>div:first-child{display:none}}.SaveSlide_root__k6Uis{color:var(--blue-gray-700)}.SaveSlide_root__k6Uis button.SaveSlide_button__w0PF7{background-color:var(--blue-gray-100);font-size:18px;line-height:24px;color:var(--blue-gray-700);padding:0 8px;min-width:32px;transition:min-width .2s ease-in-out}.FreestarVideoAd_root__KDWgl{min-width:0;flex-shrink:0;aspect-ratio:16/9}.SlideRecs_root__likA5{--card-hover-background:var(--blue-gray-200);display:flex;flex-direction:column;gap:20px}.SlideRecs_root__likA5 h2{font-size:24px;font-weight:600}@media (max-width:1050px){.SlideRecs_root__likA5{display:none}}.SlideRecs_root__likA5 .SlideRecs_cards__Lbxtt{display:grid;grid-gap:16px;gap:16px}.SlideRecs_root__likA5 .SlideRecs_card__txc2D{position:relative;grid-template-columns:180px 1fr;grid-template-rows:auto;gap:16px}.SlideRecs_root__likA5 .slideshow-thumbnail{box-shadow:0 0 0 1px var(--blue-gray-200)}.SlideRecs_root__likA5 .slideshow-card-content{padding-block:0;padding-inline-end:36px;gap:8px}.SlideRecs_root__likA5 .slideshow-title{line-height:1;margin-block-end:0}.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w{display:flex;gap:8px;align-items:center}.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w a,.SlideRecs_root__likA5 .SlideRecs_wrapper__21j_w span{font-size:12px}.SlideRecs_root__likA5 .SlideRecs_save__RR8dD{position:absolute;top:8px;right:8px}.SlideRecs_root__likA5 .SlideRecs_author__zlhWO{color:var(--blue-gray-700);font-weight:600;text-decoration:none;z-index:2}.SlideRecs_root__likA5 .SlideRecs_author__zlhWO:first-letter{text-transform:uppercase}.SlideRecs_root__likA5 .SlideRecs_card__txc2D .slideshow-title{font-size:16px}.SlideRecs_root__likA5 .SlideRecs_description__0bGsx{color:var(--blue-gray-700);font-size:14px;display:-webkit-box;overflow:hidden;line-clamp:1;-webkit-line-clamp:1;-webkit-box-orient:vertical}.SlideRecs_root__likA5 .SlideRecs_dot__Db7HR{font-size:16px}.SlideRecs_root__likA5 .SlideRecs_tags__RCA1q{display:flex;flex-wrap:wrap;align-items:center;gap:8px}.SlideRecs_root__likA5 .SlideRecs_tags__RCA1q span{display:grid;place-content:center;height:20px;background-color:var(--alice-blue-600);border-radius:100vmax;color:var(--blue-gray-700);font-size:11px;font-weight:600;padding-inline:12px;-webkit-user-select:none;-moz-user-select:none;user-select:none;white-space:nowrap;text-transform:capitalize;z-index:2}.SlideshowCard_root__pD8t4{position:relative;display:grid;grid-template-rows:max-content minmax(0,1fr);grid-template-columns:minmax(0,1fr);align-content:flex-start;color:var(--blue-gray-600)}.SlideshowCard_root__pD8t4:hover .SlideshowCard_thumb__86aJk{scale:1.02}.SlideshowCard_content__xh7kV{display:grid;padding:16px 0;grid-template-columns:1fr 32px;grid-template-rows:auto;grid-row-gap:4px;row-gap:4px}.SlideshowCard_content__xh7kV .slideshow-right-side{grid-column-start:2;grid-row-start:1;grid-row-end:span 3}.SlideshowCard_content__xh7kV .slideshow-author,.SlideshowCard_content__xh7kV .slideshow-stats,.SlideshowCard_content__xh7kV .slideshow-title,.SlideshowCard_content__xh7kV .slideshow-type{grid-column-start:1}.SlideshowCard_content__xh7kV .slideshow-author,.SlideshowCard_content__xh7kV .slideshow-stats{margin-block-start:auto}.SlideshowCardLink_root__p8KI7{position:absolute;inset:0;z-index:1;margin:4px}.Thumbnail_root__qLW0K{--ease:cubic-bezier(0.2,0,0,1);position:relative;background-color:var(--blue-gray-100);border:1px solid var(--blue-gray-100);border-radius:8px;-webkit-backdrop-filter:blur(8px);backdrop-filter:blur(8px);scale:1;transition:scale .2s var(--ease);overflow:hidden}.Thumbnail_thumb__UXO3a{--reveal-delay:calc(30ms * var(--index));position:absolute;inset:0;width:100%;height:100%;opacity:0;transition:opacity .3s var(--ease);transition-delay:var(--reveal-delay)}.Thumbnail_loaded__XOJ5p{opacity:1}.Thumbnail_blur__opK6A{filter:blur(8px)}.Thumbnail_cover__1zsIi{-o-object-fit:cover;object-fit:cover}.Thumbnail_contain__K6M0d{-o-object-fit:contain;object-fit:contain}.SlideshowTitle_root__2VccW{display:-webkit-box;color:var(--blue-gray-900);font-size:18px;font-weight:600;line-height:1.2;margin-bottom:8px;white-space:break-spaces;word-break:break-word;-webkit-box-orient:vertical}.RecSaveButton_icon__btwCp{color:var(--blue-gray-700);z-index:2}.SlideshowStats_root__EQOR1{display:flex;align-items:center;gap:6px}.SlideshowStats_text___WD7l{color:var(--blue-gray-600)}.SlideshowAuthor_root__IkT1_{color:var(--celadon-blue);font-weight:600;text-decoration:underline;-webkit-text-decoration-color:transparent;text-decoration-color:transparent;text-decoration-thickness:1.5px;text-underline-offset:2px;transition:-webkit-text-decoration-color .2s ease-out;transition:text-decoration-color .2s ease-out;transition:text-decoration-color .2s ease-out,-webkit-text-decoration-color .2s ease-out;z-index:2}.SlideshowAuthor_root__IkT1_:hover{-webkit-text-decoration-color:var(--celadon-blue);text-decoration-color:var(--celadon-blue)}.CountTag_root__y1hE1,.SplitDot_root__lTZDc{color:var(--blue-gray-600);font-weight:400}.VerticalInterstitialAdWrapper_root__LxQh8{container-type:inline-size;position:relative;display:grid;min-height:280px;overflow-x:clip}.VerticalInterstitialAdWrapper_root__LxQh8:has(.interstitial-ad-container.has-fetched):not(:has(.interstitial-ad-container.has-fetched .freestar-ad-container:not(.unfilled))){display:none}.VerticalInterstitialAdWrapper_root__LxQh8:has(div.interstitial-ad-container.has-fetched div.freestar-ad-container.filled div),.VerticalInterstitialAdWrapper_root__LxQh8:has(div.interstitial-ad-container.has-fetched div.freestar-ad-container.unfilled iframe){display:grid!important}.VerticalInterstitial_root__Dunl7{display:none}@container (max-width: 480px){.VerticalInterstitial_root__Dunl7{display:block;justify-self:center;align-self:center}}.FreestarAdContainer_root__qPPC_{position:relative;display:grid;place-content:center}.FreestarAdContainer_root__qPPC_.FreestarAdContainer_withFallback__A4lgm{aspect-ratio:var(--fallback-aspect-ratio)}.FreestarAdContainer_fallback__WreT9{position:absolute;inset:0;grid-template-columns:unset;place-content:center}.AdFallback_root__uAXsl{display:grid;justify-items:center;grid-template-columns:1fr;z-index:0}.MultipleIncontentSmall_root__x58Hs{display:none;grid-template-columns:repeat(auto-fit,minmax(max-content,300px));place-content:center;gap:16px}@container (min-width: 616px) and (max-width: 688px){.MultipleIncontentSmall_root__x58Hs{display:grid}}.MultipleIncontentWide_root__4WD8U{display:none;place-content:center}@container (min-width: 480px) and (max-width: 616px){.MultipleIncontentWide_root__4WD8U{display:grid}}.MultipleIncontentLarge_root__pGIAn{display:none;grid-template-columns:repeat(auto-fit,minmax(max-content,336px));place-content:center;gap:16px}@container (min-width: 688px){.MultipleIncontentLarge_root__pGIAn{display:grid}}.BelowReaderAd_root__NKeGg{margin-top:16px;margin-bottom:60px}.BelowReaderAd_root__NKeGg.BelowReaderAd_desktop__7_JN7{display:block;justify-items:flex-start}.BelowReaderAd_root__NKeGg.BelowReaderAd_mobile__08T3d{display:none}.BelowReaderAd_root__NKeGg .fallback-ad{justify-self:flex-start}@media screen and (max-width:928px){.BelowReaderAd_root__NKeGg.BelowReaderAd_desktop__7_JN7{display:none}.BelowReaderAd_root__NKeGg.BelowReaderAd_mobile__08T3d{display:block;justify-items:center}}.Sidebar_root__1BbNu{width:var(--sidebar-size);max-height:100dvh;overflow:clip scroll;position:sticky;top:var(--metadata-toolbar-offset,0);display:flex;flex-direction:column;padding-inline-start:28px;padding-block-start:32px;padding-block-end:430px}.Sidebar_root__1BbNu.Sidebar_withSidebarAds__0w0dT{max-height:unset;overflow:unset;position:static;top:unset;display:grid;grid-template-rows:repeat(var(--slots),1fr);padding-inline:28px}@media (max-width:1050px){.Sidebar_root__1BbNu,.Sidebar_root__1BbNu.Sidebar_withSidebarAds__0w0dT{display:none}}.AboveRecsAd_root__iTmTR{min-height:280px;margin-block-end:32px}.AboveRecsAd_root__iTmTR .freestar-ad-container{place-content:flex-start}@media (max-width:1050px){.AboveRecsAd_root__iTmTR .freestar-ad-container{place-content:center}}.AboveRecsAd_mobileAd__LYgqf{display:none}.AboveRecsAd_desktopAd__ymykj{display:block}@media (max-width:1050px){.AboveRecsAd_mobileAd__LYgqf{display:block}.AboveRecsAd_desktopAd__ymykj{display:none}}.RailRecommendations_root__zqtZQ{display:flex;flex-direction:column;gap:8px;padding-block-end:24px}.RailRecommendations_title__kt1D2{font-size:24px;color:var(--blue-gray-900);font-weight:600;margin-block-end:20px}.RailCard_root__rZUGY{--card-hover-background:var(--blue-gray-100);width:100%;position:relative;padding-block:12px}.RailCard_root__rZUGY.slideshow-card{grid-template-columns:160px minmax(0,1fr);grid-template-rows:auto;gap:12px}.RailCard_root__rZUGY .slideshow-card-content{padding:0}.RailCard_link__d3BBm{z-index:1}.RailCard_root__rZUGY .RailCard_title__Tvfiv{font-size:16px}.RailCard_stats__ZvZms .text{font-size:12px}.RailCard_root__rZUGY .RailCard_author__JYeYZ{color:var(--blue-gray-700);text-decoration:none}@media screen and (min-width:929px){.RailCard_root__rZUGY:hover{background-color:var(--blue-gray-100)}}.RelatedContent_root__29Np1{background-color:var(--blue-gray-100);border-top:1px solid var(--blue-gray-200);border-bottom:1px solid var(--blue-gray-200);padding-block:32px;position:relative}.RelatedContent_wrapper__riU7l{display:grid;grid-template-columns:minmax(0,1fr);grid-gap:32px;gap:32px;max-width:var(--max-content-width);margin-inline:auto}.RelatedContent_title__QUhpL{text-align:center;font-size:32px;font-weight:700}@media screen and (max-width:520px){.RelatedContent_wrapper__riU7l{padding-inline:16px}}.BottomRecommendation_root__7aU9w{display:grid;grid-gap:4px;gap:4px;padding-inline:24px}.BottomRecommendation_title__SRj68{font-size:22px;font-weight:600}.BottomRecommendation_count__4HpLo{font-size:16px;font-weight:400}@media screen and (max-width:520px){.BottomRecommendation_root__7aU9w{padding-inline:0}}.BottomRecommendationContent_root__2qm4_{display:grid}.BottomRecommendationContent_hidden__CUlxl{display:none}.BottomRecommendationContent_root__2qm4_ .mobile-recs{display:grid}.BottomRecommendationContent_root__2qm4_ .desktop-recs{display:none}@media screen and (min-width:520px){.BottomRecommendationContent_root__2qm4_ .mobile-recs{display:none}.BottomRecommendationContent_root__2qm4_ .desktop-recs{display:flex}}.Slider_root__c0Jo8{position:relative;display:grid}.Slider_scroller__KHjw4{display:flex;gap:20px;overflow:auto;scroll-snap-type:x mandatory;overscroll-behavior-x:contain;max-inline-size:100%;min-block-size:100%;touch-action:pan-x;-ms-overflow-style:none;scrollbar-width:none}.Slider_scroller__KHjw4::-webkit-scrollbar{display:none}.Slider_scroller__KHjw4>*{flex-grow:1;flex-shrink:0;scroll-snap-align:start}.Slider_scroller__KHjw4>:last-child{scroll-snap-align:end}.Slider_arrow__8LCca{display:grid;place-content:center;width:36px;height:36px;position:absolute;top:50%;background:var(--white);border:1px solid var(--blue-gray-200);border-radius:100vmax;box-shadow:0 2px 4px 0 rgba(0,0,0,.25);color:var(--blue-gray-800);padding:0;opacity:1;visibility:visible;pointer-events:all;transition:opacity .2s ease-in-out,visibility .2s ease-in-out;transition-delay:0s;cursor:pointer;z-index:1}.Slider_prev__YMssa{left:0;translate:-50% -50%}.Slider_next__fa9IO{right:0;translate:50% -50%}.Slider_hidden__rs7nK{opacity:0;visibility:hidden;pointer-events:none}.BottomRecommendationCard_root__gffTk{inline-size:clamp(220px,12.63rem + 3.45vw,260px);position:relative;background-color:none}.BottomRecommendationCard_root__gffTk .slideshow-thumbnail{border:1px solid var(--blue-gray-200)}.ScribdRecommendation_root__t3ezS{display:grid;grid-gap:16px;gap:16px;padding:0 24px}.ScribdRecommendation_header__Jw_M1{display:grid;grid-template-columns:1fr max-content}.ScribdRecommendation_title__JZ5p7{font-size:22px;font-weight:600}.ScribdRecommendation_link__4DVQz{align-self:end;grid-column:2;grid-row:1/span 2;color:var(--celadon-blue-dark)}.ScribdRecommendation_link__4DVQz:hover{color:var(--celadon-blue)}.ScribdRecommendationCard_root__ef2Y_{--rec-bg-1:#f1e3e3;--rec-bg-2:#f6f4e3;--rec-bg-3:#e1eaec;--rec-bg-4:#efebef;--rec-bg-5:#f1f0f0;--rec-bg-6:#f4eadb;--rec-bg-7:#eaeee7;--rec-bg-8:#e3e8ef;--rec-bg-9:#f1eee6;max-width:172px;position:relative;height:100%;display:grid;grid-template-columns:minmax(0,1fr);grid-template-rows:max-content minmax(0,1fr);align-content:flex-start;background-color:var(--white);border:1px solid var(--blue-gray-200);box-shadow:none;transition:box-shadow .2s ease-in-out;text-decoration:none}.ScribdRecommendationCard_root__ef2Y_:hover{box-shadow:0 2px 10px rgba(0,0,0,.1)}.ScribdRecommendationCard_thumb__5VVNh{position:relative;display:flex;background-color:var(--blue-gray-200);margin-block-start:24px;margin-inline:20px}.ScribdRecommendationCard_root__ef2Y_:before{position:absolute;inset:0;aspect-ratio:19/16;content:"";background-color:var(--block-color)}.ScribdRecommendationCard_thumb__5VVNh img{--reveal-delay:calc(30ms * var(--card-index));aspect-ratio:inherit;box-shadow:0 4px 6px rgba(0,0,0,.2);-o-object-fit:cover;object-fit:cover;opacity:0;visibility:hidden;transition:opacity .3s var(--ease);transition-delay:var(--reveal-delay)}.ScribdRecommendationCard_loaded__FTN_f img{opacity:1;visibility:visible}.ScribdRecommendationCard_content__ObcvL{display:flex;flex-direction:column;padding-block:20px;padding-inline:16px}.ScribdRecommendationCard_content__ObcvL .rating{padding-block-start:8px;margin-block-start:auto}@media (max-width:928px){.ScribdRecommendationCard_content__ObcvL .rating{flex-direction:column;align-items:flex-start}}.Rating_root__fgZQJ{display:flex;align-items:center;-moz-column-gap:6px;column-gap:6px;white-space:nowrap}.Rating_root__fgZQJ :first-child{color:#e47b01;font-size:16px;line-height:1}.Rating_root__fgZQJ :last-child{color:var(--blue-gray-600);font-size:14px;letter-spacing:-.25px}.Transcript_root__Vrf6Q{width:100%;max-width:var(--max-content-width);display:grid;grid-gap:8px;gap:8px;padding:32px 16px;margin-inline:auto;position:relative;background:#fff}.Transcript_title__YgAka{display:flex;align-items:center;gap:4px;font-weight:300;word-break:break-word}.Transcript_list__faItj{list-style-type:none;padding-inline-start:0;word-break:break-word}.Transcript_link__MLbGS{color:var(--celadon-blue);font-weight:700;line-height:22px;text-decoration:none;cursor:pointer}.EditorsNotes_root__3PcDF{padding:32px 16px;margin:0 auto}.EditorsNotes_heading__XR9E6{font-weight:700;font-size:22px}.EditorsNotes_list__NcG5Y{padding-left:30px;font-size:18px;font-style:italic;color:var(--blue-gray-600)}.EditorsNotes_item__ebBbj{word-break:break-word}@media screen and (min-width:1696px){.EditorsNotes_root__3PcDF{max-width:1688px}}.ActionsMenu_root__4k507{display:flex;gap:12px;align-items:center;justify-content:flex-start;min-height:44px;position:sticky;bottom:0;z-index:var(--sticky-index);height:var(--actions-menu-height);padding:0 15px;background-color:#fff;box-shadow:0 1.85px 6.25px 0 #00000030}.ActionsMenu_root__4k507 .ActionsMenu_downloadButton__s7Iqj{justify-self:flex-end}@media (min-width:929px){.ActionsMenu_root__4k507{display:none}}.LikeModal_more__R9uAk{justify-self:center;color:var(--celadon-blue);font-weight:500;opacity:0;visibility:hidden;transition:opacity .2s ease-in-out,visibility .2s ease-in-out}.LikeModal_more__R9uAk.LikeModal_visible__t1vr4{opacity:1;visibility:visible;transition-delay:0s}.LikesUserList_root__RMFUk{list-style:none;padding:0 0 16px;margin:0}.LikesUserList_root__RMFUk>li{display:grid}.LikesUserList_root__RMFUk>li:last-child .LikesUserList_link__NeMA0{border-bottom:none}.LikesUserList_link__NeMA0{display:grid;grid-template-columns:repeat(2,max-content) 1fr;grid-template-rows:repeat(2,min-content);grid-template-areas:"avatar username summary" "avatar title title";grid-column-gap:12px;-moz-column-gap:12px;column-gap:12px;grid-row-gap:0;row-gap:0;border-bottom:1px solid var(--blue-gray-200);padding:8px 0;text-decoration:none}.LikesUserList_avatar__VRXz2{grid-area:avatar}.LikesUserList_username__c84om{grid-area:username}.LikesUserList_summary___gbSG{grid-area:summary}.LikesUserList_title__UF0V6{grid-area:title}.ViewModal_content__GPKXy{padding-block:0}.ViewModal_row__xLxnz{display:flex;justify-content:space-between;border-bottom:1px dashed var(--blue-gray-300);color:var(--blue-gray-800);padding:16px 0}.ViewModal_row__xLxnz:last-child{border-bottom:none}.ConfirmRemoveSavedModal_description__2EAEu{color:var(--blue-gray-800);font-weight:400;font-size:16px;line-height:20px;padding:24px 0}div.SaveToNewListModal_input__Fi90k{max-width:unset;margin-bottom:24px}.SaveToNewListModal_checkboxWrapper__y_w0m .SaveToNewListModal_checkboxLabel__lMiU9:hover,.SaveToNewListModal_checkboxWrapper__y_w0m:hover .SaveToNewListModal_checkboxLabel__lMiU9,.SaveToNewListModal_checkboxWrapper__y_w0m:hover .SaveToNewListModal_input__Fi90k{color:var(--blue-gray-800)}.SaveToNewListModal_checkboxWrapper__y_w0m .SaveToNewListModal_checkboxLabel__lMiU9{color:var(--blue-gray-800);font-weight:400;font-size:14px;flex-direction:column;display:flex;line-height:18px}.SaveToNewListModal_imageContainer__Dx4nD{display:flex;flex-direction:column;justify-content:center;align-items:center;width:178px;margin:0 auto 24px}.SaveToNewListModal_imageContainer__Dx4nD img{height:100px}.SaveToNewListModal_errorContainer__FBZPH{margin:16px 0}dialog.FullscreenModal_root__efM9m[open]{animation:none;opacity:1;scale:1}dialog.FullscreenModal_root__efM9m{--max-height:100dvh;width:100dvw;height:100dvh;border-radius:0;opacity:0;scale:.96}dialog.FullscreenModal_root__efM9m .FullscreenModal_content__bQ6mt{width:100svw;height:100svh;display:grid;padding:0;max-height:100svh}@starting-style{dialog.FullscreenModal_root__efM9m[open]{opacity:0;scale:.96}} /*# sourceMappingURL=f2d403b314115c89.css.map*/</style></head><body><noscript><iframe title="gtm-noscript" src="https://www.googletagmanager.com/ns.html?id=GTM-M36RG8PT" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript><div id="__next"><div class="__variable_4d9a39 __className_4d9a39" style="overflow:clip"><div class="PageProgressBar_root__1y_Q3"><div class="PageProgressBar_bar__Kyoem" style="transform:scaleX(0)"></div></div><div data-freestar-ad="__320x50 __1140x90" id="slideshare_pushdown-pushdown-cls" style="height:var(--pushdown-height)"></div><header class="Header_root__8A86O"><div class="Header_wrapper___zBfP"><button aria-label="Open navigation menu" class="Hamburger_root__tHlgC" data-cy="mobile-header-menu" type="button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/hamburger.5a525941.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button><dialog id=":R9am:" class="drawer Drawer_root__ob4ZM" data-placement="left"><div class="Drawer_content__ye6ZB"></div><button autofocus="" type="button" aria-label="Close" class="close-button CloseButton_root__JCTRm" data-cy="drawer-close-button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/close.393923c4.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button></dialog><a aria-label="SlideShare a Scribd company logo" class="Logo_root__Qba3h" data-cy="slideshare-logo" title="Return to the homepage" href="https://www.slideshare.net/"><img alt="SlideShare a Scribd company logo" loading="lazy" width="120" height="30" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=128&q=75 1x, https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=256&q=75 2x" src="https://public.slidesharecdn.com/images/next/svg/logo/slideshare-scribd-company.svg?w=256&q=75"/></a></div><div class="SearchForm_root__usp4s"><form data-testid="search-form" role="search"><input name="searchfrom" type="hidden" value="header"/><input type="text" autoComplete="off" aria-label="Search SlideShare" id="nav-search-query" data-cy="search-field" name="q" placeholder="Search" value=""/><button type="submit" class="SearchForm_submit__U8kPR" id="search-submit" data-cy="search-submit"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/search.844a289d.svg);background-color:currentColor"></span><span class="sr-only">Submit Search</span></span></button></form></div><div class="HeaderActions_root__11_ai undefined"></div></header><div class="SlideshowScreen_root__k9j1_ SlideshowScreen_withKeyMoments__RbHLe"><!--$--><div class="metadata Metadata_root__oCstk" data-cy="metadata"><h1 class="Heading_heading__3MAvZ Heading_h1__3k7S2 title Title_root__svkHQ">A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST</h1><div class="stats Stats_root__p_BoZ"><div class="Stats_leftContent__588PR"><time dateTime="2024-11-04 20:44:17 UTC"><span class="skeleton Skeleton_root__U4QqL Skeleton_rounded__BLBq2" style="width:75px;height:24px"></span></time><span class="Text_root__is73U Text_medium__rk8Tn text" style="-webkit-line-clamp:0">•</span></div><div class="Stats_rightContent__8d0AF"><span class="Text_root__is73U Text_weight-strong__yEO2S Text_secondary__EPWj0 Text_medium__rk8Tn Likes_root__WVQ1_ text" style="-webkit-line-clamp:0" tabindex="0">0 likes</span><span class="Text_root__is73U Text_medium__rk8Tn text" style="-webkit-line-clamp:0">•</span><span class="Text_root__is73U Text_weight-strong__yEO2S Text_secondary__EPWj0 Text_medium__rk8Tn Likes_root__WVQ1_ text" style="-webkit-line-clamp:0" tabindex="0">23,843<!-- --> <!-- -->views</span></div></div><div class="author Author_root___6Bx5"><div class="Avatar_root__GNWHY" style="width:24px;height:24px;line-height:24px"><img class="Avatar_image__Bbtll" src="https://cdn.slidesharecdn.com/profile-photo-sacani-48x48.jpg?cb=1726012592" alt="Sérgio Sacani" loading="lazy" decoding="sync"/></div><a class="Link_root__vn3ab Author_link___lVxw ellipsis Link_primary__Iq4CI Link_size-large__W0PAv Link_weight-regular__yPpnB" data-cy="author-link" title="Sérgio Sacani" href="https://www.slideshare.net/sacani">Sérgio Sacani</a><button type="button" class="FollowButton_root__FxpBi Author_follow__Lw4TS FollowButton_follow__d_6u5">Follow</button></div><div class="description Description_root__kt4uq Description_clamped__PaV_1"><div class="Description_wrapper__hYE9_" data-cy="document-description"><p>Recent James Webb Space Telescope ( JWST) observations have revealed a surprisingly abundant population of faint, dusty active galactic nuclei at z ≈ 4–7. Together with the presence of supermassive black holes at z > 6, this raises questions about the formation and growth histories of early black holes. Current theories for the formation of seed black holes from the death of the frst stars (that is, light seeds) and/or the direct collapse of primordial gas clouds (that is, heavy seeds) still lack observational confrmation. Here we present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful outfows that is observed in an extreme phase of rapid growth at redshift z ≈ 4. This object is similar to other JWST-discovered faint active galactic nuclei populations, but is bright in X-ray emission and accreting at more than 4,000% of the limit at which radiation pressure exceeds the force of gravitational attraction of the black hole (that is, super-Eddington accretion). Analysis of JWST Near-Infrared Spectrograph integral feld unit data reveals spatially extended Hα emission with velocities of ~−600–−500 km s−1 relative to the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington accretion as invoked by models of early black hole formation. This discovery showcases a previously undiscovered key parameter space and ofers crucial insights into rapid black hole growth mechanisms in the early universe.<button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_text__ZT_3O Button_small__sqsEx Description_less__BvWbY Description_hidden__a9QZJ" data-testid="button" aria-label="Read less"><span>Read less</span></button></p></div><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_text__ZT_3O Button_small__sqsEx Description_more__ChrRK" data-testid="button" aria-label="Read more" data-cy="read-more-button"><span>Read more</span></button></div><div class="actions Actions_root__00yIC"><div class="Tooltip_triggerWrapper___S2HG"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi like-button unliked" data-testid="button" aria-label="Like" data-favorited="false" data-cy="like-button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/like.3870b074.svg);background-color:#424766"></span><span class="sr-only"></span></span></button></div><div class="Tooltip_triggerWrapper___S2HG"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="actions.save" data-saved="false" data-cy="loggedout-save-slideshow-button"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis"><div class="Tooltip_triggerWrapper___S2HG"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span></div></button></div></div><div class="MetadataToolbar_root__c03ao metadata-toolbar" data-cy="slideshow-toolbar"><div class="MetadataToolbar_wrapper__r7XEc"><div class="actions Actions_root__00yIC"><div class="Tooltip_triggerWrapper___S2HG"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi like-button unliked" data-testid="button" aria-label="Like" data-favorited="false" data-cy="like-button"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/like.3870b074.svg);background-color:#424766"></span><span class="sr-only"></span></span></button></div><div class="Tooltip_triggerWrapper___S2HG"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="actions.save" data-saved="false" data-cy="loggedout-save-slideshow-button"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis"><div class="Tooltip_triggerWrapper___S2HG"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span></div></button></div><span data-cy="page-number" class="MetadataToolbar_pageNumber__i6Bhj">1<!-- --> <!-- -->of<!-- --> <!-- -->12</span><div class="MetadataToolbar_actions__FB33C"><div class="DownloadButton_root__adY00"><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_contained__gyjai Button_large__Yv_oe" data-testid="download-button" data-cy="download-button-toolbar"><span><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/download.b1b2622c.svg);background-color:currentColor"></span><span class="sr-only"></span></span>Download now</span></button></div></div><div class="MetadataToolbar_underline__QQn0C"></div></div></div><!--/$--><!--$--><!--/$--><div class="player Player_root__L1AmF"><div id="new-player" class="vertical-player VerticalPlayer_root__K8_YS" data-slideshow-id="273014912"><div><div id="slide1" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-0" alt="Nature Astronomy natureastronomy https://doi.org/10.1038/s41550-024-02402-9 Article Asuper-Eddington-accretingblackhole ~1.5 GyraftertheBigBangobservedwith JWST Hyewon Suh 1 , Julia Scharwächter 1 , Emanuele Paolo Farina 1 , Federica Loiacono 2 , Giorgio Lanzuisi 2 , Günther Hasinger 3,4,5 , Stefano Marchesi 2,6,7 , Mar Mezcua 8,9 , Roberto Decarli 2 , Brian C. Lemaux 1,10 , Marta Volonteri11 , Francesca Civano12 , Sukyoung K. Yi 13 , San Han13 , Mark Rawlings 1 & Denise Hung 1 RecentJamesWebbSpaceTelescope(JWST)observationshaverevealed asurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat z ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz > 6, thisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack holes.Currenttheoriesfortheformationofseedblackholesfromthedeath ofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial gasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here wepresentLID-568,alow-mass(7.2 × 106 M⊙)blackholehostingpowerful outflowsthatisobservedinanextremephaseofrapidgrowthatredshift z ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic nucleipopulations,butisbrightinX-rayemissionandaccretingatmore than4,000%ofthelimitatwhichradiationpressureexceedstheforceof gravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion). AnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals spatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1 relative tothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID- 568representsanelusivelow-massblackholeexperiencingsuper-Eddington accretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery showcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial insightsintorapidblackholegrowthmechanismsintheearlyuniverse. Observational surveys have identified several hundreds of luminous quasars at redshift z > 6–7 (refs. 1–6). The presence of supermassive black holes (SMBHs) with masses of 109–10 M⊙ at such early cosmic epochschallengesmodelsofSMBHformationandgrowth,andraises questionsabouttheoriginofseedblackholesandthemechanismsfor theirrapidandextremegrowth.Althoughtheformationofseedblack holes remains observationally unconstrained, they are commonly thoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar physicalprocessesthatcangenerateblackholeswithmassesinexcess of102 M⊙ (ref.7).Historically,modelshavebeendividedintolightand heavyseeds,withademarcationatabout103 M⊙.Thelightestseedsare generallyassociatedwiththedeathofthefirststarswithinitialmasses of102–3 M⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime intotheobservedpopulationofSMBHsatslightlylatertimeischalleng- ing,becauseblackholesformedinthismannerwouldhavetoaccrete attheEddingtonlimitfromthetimetheyareformeduptotheredshift Received: 1 April 2024 Accepted: 1 October 2024 Published online: xx xx xxxx Check for updates A full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="eager" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-1-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide2" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-1" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 andPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568 are shown in Fig. 1. However, LID-568 stands out as uniquely bright in theX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby JWST, which indicates a higher level of central accretion activity. The observed 0.5–10 keV flux is 5.16 × 10−15 erg cm−2 s−1 (ref. 27). Analysis of the X-ray spectrum (as inferred from the emission measured in the 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura- tion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2 ) a ndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth- ods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo- metricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1 ,afactorof~100 higher than the average bolometric luminosities of JWST-discovered faintAGNs. Theshapeofthemid-tofar-IRspectralenergydistribution(SED) ofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle power law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac- teristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates atwhichtheyareobserved10 ,whichappearstobedifficult11 .Thedirect collapseofprimordialgascloudsintosupermassivestarsturninginto black holes with initial masses of 104–6 M⊙ (that is, heavy seed)12,13 is an attractive alternative, as these heavy seeds can more rapidly grow intoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How- ever, the expected number densities for the sites where such super- massive stars can form are low. Intermediate pathways where seeds of 103–4 M⊙ form from very massive stars in pristine rapidly growing halosorthroughstellarmergers,hierarchicalblackholemergersand stellar captures in dense stellar systems bridge these two extremes14 . It is also possible that heavy seeds originate from primordial black holes,eliminatingtheneedforthestellarandgas-basedprocesses15–17 . WiththeunprecedentedsensitivityoftheJamesWebbSpaceTel- escope (JWST), it is now possible to extend studies to faint, low-mass sources at high redshifts (that is, z > 3–4), an epoch when both black holesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser- vation can provide insights into the mechanisms seeding early black holes. JWST has recently discovered a new population of relatively faint,compact,dust-reddenedsourcesatz > 4usingvariousselection techniquesinawidevarietyofextragalacticsurveys18–24 .Theyarefound to have overmassive black holes with respect to the local black hole mass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times higherMBH/Mstellar ratios25 .Mostofthesesourceshavenotbeendetected inX-rayobservations18–24 ;onlytwosourceswithX-ray-detectionshave beenrecentlyreported26 .Thisfaintpopulationislikelytorepresentthe moderate accretion phase of active galactic nuclei (AGNs), which are accreting at ~20% of the Eddington rates, and are hosted by relatively low-mass galaxies. Some of these sources are referred to as ‘little red dots’andarecharacterizedbyaredcontinuumintherest-frameopti- calandamodestblueUVcontinuum.Suchsourcesexhibitprominent broad Balmer emission lines, which implies that they are powered by AGNs.Theseredcompactsourcesaresurprisinglyabundant,being100 timesmorecommonthanUV-selectedquasarsatsimilarredshifts23 . LID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole population identified as near-infrared-dropout (near-IR-dropout) X-ray sources from the Chandra-COSMOS Legacy Survey27,28 . Similar to other faint AGNs discovered by JWST, LID-568 appears extremely red and compact in the IR, yet it remains invisible in any optical wave- lengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble Space Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was determined from JWST Near-Infrared Spectrograph (NIRSpec) and (Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii] 10 Observed wavelength (µm) 0.1 1.0 10.0 100.0 log Flux (µJy) GB + PL (Tdust = 655 K) JWST NIRSpec JWST MIRI 3.0 3.5 4.0 4.5 5.0 Observed wavelength (µm) 0 2 4 6 Hα [SII] OI CaII Paη Paζ Paε [SIII] [CI] Paδ [SII] FeII 6 8 10 12 0 50 100 150 200 Paα Brγ z = 3.965 Fig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8 and8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue), includingapowerlaw(bluedotted)andgreybody(bluedashed)components, ataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars representthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange) spectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top) andNIRSpec(bottom),withthedetectedemissionlinesmarked. 6 7 8 9 10 log MBH/M 44 45 46 47 48 log L bol (erg s –1 ) LID-568 L bol /L Edd = 1 0.1 0.01 JWST AGNs Matthee+24 (4 < z < 6) Harikane+23 (4 < z < 7) Maiolino+23 (4 < z < 7) Greene+24 (z > 5) UV-selected quasars Farina+22 (z > 5.8) Fig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs athighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4, isshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately afactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack holes18,20,23,24 recentlyfoundbyJWSTobservations.Forreference,UV-selected quasars5 atz > 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith differentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error barsrepresent1σuncertainties. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-2-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide3" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-2" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 forobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis substantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST (whichexhibitapower-lawslopeα𝜆 ≈ 2.0onaverage)19 .Thedetection ofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda heavilyobscuredAGN,withoutanapparentpresenceoftheunderlying host galaxy features. The model SEDs for super-Eddington accretion suggest a notable absence of rest-frame UV or even optical emission, withatendencytobecomeprogressivelyredderintheIRastheEdding- ton ratio increases29 . However, contrasting perspectives have been presentedinotherstudies,indicatingthatsuper-Eddingtonaccretion mightleadtoanexcessofUVradiation,resultinginasignificantlybluer continuumslopeintherest-frameUV30,31 . Giventhepoint-like,compactnatureofthissource,theextremely red colour primarily arises from the thermal emission originating in a dust-obscured accretion disk, with negligible contribution from a hostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo greybodies32 (Methods and Extended Data Fig. 1), the dust tempera- ture is substantially higher (655.53 K and 71.5 K) than what is typically observedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand warm gas dominates the IR emission, with negligible evidence of star formationactivity.Thisisincontrasttothemajorityofdust-obscured galaxies at high redshift, which often exhibit signs of powerful star- bursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1 , whichiscomparabletotheAGNbolometricluminosity.Theestimated dust mass Mdust is ~2.95 × 106 M⊙, which suggests that LID-568 con- tains less dust than the optically faint, dust-obscured galaxies at z ≈ 3 (thatis,H-dropouts,HST-dark,NIR-dark)33,34 thathavedustmassesof ~1–4 × 108 M⊙. Assuming the dust-to-stellar mass ratios of HST-dark, dust-obscuredgalaxiesatsimilarredshifts33 ,theinferredstellarmassof LID-568is~2 × 108 M⊙,whichimpliesalow-mass(thatis,dwarf)galaxy. The single-epoch virial black hole mass (MBH), derived from the broad Hα emission line, is 7.2 (−5.4 + 10.8) × 106 M⊙, which indicates a rather low-mass black hole (Methods and the left panel of Extended Data Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which impliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow that the black hole mass of LID-568 is comparable with those of faint AGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo- metricluminosityofthisobjectplacesitwithinapreviouslyunexplored extremeaccretionregime.Ontheotherhand,thereisgrowingevidence thatAGNswithhighaccretionratesappeartohavesmallerbroad-line region(BLR)sizesthanthosepredictedbythecanonicalradius–lumi- nosityrelationshipofsub-EddingtonAGNs35,36 .Thisdiscrepancycould potentially lead to an overestimation of the single-epoch black hole massbyasmuchas~0.3 dex,resultinginahigherEddingtonratio. The ionized gas in LID-568 shows signs of a spatially unresolved nuclearoutflowwithvelocitiesof~−540 km s−1 (Methodsandtheright panelofExtendedDataFig.2),whicharesimilartothevelocitiestraced by the spatially extended Hα emission. In Fig. 3, we present NIRSpec/ Integral Field Unit (IFU) channel maps of the Hα emission at differ- ent velocity ranges chosen to best highlight the multiple kinematic components observed around the central black hole (Extended Data Fig. 3). The blue-shifted Hα emission (~−600–−500 km s−1 ) peaks at a projected distance of 0.4″ (~3 kpc) to the north (B component) and 1″ (~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line component(Ccomponent),whereasthenorth-easterncomponentAis foundatasimilarvelocitytothecentralcomponentC.Thecontinuum emissionassociatedwiththespatiallyextendedHαemissioncompo- nents are not detected. Although these components could be part of theoutflow,amergerorigincannotbeexcluded. IftheextendedHαemissionsareassociatedwithoutflows,wecan infer the AGN lifetime using the outflow velocity and radius. Consid- ering that the outflow reaches ~7 kpc from the central black hole, we obtain the AGN lifetime as t = (7 kpc)/(540 km s−1 ) ≈ 1.2 × 107 yr. This lifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales set by Soltan arguments (that is, 107–9 yr (ref. 37)) and indirect meas- urements of AGN phase timescales (~107–9 yr (ref. 38)). Furthermore, –0.2 0 0.2 0.4 0.6 Flux (µJy) –494 km s–1 0 km s–1 A B C D +494 km s–1 –3,000 –2,000 –1,000 0 1,000 2,000 3,000 Velocity (km s–1 ) 0 1 2 3 4 Flux (µJy) A B C D Fig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion. Top:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins. ThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets of~−600–−500 km s−1 withrespecttothecentralbroad-linecomponent(C), whereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom: NIRSpecspectraofeachcomponentareshownintheHαemissionlineregion, extractedfromcircularapertureswitharadiusof0.2″. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-3-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide4" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-3" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 theoretical studies39 suggest that super-Eddington phases might be sustained over timescales of a few tens of million years. This lifetime suggeststhatasubstantialfractionofthemassgrowthofLID-568may haveoccurredinasingle,super-Eddingtonaccretionepisode. To estimate the preburst mass of the black hole, we calculated themassgrowthduringsuper-Eddingtonaccretionover12 Myrusing theequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where tEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack hole mass before super-Eddington accretion is ~102 M⊙ (that is, light seed). We note that this growth scenario is feasible only if the black hole remains embedded within a giant molecular cloud and accretes theentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto feedback. As such, this represents a lower limit on the pre-accretion black hole mass, which is consistent with a light seed but does not excludethepossibilityofamorenuancedgrowthhistorywithshorter accretioneventshappeningonaheavierseed.Infact,itisalsopossible thattheoutflowcouldbeassociatedwithstellarfeedback-drivenout- flowsfromastarbursteventprecedingtheactivityintheblackhole. The presence of potentially AGN-driven outflows, along with the lack of star-forming activity in LID-568, suggests that AGN feedback mayplayacrucialroleinregulatingand/orquenchingstarformation in this low-mass system at high redshift. This indicates the possibil- ity of rapid and efficient growth of black holes relative to their host galaxies. Theoretical models predict a ‘blowout’ dusty red quasar phase transitioning from a heavily obscured starburst, during which AGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby quenching the star formation40 . It is possible that LID-568 represents atransientphasecharacterizedbyextremelyhighaccretionrateswith powerful outflows suppressing the star formation in its host galaxy. This could explain the presence of overmassive black holes hosted in low-mass galaxies in the local Universe41 , as well as those found by JWST at z > 4 (ref. 25). Furthermore, the powerful AGN could produce dustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42 ,and thiscouldpotentiallyaccountfortheabundantdustyAGNsobserved withJWSTathighredshifts. LID-568 could potentially represent the long-sought-after low-massblackholeundergoingrapidgrowththroughsuper-Eddington accretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat z ≈ 4 unveils a missing key parameter space of the extreme accretion and provides new insights into the rapidly growing mechanisms of theearlygrowthofblackholes43–45 .Althoughtherarest,mostmassive SMBHsatz > 6–7couldbeexplainedbyanoriginfromheavyseedswith sub-Eddingtonaccretion,theystillrequirecontinuousaccretionover severalhundredmillionyears.Thepresenceofovermassiveblackhole populationssuggeststhepossibilitythattheycouldexperienceinter- mittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey originate from heavy or light seeds45,46 . Super-Eddington accretion is likelytooccurepisodically,andthedetectionofLID-568mayrepresent onesuchepisodicaccretionphase.Futurestudiesonalargesampleof such objects will help to constrain the duty cycle of super-Eddington accretion and deepen our understanding of the mechanisms driving suchhighlevelsofaccretion. Methods Parent sample The parent sample comprised a previously undiscovered population of black holes, identified as near-IR-dropout X-ray sources (that is, invisible in the optical/near-IR bands) from the Chandra-COSMOS Legacy Survey27,28 , which consists of 4,016 X-ray sources over a large area of ~2.2 deg2 . We used the multiwavelength photometry from the mostrecentphotometriccataloguefromCOSMOS202047 andHELP48 , containing GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam (HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera (IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging PhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector ArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec- tralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho- tometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified those without any optical counterparts within a 2″ radius, which cor- responded to the uncertainty of the Chandra position. We excluded sources whose flux was contaminated by nearby bright sources and possible diffuse X-ray emission. This resulted in a final sample of 62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof Spitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected in Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR detections.NoneofthesesourceshadacounterpartintheVeryLarge Array3 GHzsourcecatalogue49 . ALMAobservations Spitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations for all 62 IR-dropout X-ray sources were carried out in four observing blocks in November 2019 and January 2022 under the Cycle 7 pro- gramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The observations were centred on the Chandra X-ray positions with an integration time of ~5 minutes per source. The data reduction was performedusingthestandardALMApipelinev.2021.2.0.128(Common AstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe integrated flux of all our targets using the imfit procedure from the CASA pipeline. The sources were modelled with a circular Gaussian profile of variable total flux, centroid, width, axis and position angle. The 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the 870 μmemissionasmeasuredfromALMAwasingoodagreementwith those of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband images of LID-568, which are invisible in the Subaru/HSC optical and UltraVISTAnear-IRimages. JWSTobservations WeobtainedJWST/NIRSpec50,51 andMIRI/LRS52 observationsofLID-568 undertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/ IFUobservationsweretakeninApril2023withthegrating/filtercom- binationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm with an average spectral resolution of R ≈ 1,000. The field of view of the IFU mode was ~3″ × 3″, with each spatial element in the resulting IFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which improvessignal-to-noiseratioandreducesdatavolume.Theobserva- tions were taken with 18 groups and one integration per exposure, using a four-point medium cycling dither pattern, resulting in a total exposuretimeof1.45 h. The NIRSpec/IFU data reduction was performed with the JWST ScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149. pmap. We also added additional steps to improve the quality of the reduced data53 . The reduction process consisted of three stages. The first stage accounted for detector-related issues, such as bias and dark subtraction, and cosmic ray flagging. At the end of this stage, the groups were fitted to create two-dimensional count rate images (thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection, wavelength and flux calibration. The calibrated exposures were then processedinthethirdstage,whereafurtherflaggingofcosmicrayswas appliedbeforebuildingthefinaldatacube.Beforerunningthesecond stage, we removed the detector low frequency noise 1/f affecting the rate files by subtracting from each spectral column its median value after applying a sigma clipping54–56 . We fixed a pipeline bug reported bytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels withbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral outliers from the calibrated exposures. We removed the remaining outliers from the datacube by filtering out all the voxels with a jump overcontiguouschannelspersistingforlessthanfourchannels,which is the typical width of these features. Finally, we subtracted the back- groundasafunctionofthewavelengthbycalculatingthemedianover ten spectra extracted from empty regions in the cube field of view in " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-4-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide5" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-4" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 each channel. We note that the background increases as a function of the wavelength, an expected effect due to an increase in the zodiacal and stray light57 . We thus subtracted it channel by channel to obtain a background-freedatacube. The MIRI/LRS slit spectroscopy observations were conducted in January 2023 using a P750 disperser, covering a wavelength range of 5–12 μm with a spectral resolution of R ≈ 100. The observations were performedwith360groupsperintegrationinFAST/FULLmode,with two integrations per exposure using a two-point dither along the slit. This resulted in a total exposure time of 1.1 h. The fully reduced data were retrieved from the Mikulski Archive for Space Telescope, which were processed using the JWST Science Calibration pipeline v.1.12.5, withtheCRDScontextjwst_1135.pmap. X-rayluminosity To compute the intrinsic X-ray luminosity in the 2–10 keV band, we used the XSpec software (v.12.13.0)58 to fit the Chandra spectrum usingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9, modified by both Galactic absorption (NH = 2.6 × 1020 cm−2 (ref. 59)) and absorption at the redshift of the source, NH(z). The second absorption component accounted for both nuclear absorption due to the gas orbiting in the proximity of the SMBH (that is, torus) and absorption due to the interstellar medium in the host galaxy. The columndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe absorption-correctedrest-frame2–10 keVluminositywasdetermined aslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2). Totakeintoaccountthemorecomplexabsorptionandreflection processes in the case of Compton-thick obscuration (NH > 1024 cm−2 ), wealsoderivedthecolumndensityandintrinsicX-rayluminosityusing theMYtorusmodel60,61 .Thismodelconsistsofthreecomponents:the obscuration along the line of sight, including Compton scattering, appliedtotheprimarypowerlaw,thereflectionandthefluorescence emission line complex. The relative strength of these components wasfixedtobethesame,andtheinclinationanglebetweenthelineof sight and the axis of the torus was set to 75° to ensure interception of theobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed. The column density and intrinsic X-ray luminosity derived from the MYtorus model were consistent with the standard power-law model, wellintheCompton-thinregime.Ifweallowedthephotonindextobe a free parameter, the fit tended toward a softer power law (Γ = 2.4 for MYtorus and 2.9 for the simple power law) and, consequently, even highercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08 forMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9 wasconservativeinestimatingintrinsicluminosity. SEDfitting The SED fitting was performed using a modified approach based on ref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63 .Addition- ally, we independently fitted the SED using CIGALE64 and X-CIGALE65 , thelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari- ous parametrizations and models for stellar populations, star forma- tion history, dust emission and attenuation, and AGN emission from differentSEDfittingcodes,wefoundthattheSEDofLID-568showsan unusuallyredIRcontinuumthatcannotbereproducedbyanycombina- tionofthemodelsandparametersused. We further fitted the dust emission using the modified IR SED fitting code developed in ref. 32. We employed a composite mid-IR power law and two-temperature greybodies. We used a fixed value of the emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as a free parameter. The rest-frame observed photometric data (black) are presented alongside the best-fit IR SED (yellow) in the left panel of Extended Data Fig. 1. The SED is well fitted by a power law, and hot greybody (655.5 K) and warm greybody (71.5 K) components, which are much hotter than what is typically observed in star-forming gal- axies (10–60 K). From the best fit, we derived the total IR luminosity (L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1, we show the SED of LID-568 overlaid on the SED templates66 of the AGN-dominated local ULIRG (Mrk 231), the extreme local starburst ULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965. The IR SED shape of LID-568 seems to be consistent with the torus model spectrum, but cannot be explained by currently available IR SEDtemplatesofobscuredAGN/ULIRGs. AGNbolometricluminosity The bolometric luminosity of AGNs can be estimated from the X-ray luminositybyapplyingasuitablebolometriccorrection67 .Toaccurately estimate the total intrinsic luminosity radiated by the AGN accretion disc, it is necessary to constrain the absorption-corrected intrinsic X-rayluminosity,asX-raysareoftenobscuredandmayincluderepro- cessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1 is derived using the absorption-corrected rest-frame 2–10 keV lumi- nosity by applying a luminosity-dependent bolometric correction as describedinref.67. We also computed the AGN luminosity from the SED by integrat- ing absorption-corrected total X-ray luminosity (L0.1–100keV) and the best-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert the IR luminosity into a proxy for the intrinsic nuclear luminosity, we considered the geometry of the torus and its orientation by apply- ing the following correction factors: the first correction is related to the covering factor, which represents the fraction of the primary UV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the second correction is due to the anisotropy of the IR dust emission, whichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN bolometricluminositywasLbol = 46.68 erg s−1 ,whichisconsistentwith theX-ray-derivedbolometricluminosity. We additionally derived the bolometric luminosity using the Hα luminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi- nosityfromHαluminosityusingtheequationinref.70.Thebolometric luminosity was estimated using the bolometric correction factor in ref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1 ,whichis~1 dexlowerthan that derived from other methods (that is, X-ray luminosity and SED fitting). This indicates that the Hα emission could possibly be highly obscured, potentially leading to an underestimate of the Hα-derived black hole mass by a factor of a few. However, we point out that when estimatingtheEddingtonratiousinganinternallyconsistentmethod basedontheHαemissionforbothAGNbolometricluminosityandthe blackholemass,theblackholeisstillaccretingatthesuper-Eddington accretion level of ~4.4. We note that the bolometric correction factor for Hα luminosity could be uncertain for those obscured AGNs with super-Eddington accretion at high redshifts. The estimated bolo- metric luminosities obtained using various methods are shown in SupplementaryFig.3. Blackholemassandoutflows Thesingle-epochvirialblackholemasswasestimatedusingthebroad Hαemissionlinewidthandthelineluminosityfromtherest-frameUV/ opticalspectraasaproxyforthecharacteristicvelocityandthesizeof theBLR.TheNIRSpecspectrawereextractedfromacircularaperture centred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We utilized the mpfit routine for fitting the emission lines, employing a Levenberg–Marquardtleast-squaresminimizationalgorithmtoderive thebest-fitparametersandassesstheoverallfitquality72 .Specifically, we fitted and subtracted a power-law continuum (fλ) as a function of wavelength(λ),fλ ∝λ−a ,fromthespectraandperformedasimultaneous fitwithacombinationofmultiplenarrowandbroadGaussiancompo- nentstobestcharacterizethelineshape.Forthenarrowemissionlines, wefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas the[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained thelinewidthsandrelativelinecentresofthenarrow-linecomponents tothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-5-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide6" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-5" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 broad Gaussian components: one for the BLR and the other for the blue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad Gaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet. Additionally, we investigated the inclusion of additional broad Gaussian components for the [N ii] 6,548, 6,583 Å lines as outflow components. We also tested the fit both with and without constrain- ing the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However, we found no meaningful statistical improvement from adding these broad Gaussian components. For the former, this lack of meaningful improvementinthefitislikelytobeduetothe[N ii]componentsbeing overwhelmed by the much stronger Hα emission. For the latter, the blueward [S ii] emission appears to dominate the fit in that spectral region, and, given the lower signal-to-noise ratio of both features, it is not surprising that a similar goodness of fit is returned by forcing the ratio of the strength of the two components within the canonical allowablerange.Furthermore,changesinthefittingapproachdidnot appreciably affect the inferred black hole mass beyond the inherent randomandsystematicuncertainties. Finally,wemeasuredthebroad-linewidthandthelineluminosity fromthebest-fitspectra.Theblackholemasswascomputedusingthe equation from ref. 70. Although the measurement uncertainties on MBH were relatively small (~0.1 dex), systematic uncertainties associ- ated with different single-epoch virial calibrations carried a scatter of ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be 7.2 (−5.4 + 10.8) × 106 M⊙. The uncertainties of the black hole mass were determined by the sum of the statistical and intrinsic scatter of thecalibrations. ExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα, [N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis- sion lines trace gas with different kinematics, potentially indicating outflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii] lines because [O iii], which typically serves as a tracer of outflows, is notcoveredbyourdataset.InExtendedDataFig.2(right),wecompare the blue-shifted Hα emission line with that of the [S ii] line compo- nents. Although we left the line widths and relative line centres of the blue-shifted components as free parameters, the broad blue-shifted emissionisevidentinboththeHαand[S ii]lines,exhibitingthesame broad-line width and velocity offsets, which suggests that they are kinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially unresolvedoutflowvelocityof~−540 km s−1 .Similarvelocitiesareasso- ciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3), which could be part of the outflow or indicate ongoing merger activ- ity. The mass of the ionized outflow as inferred from the blue-shifted outflow component of the broad Hα emission was 1.4 × 107 M⊙, using equation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1 and that the extended Hα emission is representative of the outflow radius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1 . Environment We measured the environmental density surrounding LID-568 by employing the Voronoi tessellation Monte Carlo mapping described in refs. 75,76. Briefly, this technique uses a weighted combination of spectroscopic and photometric redshifts to construct a galaxy over- densitycubeinthin(7.5properMpc)slicesrunningfrom2 < z < 5.The mapping leverages the wealth of panchromatic imaging data from COSMOS, as well as a large number of spectroscopic redshifts drawn from public surveys and proprietary data. The particular instance of the Voronoi tessellation Monte Carlo mapping used in this work was identicaltothatofref.77. After an overdensity cube had been constructed over the full redshift range, a source extractor-based post-processing technique, as described in ref. 76, was used to link detections of overdensities across contiguous slices to search for coherent structure and esti- matethemassofthedetectedstructure.Fordensitymappingatz > 2, this post-processing technique was trained on mock observations of custom-built light cones to maximize the purity and completeness associatedwiththedetectionofprotogroupsandprotoclusters.Atthe spatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS field was fairly sparse, and we estimated that our method was >50% complete only for structures with z = 0 masses greater than 1014.5 M⊙, thatis,massiveprotoclusters,atz ≈ 4. We find no evidence that LID-568 is associated with an overden- sity of galaxies. The local overdensity at the location of LID-568 was log (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the mean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe average overdensity in a cylindrical aperture of radius 1 proper Mpc and depth of Δz = 0.02 centred on the redshift of LID-568 recovered a consistent value. Additionally, we detected no associated coherent structurewithinΔz = 0.04andR < 5properMpcofLID-568,whichindi- catesthatitisnotlikelytobeembeddedinamassiveformingcluster. However,giventhepaucityofspectroscopicredshiftsinproximityto LID-568, we cannot rule out membership in a lower mass structure. Wealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto detectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78 . Future spectroscopic observations of the surroundings of LID-568 and similar sources will help to better quantify the environments in whichtheyreside. Dataavailability The data for ALMA and JWST used in this study are publicly available throughtheirrespectivedataarchives.Theseobservationsareassoci- atedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme no. 2019.1.01275.S. Other data generated and/or analysed during the study are available from the corresponding author upon reasonable request. References 1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085. Nature 474, 616 (2011). 2. Bañados, E. et al. An 800-million-solar-mass black hole in a significant neutral Universe at a redshift of 7.5. Nature 553, 473 (2018). 3. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3<z<7.64. Astrophys. J. 923, 262 (2021). 4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. 907, 1 (2021). 5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. II. Black hole masses, Eddington ratios, and the formation of the first quasars. Astrophys. J. 941, 106 (2022). 6. Fan, X., Bañados, E. & Simcoe, R. A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61, 373 (2023). 7. Rees, M. F. Quasars. Observatory 98, 210 (1978). 8. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012). 9. Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014). 10. Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624 (2005). 11. Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762 (2018). 12. Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079 (2008). 13. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017). " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-6-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide7" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-6" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 14. Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat. Rev. Phys 3, 732 (2021). 15. Kashlinsky, A. LIGO gravitational wave detection, primordial black holes, and the near-IR cosmic infrared background anisotropies. Astrophys. J. Lett. 823, 25 (2016). 16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter. J. Cosmol. Astropart. Phys. 07, 022 (2020). 17. Cappelluti, N., Hasinger, G. & Natarajan, P. Exploring the high-redshift PBH-ΛCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds. Astrophys. J. 926, 205 (2022). 18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z=4–7: detection of 10 faint AGNs with MBH=106 –108 M⊙ and their host galaxy properties. Astrophys. J. 959, 39 (2023). 19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z>5 with CEERS. Astrophys. J. 954, 4 (2023). 20. Maiolino, R., et al. JADES. The diverse population of infant black holes at 4<z<11: merging, tiny, poor, but mighty. Preprint at https://arxiv.org/abs/2308.01230 (2023) 21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, 145 (2023). 22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed AGN in the early Universe. Nature 628, 57 (2024). 23. Greene, J. E. et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z>5. Astrophys. J. 964, 39 (2024). 24. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z~5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024). 25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. & Fan, X. JWST CEERS and JADES active galaxies at z=4–7 violate the local M●–M★ relation at >3σ: implications for low-mass black holes and seeding models. Astrophys. J. 957, 3 (2003). 26. Kocevski, D. D., et al. The rise of faint, red AGN at z>4: a sample of little red dots in the JWST extragalactic legacy fields. Preprint at https://arxiv.org/abs/2404.03576 (2024). 27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016). 28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/ IR identifications. Astrophys. J. 817, 34 (2016). 29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. & Bertemes, C. Searching for super-Eddington quasars using a photon trapping accretion disc model. Mon. Not. R. Astron. Soc. 492, 4058 (2020). 30. Done, C., Davis, S. W., Jin, C., Blaes, O. & Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848 (2012). 31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the Universe: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron. Soc. 484, 2575 (2019). 32. Casey, C. M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012). 33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at z>3: bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023). 34. Gentile, F. et al. Illuminating the dark side of Cosmic star formation. III. Building the largest homogeneous sample of radio-selected dusty star-forming galaxies in COSMOS with PhoEBO. Astrophys. J. 962, 26 (2024). 35. Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. V. A new size-luminosity scaling relation for the broad-line region. Astrophys. J. 825, 126 (2016). 36. GRAVITY Collaboration et al. The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region. Astron. Astrophys. 684, 167 (2024). 37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115 (1982). 38. Martini, P. & Weinberg, D. H. Quasar clustering and the lifetime of quasars. Astrophys. J. 547, 12 (2001). 39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. & Regan, J. A. Sustained super-Eddington accretion in high-redshift quasars. Astron. Astrophys. 686, 256 (2024). 40. Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and Quasar activity. Astrophys. J. Suppl. 175, 356 (2008). 41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to z~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023). 42. Elvis, M., Marengo, M. & Karovska, M. Smoking quasars: a new source for cosmic dust. Astrophys. J. 567, 107 (2002). 43. Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892 (2019). 44. Massonneau, W., Volonteri, M., Dubois, Y. & Beckmann, R. S. How the super-Eddington regime regulates black hole growth in high-redshift galaxies. Astron. Astrophys. 670, A180 (2023). 45. Volonteri, M., Silk, J. & Dubus, G. The case for supercritical accretion onto massive black holes at high redshift. Astrophys. J. 804, 148 (2015). 46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early universe. Preprint at https://arxiv.org/abs/2403.03872 (2024). 47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z~10 from two complementary catalogs. Astrophys. J. Suppl. 258, 11 (2022). 48. Shirley, R. et al. HELP: the herschel extragalactic legacy project. Mon. Not. R. Astron. Soc. 507, 129 (2021). 49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, 1 (2017). 50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022). 51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, 82 (2022). 52. Kendrew, S. et al. The mid-infrared instrument for the James Webb Space Telescope, IV: the low-resolution spectrometer. Publ. Astron. Soc. Pac. 127, 623 (2015). 53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, 121 (2024). 54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting galaxies at 5.3<z<6.9 and direct evidence for local reionization by galaxies. Astrophys. J. 950, 66 (2023). 55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, 89 (2023). 56. Rauscher, B. J. NSClean: an algorithm for removing correlated noise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136, 015001 (2024). 57. Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023). 58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw. Syst. 101, 17 (1996). 59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775 (2005). " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-7-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide8" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-7" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 60. Murphy, K. D. & Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549 (2009). 61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey: Compton-thick AGN at high redshift. Mon. Not. R. Astron. Soc. 480, 2578 (2018). 62. Suh, H. et al. Multi-wavelength properties of type 1 and type 2 AGN host galaxies in the Chandra-COSMOS Legacy Survey. Astrophys. J. 872, 168 (2019). 63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. & Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distribution of AGNs. Astrophys. J. 833, 98 (2016). 64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy Emission. Astron. Astrophys. 622, 103 (2019). 65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740 (2020). 66. Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton medium deep survey. Astrophys. J. 663, 81 (2007). 67. Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169 (2004). 68. Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79 (2007). 69. Lusso, E. et al. The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astron. Astrophys. 534, 110 (2011). 70. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122 (2005). 71. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. 166, 470 (2006). 72. Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z~2.5. Astrophys. J. 889, 32 (2020). 73. Trakhtenbrot, B. & Netzer, H. Black hole growth to z=2 − I. Improved virial methods for measuring MBH and L/LEdd. Mon. Not. R. Astron. Soc. 427, 1096 (2012). 74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec view of the z=1.59 obscured quasar XID2028. Astron. Astrophys. 672, 128 (2023). 75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from the dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615, 77 (2018). 76. Hung, D. et al. Establishing a new technique for discovering large-scale structure using the ORELSE survey. Mon. Not. R. Astron. Soc. 491, 5524 (2020). 77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal of the star-formation rate – density relation at 2<z<5. Astron. Astrophys. 662, 33 (2022). 78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters detected in absorption. Nature 606, 475 (2022). Acknowledgements H.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international Gemini Observatory, a program of NSF NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea and the United States. F.L. acknowledges support from the INAF 2023 mini-grant ‘Exploiting the powerful capabilities of JWST/NIRSpec to unveil the distant Universe’. M.M. acknowledges support from the Spanish Ministry of Science and Innovation through the project PID2021-124243NB-C22. This work was partially supported by the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support from the Korean National Research Foundation (2020R1A2C3003769, 2022R1A6A1A03053472) and the IBS computing centre for the super-Eddington accretion project. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme no. 1760. Support for programme no. 1760 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Authorcontributions H.S. was the principal investigator of the JWST and ALMA proposals, led the analysis and interpretation of the results, and drafted the paper. H.S. and G.H. performed the sample selection. J.S. contributed to the analysis of the JWST NIRSpec IFU data and the interpretation of the results. F.L. reduced the JWST NIRSpec IFU data and wrote the relevant section. G.L. and S.M. analysed the X-ray data and wrote the relevant section. B.C.L. and D.H. performed all analysis relating to the environment and B.C.L. wrote the relevant section. S.K.Y. and S.H. performed simulations and provided discussions on black hole growth. E.P.F., M.M., R.D. and M.V. helped with the interpretation of the results and provided comments on the analysis. All authors contributed to the discussion of the presented results and the preparation of the paper. Competinginterests The authors declare no competing interests. Additionalinformation Extended data is available for this paper at https://doi.org/10.1038/ s41550-024-02402-9. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41550- 024-02402-9. Correspondence and requests for materialsshould be addressed to Hyewon Suh. Peer review information Nature Astronomy thanks John Regan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions informationis available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-8-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide9" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-8" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. © The Author(s) 2024 1 International Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy. 3 Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4 DESY, Hamburg, Germany. 5 Deutsches Zentrum für Astrophysik, Görlitz, Germany. 6 Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7 Dipartimento di Fisica e Astronomia (DIFA) Augusto Righi, Università di Bologna, Firenze, Italy. 8 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9 Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10 Department of Physics and Astronomy, University of California, Davis, Davis, CA, USA. 11 Institut d’Astrophysique de Paris (UMR 7095: CNRS & Sorbonne Universite), Paris, France. 12 NASA Goddard Space Flight Center, Greenbelt, MD, USA. 13 Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-9-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide10" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-9" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata (black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel includesapower-law(greendashed),ahotgreybody(655 K;greendotted),anda warmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata (black)withtheSEDtemplates61 oftheAGN-dominatedlocalULIRG(Mrk231), theextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat redshiftz = 3.965. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-10-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide11" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-10" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum (grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular apertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law continuum(black),narrow-linecomponents(green),broad-linecomponents (orange),andoutflowcomponents(blue)areindicated.Dottedverticallines markthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe blue-shifted(outflow)lineprofilesoftheH𝛼 + [NII]and[SII]invelocityspace. Theblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s relativetosystemic. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-11-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div><div><div id="slide12" class="VerticalSlide_root__jU_9r slide-item" style="aspect-ratio:595 / 791" data-cy="slide-container"><div class="VerticalSlideImage_root__64KSA"><img id="slide-image-11" alt="Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission aroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels. Themapsareshowninsingle-channelstepscorrespondingtovelocitystepsof 165 km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe 3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets inarcsecondsareshownrelativetotheAGNlocation. " class="vertical-slide-image VerticalSlideImage_image__VtE4p" data-testid="vertical-slide-image" loading="lazy" srcSet="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-320.jpg 320w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-638.jpg 638w, https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/75/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-2048.jpg 2048w" src="https://image.slidesharecdn.com/s41550-024-02402-9-241104204417-8217e623/85/A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST-12-320.jpg" sizes="100vw"/></div><!--$--><!--/$--></div></div></div></div></div><!--$--><div class="RelatedContent_root__29Np1"><div class="RelatedContent_wrapper__riU7l"><h2 class="Heading_heading__3MAvZ Heading_h2__f9yvs RelatedContent_title__QUhpL">More Related Content</h2><div></div><div></div><div id="between-recs-ad-1-container" class="freestar-ad-container FreestarAdContainer_root__qPPC_" style="--fallback-aspect-ratio:undefined / undefined"><div><div class="" id="between-recs-ad-1"></div></div></div><div></div><div id="between-recs-ad-2-container" class="freestar-ad-container FreestarAdContainer_root__qPPC_" style="--fallback-aspect-ratio:undefined / undefined"><div><div class="" id="between-recs-ad-2"></div></div></div></div></div><!--/$--><div class="Transcript_root__Vrf6Q"><h2 class="Transcript_title__YgAka"><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/file.5db1ba24.svg);background-color:currentColor"></span><span class="sr-only"></span></span>A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST</h2><div><ul class="Transcript_list__faItj"><div><li>1. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#1">Nature Astronomy natureastronomy https://doi.org/10.1038/s41550-024-02402-9 Article Asuper-Eddington-accretingblackhole ~1.5 GyraftertheBigBangobservedwith JWST Hyewon </a> Suh 1 , Julia Scharwächter 1 , Emanuele Paolo Farina 1 , Federica Loiacono 2 , Giorgio Lanzuisi 2 , Günther Hasinger 3,4,5 , Stefano Marchesi 2,6,7 , Mar Mezcua 8,9 , Roberto Decarli 2 , Brian C. Lemaux 1,10 , Marta Volonteri11 , Francesca Civano12 , Sukyoung K. Yi 13 , San Han13 , Mark Rawlings 1 & Denise Hung 1 RecentJamesWebbSpaceTelescope(JWST)observationshaverevealed asurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat z ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz > 6, thisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack holes.Currenttheoriesfortheformationofseedblackholesfromthedeath ofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial gasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here wepresentLID-568,alow-mass(7.2 × 106 M⊙)blackholehostingpowerful outflowsthatisobservedinanextremephaseofrapidgrowthatredshift z ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic nucleipopulations,butisbrightinX-rayemissionandaccretingatmore than4,000%ofthelimitatwhichradiationpressureexceedstheforceof gravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion). AnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals spatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1 relative tothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID- 568representsanelusivelow-massblackholeexperiencingsuper-Eddington accretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery showcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial insightsintorapidblackholegrowthmechanismsintheearlyuniverse. Observational surveys have identified several hundreds of luminous quasars at redshift z > 6–7 (refs. 1–6). The presence of supermassive black holes (SMBHs) with masses of 109–10 M⊙ at such early cosmic epochschallengesmodelsofSMBHformationandgrowth,andraises questionsabouttheoriginofseedblackholesandthemechanismsfor theirrapidandextremegrowth.Althoughtheformationofseedblack holes remains observationally unconstrained, they are commonly thoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar physicalprocessesthatcangenerateblackholeswithmassesinexcess of102 M⊙ (ref.7).Historically,modelshavebeendividedintolightand heavyseeds,withademarcationatabout103 M⊙.Thelightestseedsare generallyassociatedwiththedeathofthefirststarswithinitialmasses of102–3 M⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime intotheobservedpopulationofSMBHsatslightlylatertimeischalleng- ing,becauseblackholesformedinthismannerwouldhavetoaccrete attheEddingtonlimitfromthetimetheyareformeduptotheredshift Received: 1 April 2024 Accepted: 1 October 2024 Published online: xx xx xxxx Check for updates A full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu </li></div><div><li>2. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#2">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 andPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568 are </a> shown in Fig. 1. However, LID-568 stands out as uniquely bright in theX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby JWST, which indicates a higher level of central accretion activity. The observed 0.5–10 keV flux is 5.16 × 10−15 erg cm−2 s−1 (ref. 27). Analysis of the X-ray spectrum (as inferred from the emission measured in the 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura- tion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2 ) a ndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth- ods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo- metricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1 ,afactorof~100 higher than the average bolometric luminosities of JWST-discovered faintAGNs. Theshapeofthemid-tofar-IRspectralenergydistribution(SED) ofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle power law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac- teristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates atwhichtheyareobserved10 ,whichappearstobedifficult11 .Thedirect collapseofprimordialgascloudsintosupermassivestarsturninginto black holes with initial masses of 104–6 M⊙ (that is, heavy seed)12,13 is an attractive alternative, as these heavy seeds can more rapidly grow intoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How- ever, the expected number densities for the sites where such super- massive stars can form are low. Intermediate pathways where seeds of 103–4 M⊙ form from very massive stars in pristine rapidly growing halosorthroughstellarmergers,hierarchicalblackholemergersand stellar captures in dense stellar systems bridge these two extremes14 . It is also possible that heavy seeds originate from primordial black holes,eliminatingtheneedforthestellarandgas-basedprocesses15–17 . WiththeunprecedentedsensitivityoftheJamesWebbSpaceTel- escope (JWST), it is now possible to extend studies to faint, low-mass sources at high redshifts (that is, z > 3–4), an epoch when both black holesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser- vation can provide insights into the mechanisms seeding early black holes. JWST has recently discovered a new population of relatively faint,compact,dust-reddenedsourcesatz > 4usingvariousselection techniquesinawidevarietyofextragalacticsurveys18–24 .Theyarefound to have overmassive black holes with respect to the local black hole mass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times higherMBH/Mstellar ratios25 .Mostofthesesourceshavenotbeendetected inX-rayobservations18–24 ;onlytwosourceswithX-ray-detectionshave beenrecentlyreported26 .Thisfaintpopulationislikelytorepresentthe moderate accretion phase of active galactic nuclei (AGNs), which are accreting at ~20% of the Eddington rates, and are hosted by relatively low-mass galaxies. Some of these sources are referred to as ‘little red dots’andarecharacterizedbyaredcontinuumintherest-frameopti- calandamodestblueUVcontinuum.Suchsourcesexhibitprominent broad Balmer emission lines, which implies that they are powered by AGNs.Theseredcompactsourcesaresurprisinglyabundant,being100 timesmorecommonthanUV-selectedquasarsatsimilarredshifts23 . LID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole population identified as near-infrared-dropout (near-IR-dropout) X-ray sources from the Chandra-COSMOS Legacy Survey27,28 . Similar to other faint AGNs discovered by JWST, LID-568 appears extremely red and compact in the IR, yet it remains invisible in any optical wave- lengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble Space Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was determined from JWST Near-Infrared Spectrograph (NIRSpec) and (Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii] 10 Observed wavelength (µm) 0.1 1.0 10.0 100.0 log Flux (µJy) GB + PL (Tdust = 655 K) JWST NIRSpec JWST MIRI 3.0 3.5 4.0 4.5 5.0 Observed wavelength (µm) 0 2 4 6 Hα [SII] OI CaII Paη Paζ Paε [SIII] [CI] Paδ [SII] FeII 6 8 10 12 0 50 100 150 200 Paα Brγ z = 3.965 Fig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8 and8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue), includingapowerlaw(bluedotted)andgreybody(bluedashed)components, ataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars representthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange) spectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top) andNIRSpec(bottom),withthedetectedemissionlinesmarked. 6 7 8 9 10 log MBH/M 44 45 46 47 48 log L bol (erg s –1 ) LID-568 L bol /L Edd = 1 0.1 0.01 JWST AGNs Matthee+24 (4 < z < 6) Harikane+23 (4 < z < 7) Maiolino+23 (4 < z < 7) Greene+24 (z > 5) UV-selected quasars Farina+22 (z > 5.8) Fig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs athighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4, isshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately afactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack holes18,20,23,24 recentlyfoundbyJWSTobservations.Forreference,UV-selected quasars5 atz > 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith differentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error barsrepresent1σuncertainties. </li></div><div><li>3. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#3">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 forobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis substantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST (whichexhibitapower-lawslopeα𝜆 </a> ≈ 2.0onaverage)19 .Thedetection ofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda heavilyobscuredAGN,withoutanapparentpresenceoftheunderlying host galaxy features. The model SEDs for super-Eddington accretion suggest a notable absence of rest-frame UV or even optical emission, withatendencytobecomeprogressivelyredderintheIRastheEdding- ton ratio increases29 . However, contrasting perspectives have been presentedinotherstudies,indicatingthatsuper-Eddingtonaccretion mightleadtoanexcessofUVradiation,resultinginasignificantlybluer continuumslopeintherest-frameUV30,31 . Giventhepoint-like,compactnatureofthissource,theextremely red colour primarily arises from the thermal emission originating in a dust-obscured accretion disk, with negligible contribution from a hostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo greybodies32 (Methods and Extended Data Fig. 1), the dust tempera- ture is substantially higher (655.53 K and 71.5 K) than what is typically observedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand warm gas dominates the IR emission, with negligible evidence of star formationactivity.Thisisincontrasttothemajorityofdust-obscured galaxies at high redshift, which often exhibit signs of powerful star- bursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1 , whichiscomparabletotheAGNbolometricluminosity.Theestimated dust mass Mdust is ~2.95 × 106 M⊙, which suggests that LID-568 con- tains less dust than the optically faint, dust-obscured galaxies at z ≈ 3 (thatis,H-dropouts,HST-dark,NIR-dark)33,34 thathavedustmassesof ~1–4 × 108 M⊙. Assuming the dust-to-stellar mass ratios of HST-dark, dust-obscuredgalaxiesatsimilarredshifts33 ,theinferredstellarmassof LID-568is~2 × 108 M⊙,whichimpliesalow-mass(thatis,dwarf)galaxy. The single-epoch virial black hole mass (MBH), derived from the broad Hα emission line, is 7.2 (−5.4 + 10.8) × 106 M⊙, which indicates a rather low-mass black hole (Methods and the left panel of Extended Data Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which impliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow that the black hole mass of LID-568 is comparable with those of faint AGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo- metricluminosityofthisobjectplacesitwithinapreviouslyunexplored extremeaccretionregime.Ontheotherhand,thereisgrowingevidence thatAGNswithhighaccretionratesappeartohavesmallerbroad-line region(BLR)sizesthanthosepredictedbythecanonicalradius–lumi- nosityrelationshipofsub-EddingtonAGNs35,36 .Thisdiscrepancycould potentially lead to an overestimation of the single-epoch black hole massbyasmuchas~0.3 dex,resultinginahigherEddingtonratio. The ionized gas in LID-568 shows signs of a spatially unresolved nuclearoutflowwithvelocitiesof~−540 km s−1 (Methodsandtheright panelofExtendedDataFig.2),whicharesimilartothevelocitiestraced by the spatially extended Hα emission. In Fig. 3, we present NIRSpec/ Integral Field Unit (IFU) channel maps of the Hα emission at differ- ent velocity ranges chosen to best highlight the multiple kinematic components observed around the central black hole (Extended Data Fig. 3). The blue-shifted Hα emission (~−600–−500 km s−1 ) peaks at a projected distance of 0.4″ (~3 kpc) to the north (B component) and 1″ (~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line component(Ccomponent),whereasthenorth-easterncomponentAis foundatasimilarvelocitytothecentralcomponentC.Thecontinuum emissionassociatedwiththespatiallyextendedHαemissioncompo- nents are not detected. Although these components could be part of theoutflow,amergerorigincannotbeexcluded. IftheextendedHαemissionsareassociatedwithoutflows,wecan infer the AGN lifetime using the outflow velocity and radius. Consid- ering that the outflow reaches ~7 kpc from the central black hole, we obtain the AGN lifetime as t = (7 kpc)/(540 km s−1 ) ≈ 1.2 × 107 yr. This lifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales set by Soltan arguments (that is, 107–9 yr (ref. 37)) and indirect meas- urements of AGN phase timescales (~107–9 yr (ref. 38)). Furthermore, –0.2 0 0.2 0.4 0.6 Flux (µJy) –494 km s–1 0 km s–1 A B C D +494 km s–1 –3,000 –2,000 –1,000 0 1,000 2,000 3,000 Velocity (km s–1 ) 0 1 2 3 4 Flux (µJy) A B C D Fig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion. Top:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins. ThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets of~−600–−500 km s−1 withrespecttothecentralbroad-linecomponent(C), whereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom: NIRSpecspectraofeachcomponentareshownintheHαemissionlineregion, extractedfromcircularapertureswitharadiusof0.2″. </li></div><div><li>4. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#4">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 theoretical </a> studies39 suggest that super-Eddington phases might be sustained over timescales of a few tens of million years. This lifetime suggeststhatasubstantialfractionofthemassgrowthofLID-568may haveoccurredinasingle,super-Eddingtonaccretionepisode. To estimate the preburst mass of the black hole, we calculated themassgrowthduringsuper-Eddingtonaccretionover12 Myrusing theequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where tEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack hole mass before super-Eddington accretion is ~102 M⊙ (that is, light seed). We note that this growth scenario is feasible only if the black hole remains embedded within a giant molecular cloud and accretes theentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto feedback. As such, this represents a lower limit on the pre-accretion black hole mass, which is consistent with a light seed but does not excludethepossibilityofamorenuancedgrowthhistorywithshorter accretioneventshappeningonaheavierseed.Infact,itisalsopossible thattheoutflowcouldbeassociatedwithstellarfeedback-drivenout- flowsfromastarbursteventprecedingtheactivityintheblackhole. The presence of potentially AGN-driven outflows, along with the lack of star-forming activity in LID-568, suggests that AGN feedback mayplayacrucialroleinregulatingand/orquenchingstarformation in this low-mass system at high redshift. This indicates the possibil- ity of rapid and efficient growth of black holes relative to their host galaxies. Theoretical models predict a ‘blowout’ dusty red quasar phase transitioning from a heavily obscured starburst, during which AGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby quenching the star formation40 . It is possible that LID-568 represents atransientphasecharacterizedbyextremelyhighaccretionrateswith powerful outflows suppressing the star formation in its host galaxy. This could explain the presence of overmassive black holes hosted in low-mass galaxies in the local Universe41 , as well as those found by JWST at z > 4 (ref. 25). Furthermore, the powerful AGN could produce dustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42 ,and thiscouldpotentiallyaccountfortheabundantdustyAGNsobserved withJWSTathighredshifts. LID-568 could potentially represent the long-sought-after low-massblackholeundergoingrapidgrowththroughsuper-Eddington accretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat z ≈ 4 unveils a missing key parameter space of the extreme accretion and provides new insights into the rapidly growing mechanisms of theearlygrowthofblackholes43–45 .Althoughtherarest,mostmassive SMBHsatz > 6–7couldbeexplainedbyanoriginfromheavyseedswith sub-Eddingtonaccretion,theystillrequirecontinuousaccretionover severalhundredmillionyears.Thepresenceofovermassiveblackhole populationssuggeststhepossibilitythattheycouldexperienceinter- mittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey originate from heavy or light seeds45,46 . Super-Eddington accretion is likelytooccurepisodically,andthedetectionofLID-568mayrepresent onesuchepisodicaccretionphase.Futurestudiesonalargesampleof such objects will help to constrain the duty cycle of super-Eddington accretion and deepen our understanding of the mechanisms driving suchhighlevelsofaccretion. Methods Parent sample The parent sample comprised a previously undiscovered population of black holes, identified as near-IR-dropout X-ray sources (that is, invisible in the optical/near-IR bands) from the Chandra-COSMOS Legacy Survey27,28 , which consists of 4,016 X-ray sources over a large area of ~2.2 deg2 . We used the multiwavelength photometry from the mostrecentphotometriccataloguefromCOSMOS202047 andHELP48 , containing GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam (HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera (IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging PhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector ArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec- tralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho- tometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified those without any optical counterparts within a 2″ radius, which cor- responded to the uncertainty of the Chandra position. We excluded sources whose flux was contaminated by nearby bright sources and possible diffuse X-ray emission. This resulted in a final sample of 62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof Spitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected in Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR detections.NoneofthesesourceshadacounterpartintheVeryLarge Array3 GHzsourcecatalogue49 . ALMAobservations Spitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations for all 62 IR-dropout X-ray sources were carried out in four observing blocks in November 2019 and January 2022 under the Cycle 7 pro- gramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The observations were centred on the Chandra X-ray positions with an integration time of ~5 minutes per source. The data reduction was performedusingthestandardALMApipelinev.2021.2.0.128(Common AstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe integrated flux of all our targets using the imfit procedure from the CASA pipeline. The sources were modelled with a circular Gaussian profile of variable total flux, centroid, width, axis and position angle. The 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the 870 μmemissionasmeasuredfromALMAwasingoodagreementwith those of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband images of LID-568, which are invisible in the Subaru/HSC optical and UltraVISTAnear-IRimages. JWSTobservations WeobtainedJWST/NIRSpec50,51 andMIRI/LRS52 observationsofLID-568 undertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/ IFUobservationsweretakeninApril2023withthegrating/filtercom- binationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm with an average spectral resolution of R ≈ 1,000. The field of view of the IFU mode was ~3″ × 3″, with each spatial element in the resulting IFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which improvessignal-to-noiseratioandreducesdatavolume.Theobserva- tions were taken with 18 groups and one integration per exposure, using a four-point medium cycling dither pattern, resulting in a total exposuretimeof1.45 h. The NIRSpec/IFU data reduction was performed with the JWST ScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149. pmap. We also added additional steps to improve the quality of the reduced data53 . The reduction process consisted of three stages. The first stage accounted for detector-related issues, such as bias and dark subtraction, and cosmic ray flagging. At the end of this stage, the groups were fitted to create two-dimensional count rate images (thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection, wavelength and flux calibration. The calibrated exposures were then processedinthethirdstage,whereafurtherflaggingofcosmicrayswas appliedbeforebuildingthefinaldatacube.Beforerunningthesecond stage, we removed the detector low frequency noise 1/f affecting the rate files by subtracting from each spectral column its median value after applying a sigma clipping54–56 . We fixed a pipeline bug reported bytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels withbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral outliers from the calibrated exposures. We removed the remaining outliers from the datacube by filtering out all the voxels with a jump overcontiguouschannelspersistingforlessthanfourchannels,which is the typical width of these features. Finally, we subtracted the back- groundasafunctionofthewavelengthbycalculatingthemedianover ten spectra extracted from empty regions in the cube field of view in </li></div><div><li>5. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#5">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 each </a> channel. We note that the background increases as a function of the wavelength, an expected effect due to an increase in the zodiacal and stray light57 . We thus subtracted it channel by channel to obtain a background-freedatacube. The MIRI/LRS slit spectroscopy observations were conducted in January 2023 using a P750 disperser, covering a wavelength range of 5–12 μm with a spectral resolution of R ≈ 100. The observations were performedwith360groupsperintegrationinFAST/FULLmode,with two integrations per exposure using a two-point dither along the slit. This resulted in a total exposure time of 1.1 h. The fully reduced data were retrieved from the Mikulski Archive for Space Telescope, which were processed using the JWST Science Calibration pipeline v.1.12.5, withtheCRDScontextjwst_1135.pmap. X-rayluminosity To compute the intrinsic X-ray luminosity in the 2–10 keV band, we used the XSpec software (v.12.13.0)58 to fit the Chandra spectrum usingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9, modified by both Galactic absorption (NH = 2.6 × 1020 cm−2 (ref. 59)) and absorption at the redshift of the source, NH(z). The second absorption component accounted for both nuclear absorption due to the gas orbiting in the proximity of the SMBH (that is, torus) and absorption due to the interstellar medium in the host galaxy. The columndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe absorption-correctedrest-frame2–10 keVluminositywasdetermined aslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2). Totakeintoaccountthemorecomplexabsorptionandreflection processes in the case of Compton-thick obscuration (NH > 1024 cm−2 ), wealsoderivedthecolumndensityandintrinsicX-rayluminosityusing theMYtorusmodel60,61 .Thismodelconsistsofthreecomponents:the obscuration along the line of sight, including Compton scattering, appliedtotheprimarypowerlaw,thereflectionandthefluorescence emission line complex. The relative strength of these components wasfixedtobethesame,andtheinclinationanglebetweenthelineof sight and the axis of the torus was set to 75° to ensure interception of theobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed. The column density and intrinsic X-ray luminosity derived from the MYtorus model were consistent with the standard power-law model, wellintheCompton-thinregime.Ifweallowedthephotonindextobe a free parameter, the fit tended toward a softer power law (Γ = 2.4 for MYtorus and 2.9 for the simple power law) and, consequently, even highercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08 forMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9 wasconservativeinestimatingintrinsicluminosity. SEDfitting The SED fitting was performed using a modified approach based on ref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63 .Addition- ally, we independently fitted the SED using CIGALE64 and X-CIGALE65 , thelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari- ous parametrizations and models for stellar populations, star forma- tion history, dust emission and attenuation, and AGN emission from differentSEDfittingcodes,wefoundthattheSEDofLID-568showsan unusuallyredIRcontinuumthatcannotbereproducedbyanycombina- tionofthemodelsandparametersused. We further fitted the dust emission using the modified IR SED fitting code developed in ref. 32. We employed a composite mid-IR power law and two-temperature greybodies. We used a fixed value of the emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as a free parameter. The rest-frame observed photometric data (black) are presented alongside the best-fit IR SED (yellow) in the left panel of Extended Data Fig. 1. The SED is well fitted by a power law, and hot greybody (655.5 K) and warm greybody (71.5 K) components, which are much hotter than what is typically observed in star-forming gal- axies (10–60 K). From the best fit, we derived the total IR luminosity (L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1, we show the SED of LID-568 overlaid on the SED templates66 of the AGN-dominated local ULIRG (Mrk 231), the extreme local starburst ULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965. The IR SED shape of LID-568 seems to be consistent with the torus model spectrum, but cannot be explained by currently available IR SEDtemplatesofobscuredAGN/ULIRGs. AGNbolometricluminosity The bolometric luminosity of AGNs can be estimated from the X-ray luminositybyapplyingasuitablebolometriccorrection67 .Toaccurately estimate the total intrinsic luminosity radiated by the AGN accretion disc, it is necessary to constrain the absorption-corrected intrinsic X-rayluminosity,asX-raysareoftenobscuredandmayincluderepro- cessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1 is derived using the absorption-corrected rest-frame 2–10 keV lumi- nosity by applying a luminosity-dependent bolometric correction as describedinref.67. We also computed the AGN luminosity from the SED by integrat- ing absorption-corrected total X-ray luminosity (L0.1–100keV) and the best-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert the IR luminosity into a proxy for the intrinsic nuclear luminosity, we considered the geometry of the torus and its orientation by apply- ing the following correction factors: the first correction is related to the covering factor, which represents the fraction of the primary UV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the second correction is due to the anisotropy of the IR dust emission, whichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN bolometricluminositywasLbol = 46.68 erg s−1 ,whichisconsistentwith theX-ray-derivedbolometricluminosity. We additionally derived the bolometric luminosity using the Hα luminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi- nosityfromHαluminosityusingtheequationinref.70.Thebolometric luminosity was estimated using the bolometric correction factor in ref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1 ,whichis~1 dexlowerthan that derived from other methods (that is, X-ray luminosity and SED fitting). This indicates that the Hα emission could possibly be highly obscured, potentially leading to an underestimate of the Hα-derived black hole mass by a factor of a few. However, we point out that when estimatingtheEddingtonratiousinganinternallyconsistentmethod basedontheHαemissionforbothAGNbolometricluminosityandthe blackholemass,theblackholeisstillaccretingatthesuper-Eddington accretion level of ~4.4. We note that the bolometric correction factor for Hα luminosity could be uncertain for those obscured AGNs with super-Eddington accretion at high redshifts. The estimated bolo- metric luminosities obtained using various methods are shown in SupplementaryFig.3. Blackholemassandoutflows Thesingle-epochvirialblackholemasswasestimatedusingthebroad Hαemissionlinewidthandthelineluminosityfromtherest-frameUV/ opticalspectraasaproxyforthecharacteristicvelocityandthesizeof theBLR.TheNIRSpecspectrawereextractedfromacircularaperture centred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We utilized the mpfit routine for fitting the emission lines, employing a Levenberg–Marquardtleast-squaresminimizationalgorithmtoderive thebest-fitparametersandassesstheoverallfitquality72 .Specifically, we fitted and subtracted a power-law continuum (fλ) as a function of wavelength(λ),fλ ∝λ−a ,fromthespectraandperformedasimultaneous fitwithacombinationofmultiplenarrowandbroadGaussiancompo- nentstobestcharacterizethelineshape.Forthenarrowemissionlines, wefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas the[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained thelinewidthsandrelativelinecentresofthenarrow-linecomponents tothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo </li></div><div><li>6. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#6">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 broad </a> Gaussian components: one for the BLR and the other for the blue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad Gaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet. Additionally, we investigated the inclusion of additional broad Gaussian components for the [N ii] 6,548, 6,583 Å lines as outflow components. We also tested the fit both with and without constrain- ing the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However, we found no meaningful statistical improvement from adding these broad Gaussian components. For the former, this lack of meaningful improvementinthefitislikelytobeduetothe[N ii]componentsbeing overwhelmed by the much stronger Hα emission. For the latter, the blueward [S ii] emission appears to dominate the fit in that spectral region, and, given the lower signal-to-noise ratio of both features, it is not surprising that a similar goodness of fit is returned by forcing the ratio of the strength of the two components within the canonical allowablerange.Furthermore,changesinthefittingapproachdidnot appreciably affect the inferred black hole mass beyond the inherent randomandsystematicuncertainties. Finally,wemeasuredthebroad-linewidthandthelineluminosity fromthebest-fitspectra.Theblackholemasswascomputedusingthe equation from ref. 70. Although the measurement uncertainties on MBH were relatively small (~0.1 dex), systematic uncertainties associ- ated with different single-epoch virial calibrations carried a scatter of ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be 7.2 (−5.4 + 10.8) × 106 M⊙. The uncertainties of the black hole mass were determined by the sum of the statistical and intrinsic scatter of thecalibrations. ExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα, [N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis- sion lines trace gas with different kinematics, potentially indicating outflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii] lines because [O iii], which typically serves as a tracer of outflows, is notcoveredbyourdataset.InExtendedDataFig.2(right),wecompare the blue-shifted Hα emission line with that of the [S ii] line compo- nents. Although we left the line widths and relative line centres of the blue-shifted components as free parameters, the broad blue-shifted emissionisevidentinboththeHαand[S ii]lines,exhibitingthesame broad-line width and velocity offsets, which suggests that they are kinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially unresolvedoutflowvelocityof~−540 km s−1 .Similarvelocitiesareasso- ciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3), which could be part of the outflow or indicate ongoing merger activ- ity. The mass of the ionized outflow as inferred from the blue-shifted outflow component of the broad Hα emission was 1.4 × 107 M⊙, using equation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1 and that the extended Hα emission is representative of the outflow radius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1 . Environment We measured the environmental density surrounding LID-568 by employing the Voronoi tessellation Monte Carlo mapping described in refs. 75,76. Briefly, this technique uses a weighted combination of spectroscopic and photometric redshifts to construct a galaxy over- densitycubeinthin(7.5properMpc)slicesrunningfrom2 < z < 5.The mapping leverages the wealth of panchromatic imaging data from COSMOS, as well as a large number of spectroscopic redshifts drawn from public surveys and proprietary data. The particular instance of the Voronoi tessellation Monte Carlo mapping used in this work was identicaltothatofref.77. After an overdensity cube had been constructed over the full redshift range, a source extractor-based post-processing technique, as described in ref. 76, was used to link detections of overdensities across contiguous slices to search for coherent structure and esti- matethemassofthedetectedstructure.Fordensitymappingatz > 2, this post-processing technique was trained on mock observations of custom-built light cones to maximize the purity and completeness associatedwiththedetectionofprotogroupsandprotoclusters.Atthe spatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS field was fairly sparse, and we estimated that our method was >50% complete only for structures with z = 0 masses greater than 1014.5 M⊙, thatis,massiveprotoclusters,atz ≈ 4. We find no evidence that LID-568 is associated with an overden- sity of galaxies. The local overdensity at the location of LID-568 was log (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the mean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe average overdensity in a cylindrical aperture of radius 1 proper Mpc and depth of Δz = 0.02 centred on the redshift of LID-568 recovered a consistent value. Additionally, we detected no associated coherent structurewithinΔz = 0.04andR < 5properMpcofLID-568,whichindi- catesthatitisnotlikelytobeembeddedinamassiveformingcluster. However,giventhepaucityofspectroscopicredshiftsinproximityto LID-568, we cannot rule out membership in a lower mass structure. Wealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto detectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78 . Future spectroscopic observations of the surroundings of LID-568 and similar sources will help to better quantify the environments in whichtheyreside. Dataavailability The data for ALMA and JWST used in this study are publicly available throughtheirrespectivedataarchives.Theseobservationsareassoci- atedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme no. 2019.1.01275.S. Other data generated and/or analysed during the study are available from the corresponding author upon reasonable request. References 1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085. Nature 474, 616 (2011). 2. Bañados, E. et al. An 800-million-solar-mass black hole in a significant neutral Universe at a redshift of 7.5. Nature 553, 473 (2018). 3. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3<z<7.64. Astrophys. J. 923, 262 (2021). 4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. 907, 1 (2021). 5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. II. Black hole masses, Eddington ratios, and the formation of the first quasars. Astrophys. J. 941, 106 (2022). 6. Fan, X., Bañados, E. & Simcoe, R. A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61, 373 (2023). 7. Rees, M. F. Quasars. Observatory 98, 210 (1978). 8. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012). 9. Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014). 10. Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624 (2005). 11. Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762 (2018). 12. Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079 (2008). 13. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017). </li></div><div><li>7. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#7">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 14. </a> Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat. Rev. Phys 3, 732 (2021). 15. Kashlinsky, A. LIGO gravitational wave detection, primordial black holes, and the near-IR cosmic infrared background anisotropies. Astrophys. J. Lett. 823, 25 (2016). 16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter. J. Cosmol. Astropart. Phys. 07, 022 (2020). 17. Cappelluti, N., Hasinger, G. & Natarajan, P. Exploring the high-redshift PBH-ΛCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds. Astrophys. J. 926, 205 (2022). 18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z=4–7: detection of 10 faint AGNs with MBH=106 –108 M⊙ and their host galaxy properties. Astrophys. J. 959, 39 (2023). 19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z>5 with CEERS. Astrophys. J. 954, 4 (2023). 20. Maiolino, R., et al. JADES. The diverse population of infant black holes at 4<z<11: merging, tiny, poor, but mighty. Preprint at https://arxiv.org/abs/2308.01230 (2023) 21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, 145 (2023). 22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed AGN in the early Universe. Nature 628, 57 (2024). 23. Greene, J. E. et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z>5. Astrophys. J. 964, 39 (2024). 24. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z~5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024). 25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. & Fan, X. JWST CEERS and JADES active galaxies at z=4–7 violate the local M●–M★ relation at >3σ: implications for low-mass black holes and seeding models. Astrophys. J. 957, 3 (2003). 26. Kocevski, D. D., et al. The rise of faint, red AGN at z>4: a sample of little red dots in the JWST extragalactic legacy fields. Preprint at https://arxiv.org/abs/2404.03576 (2024). 27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016). 28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/ IR identifications. Astrophys. J. 817, 34 (2016). 29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. & Bertemes, C. Searching for super-Eddington quasars using a photon trapping accretion disc model. Mon. Not. R. Astron. Soc. 492, 4058 (2020). 30. Done, C., Davis, S. W., Jin, C., Blaes, O. & Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848 (2012). 31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the Universe: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron. Soc. 484, 2575 (2019). 32. Casey, C. M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012). 33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at z>3: bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023). 34. Gentile, F. et al. Illuminating the dark side of Cosmic star formation. III. Building the largest homogeneous sample of radio-selected dusty star-forming galaxies in COSMOS with PhoEBO. Astrophys. J. 962, 26 (2024). 35. Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. V. A new size-luminosity scaling relation for the broad-line region. Astrophys. J. 825, 126 (2016). 36. GRAVITY Collaboration et al. The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region. Astron. Astrophys. 684, 167 (2024). 37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115 (1982). 38. Martini, P. & Weinberg, D. H. Quasar clustering and the lifetime of quasars. Astrophys. J. 547, 12 (2001). 39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. & Regan, J. A. Sustained super-Eddington accretion in high-redshift quasars. Astron. Astrophys. 686, 256 (2024). 40. Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and Quasar activity. Astrophys. J. Suppl. 175, 356 (2008). 41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to z~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023). 42. Elvis, M., Marengo, M. & Karovska, M. Smoking quasars: a new source for cosmic dust. Astrophys. J. 567, 107 (2002). 43. Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892 (2019). 44. Massonneau, W., Volonteri, M., Dubois, Y. & Beckmann, R. S. How the super-Eddington regime regulates black hole growth in high-redshift galaxies. Astron. Astrophys. 670, A180 (2023). 45. Volonteri, M., Silk, J. & Dubus, G. The case for supercritical accretion onto massive black holes at high redshift. Astrophys. J. 804, 148 (2015). 46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early universe. Preprint at https://arxiv.org/abs/2403.03872 (2024). 47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z~10 from two complementary catalogs. Astrophys. J. Suppl. 258, 11 (2022). 48. Shirley, R. et al. HELP: the herschel extragalactic legacy project. Mon. Not. R. Astron. Soc. 507, 129 (2021). 49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, 1 (2017). 50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022). 51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, 82 (2022). 52. Kendrew, S. et al. The mid-infrared instrument for the James Webb Space Telescope, IV: the low-resolution spectrometer. Publ. Astron. Soc. Pac. 127, 623 (2015). 53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, 121 (2024). 54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting galaxies at 5.3<z<6.9 and direct evidence for local reionization by galaxies. Astrophys. J. 950, 66 (2023). 55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, 89 (2023). 56. Rauscher, B. J. NSClean: an algorithm for removing correlated noise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136, 015001 (2024). 57. Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023). 58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw. Syst. 101, 17 (1996). 59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775 (2005). </li></div><div><li>8. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#8">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 60. </a> Murphy, K. D. & Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549 (2009). 61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey: Compton-thick AGN at high redshift. Mon. Not. R. Astron. Soc. 480, 2578 (2018). 62. Suh, H. et al. Multi-wavelength properties of type 1 and type 2 AGN host galaxies in the Chandra-COSMOS Legacy Survey. Astrophys. J. 872, 168 (2019). 63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. & Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distribution of AGNs. Astrophys. J. 833, 98 (2016). 64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy Emission. Astron. Astrophys. 622, 103 (2019). 65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740 (2020). 66. Polletta, M. et al. Spectral energy distributions of hard X-ray selected active galactic nuclei in the XMM-Newton medium deep survey. Astrophys. J. 663, 81 (2007). 67. Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169 (2004). 68. Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79 (2007). 69. Lusso, E. et al. The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astron. Astrophys. 534, 110 (2011). 70. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122 (2005). 71. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. 166, 470 (2006). 72. Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z~2.5. Astrophys. J. 889, 32 (2020). 73. Trakhtenbrot, B. & Netzer, H. Black hole growth to z=2 − I. Improved virial methods for measuring MBH and L/LEdd. Mon. Not. R. Astron. Soc. 427, 1096 (2012). 74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec view of the z=1.59 obscured quasar XID2028. Astron. Astrophys. 672, 128 (2023). 75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from the dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615, 77 (2018). 76. Hung, D. et al. Establishing a new technique for discovering large-scale structure using the ORELSE survey. Mon. Not. R. Astron. Soc. 491, 5524 (2020). 77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal of the star-formation rate – density relation at 2<z<5. Astron. Astrophys. 662, 33 (2022). 78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters detected in absorption. Nature 606, 475 (2022). Acknowledgements H.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international Gemini Observatory, a program of NSF NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea and the United States. F.L. acknowledges support from the INAF 2023 mini-grant ‘Exploiting the powerful capabilities of JWST/NIRSpec to unveil the distant Universe’. M.M. acknowledges support from the Spanish Ministry of Science and Innovation through the project PID2021-124243NB-C22. This work was partially supported by the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support from the Korean National Research Foundation (2020R1A2C3003769, 2022R1A6A1A03053472) and the IBS computing centre for the super-Eddington accretion project. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme no. 1760. Support for programme no. 1760 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Authorcontributions H.S. was the principal investigator of the JWST and ALMA proposals, led the analysis and interpretation of the results, and drafted the paper. H.S. and G.H. performed the sample selection. J.S. contributed to the analysis of the JWST NIRSpec IFU data and the interpretation of the results. F.L. reduced the JWST NIRSpec IFU data and wrote the relevant section. G.L. and S.M. analysed the X-ray data and wrote the relevant section. B.C.L. and D.H. performed all analysis relating to the environment and B.C.L. wrote the relevant section. S.K.Y. and S.H. performed simulations and provided discussions on black hole growth. E.P.F., M.M., R.D. and M.V. helped with the interpretation of the results and provided comments on the analysis. All authors contributed to the discussion of the presented results and the preparation of the paper. Competinginterests The authors declare no competing interests. Additionalinformation Extended data is available for this paper at https://doi.org/10.1038/ s41550-024-02402-9. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41550- 024-02402-9. Correspondence and requests for materialsshould be addressed to Hyewon Suh. Peer review information Nature Astronomy thanks John Regan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions informationis available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and </li></div><div><li>9. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#9">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 reproduction </a> in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. © The Author(s) 2024 1 International Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy. 3 Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4 DESY, Hamburg, Germany. 5 Deutsches Zentrum für Astrophysik, Görlitz, Germany. 6 Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7 Dipartimento di Fisica e Astronomia (DIFA) Augusto Righi, Università di Bologna, Firenze, Italy. 8 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9 Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10 Department of Physics and Astronomy, University of California, Davis, Davis, CA, USA. 11 Institut d’Astrophysique de Paris (UMR 7095: CNRS & Sorbonne Universite), Paris, France. 12 NASA Goddard Space Flight Center, Greenbelt, MD, USA. 13 Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu </li></div><div><li>10. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#10">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata (black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel includesapower-law(greendashed),ahotgreybody(655 </a> K;greendotted),anda warmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata (black)withtheSEDtemplates61 oftheAGN-dominatedlocalULIRG(Mrk231), theextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat redshiftz = 3.965. </li></div><div><li>11. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#11">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum (grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular apertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law continuum(black),narrow-linecomponents(green),broad-linecomponents (orange),andoutflowcomponents(blue)areindicated.Dottedverticallines markthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe blue-shifted(outflow)lineprofilesoftheH𝛼 </a> + [NII]and[SII]invelocityspace. Theblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s relativetosystemic. </li></div><div><li>12. <a class="Transcript_link__MLbGS" href="https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912#12">Nature Astronomy Article https://doi.org/10.1038/s41550-024-02402-9 ExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission aroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels. Themapsareshowninsingle-channelstepscorrespondingtovelocitystepsof 165 </a> km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe 3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets inarcsecondsareshownrelativetotheAGNlocation. </li></div></ul></div></div><div class="actions-menu-container ActionsMenu_root__4k507" data-cy="actions-menu-mobile"><div class="Tooltip_triggerWrapper___S2HG"><button type="button" class="Button_root__i1yp0 Button_secondary__hHiHI Button_text__ZT_3O Button_small__sqsEx Button_icon__1C4qi save-button" data-testid="button" aria-label="actions.save" data-saved="false" data-cy="loggedout-save-slideshow-button"><span class="Icon_root__AjZyv SaveLoggedOut_icon__ny9X2" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/save.ef1812e2.svg);background-color:currentColor"></span><span class="sr-only"></span></span></button></div><button type="button" class="unstyled-button more-button MoreDropdownButton_trigger__x7wGs" aria-label="More options" data-cy="more-options-icon" data-testid="ellipsis"><div class="Tooltip_triggerWrapper___S2HG"><span class="Icon_root__AjZyv MoreDropdownButton_moreOptionsIcon__TpJLA" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/more-horizontal.f69be1b8.svg);background-color:currentColor"></span><span class="sr-only"></span></span></div></button><div class="DownloadButton_root__adY00 ActionsMenu_downloadButton__s7Iqj"><button type="button" class="Button_root__i1yp0 Button_primary__K25Gq Button_contained__gyjai Button_large__Yv_oe" data-testid="download-button" data-cy="download-button-actions-menu"><span><span class="Icon_root__AjZyv" style="--size:24px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/download.b1b2622c.svg);background-color:currentColor"></span><span class="sr-only"></span></span>Download</span></button></div></div><dialog class="Modal_root__TYkzh FullscreenModal_root__efM9m" id=":Rn36:"><div class="Modal_wrapper__4UTGq"><div class="modal-content Modal_content__R1F4d FullscreenModal_content__bQ6mt"></div></div></dialog><div class="ad textads banner-ads banner_ads ad-unit ad-zone ad-space adsbox ads prebid" style="position:absolute;height:1px"></div><footer class="Footer_footer__N3WmV"><div class="FooterTop_wrapper__RuYz5" data-testid="footer-top"><div class="FooterTop_links__9J65v"><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="/about">About</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/categories/360004792932-SlideShare?userType=SlideShare">Support</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/articles/210129326-General-Terms-of-Use">Terms</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en/articles/210129366-Privacy-policy">Privacy</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="/copyright-policy">Copyright</a><button class="FooterTop_cookiePreferenceButton__xmSox" type="button">Cookie Preferences</button><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://support.scribd.com/hc/en-us/articles/360038016931-Privacy-Rights-Request-Form">Do not sell or share my personal information</a><a class="Link_root__vn3ab Link_light__mcUPh Link_size-medium__ZLo12 Link_weight-bold__me4nt" href="https://www.everand.com">Everand</a></div></div><hr class="Footer_separator__Qa1tj"/><div class="FooterBottom_wrapper__Gj9p_" data-testid="footer-bottom"><span class="FooterBottom_copyright__xltkG">© 2024 SlideShare from Scribd </span><div class="FooterBottom_icons__wEEhc"><a class="Link_root__vn3ab Link_light__mcUPh Link_size-large__W0PAv Link_weight-regular__yPpnB" aria-label="Slideshare on Twitter" href="https://twitter.com/slideshare"><span class="Icon_root__AjZyv" style="--size:18px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/twitter.89a06630.svg);background-color:currentColor"></span><span class="sr-only"></span></span></a><span class="FooterBottom_separator__181dN"></span><a class="Link_root__vn3ab Link_light__mcUPh Link_size-large__W0PAv Link_weight-regular__yPpnB" aria-label="Slideshare on RSS Feed" href="https://www.slideshare.net/rss/latest"><span class="Icon_root__AjZyv" style="--size:16px"><span class="Icon_icon__4zzsG" style="mask-image:url(https://public.slidesharecdn.com/_next/static/media/rss.5c914539.svg);background-color:currentColor"></span><span class="sr-only"></span></span></a></div></div></footer><div id="portals-container" style="z-index:1"><div id="banner-portal" class="PortalsContainer_bannerRoot__Q_sNw"></div></div></div></div><script src="https://cmp.osano.com/AzZdHGSGtpxCq1Cpt/079b27eb-bb3f-48dd-9bd9-3feb8aec3c38/osano.js"></script><script> // This script assumes the Osano script is synchronously loaded window.eventsToSend = window.eventsToSend || [] if (window.Osano) { window.eventsToSend.push({ name: "osano_loaded", timestamp: new Date().toISOString(), value: JSON.stringify({ time: performance?.now() }) }) } </script><script defer="" nomodule="" src="https://public.slidesharecdn.com/_next/static/chunks/polyfills-42372ed130431b0a.js"></script><script src="https://public.slidesharecdn.com/_next/static/chunks/webpack-fca657b2df1193b1.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/framework-0dfcca9a5dec51b3.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/main-4b9e5138f827276f.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/pages/_app-d3e96b184f52081b.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/5121-c12bfd4bed7c2139.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/5581-c31338dd77890eb2.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/4740-639dc16ecd764905.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/6229-23a3a93a4fd8bda9.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/chunks/pages/slideshow/%5Btitle%5D/%5Bid%5D-451dcf877ad69f2b.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/34d87f1e259ccc2522816c4af0afbdd34048dee6/_buildManifest.js" defer=""></script><script src="https://public.slidesharecdn.com/_next/static/34d87f1e259ccc2522816c4af0afbdd34048dee6/_ssgManifest.js" defer=""></script><script id="__NEXT_DATA__" type="application/json">{"props":{"pageProps":{"name":"slideshow","edgeTestAssignments":[{"name":"example","variant":"B"},{"name":"fullscreen_view","variant":"A"},{"name":"gallery_view","variant":"B"},{"name":"nextjs_profile","variant":"B"},{"name":"reading_modes","variant":"A"},{"name":"recs_placement","variant":"A"},{"name":"recs_placement_v2","variant":"A"},{"name":"single_slide_view_v2","variant":"A"}],"layout":{"currentUser":null,"fullPath":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","osanoId":"079b27eb-bb3f-48dd-9bd9-3feb8aec3c38","featureFlags":[{"name":"disable_facebook","enabled":true},{"name":"document_interstitials_flag","enabled":true},{"name":"recommendation_impression_tracking","enabled":true},{"name":"search_results_tracking","enabled":true},{"name":"view_restriction_without_subscription_after_five","enabled":true},{"name":"disable_lazy_hydration","enabled":false}]},"countryCodeFromFastly":"HK","slideshow":{"username":"sacani","allowDownloads":true,"allowDownloadOriginalFile":false,"allowEmbeds":true,"canonicalUrl":"https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","categories":[{"id":"42","name":"Science","url":"science"}],"createdAt":"2024-11-04 20:44:17 UTC","description":"Recent James Webb Space Telescope ( JWST) observations have revealed\na surprisingly abundant population of faint, dusty active galactic nuclei at\nz ≈ 4–7. Together with the presence of supermassive black holes at z \u003e 6,\nthis raises questions about the formation and growth histories of early black\nholes. Current theories for the formation of seed black holes from the death\nof the frst stars (that is, light seeds) and/or the direct collapse of primordial\ngas clouds (that is, heavy seeds) still lack observational confrmation. Here\nwe present LID-568, a low-mass (7.2 × 106 M⊙) black hole hosting powerful\noutfows that is observed in an extreme phase of rapid growth at redshift\nz ≈ 4. This object is similar to other JWST-discovered faint active galactic\nnuclei populations, but is bright in X-ray emission and accreting at more\nthan 4,000% of the limit at which radiation pressure exceeds the force of\ngravitational attraction of the black hole (that is, super-Eddington accretion).\nAnalysis of JWST Near-Infrared Spectrograph integral feld unit data reveals\nspatially extended Hα emission with velocities of ~−600–−500 km s−1 relative\nto the central black hole, indicative of robust nuclear-driven outfows. LID568 represents an elusive low-mass black hole experiencing super-Eddington\naccretion as invoked by models of early black hole formation. This discovery\nshowcases a previously undiscovered key parameter space and ofers crucial\ninsights into rapid black hole growth mechanisms in the early universe.","downloadKey":"9b1100c51eb0ac043b35f2ecca805aa13892472b8abb588f927753c2ddde0768","editorsNotes":[],"emailShareUrl":"mailto:?subject=Check out this SlideShare document\u0026body=https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","extension":"pdf","facebookShareUrl":"https://facebook.com/sharer.php?u=https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912\u0026t=A+super-Eddington-accreting+black+hole+~1.5%E2%80%89Gyr+after+the+Big+Bang+observed+with+JWST","genaiDescriptionCreatedAt":null,"genaiTest":"control","id":"273014912","iframeEmbed":{"url":"https://www.slideshare.net/slideshow/embed_code/key/oiy1E5SIQXjS5R","height":715,"width":670},"isIndexable":true,"isLikedByCurrentUser":false,"isPrivate":false,"isSeoTitleTestVariant":true,"isViewable":true,"language":"en","likes":0,"linkedinShareUrl":"https://www.linkedin.com/cws/share?url=https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912\u0026trk=SLIDESHARE","downloadCount":1,"recommendationsByLocation":{"rightRail":[{"algorithmId":"3","displayTitle":"A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy","isSavedByCurrentUser":false,"pageCount":12,"score":0.5544,"slideshowId":"270124291","sourceName":"cm_text","strippedTitle":"a-mature-quasar-at-cosmic-dawn-revealed-by-jwst-rest-frame-infrared-spectroscopy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02273-0-240708131450-72f83c99-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The rapid assembly of the first supermassive black holes is an enduring mystery. Until now, it was not known whether quasar ‘feeding’ structures (the ‘hot torus’) could assemble as fast as the smaller-scale quasar structures. We present JWST/MRS (rest-frame infrared) spectroscopic observations of the quasar J1120+0641 at z = 7.0848 (well within the epoch of reionization). The hot torus dust was clearly detected at λrest ≃ 1.3 μm, with a black-body temperature of \n K, slightly elevated compared to similarly luminous quasars at lower redshifts. Importantly, the supermassive black hole mass of J1120+0641 based on the Hα line (accessible only with JWST), MBH = 1.52 ± 0.17 × 109 M⊙, is in good agreement with previous ground-based rest-frame ultraviolet Mg II measurements. Comparing the ratios of the Hα, Paα and Paβ emission lines to predictions from a simple one-phase Cloudy model, we find that they are consistent with originating from a common broad-line region with physical parameters that are consistent with lower-redshift quasars. Together, this implies that J1120+0641’s accretion structures must have assembled very quickly, as they appear fully ‘mature’ less than 760 Myr after the Big Bang.","tags":["quasar","james webb","cosmic dawn"],"url":"https://www.slideshare.net/slideshow/a-mature-quasar-at-cosmic-dawn-revealed-by-jwst-rest-frame-infrared-spectroscopy/270124291","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2319},{"algorithmId":"3","displayTitle":"JWST/NIRCam detections of dusty subsolar-mass young stellar objects in the Sm...","isSavedByCurrentUser":false,"pageCount":8,"score":0.4974,"slideshowId":"257636641","sourceName":"cm_text","strippedTitle":"jwstnircam-detections-of-dusty-subsolarmass-young-stellar-objects-in-the-small-magellanic-cloud","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01945-7-230430225223-fb91a376-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Low-mass stars are the most numerous stellar objects in the Universe. Before\nthe James Webb Space Telescope (JWST), we had limited knowledge of how\nplanetary systems around low-mass stars could form at subsolar metallicities.\nHere we present JWST observations of NGC 346, a star-forming region in\nthe metal-poor Small Magellanic Cloud, revealing a substantial population\nof subsolar-mass young stellar objects (YSOs) with an infrared excess. We\nnotice that continuing low-mass star formation is concentrated along dust\nfilaments. We detected roughly 500 YSOs and pre-main-sequence (PMS)\nstars from more than 45,000 unique sources, using all four NIRCam wide\nfilters with deep, high-resolution imaging. From these observations, we\nconstruct detailed near-infrared colour–magnitude diagrams with which\npreliminary categorizations of YSO classes are made. For the youngest,\nmost deeply embedded objects, JWST/NIRCam is ten magnitudes more\nsensitive than Spitzer observations at comparable wavelengths, and reaches\ntwo magnitudes fainter than Hubble Space Telescope for more evolved\nPMS sources, corresponding to roughly 0.1 M⊙. The infrared sensitivity and\nresolution of JWST allows us to detect embedded low-mass star formation in\nan extragalactic environment. Furthermore, evidence of infrared excesses and\naccretion suggests that the dust required for rocky planet formation is present\nat metallicities as low as 0.2 Z⊙, which are akin to those in place at cosmic noon.","tags":["james webb","planet formation"],"url":"https://www.slideshare.net/slideshow/jwstnircam-detections-of-dusty-subsolarmass-young-stellar-objects-in-the-small-magellanic-cloud/257636641","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1113},{"algorithmId":"3","displayTitle":"An excess of dusty starbursts related to the Spiderweb galaxy","isSavedByCurrentUser":false,"pageCount":19,"score":0.4882,"slideshowId":"40324618","sourceName":"cm_text","strippedTitle":"an-excess-of-dusty-starbursts-related-to-the-spiderweb-galaxy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/eso1431a-141015181357-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes a study that used the LABOCA instrument on the APEX telescope to observe a field around the high-redshift radio galaxy MRC1138-262 at z=2.16. 16 submillimeter galaxies (SMGs) were detected in the field, with fluxes between 3-11 mJy, indicating a density up to 4 times higher than blank field surveys. Photometric redshifts using Herschel, Spitzer, and VLT data show that at least 8 of the SMGs have z~2.2 and are part of the protocluster associated with MRC1138-262. This corresponds to a star formation rate density 1500 times higher than blank fields at this redshift, concentrated","tags":[],"url":"https://www.slideshare.net/slideshow/an-excess-of-dusty-starbursts-related-to-the-spiderweb-galaxy/40324618","userLogin":"GOASA","userName":"GOASA ","viewCount":747},{"algorithmId":"3","displayTitle":"An excess of_dusty_starbusts_related_to_the_spiderweb_galaxy","isSavedByCurrentUser":false,"pageCount":19,"score":0.4882,"slideshowId":"41018617","sourceName":"cm_text","strippedTitle":"an-excess-ofdustystarbustsrelatedtothespiderwebgalaxy","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/anexcessofdustystarbustsrelatedtothespiderwebgalaxy-141102102457-conversion-gate02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo que descreve as últimas observações do APEX revelando como se dá a formação de estrelas e a construção do Aglomerado de Galáxias da Teia de Aranha.","tags":["astronomia","apex","eso"],"url":"https://www.slideshare.net/slideshow/an-excess-ofdustystarbustsrelatedtothespiderwebgalaxy/41018617","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":600},{"algorithmId":"3","displayTitle":"Isolated compact elliptical_galaxies_stellar_systems_that_ran_away","isSavedByCurrentUser":false,"pageCount":5,"score":0.4724,"slideshowId":"47390903","sourceName":"cm_text","strippedTitle":"isolated-compact-ellipticalgalaxiesstellarsystemsthatranaway","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/isolatedcompactellipticalgalaxiesstellarsystemsthatranaway-150424184837-conversion-gate02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes a study that identified 195 compact elliptical galaxies across different environments using data from optical and ultraviolet sky surveys. The researchers constructed the sample by selecting galaxies that were outliers from the universal color-magnitude relation and had small sizes and high stellar velocity dispersions based on spectral modeling. They found that 7 of the galaxies were isolated, not belonging to any known galaxy groups. For these isolated galaxies, the researchers identified possible host galaxies located up to 3.3 Mpc away. The stellar populations of the isolated compact elliptical galaxies were found to be similar to those in galaxy groups and clusters, suggesting a common formation mechanism.","tags":["astronomia","galáxias","estrelas"],"url":"https://www.slideshare.net/slideshow/isolated-compact-ellipticalgalaxiesstellarsystemsthatranaway/47390903","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":896},{"algorithmId":"3","displayTitle":"A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634","isSavedByCurrentUser":false,"pageCount":5,"score":0.4654,"slideshowId":"19029884","sourceName":"cm_text","strippedTitle":"a-dust-obscuredmassivemaximumstarburstgalaxyataredshift634","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/adustobscuredmassivemaximumstarburstgalaxyataredshift634-130417193438-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes the discovery of a massive, intensely star-forming galaxy located at a redshift of 6.34, approximately 880 million years after the Big Bang. Observations revealed a suite of molecular and atomic emission and absorption lines that unambiguously determined the galaxy's redshift. Analysis shows the galaxy contains over 100 billion solar masses of chemically evolved interstellar medium, constituting at least 40% of its baryonic mass. It is forming new stars at a rate over 2,000 times that of the Milky Way, making it a \"maximum starburst\" galaxy. Despite an overall decline in cosmic star formation at the highest redshifts, this discovery shows that environments capable of hosting the most massive starbursts existed very early","tags":[],"url":"https://www.slideshare.net/slideshow/a-dust-obscuredmassivemaximumstarburstgalaxyataredshift634/19029884","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":407},{"algorithmId":"3","displayTitle":"Spitzer bright ultravista_faint_sources_in_cosmos_the_contribution_to_the_ove...","isSavedByCurrentUser":false,"pageCount":17,"score":0.4632,"slideshowId":"55269609","sourceName":"cm_text","strippedTitle":"spitzer-bright-ultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz37","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/spitzerbrightultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz-151118210308-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"O telescópio de rastreio VISTA do ESO encontrou uma horda de galáxias massivas anteriormente ocultas por poeira, que existiram quando o Universo era ainda bebê. Ao descobrir e estudar uma grande quantidade deste tipo de galáxias, os astrônomos descobriram, exatamente e pela primeira vez, quando é que tais monstros apareceram pela primeira vez no Universo.\r\nO simples fato de contar o número de galáxias que existem em determinada área do céu permite aos astrônomos testar teorias de formação e evolução galática. No entanto, uma tarefa aparentemente tão fácil torna-se mais difícil quando tentamos contar galáxias cada vez mais distantes e tênues e é mais complicada ainda devido ao fato das galáxias mais brilhantes e fáceis de observar — as mais massivas no Universo — se tornarem mais raras à medida que os astrônomos observam o passado do Universo, enquanto que as galáxias menos brilhantes, mas muito mais numerosas, são ainda mais difíceis de detectar.\r\n\r\nUma equipe de astrônomos liderada por Karina Caputi do Instituto Astronômico Kapteyn da Universidade de Groningen, descobriu muitas galáxias distantes que não tinham sido detectadas anteriormente. A equipe utilizou imagens do rastreioUltraVISTA, um dos seis projetos que usam o VISTA para mapear o céu no infravermelho próximo, e fez um censo das galáxias tênues quando a idade do Universo estava compreendida entre 0,75 e 2,1 bilhões de anos. \r\n","tags":["eso","universo","galáxias"],"url":"https://www.slideshare.net/sacani/spitzer-bright-ultravistafaintsourcesincosmosthecontributiontotheoverallpopulationofmassivegalaxiesatz37","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":798},{"algorithmId":"3","displayTitle":" Black hole growth in the early universe is self regulated and largely hidde...","isSavedByCurrentUser":false,"pageCount":3,"score":0.4617,"slideshowId":"8320995","sourceName":"cm_text","strippedTitle":"black-hole-growth-in-the-early-universe-is-self-regulated-and-largely-hidden-from-vie","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/blackholegrowthintheearlyuniverseisself-regulatedandlargelyhiddenfromvie-110615181035-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The study analyzed X-ray data from the Chandra X-ray Observatory to measure black hole growth in galaxies between redshifts 6-8 (0.95-0.7 billion years after the Big Bang). It found:\n\n1) A stacked signal from 197 galaxies at z\u003c6 detected significant X-ray emission, implying black holes grew in tandem with their host galaxies throughout cosmic history. \n\n2) Most vigorously accreting black holes at these early epochs were obscured by significant gas and dust, absorbing most radiation except high-energy X-rays. \n\n3) The obscured black hole growth suggests growth was significantly more than previously thought, but the obscuration prevented contribution to reionizing the Universe.","tags":[],"url":"https://www.slideshare.net/slideshow/black-hole-growth-in-the-early-universe-is-self-regulated-and-largely-hidden-from-vie/8320995","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":421}],"whatsHot":[],"alsoLiked":[],"similarTo":[{"algorithmId":"3","displayTitle":"Quasar quartet embedded_in_a_giant_nebula_reveals_rare_massive_structure_in_d...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4554,"slideshowId":"48235025","sourceName":"cm_text","strippedTitle":"quasar-quartet-embeddedinagiantnebularevealsraremassivestructureindistantuniverse","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/quasarquartetembeddedinagiantnebularevealsraremassivestructureindistantuniverse-150516234453-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo descreve a fantástica descoberta de um quasar quádruplo pelos astrônomos, usando os telescópios de 10 metros do Keck.","tags":["galáxias","buracos negros","universo"],"url":"https://www.slideshare.net/slideshow/quasar-quartet-embeddedinagiantnebularevealsraremassivestructureindistantuniverse/48235025","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1450},{"algorithmId":"3","displayTitle":"The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...","isSavedByCurrentUser":false,"pageCount":30,"score":0.453,"slideshowId":"259313252","sourceName":"cm_text","strippedTitle":"the-massive-relic-galaxy-ngc-1277-is-dark-matter-deficient-from-dynamical-models-of-integralfield-stellar-kinematics-out-to-five-effective-radii","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa46291-23-230720101021-21a3c732-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"According to the Λ cold dark matter (ΛCDM) cosmology, present-day galaxies with stellar masses M? \u003e 1011 M\f should contain\na sizable fraction of dark matter within their stellar body. Models indicate that in massive early-type galaxies (ETGs) with M? ≈\n1.5 × 1011 M\f, dark matter should account for ∼15% of the dynamical mass within one effective radius (1 Re) and for ∼60% within\n5 Re\n. Most massive ETGs have been shaped through a two-phase process: the rapid growth of a compact core was followed by the\naccretion of an extended envelope through mergers. The exceedingly rare galaxies that have avoided the second phase, the so-called\nrelic galaxies, are thought to be the frozen remains of the massive ETG population at z \u0026 2. The best relic galaxy candidate discovered\nto date is NGC 1277, in the Perseus cluster. We used deep integral field George and Cynthia Mitchel Spectrograph (GCMS) data to\nrevisit NGC 1277 out to an unprecedented radius of 6 kpc (corresponding to 5 Re). By using Jeans anisotropic modelling, we find\na negligible dark matter fraction within 5 Re (fDM(5 Re) \u003c 0.05; two-sigma confidence level), which is in tension with the ΛCDM\nexpectation. Since the lack of an extended envelope would reduce dynamical friction and prevent the accretion of an envelope, we\npropose that NGC 1277 lost its dark matter very early or that it was dark matter deficient ab initio. We discuss our discovery in the\nframework of recent proposals, suggesting that some relic galaxies may result from dark matter stripping as they fell in and interacted\nwithin galaxy clusters. Alternatively, NGC 1277 might have been born in a high-velocity collision of gas-rich proto-galactic fragments,\nwhere dark matter left behind a disc of dissipative baryons. We speculate that the relative velocities of ≈2000 km s−1\nrequired for the\nlatter process to happen were possible in the progenitors of the present-day rich galaxy clusters.","tags":["galaxy","dark matter"],"url":"https://www.slideshare.net/slideshow/the-massive-relic-galaxy-ngc-1277-is-dark-matter-deficient-from-dynamical-models-of-integralfield-stellar-kinematics-out-to-five-effective-radii/259313252","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1742},{"algorithmId":"3","displayTitle":"Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5","isSavedByCurrentUser":false,"pageCount":42,"score":0.4463,"slideshowId":"42879464","sourceName":"cm_text","strippedTitle":"chandra-deep-observationofxdcpj004402033amassivegalaxyclusteratz15","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/chandradeepobservationofxdcpj004402033amassivegalaxyclusteratz15-141219135104-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Artigo apresenta os resultados obtidos pelo Chandra ao medir com precisão a massa do mais massivo aglomerado de galáxias do universo distante, o Aglomerado Gioiello.","tags":["aglomerado de galáxias","astronomia","chandra"],"url":"https://www.slideshare.net/slideshow/chandra-deep-observationofxdcpj004402033amassivegalaxyclusteratz15/42879464","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":669},{"algorithmId":"3","displayTitle":"A spectroscopic redshift_measurement_for_a_luminous_lyman_break_galaxy_at_z _...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4392,"slideshowId":"47806179","sourceName":"cm_text","strippedTitle":"a-spectroscopic-redshiftmeasurementforaluminouslymanbreakgalaxyatz-7730usingkeckmosfire","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aspectroscopicredshiftmeasurementforaluminouslymanbreakgalaxyatz7730usingkeckmosfire-150505232229-conversion-gate01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document presents the spectroscopic confirmation of a luminous Lyman break galaxy (LBG) at a redshift of z = 7.7302 ± 0.0006, as observed using the MOSFIRE instrument on the Keck I telescope. The galaxy, named EGS-zs8-1, was pre-selected as a promising candidate for spectroscopic follow-up based on its bright apparent magnitude of H = 25.0 and very red Spitzer/IRAC colors suggestive of strong emission lines. Spectroscopic observations revealed a clear detection of the Lyman-alpha emission line at a observed wavelength of 1.06 microns, reliably confirming the high photometric redshift of z~7.7. Analysis of the","tags":["spitzer","hubble","keck"],"url":"https://www.slideshare.net/sacani/a-spectroscopic-redshiftmeasurementforaluminouslymanbreakgalaxyatz-7730usingkeckmosfire","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":642},{"algorithmId":"3","displayTitle":"A higher efficiency_of_converting_gas_to_stars_push_galaxies_at_z_1_6_well_ab...","isSavedByCurrentUser":false,"pageCount":6,"score":0.4391,"slideshowId":"54007937","sourceName":"cm_text","strippedTitle":"a-higher-efficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/ahigherefficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence-151016062510-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Galáxias formando estrelas em taxas extremas a nove bilhões de anos atrás eram mais eficientes do que a média das galáxias atuais, descobriram os pesquisadores.\r\nA maioria das estrelas acredita-se localizam-se na sequência principal onde quanto maior a massa da galáxia, mais eficiente ela é na formação de novas estrelas. Contudo, de vez em quando uma galáxia apresentará uma explosão de novas estrelas que brilham mais do que o resto. Uma colisão entre duas grandes galáxias é normalmente a causa dessas fases de explosões de formação de estrelas, onde o gás frio que reside nas grandes nuvens moleculares torna-se o combustível para sustentar essas altas taxas de formação de estrelas.\r\nA questão que os astrônomos têm feito é se essas explosões de estrelas no início o universo foram o resultado de se ter um suprimento de gás abundante, ou se as galáxias convertiam o gás de maneira mais eficiente.\r\nUm novo estudo, publicado no Astrophysical Journal Letters de 15 de Outubro, liderado por John Silverman, do Kavli Institute for Physics and Mathematics of the Universe, estudou o conteúdo do gás monóxido de carbono (CO) em sete galáxias de explosão de estrelas muito distantes, quando o universo tinha apenas 4 bilhões de anos de vida. Isso foi possível devido a capacidade do Atacama Large Millimiter/Submillimiter Array (ALMA), localizado no platô no topo da montanha no Chile, que trabalha para detectar as ondas eletromagnéticas no comprimento de onda milimétrico (importante para se estudar o gás molecular) e um nível de sensibilidade que só agora começa a ser explorado pelos astrônomos.\r\nOs pesquisadores descobriram que a quantidade de gás CO emitido já tinha diminuído, mesmo apesar da galáxia continuar a formar estrelas em altas taxas. Essas observações são similares àquelas registradas para as galáxias de explosões de estrelas próximas da Terra atualmente, mas a quantidade da depleção de gás não foi tão rápida quanto se esperava. Isso levou os pesquisadores a concluírem que poderia haver um contínuo aumento na eficiência, dependendo em de quanto acima da taxa de se formar estrelas ela está da sequência principal.\r\n","tags":["alma","astronomia","estrelas"],"url":"https://www.slideshare.net/slideshow/a-higher-efficiencyofconvertinggastostarspushgalaxiesatz16wellabovethestarformingmainsequence/54007937","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":541},{"algorithmId":"3","displayTitle":"Measurements of a_massive_galaxy_cluster","isSavedByCurrentUser":false,"pageCount":9,"score":0.4367,"slideshowId":"13462883","sourceName":"cm_text","strippedTitle":"measurements-of-amassivegalaxycluster","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/measurementsofamassivegalaxycluster-120626165724-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document reports on observations of IDCS J1426.5+3508, a galaxy cluster located at a redshift of 1.75. A Sunyaev-Zeldovich decrement was detected towards this cluster, indicating a total mass of 4.3×1014 solar masses. This makes it the most distant cluster detected via the Sunyaev-Zeldovich effect to date and the most massive cluster found at a redshift greater than 1.4. Despite its rarity, the cluster is not unexpected given cosmological models and the large area surveyed. However, it remains one of the rarest and most extreme clusters discovered and provides insight into the early formation of the most massive clusters.","tags":[],"url":"https://www.slideshare.net/slideshow/measurements-of-amassivegalaxycluster/13462883","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":552},{"algorithmId":"3","displayTitle":"A giant galaxy in the young Universe with a massive ring","isSavedByCurrentUser":false,"pageCount":8,"score":0.4359,"slideshowId":"234559781","sourceName":"cm_text","strippedTitle":"a-giant-galaxy-in-the-young-universe-with-a-massive-ring","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-020-1102-7-200525181833-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"In the local (redshift z ≈ 0) Universe, collisional ring galaxies make up only ~0.01% of galaxies1 and are formed by head-on galactic collisions that trigger radially propagating density waves2–4. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe5–9. However, not much is known about distant (z \u003e 0.1) collisional rings10–14. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z = 2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5–2.2 times larger and is forming stars 50 times faster. The extended, dif- fuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved15,16, the implied large bar in a giant disk would be inconsistent with the current understand- ing of the earliest formation of barred spirals17–21. Contrary to previous predictions10–12, this work suggests that massive col- lisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.","tags":["galaxy","ring"],"url":"https://www.slideshare.net/slideshow/a-giant-galaxy-in-the-young-universe-with-a-massive-ring/234559781","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":428},{"algorithmId":"3","displayTitle":"GOALS-JWST: Unveiling Dusty Compact Sources in the Merging Galaxy IIZw096","isSavedByCurrentUser":false,"pageCount":7,"score":0.4331,"slideshowId":"257595265","sourceName":"cm_text","strippedTitle":"goalsjwst-unveiling-dusty-compact-sources-in-the-merging-galaxy-iizw096","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/inami2022apjl940l6-230427122533-3b6ac9b2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first\nspatially resolved, mid-infrared images of IIZw096, a merging luminous infrared galaxy (LIRG) at z = 0.036.\nPrevious observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity\n(LIR) of the system originated from a small region outside of the two merging nuclei. New observations with\nJWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is\nresponsible for the bulk of the IR emission. We estimate that 40%–70% of the IR bolometric luminosity, or\n3–5 × 1011 Le, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least\n3–5 × 1012 Le kpc−2\n. In addition, we detect 11 other star-forming sources, five of which were previously\nunknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the\nbulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power\nof JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.","tags":["james webb","galaxies","engine"],"url":"https://www.slideshare.net/slideshow/goalsjwst-unveiling-dusty-compact-sources-in-the-merging-galaxy-iizw096/257595265","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":8837},{"algorithmId":"3","displayTitle":"A Simultaneous dual-site technosignature search using international LOFAR sta...","isSavedByCurrentUser":false,"pageCount":19,"score":0.433,"slideshowId":"262856080","sourceName":"cm_text","strippedTitle":"a-simultaneous-dualsite-technosignature-search-using-international-lofar-stations","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2310-231029184538-69b6f877-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The Search for Extraterrestrial Intelligence (SETI) aims to find evidence of technosignatures, which\ncan point towards the possible existence of technologically advanced extraterrestrial life. Radio signals\nsimilar to those engineered on Earth may be transmitted by other civilizations, motivating technosignature searches across the entire radio spectrum. In this endeavor, the low-frequency radio band\nhas remained largely unexplored; with prior radio searches primarily above 1 GHz. In this survey at\n110 − 190 MHz, observations of 1,631,198 targets from TESS and Gaia are reported. Observations\ntook place simultaneously with two international stations (non-interferometric) of the Low Frequency\nArray in Ireland and Sweden. We can reject the presence of any Doppler drifting narrow-band transmissions in the barycentric frame of reference, with equivalent isotropic radiated power of 1017 W, for\n0.4 million (or 1.3 million) stellar systems at 110 (or 190) MHz. This work demonstrates the effectiveness of using multi-site simultaneous observations for rejecting anthropogenic signals in the search for\ntechnosignatures.\n","tags":["seti","astrobiology","exoplanets"],"url":"https://www.slideshare.net/slideshow/a-simultaneous-dualsite-technosignature-search-using-international-lofar-stations/262856080","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":435},{"algorithmId":"3","displayTitle":"Submillimeter follow up_of_wise_selected_hyperluminous_galaxies","isSavedByCurrentUser":false,"pageCount":46,"score":0.4317,"slideshowId":"14112612","sourceName":"cm_text","strippedTitle":"submillimeter-follow-upofwiseselectedhyperluminousgalaxies","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/submillimeterfollowupofwiseselectedhyperluminousgalaxies-120829195038-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes follow-up observations of galaxies selected from WISE as being hyperluminous. The authors observed 14 galaxies at 350-850 μm with SHARC-II and 18 galaxies at 1.1 mm with Bolocam, detecting 9 and 5 galaxies respectively. They also observed 25 targets at 3.6 and 4.5 μm with Spitzer and obtained optical spectra for 12 targets. By combining these data with WISE observations, they constructed mid-IR to millimeter spectral energy distributions that showed hotter dust temperatures than galaxy templates, estimated to be 60-120 K. These galaxies have infrared luminosities over 10^13 solar luminosities and represent an extreme population of luminous, hot dust-ob","tags":[],"url":"https://www.slideshare.net/slideshow/submillimeter-follow-upofwiseselectedhyperluminousgalaxies/14112612","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":340},{"algorithmId":"3","displayTitle":"The most luminous_galaxies_discovered_by_wise","isSavedByCurrentUser":false,"pageCount":17,"score":0.431,"slideshowId":"48458042","sourceName":"cm_text","strippedTitle":"the-most-luminousgalaxiesdiscoveredbywise","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/themostluminousgalaxiesdiscoveredbywise-150521223435-lva1-app6891-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document presents a sample of 20 extremely luminous galaxies discovered by the Wide-field Infrared Survey Explorer (WISE). Five of these galaxies have infrared luminosities exceeding 1014 solar luminosities, the highest infrared luminosity threshold yet observed. They were selected using criteria requiring weak or no detection in the first two WISE bands but strong detections in the third and fourth bands. Spectral energy distribution modeling suggests their high luminosities are powered by obscured active galactic nuclei with hot dust temperatures around 450 Kelvin. The existence of such luminous galaxies at redshifts above 3 provides constraints on the early growth of supermassive black holes through rapid accretion.","tags":["galáxias","astronomia","buracos negros"],"url":"https://www.slideshare.net/slideshow/the-most-luminousgalaxiesdiscoveredbywise/48458042","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":619},{"algorithmId":"3","displayTitle":"s41550-023-01995-x-230625184331-6b69a9d0.pdf","isSavedByCurrentUser":false,"pageCount":18,"score":0.4274,"slideshowId":"258706240","sourceName":"cm_text","strippedTitle":"s4155002301995x2306251843316b69a9d0pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01995-x-230625184331-6b69a9d0-230629001506-da4c46a2-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays\nWhite dwarf stars are the most common stellar fossils. When in binaries, they\nmake up the dominant form of compact object binary within the Galaxy and\ncan ofer insight into diferent aspects of binary formation and evolution.\nOne of the most remarkable white dwarf binary systems identifed to date\nis AR Scorpii (AR Sco). AR Sco is composed of an M dwarf star and a rapidly\nspinning white dwarf in a 3.56 h orbit. It shows pulsed emission with a period\nof 1.97 min over a broad range of wavelengths, which led to it being known as\na white dwarf pulsar. Both the pulse mechanism and the evolutionary origin\nof AR Sco provide challenges to theoretical models. Here we report the\ndiscovery of a sibling of AR Sco, J191213.72-441045.1, which harbours a white\ndwarf in a 4.03 h orbit with an M dwarf and exhibits pulsed emission with a\nperiod of 5.30 min. This discovery establishes binary white dwarf pulsars as\na class and provides support for proposed formation models for white\ndwarf pulsars.","tags":["a 5.3-min-period pulsing white","facebook","whatsapp"],"url":"https://www.slideshare.net/slideshow/s4155002301995x2306251843316b69a9d0pdf/258706240","userLogin":"RanaArshadTechnical","userName":"RanaArshadTechnical","viewCount":16},{"algorithmId":"3","displayTitle":"A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays","isSavedByCurrentUser":false,"pageCount":18,"score":0.4274,"slideshowId":"258619681","sourceName":"cm_text","strippedTitle":"a-53minperiod-pulsing-white-dwarf-in-a-binary-detected-from-radio-to-xrays","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-023-01995-x-230625184331-6b69a9d0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"White dwarf stars are the most common stellar fossils. When in binaries, they\nmake up the dominant form of compact object binary within the Galaxy and\ncan ofer insight into diferent aspects of binary formation and evolution.\nOne of the most remarkable white dwarf binary systems identifed to date\nis AR Scorpii (AR Sco). AR Sco is composed of an M dwarf star and a rapidly\nspinning white dwarf in a 3.56 h orbit. It shows pulsed emission with a period\nof 1.97 min over a broad range of wavelengths, which led to it being known as\na white dwarf pulsar. Both the pulse mechanism and the evolutionary origin\nof AR Sco provide challenges to theoretical models. Here we report the\ndiscovery of a sibling of AR Sco, J191213.72-441045.1, which harbours a white\ndwarf in a 4.03 h orbit with an M dwarf and exhibits pulsed emission with a\nperiod of 5.30 min. This discovery establishes binary white dwarf pulsars as\na class and provides support for proposed formation models for white\ndwarf pulsars.","tags":["pulsar","white dwarf","star"],"url":"https://www.slideshare.net/slideshow/a-53minperiod-pulsing-white-dwarf-in-a-binary-detected-from-radio-to-xrays/258619681","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":6033},{"algorithmId":"3","displayTitle":"A fast-rotator post-starburst galaxy quenched by supermassive black-hole feed...","isSavedByCurrentUser":false,"pageCount":14,"score":0.4266,"slideshowId":"272228502","sourceName":"cm_text","strippedTitle":"a-fast-rotator-post-starburst-galaxy-quenched-by-supermassive-black-hole-feedback-at-z-3","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02345-1-241007001227-27932be9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The most massive galaxies in the Universe stopped forming stars due to the\ntime-integrated feedback from central supermassive black holes (SMBHs).\nHowever, the exact quenching mechanism is not yet understood, because\nlocal massive galaxies were quenched billions of years ago. Here we present\nJWST/NIRSpec integral-feld spectroscopy observations of GS-10578,\na massive, quiescent galaxy at redshift z = 3.064 ± 0.002. From its spectrum,\nwe measure a stellar mass M⋆ = 1.6 ± 0.2 × 1011 M⊙ and a dynamical mass\nMdyn = 2.0 ± 0.5 × 1011 M⊙. Half of its stellar mass formed at z = 3.7–4.6, and the\nsystem is now quiescent, with a current star-formation rate of less than\n19 M⊙ yr−1. We detect ionized- and neutral-gas outfows traced by [O iii]\nemission and Na i absorption, with mass outfow rates 0.14–2.9 and\n30–100 M⊙ yr−1, respectively. Outfow velocities reach vout ≈ 1,000 km s−1,\ncomparable to the galaxy escape velocity. GS-10578 hosts an active galactic\nnucleus, evidence that these outfows are due to SMBH feedback. The\nneutral outfow rate is higher than the star-formation rate. Hence, this is\ndirect evidence for ejective SMBH feedback, with a mass loading capable of\ninterrupting star formation by rapidly removing its fuel. Stellar kinematics\nshow ordered rotation, with spin parameter λRe = 0.62 ± 0.07, meaning\nGS-10578 is rotation-supported. This study presents direct evidence for\nejective active galactic nucleus feedback in a massive, recently quenched\ngalaxy, thus helping to clarify how SMBHs quench their hosts. The high value\nof λRe\n implies that quenching can occur without destroying the stellar disk.","tags":["black hole","galaxy","james webb"],"url":"https://www.slideshare.net/slideshow/a-fast-rotator-post-starburst-galaxy-quenched-by-supermassive-black-hole-feedback-at-z-3/272228502","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":682},{"algorithmId":"3","displayTitle":"2041 8205 743-2_l37","isSavedByCurrentUser":false,"pageCount":6,"score":0.4251,"slideshowId":"10423357","sourceName":"cm_text","strippedTitle":"2041-8205-7432l37","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2041-82057432l37-111201173436-phpapp02-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document summarizes evidence that a galaxy at a redshift of 1.35 contains three accreting black holes. Hubble Space Telescope observations reveal the galaxy has a clumpy morphology with four distinct components, labeled A, B, C, and D. Spectroscopy of the three brightest components (A, B, and C) shows high [O iii]/Hβ line ratios indicative of active galactic nuclei. This provides evidence that each of the three components contains a rapidly growing black hole of mass 106–107 solar masses. The black holes could have formed via early mergers or grown more recently within the galaxy.","tags":[],"url":"https://www.slideshare.net/slideshow/2041-8205-7432l37/10423357","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":292},{"algorithmId":"3","displayTitle":"Clarkson","isSavedByCurrentUser":false,"pageCount":35,"score":0.4243,"slideshowId":"8118235","sourceName":"cm_text","strippedTitle":"clarkson","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/clarkson-110526184549-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document reports the first detections of Blue Straggler Stars (BSS) in the Milky Way bulge. Proper motions and variability measurements from Hubble Space Telescope observations were used to separate a clean bulge sample and identify BSS candidates. Of 42 candidate BSS identified, variability measurements indicate that at least 18 are genuine BSS, while contamination estimates suggest the true BSS population could be as high as 37 objects. This establishes for the first time that BSS exist as a population in the Milky Way bulge.","tags":[],"url":"https://www.slideshare.net/slideshow/clarkson/8118235","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":518},{"algorithmId":"3","displayTitle":"Discovery and timing of ten new millisecond pulsars in the globular cluster T...","isSavedByCurrentUser":false,"pageCount":23,"score":0.4242,"slideshowId":"270814857","sourceName":"cm_text","strippedTitle":"discovery-and-timing-of-ten-new-millisecond-pulsars-in-the-globular-cluster-terzan-5","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa49303-24-240806171537-e7a7b2b6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT\n(TRAPUM) Large Survey Project. We observed Terzan 5 at L-band (856–1712 MHz) with the MeerKAT radio telescope for four\nhours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We\nobtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the\nGreen Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital\nperiod Pb = 57.55 d) system. We were able to measure the rate of advance of periastron ( ˙ω) for this system allowing us to determine a\ntotal mass of 3.17 ± 0.02 M\f. With a minimum companion mass (Mc) of ∼0.8 M\f, PSR J1748−2446ao is a candidate double neutron\nstar (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period\nmeasured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905)\nand for this system we can measure the total mass (1.997 ± 0.006 M\f) and estimate the pulsar and companion masses, (1.700+0.015\n−0.045 M\f\nand 0.294+0.046\n−0.014 M\f, respectively). PSR J1748−2446ar is an eclipsing redback (minimum Mc ∼ 0.34 M\f) system whose properties\nconfirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detect\nω˙ for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 M\f and indicating that the system is likely the result of\nCase A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any\nglobular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper\nunderstanding of binary stellar evolution, cluster dynamics and ensemble population studies.","tags":["terzan 5","pulsars","universe"],"url":"https://www.slideshare.net/slideshow/discovery-and-timing-of-ten-new-millisecond-pulsars-in-the-globular-cluster-terzan-5/270814857","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":457},{"algorithmId":"3","displayTitle":"A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing","isSavedByCurrentUser":false,"pageCount":7,"score":0.4241,"slideshowId":"81728444","sourceName":"cm_text","strippedTitle":"a-dusty-starforming-galaxy-at-z-6-revealed-by-strong-gravitational-lensing","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-017-0297-8-171107224000-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Since their discovery, submillimetre-selected galaxies1,2\r\nhave revolutionized the field of galaxy formation and evolution.\r\nFrom the hundreds of square degrees mapped at submillimetre\r\nwavelengths3–5\r\n, only a handful of sources have\r\nbeen confirmed to lie at z\u003e 5 (refs 6–10) and only two at z ≥ 6\r\n(refs 11,12). All of these submillimetre galaxies are rare examples\r\nof extreme starburst galaxies with star formation rates\r\nof ≳1,000 M⊙ yr−1\r\n and therefore are not representative\r\nof the general population of dusty star-forming galaxies.\r\nConsequently, our understanding of the nature of these\r\nsources, at the earliest epochs, is still incomplete. Here, we\r\nreport the spectroscopic identification of a gravitationally\r\namplified (μ= 9.3 ± 1.0) dusty star-forming galaxy at z= 6.027.\r\nAfter correcting for gravitational lensing, we derive an intrinsic\r\nless-extreme star formation rate of 380 ± 50 M⊙ yr−1\r\nfor this source and find that its gas and dust properties are\r\nsimilar to those measured for local ultra luminous infrared\r\ngalaxies, extending the local trends to a poorly explored territory\r\nin the early Universe. The star-formation efficiency\r\nof this galaxy is similar to those measured in its local analogues13,\r\ndespite a ~12 Gyr difference in cosmic time.","tags":["galaxy","z=6","."],"url":"https://www.slideshare.net/slideshow/a-dusty-starforming-galaxy-at-z-6-revealed-by-strong-gravitational-lensing/81728444","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":474},{"algorithmId":"3","displayTitle":"DISSERTATIONJOAKIM676951","isSavedByCurrentUser":false,"pageCount":33,"score":0.4233,"slideshowId":"52993575","sourceName":"cm_text","strippedTitle":"dissertationjoakim676951","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/80a63dd8-58c4-4922-aa78-01236f5fb980-150920220648-lva1-app6892-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document is a dissertation by Joakim Carlsen submitted in 2014/2015 for a Bsc(Honours) in Applied Physics. It investigates detecting massive galaxies at high redshift (z \u003e 4) using photometric data from the Dark Energy Survey (DES). The dissertation aims to identify massive galaxy candidates at z \u003e 4 based on their colors and fit their spectral energy distributions using photometric redshift modeling software. Several high redshift massive galaxy candidates were identified and their properties were analyzed, with the most promising candidates to be proposed for follow-up spectroscopy to confirm their redshifts.","tags":[],"url":"https://www.slideshare.net/slideshow/dissertationjoakim676951/52993575","userLogin":"JoakimCarlsen","userName":"Joakim Carlsen","viewCount":264},{"algorithmId":"3","displayTitle":"Eso1138","isSavedByCurrentUser":false,"pageCount":10,"score":0.4211,"slideshowId":"9656386","sourceName":"cm_text","strippedTitle":"eso1138","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/eso1138-111012052825-phpapp01-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"This document reports on spectroscopic observations of z-band dropout galaxy candidates in the NTT Deep Field. Two galaxies are confirmed to be at redshift ~6.7 based on detected Lyman-alpha emission lines. For NTTDF-474, a faint line is detected at 9270 Angstroms, identified as Lyman-alpha at z=6.623. For NTTDF-1917, an emission line is seen at 8415 Angstroms, which may be Lyman-alpha or H-beta. No significant features were found for the other candidates. These results provide further evidence of galaxy populations in the early universe approaching the epoch of reionization.","tags":[],"url":"https://www.slideshare.net/slideshow/eso1138/9656386","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":428}],"moreFromUser":[{"algorithmId":"","displayTitle":"AT2021hdr: A candidate tidal disruption of a gas cloud by a binary super mass...","isSavedByCurrentUser":false,"pageCount":16,"score":0,"slideshowId":"273341417","sourceName":"MORE_FROM_USER","strippedTitle":"at2021hdr-a-candidate-tidal-disruption-of-a-gas-cloud-by-a-binary-super-massive-black-hole-system","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa51305-24-241115183442-b520e8ab-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"With a growing number of facilities able to monitor the entire sky and produce light curves with a cadence of days, in recent years there has been an increased rate of detection of sources whose variability deviates from standard behavior, revealing a variety of exotic nuclear transients. The aim of the present study is to disentangle the nature of the transient AT2021hdr, whose optical light curve used to be consistent with a classic Seyfert 1 nucleus, which was also confirmed by its optical spectrum and high-energy properties. From late 2021, AT2021hdr started to present sudden brightening episodes in the form of oscillating peaks in the Zwicky Transient Facility (ZTF) alert stream, and the same shape is observed in X-rays and UV from Swift data. The oscillations occur every ∼60-90 days with amplitudes of ∼0.2 mag in the g and r bands. Very Long Baseline Array (VLBA) observations show no radio emission at milliarcseconds scale. It is argued that these findings are inconsistent with a standard tidal disruption event (TDE), a binary supermassive black hole (BSMBH), or a changing-look active galactic nucleus (AGN); neither does this object resemble previous observed AGN flares, and disk or jet instabilities are an unlikely scenario. Here, we propose that the behavior of AT2021hdr might be due to the tidal disruption of a gas cloud by a BSMBH. In this scenario, we estimate that the putative binary has a separation of ∼0.83 mpc and would merge in ∼7×104 years. This galaxy is located at 9 kpc from a companion galaxy, and in this work we report this merger for the first time. The oscillations are not related to the companion galaxy.","tags":["black holes","system","swift"],"url":"https://www.slideshare.net/slideshow/at2021hdr-a-candidate-tidal-disruption-of-a-gas-cloud-by-a-binary-super-massive-black-hole-system/273341417","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2347},{"algorithmId":"","displayTitle":"Acorrelation between sunspot observations and solar Ca II H\u0026K activity proxies","isSavedByCurrentUser":false,"pageCount":10,"score":0,"slideshowId":"273316163","sourceName":"MORE_FROM_USER","strippedTitle":"acorrelation-between-sunspot-observations-and-solar-ca-ii-h-k-activity-proxies","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/stae2381-241114214506-a1793ded-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The magnetic phenomena on the solar surface have been the subject of several investigations over the last 400 years. The early indicator of the solar magnetic activity was the sunspot counting. Currently, the main sunspot indicators are the International Sunspot Number,theSunspotGroupNumber,theTotalSunspotArea,andthePhotometricSunspotIndex. Several improvements in observational techniques have allowed measuring the magnetic activity using solar/stellar spectra. Standard spectroscopic activity indicators are the SMW index, based on the Ca II H\u0026K emission lines, and the chromospheric component RHK index. In this context, we present a correlation between sunspot observations and solar Ca II H\u0026K activity proxies. We present our comparisons between the spectroscopic chromospheric activity proxies (SMW and RHK) and the sunspot indicators along the last decades, using solar measurements (spectroscopic and spot proxy) performed on the same day. In general, our results indicate a linear fit between the chromospheric proxies and sunspots indicators. In addition, using the long-term Sunspot Group Number records, we estimate an average spectroscopic proxy along the solar Maunder Minimum (MM) phase, corresponding to SMW = 0.167 ± 0.013 and log RHK = −4.913 ± 0.363. The estimated variability is σSMW = 1.137 × 10−7 and σlog RHK = 2.704×10−6.Ourlinearregressionanalysis,appliedannually, suggests that the variability level of the chromospheric activity in MM phase is significantly lower than in the normal period of activity or could be due to linear regression on annually averaged data, combined with the minimal sunspot activity during solar Maunder Minimum. Further observations of MM analogues will be needed to test this hypothesis.","tags":["sun","solar activity","magnectic"],"url":"https://www.slideshare.net/slideshow/acorrelation-between-sunspot-observations-and-solar-ca-ii-h-k-activity-proxies/273316163","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":416},{"algorithmId":"","displayTitle":"Projections of Earth’s Technosphere: Luminosity and Mass as Limits to Growth","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"273315707","sourceName":"MORE_FROM_USER","strippedTitle":"projections-of-earth-s-technosphere-luminosity-and-mass-as-limits-to-growth","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2410-241114210734-e0092db3-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Earth remains the only known example of a planet with technology, and future projections of Earth’s trajectory provide a basis and motivation for approaching the search for extraterrestrial technospheres. Conventional approaches toward projecting Earth’s technosphere include applications of the Kardashev scale, which suggest the possibility that energy-intensive civilizations may expand to harness the entire energy output available to their planet, host star, or even the entire galaxy. In this study, we argue that the Kardashev scale is better understood as a “luminosity limit” that describes the maximum capacity for a civilization to harvest luminous stellar energy across a given spatial domain, and we note that thermodynamic efficiency will always keep a luminosity-limited technosphere from actually reaching this theoretical limit. We suggest the possibility that an advanced technosphere might evolve beyond this luminosity limit to draw its energy directly from harvesting stellar mass, and we also discuss possible trajectories that could exist between Earth today and such hypothetical “stellivores.” We develop a framework to describe trajectories for long-lived technospheres that optimize their growth strategies between exploration and exploitation, unlike Earth today. We note that analyses of compact accreting stars could provide ways to test the stellivore hypothesis, and we more broadly suggest an expansion of technosignature search strategies beyond those that reside exactly at the luminosity limit.","tags":["kardashev","extraterrestrials","civilizations"],"url":"https://www.slideshare.net/slideshow/projections-of-earth-s-technosphere-luminosity-and-mass-as-limits-to-growth/273315707","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":571},{"algorithmId":"","displayTitle":"A Comparison of the X-Ray Polarimetric Properties of Stellar and Supermassive...","isSavedByCurrentUser":false,"pageCount":11,"score":0,"slideshowId":"273315214","sourceName":"MORE_FROM_USER","strippedTitle":"a-comparison-of-the-x-ray-polarimetric-properties-of-stellar-and-supermassive-black-holes","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/saade2024apj974101-241114203206-2241cc3c-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"X-ray polarization provides a new way to probe accretion geometry in black hole systems. If the accretion geometry of black holes is similar regardless of mass, we should expect the same to be true of their polarization properties. We compare the polarimetric properties of all nonblazar black holes observed with the Imaging X-ray Polarimetry Explorer. We find that their polarization properties are very similar, particularly in the hard state, where the corona dominates. This tentatively supports the idea that stellar and supermassive black holes share a common coronal geometry.","tags":["black holes","corona","x-ray"],"url":"https://www.slideshare.net/slideshow/a-comparison-of-the-x-ray-polarimetric-properties-of-stellar-and-supermassive-black-holes/273315214","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":4463},{"algorithmId":"","displayTitle":"Multi-aperturetelescopesatthequantumlimitofsuperresolutionimaging: Detectings...","isSavedByCurrentUser":false,"pageCount":11,"score":0,"slideshowId":"273314535","sourceName":"MORE_FROM_USER","strippedTitle":"multi-aperturetelescopesatthequantumlimitofsuperresolutionimaging-detectingsubrayleighobjectnearastar","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/1-s2-241114193824-936fd14d-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Angular resolutionisacritical aspectofastronomicalobservation, as itdetermines theminimumresolvable angle between two objects. This is governed by theRayleigh criterion, which states that theminimum resolvableangleisproportional tothewavelength(𝜆)over thediameter (𝐷)of theapertureofamonolithic telescope.While larger aperture telescopeshaveadvantages suchas smaller angular resolutionandhigher sensitivity todimand small exoplanets, theyalsohavedisadvantages suchas higher launchcost, design intricacies, andhighmissioncost.Usingmulti-aperturetelescopescanbeacost-effectivealternativeas they workontheprinciplesofbaselineinterferometry,makingtheminimumresolvableangleproportional to𝜆∕𝐵, where𝐵 is thebaseline. In thiswork,we compare theperformanceof a singlemonolithic telescope toa multi-aperturealternativewith the same effectiveglass area in the context of hypothesis testingbetween twoscenarios-𝐻1 (astar)and𝐻2 (astarwithanexoplanet).Weformulatethetheorybasedonlikelihood ratio tests and find that themulti-aperture telescopeperforms better than themonolithic telescopewhen directdetectionisusedonthefocalplane.Whilethis isexpected, theperformancecanbefurther improved byusing quantum-inspireddetecting strategies.We utilizeQuantumBinary SpatialModeDemultiplexing (BSPADE) toprocessthepointspreadfunction(PSF)of thetelescopesandfindbetterperformancecompared to the respectivedirect detectionmeasurement. Therefore, our efforts canbeviewedas oneof the initial steps towardemployingquantum-inspireddetection techniques in sparseaperture configurations for highcontrast imagingapplications. Inconclusion, ourworkshows thatmulti-aperture telescopesareaneffective alternativetomonolithictelescopesforobjectdiscriminationandpotentiallyforsuper-resolutionimagingand theirperformancecanbe further improvedbyusingquantum-inspireddetectionstrategies.Withtheir costeffectiveness(seeAppendixC)andpotential forhighperformance,multi-aperturetelescopescansignificantly advanceourabilitytoobserveandstudyexoplanetsandothercelestialobjects.Futureresearchcanexplore ways tooptimize the performance ofmulti-aperture telescopes and further improve their capabilities for astronomicalobservation,potentiallyfacilitatingthedetectionandimagingofEarth-likeexoplanets.","tags":["interferometry","stars","exoplanets"],"url":"https://www.slideshare.net/slideshow/multi-aperturetelescopesatthequantumlimitofsuperresolutionimaging-detectingsubrayleighobjectnearastar/273314535","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":446},{"algorithmId":"","displayTitle":"The anomalous state of Uranus’s magnetosphere during the Voyager 2 flyby","isSavedByCurrentUser":false,"pageCount":10,"score":0,"slideshowId":"273314068","sourceName":"MORE_FROM_USER","strippedTitle":"the-anomalous-state-of-uranus-s-magnetosphere-during-the-voyager-2-flyby","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02389-3-241114190817-0ea1513b-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The Voyager 2 fyby of Uranus in 1986 revealed an unusually oblique and\nof-centred magnetic feld. This single in situ measurement has been the\nbasis of our interpretation of Uranus’s magnetosphere as the canonical\nextreme magnetosphere of the solar system; with inexplicably intense\nelectron radiation belts and a severely plasma-depleted magnetosphere.\nHowever, the role of external forcing by the solar wind has rarely been\nconsidered in explaining these observations. Here we revisit the Voyager 2\ndataset to show that Voyager 2 observed Uranus’s magnetosphere in an\nanomalous, compressed state that we estimate to be present less than 5% of\nthe time. If the spacecraft had arrived only a few days earlier, the upstream\nsolar wind dynamic pressure would have been ~20 times lower, resulting in\na dramatically diferent magnetospheric confguration. We postulate that\nsuch a compression of the magnetosphere could increase energetic electron\nfuxes within the radiation belts and empty the magnetosphere of its plasma\ntemporarily. Therefore, the interpretation of Uranus’s magnetosphere\nas being extreme may simply be a product of a fyby that occurred under\nextreme upstream solar wind conditions.","tags":["uranus","voyager 2","magnetosphere"],"url":"https://www.slideshare.net/slideshow/the-anomalous-state-of-uranus-s-magnetosphere-during-the-voyager-2-flyby/273314068","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":5638},{"algorithmId":"","displayTitle":"Superluminal Proper Motion in the X-Ray Jet of Centaurus A","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"273175541","sourceName":"MORE_FROM_USER","strippedTitle":"superluminal-proper-motion-in-the-x-ray-jet-of-centaurus-a","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/bogensberger2024apj974307-241110233123-b632caf8-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The structure of the jet in Cen A is likely better revealed in X-rays than in the radio band, which is usually used to investigate jet proper motions. In this paper, we analyze Chandra Advanced CCD Imaging Spectrometer observations of Cen A from 2000 to 2022 and develop an algorithm for systematically fitting the proper motions of its X-ray jet knots. Most of the knots had an apparent proper motion below the detection limit. However, one knot at a transverse distance of 520 pc had an apparent superluminal proper motion of 2.7 ±0.4c. This constrains the inclination of the jet to be i \u003c 41°±6° and the velocity of this knot to be β\u003e0.94±0.02. This agrees well with the inclination measured in the inner jet by the Event Horizon Telescope but contradicts previous estimates based on jet and counterjet brightness. It also disagrees with the proper motion of the corresponding radio knot, of 0.8 ±0.1c, which further indicates that the X-ray and radio bands trace distinct structures in the jet. There are four prominent X-ray jet knots closer to the nucleus, but only one of these is inconsistent with being stationary. A few jet knots also have a significant proper-motion component in the nonradial direction. This component is typically larger closer to the center of the jet. We also detect brightness and morphology variations at a transverse distance of 100 pc from the nucleus.","tags":["centarus a","balck hole","agn"],"url":"https://www.slideshare.net/slideshow/superluminal-proper-motion-in-the-x-ray-jet-of-centaurus-a/273175541","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":721},{"algorithmId":"","displayTitle":"Emergence hour-by-hour of r-process features in the kilonova AT2017gfo","isSavedByCurrentUser":false,"pageCount":15,"score":0,"slideshowId":"273094274","sourceName":"MORE_FROM_USER","strippedTitle":"emergence-hour-by-hour-of-r-process-features-in-the-kilonova-at2017gfo","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/aa50317-24-241107105429-7d525fcf-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The spectral features in the optical/near-infrared counterparts of neutron star mergers (kilonovae, KNe) evolve dramatically on hourly timescales. To examine the spectral evolution, we compiled a temporal series that was complete at all observed epochs from 0.5 to 9.4 days of the best optical/near-infrared (NIR) spectra of the gravitational-wave detected kilonova AT2017gfo. Using our analysis of this spectral series, we show that the emergence times of spectral features place strong constraints on line identifications and ejecta properties, while their subsequent evolution probes the structure of the ejecta. We find that the most prominent spectral feature, the 1µmPCygniline, appears suddenly, with the earliest detection at 1.17days. We find evidence in this earliest feature for the fastest yet discovered kilonova ejecta component at 0.40–0.45c. Across the observed epochs and wavelengths, the velocities of the line-forming regions span nearly an order of magnitude, down to as low as 0.04–0.07c. The time of emergence closely follows the predictions for Srii because Sriii combines rapidly under local thermal equilibrium (LTE) conditions. The transition time between the doubly and singly ionised states provides the first direct measurement of the ionisation temperature. This temperature is highly consistent with the temperature of the emitted blackbody radiation field at a level of a few percent. Furthermore, we find the KN to be isotropic in temperature, that is, the polar and equatorial ejecta differ by less than a few hundred Kelvin or 5%, in the first few days postmerger based on measurements of the reverberation time-delay effect. This suggests that a model with very simple assumptions, with single-temperature LTE conditions, reproduces the early kilonova properties surprisingly well.","tags":["kilonova","at2017gfo","stars"],"url":"https://www.slideshare.net/slideshow/emergence-hour-by-hour-of-r-process-features-in-the-kilonova-at2017gfo/273094274","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":6097},{"algorithmId":"","displayTitle":"An independent hybrid imaging of Sgr A ∗ from the data in EHT 2017 obser v at...","isSavedByCurrentUser":false,"pageCount":28,"score":0,"slideshowId":"272809932","sourceName":"MORE_FROM_USER","strippedTitle":"an-independent-hybrid-imaging-of-sgr-a-from-the-data-in-eht-2017-obser-v-ations","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/stae1158-241028111053-33c178fc-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We propose that the ring structure found by the Event Horizon Telescope Collaboration (EHTC) as the black hole shadow of Sgr A ∗ is an artefact caused by the bumpy point spread function (PSF) of the EHT 2017 data. The imaging using sparse u-v data requires detailed scrutiny of the PSF. The estimated shadow diameter ( 48 . 7 ± 7 μas ) is equal to the spacing between the main beam and the first sidelobe of the PSF ( 49 . 09 μas ), which immediately suggests a potential problem in the deconvolution of the PSF . W e show that the ring image can be derived from non-ring simulated data sets (noise only; point source) with a narrow f ield-of-view (FOV) and an assumed self-calibration, suggesting that the EHT 2017 u-v co v erage is insufficient for reliable imaging. The EHTC analysis, based on calibrations with assumptions about the source’s size and properties, selected the final image by prioritizing the appearance rate of a similar structure from a large imaging parameter space o v er data consistenc y. Our independent analysis with conventional hybrid mapping reveals an elongated east–west structure, consistent with previous observ ations. We belie ve it to be more reliable than the EHTC image, owing to half the residuals in normalized visibility amplitude. The eastern half is brighter, possibly due to a Doppler boost from the rapidly rotating disc. We hypothesize that our image shows a portion of the accretion disc from about 2 to a few R S (where R S is the Schwarzschild radius) away from the black hole, rotating with nearly 60 per cent of the speed of light and viewed from an angle of 40 ◦−45 ◦. ","tags":["eht","sgra*","black hole"],"url":"https://www.slideshare.net/slideshow/an-independent-hybrid-imaging-of-sgr-a-from-the-data-in-eht-2017-obser-v-ations/272809932","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2744},{"algorithmId":"","displayTitle":"Searching for Planets Orbiting Vega with the James Webb Space Telescope","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"272771389","sourceName":"MORE_FROM_USER","strippedTitle":"searching-for-planets-orbiting-vega-with-the-james-webb-space-telescope","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2410-241027080627-64ea7b75-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The most prominent of the IRAS debris disk systems, α Lyrae (Vega), at a distance of 7.7 pc, has been\nobserved by both the NIRCam and MIRI instruments on the James Webb Space Telescope (JWST). This paper\ndescribes NIRCam coronagraphic observations which have achieved F444W contrast levels of 3×10−7\nat 1′′\n(7.7 au), 1×10−7\nat 2′′ (15 au) and few ×10−8 beyond 5′′ (38 au), corresponding to masses of \u003c 3, 2 and 0.5\nMJ for a system age of 700 Myr. Two F444W objects are identified in the outer MIRI debris disk, around 48\nau. One of these is detected by MIRI, appears to be extended and has a spectral energy distribution similar to\nthose of distant extragalactic sources. The second one also appears extended in the NIRCam data suggestive of\nan extragalactic nature.The NIRCam limits within the inner disk (1′′ –10′′) correspond to a model-dependent\nmasses of 2∼3 MJ. Su et al. (2024) argue that planets larger even 0.3 MJ would disrupt the smooth disk\nstructure seen at MIRI wavelengths. Eight additional objects are found within 60′′ of Vega, but none has\nastrometric properties or colors consistent with planet candidates. These observations reach a level consistent\nwith expected Jeans Mass limits. Deeper observations achieving contrast levels \u003c 10−8 outside of ∼4\n′′ and\nreaching masses below that of Saturn are possible, but may not reveal a large population of new objects.","tags":["vega","james webb","exoplanets"],"url":"https://www.slideshare.net/slideshow/searching-for-planets-orbiting-vega-with-the-james-webb-space-telescope/272771389","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2983},{"algorithmId":"","displayTitle":"Massive Star Formation Starts in Subvirial Dense Clumps Unless Resisted by St...","isSavedByCurrentUser":false,"pageCount":12,"score":0,"slideshowId":"272645139","sourceName":"MORE_FROM_USER","strippedTitle":"massive-star-formation-starts-in-subvirial-dense-clumps-unless-resisted-by-strong-magnetic-fields","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/wang2024apjl974l6-241023023244-8ca45da6-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Knowledge of the initial conditions of high-mass star formation is critical for theoretical models, but are not well observed. Built on our previous characterization of a Galaxy-wide sample of 463 candidate high-mass starless clumps (HMSCs), here we investigate the dynamical state of a representative subsample of 44 HMSCs (radii 0.13–1.12 pc) using Green Bank Telescope NH3 (1,1) and (2,2) data from the Radio Ammonia Mid-Plane Survey pilot data release. By fitting the two NH3lines simultaneously, we obtain velocity dispersion, gas kinetic temperature, NH3 column density and abundance, Mach number, and virial parameter. Thermodynamic analysis reveals that most HMSCs have Mach number \u003c5, inconsistent with what have been considered in theoretical models. All but one (43 out of 44) of the HMSCs are gravitationally bound with virial parameter αvir \u003c 2. Either these massive clumps are collapsing or magnetic field strengths of 0.10–2.65 mG (average 0.51 mG) would be needed to prevent them from collapsing. The estimated B-field strength correlates tightly with density, ( ) B n mG 0.269 10 cm est H 4 30.61 =2 , with a similar power-law index as found in observations but a factor of 4.6 higher in strength. For the first time, the initial dynamical state of high-mass formation regions has been statistically constrained to be subvirial, in contradiction to theoretical models in virial equilibrium and in agreement with the lack of observed massive starless cores. The findings urge future observations to quantify the magnetic f ield support in the prestellar stage of massive clumps, which has rarely been explored so far, toward a full understanding of the physical conditions that initiate massive star formation.","tags":["stars","massive stars","magnetic fields"],"url":"https://www.slideshare.net/slideshow/massive-star-formation-starts-in-subvirial-dense-clumps-unless-resisted-by-strong-magnetic-fields/272645139","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":926},{"algorithmId":"","displayTitle":"A Detailed Study of Jupiter’s Great Red Spot over a 90-day Oscillation Cycle","isSavedByCurrentUser":false,"pageCount":18,"score":0,"slideshowId":"272419151","sourceName":"MORE_FROM_USER","strippedTitle":"a-detailed-study-of-jupiter-s-great-red-spot-over-a-90-day-oscillation-cycle","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/simon2024planet-241015033834-c359cc2c-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Jupiter’s Great Red Spot (GRS) is known to exhibit oscillations in its westward drift with a 90-day period. The GRS was observed with the Hubble Space Telescope on eight dates over a single oscillation cycle in 2023 December to 2024 March to search for correlations in its physical characteristics over that time. Measured longitudinal positions are consistent with a 90-day oscillation in drift, but no corresponding oscillation is found in latitude. We find that the GRS size and shape also oscillate with a 90-day period, having a larger width and aspect ratio when it is at its slowest absolute drift (minimum date-to-date longitude change). The GRS’s UV and methane gas absorption-band brightness variations over this cycle were small, but the core exhibited a small increase in UV brightness in phase with the width oscillation; it is brightest when the GRS is largest. The high-velocity red collar also exhibited color changes, but out of phase with the other oscillations. Maximum interior velocities over the cycle were about 20ms−1 larger than minimum velocities, slightly larger than the mean uncertainty of 13 m s−1, but velocity variability did not follow a simple sinusoidal pattern as did other parameters such as longitude width or drift. Relative vorticity values were compared with aspect ratios and show that the GRS does not currently follow the Kida relation.","tags":["great red spot","grs","jupiter"],"url":"https://www.slideshare.net/slideshow/a-detailed-study-of-jupiter-s-great-red-spot-over-a-90-day-oscillation-cycle/272419151","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":734},{"algorithmId":"","displayTitle":"On the age and metallicity of planet-hosting triple star systems","isSavedByCurrentUser":false,"pageCount":12,"score":0,"slideshowId":"272263751","sourceName":"MORE_FROM_USER","strippedTitle":"on-the-age-and-metallicity-of-planet-hosting-triple-star-systems","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2408-241008103150-cf057ede-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We present a statistical analysis of the ages\nand metallicities of triple stellar systems that are known\nto host exoplanets. With controversial cases disregarded, so far 27 of those systems have been identified.\nOur analysis, based on an exploratory approach, shows\nthat those systems are on average notably younger than\nstars situated in the solar neighborhood. Though the\nstatistical significance of this result is not fully established, the most plausible explanation is a possible double selection effect due to the relatively high mass of\nplanet-hosting stars of those systems (which spend less\ntime on the main-sequence than low-mass stars) and\nthat planets in triple stellar systems may be long-term\norbitally unstable. The stellar metallicities are on average solar-like; however, owing to the limited number\nof data, this result is not inconsistent with the previous\nfinding that stars with planets tend to be metal-rich as\nthe deduced metallicity distribution is relatively broad.","tags":["triple stars","exoplanetas","planets"],"url":"https://www.slideshare.net/slideshow/on-the-age-and-metallicity-of-planet-hosting-triple-star-systems/272263751","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":2238},{"algorithmId":"","displayTitle":"An ancient and impure frozen ocean on Ceres implied by its ice-rich crust","isSavedByCurrentUser":false,"pageCount":7,"score":0,"slideshowId":"272228073","sourceName":"MORE_FROM_USER","strippedTitle":"an-ancient-and-impure-frozen-ocean-on-ceres-implied-by-its-ice-rich-crust","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02350-4-241006233429-1388a177-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Ceres is a key object in understanding the evolution of small bodies and\nis the only dwarf planet to have been orbited by a spacecraft, NASA’s\nDawn mission. Dawn data paint an inconclusive picture of Ceres’ internal\nstructure, composition and evolutionary pathway: crater morphology and\ngravity inversions suggest an ice-rich interior, while a lack of extensive crater\nrelaxation argues for low ice content. Here we resolve this discrepancy\nby applying an ice rheology that includes efects of impurities on grain\nboundary sliding to fnite element method simulations of Cerean craters.\nWe show that Ceres can maintain its cratered topography while also having\nan ice-rich crust. Our simulations show that a crust with ~90% ice near the\nsurface, which gradually decreases to 0% at 117 km depth, simultaneously\nmatches the observed lack of crater relaxation, observed crater morphology\nand gravity inversions. This crustal structure results from a frozen ocean\nthat became more impurity rich as it solidifed top-down. Therefore, the\nDawn data are consistent with an icy Ceres that evolved through freezing\nof an ancient, impure ocean.","tags":["ceres","ocean world","salt"],"url":"https://www.slideshare.net/slideshow/an-ancient-and-impure-frozen-ocean-on-ceres-implied-by-its-ice-rich-crust/272228073","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1158},{"algorithmId":"","displayTitle":"Searching for small primordial black holes in planets, asteroids and here on ...","isSavedByCurrentUser":false,"pageCount":5,"score":0,"slideshowId":"272225479","sourceName":"MORE_FROM_USER","strippedTitle":"searching-for-small-primordial-black-holes-in-planets-asteroids-and-here-on-earth","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2409-241006191258-330aabf0-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Small primordial black holes could be captured by rocky planets or asteroids, consume their liquid\ncores from inside and leave hollow structures. We calculate the surface density and surface tension of\na hollow structure around a black hole and compare them with the density and compressive strength\nof various materials that appear in nature to find the allowed parameter space. For example, granite\nor iron can support a hollow asteroid/planetoid/moon of the size of up to 0.1R⊕. Along the same\nlines, future civilizations might build spherical structures around black holes to harvest their energy.\nUsing the strongest material that we currently know how to make (multiwall carbon nanotube), to\nwithstand gravity of one solar mass black hole, the shell must be constructed at distances larger\nthan 104R⊙. Alternatively, a fast black hole can leave a narrow tunnel in a solid object while passing\nthrough it. For example, a 1022g black hole should leave a tunnel with a radius of 0.1 micron, which\nis large enough to be seen by an optical microscope. We could look for such micro-tunnels here\non Earth in very old rocks, or even glass or other solid structures in very old buildings. While our\nestimate gives a very small probability of finding such tunnels, looking for them does not require\nexpensive equipment and long preparation, and the payoff might be significant.","tags":["black holes","earth","universe"],"url":"https://www.slideshare.net/slideshow/searching-for-small-primordial-black-holes-in-planets-asteroids-and-here-on-earth/272225479","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1850},{"algorithmId":"","displayTitle":"An Extragalactic Widefield Search for Technosignatures with the Murchison Wid...","isSavedByCurrentUser":false,"pageCount":7,"score":0,"slideshowId":"272136847","sourceName":"MORE_FROM_USER","strippedTitle":"an-extragalactic-widefield-search-for-technosignatures-with-the-murchison-widefield-array","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2408-241002015337-dce30b47-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"It is common for surveys that are designed to find artificial signals generated by distant civilizations to focus on galactic sources. Recently, researchers have started focusing on searching for all other sources within the field observed, including the vast population of background galaxies. Toward a population of galaxies in the background toward the Vela supernova remnant, we search for technosignatures, spectral and temporal features consistent with our understanding of technology. We set transmitter power limits for the detection of signals in a population of over 1,300 galaxies within a single field of view observed with the Murchison Widefield Array.","tags":["seti","galaxies","low frequency"],"url":"https://www.slideshare.net/slideshow/an-extragalactic-widefield-search-for-technosignatures-with-the-murchison-widefield-array/272136847","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":572},{"algorithmId":"","displayTitle":"LIFE IN THE BUBBLE:HOWANEARBYSUPERNOVALEFTEPHEMERALFOOTPRINTSONTHECOSMIC-RAY ...","isSavedByCurrentUser":false,"pageCount":10,"score":0,"slideshowId":"272020848","sourceName":"MORE_FROM_USER","strippedTitle":"life-in-the-bubble-howanearbysupernovaleftephemeralfootprintsonthecosmic-ray-spectrumandindelibleimprintsonlife","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2409-240925203800-4258a35d-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"The Earth sits inside a 300pc-wide void that was carved by a series of supernova explosions that went off tens of millions of years ago, pushing away interstellar gas and creating a bubble-like structure. The 60Fe peak deposits found in the deep-sea crust have been interpreted by the imprints left by the ejecta of supernova explosions occurring about 2-3 and 5-6 Myr ago. It is likely that the 60Fe peak at about 2-3 Myr originated from a supernova occurring in the Upper Centaurus Lupus association in Scorpius Centaurus (≈140 pc) or the Tucana Horologium association (≈70 pc). Whereas, the ≈ 5-6 Myr peak is likely attributed to the solar system’s entrance into the bubble. In this Letter, we show that the supernova source responsible for synthesizing the 60Fe peak deposits ≈ 2-3 Myr ago was also likely a Galactic PeVatron source. We demonstrate that this supernova can consistently explain the “knee” in the cosmic-ray spectrum and the large-scale anisotropy between 100 TeV and 100 PeV. Matching the intensity and shape of the cosmic-ray spectrum allows us to place stringent constraints on the cosmic-ray energy content from the supernova as well as on the cosmic-ray diffusion coefficient. Making use of such constraints we provide a robust estimate of the temporal variation of terrestrial ionizing cosmic radiation levels and discuss their implications in the development of early life on Earth by plausibly influencing the mutation rate and, as such, conceivably assisting in the evolution of complex organisms.","tags":["bubble","supernovae","life"],"url":"https://www.slideshare.net/slideshow/life-in-the-bubble-howanearbysupernovaleftephemeralfootprintsonthecosmic-ray-spectrumandindelibleimprintsonlife/272020848","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":746},{"algorithmId":"","displayTitle":"Early galaxies and early dark energy: a unified solution to the hubble tensio...","isSavedByCurrentUser":false,"pageCount":14,"score":0,"slideshowId":"271998679","sourceName":"MORE_FROM_USER","strippedTitle":"early-galaxies-and-early-dark-energy-a-unified-solution-to-the-hubble-tension-and-puzzles-of-massi-v-e-bright-galaxies-revealed-by-jwst","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/stae1932-240924200545-e7d04c46-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"JWST has revealed a large population of UV-bright galaxies at z ≳ 10 and possibly o v erly massiv e galaxies at z ≳ 7, challenging standard galaxy formation models in the CDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at 4 ≲ z ≲ 10 in both CDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at z 12 based on spectroscopically confirmed galaxies (eight galaxies at z 11 –13 . 5) exhibit no tension with the benchmark model. Photometric constraints at 12 ≲ z ≲ 16 can be fully explained within EDE via either moderately increased star-formation efficiencies ( ∗ ∼ 3 –10 per cent at M halo ∼ 10 10 . 5 M ) or enhanced UV variabilities ( σUV ∼ 0 . 8 –1 . 3 mag at M halo ∼ 10 10 . 5 M ) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in CDM, especially at z ≳ 14, where the required σUV exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics. ","tags":["james webb","dark energy","hubble tension"],"url":"https://www.slideshare.net/slideshow/early-galaxies-and-early-dark-energy-a-unified-solution-to-the-hubble-tension-and-puzzles-of-massi-v-e-bright-galaxies-revealed-by-jwst/271998679","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":1797},{"algorithmId":"","displayTitle":"Neutrino trapping and out-of-equilibrium effects in binary neutron star merge...","isSavedByCurrentUser":false,"pageCount":9,"score":0,"slideshowId":"271959847","sourceName":"MORE_FROM_USER","strippedTitle":"neutrino-trapping-and-out-of-equilibrium-effects-in-binary-neutron-star-merger-remnants","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/2311-240923023752-df64d1b5-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We study out-of-thermodynamic equilibrium effects in neutron star mergers with 3D generalrelativistic neutrino-radiation large-eddy simulations. During merger, the cores of the neutron stars\nremain cold (T ∼ a few MeV) and out of thermodynamic equilibrium with trapped neutrinos\noriginating from the hot collisional interface between the stars. However, within ∼2−3 milliseconds\nmatter and neutrinos reach equilibrium everywhere in the remnant. Our results show that dissipative\neffects, such as bulk viscosity, if present, are only active for a short window of time after the merger.","tags":["neutron star","sollide","neutrinos"],"url":"https://www.slideshare.net/slideshow/neutrino-trapping-and-out-of-equilibrium-effects-in-binary-neutron-star-merger-remnants/271959847","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":5209},{"algorithmId":"","displayTitle":"A detached double X-ray tail in the merging galaxy cluster Z8338 with a large...","isSavedByCurrentUser":false,"pageCount":10,"score":0,"slideshowId":"271955879","sourceName":"MORE_FROM_USER","strippedTitle":"a-detached-double-x-ray-tail-in-the-merging-galaxy-cluster-z8338-with-a-large-double-tail","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/stad2397-240922212216-ba6f9de7-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"When subhaloes infall into galaxy clusters, their gas content is ram pressure stripped by the intracluster medium (ICM) and may\nturn into cometary tails. We report the discovery of two spectacular X-ray double tails in a single galaxy cluster, Z8338, revealed\nby 70 ks Chandra observations. The brighter one, with an X-ray bolometric luminosity of 3.9 × 1042 erg s−1, is a detached tail\nstripped from the host halo and extended at least 250 kpc in projection. The head of the detached tail is a cool core with the\nfront tip of the cold front ∼30 kpc away from the nucleus of its former host galaxy. The cooling time of the detached cool core\nis ∼0.3 Gyr. For the detached gas, the gravity of the once-associated dark matter halo further enhances the Rayleigh–Taylor\ninstability. From its survival, we find that a magnetic field of a few μG is required to suppress the hydrodynamic instability. The\nX-ray temperature in the tail increases from 0.9 keV at the front tip to 1.6 keV in the wake region, which suggests the turbulent\nmixing with the hotter ICM. The fainter double X-ray tail, with a total X-ray luminosity of 2.7 × 1042 erg s−1, appears to stem\nfrom the cool core of a subcluster in Z8338, and likely was formed during the ongoing merger. This example suggests that X-ray\ncool cores can be displaced and eventually destroyed by mergers, while the displaced cool cores can survive for some extended\nperiod of time.","tags":["chandra","galaxy cluster","gas tail"],"url":"https://www.slideshare.net/slideshow/a-detached-double-x-ray-tail-in-the-merging-galaxy-cluster-z8338-with-a-large-double-tail/271955879","userLogin":"sacani","userName":"Sérgio Sacani","viewCount":464}],"featured":null,"latest":[{"algorithmId":"4","displayTitle":"Study about 'Genome mapping' in molecular genetics.pdf","isSavedByCurrentUser":false,"pageCount":31,"score":0,"slideshowId":"273482909","sourceName":"LATEST","strippedTitle":"study-about-genome-mapping-in-molecular-genetics-pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/iamsharinggenomemappingwithyou-241121022852-3c0a8074-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Genome mapping is the process of creating a visual representation of the order and distance between genes, genetic markers, or other features on a chromosome. Here's a descriptive overview of genome mapping:\n\n*Types of Genome Maps:*\n\n1. *Genetic Map*: A map that shows the relative positions of genes or genetic markers on a chromosome, based on recombination frequencies.\n2. *Physical Map*: A map that shows the absolute positions of genes or genetic markers on a chromosome, based on DNA sequencing or other physical methods.\n3. *Cytogenetic Map*: A map that shows the physical location of genes or genetic markers on a chromosome, based on cytogenetic techniques such as fluorescence in situ hybridization (FISH).\n\n*Steps Involved in Genome Mapping:*\n\n1. *DNA Isolation*: Isolation of DNA from cells or tissues.\n2. *Library Construction*: Creation of a library of DNA fragments, such as bacterial artificial chromosomes (BACs) or yeast artificial chromosomes (YACs).\n3. *Marker Development*: Development of genetic markers, such as simple sequence repeats (SSRs) or single nucleotide polymorphisms (SNPs).\n4. *Genotyping*: Determination of the genotype of individuals or cell lines using the developed markers.\n5. *Linkage Analysis*: Analysis of the genotyping data to identify linkages between markers and genes.\n6. *Map Construction*: Construction of the genome map using the linkage data and other information.\n\n*Techniques Used in Genome Mapping:*\n\n1. *PCR (Polymerase Chain Reaction)*: Amplification of specific DNA sequences.\n2. *DNA Sequencing*: Determination of the order of nucleotide bases in a DNA molecule.\n3. *FISH (Fluorescence In Situ Hybridization)*: Visualization of specific DNA sequences on chromosomes.\n4. *Microarray Analysis*: Analysis of gene expression levels using microarrays.\n5. *Next-Generation Sequencing (NGS)*: High-throughput DNA sequencing technologies.\n\n*Applications of Genome Mapping:*\n\n1. *Genetic Disease Diagnosis*: Identification of genetic variants associated with diseases.\n2. *Personalized Medicine*: Tailoring medical treatment to an individual's genetic profile.\n3. *Crop Improvement*: Development of crops with desirable traits using genetic mapping.\n4. *Forensic Analysis*: Use of genetic markers for forensic identification.\n5. *Synthetic Biology*: Design and construction of new biological systems using genome mapping information.","tags":[],"url":"https://www.slideshare.net/slideshow/study-about-genome-mapping-in-molecular-genetics-pdf/273482909","userLogin":"AbhishekGupta383669","userName":"AbhishekGupta383669","viewCount":120},{"algorithmId":"4","displayTitle":"【加拿大毕业证书定制】安大略艺术设计学院OCAD毕业证学位证留学生如何办理","isSavedByCurrentUser":false,"pageCount":13,"score":0,"slideshowId":"273428119","sourceName":"LATEST","strippedTitle":"pc5yv2-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/random-241119093552-1b751f4c-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"加拿大毕业证书定制-原版高精度还原【办证威信-QQ/: 74100 3700】安大略艺术设计学院OCAD毕业证和学位证书、成绩单、offer留信学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作(包括:隐形水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠,文字图案浮雕,激光镭射,紫外荧光,温感,复印防伪)行业标杆!精益求精,诚心合作,真诚制作!多年品质 ,按需精细制作,24小时接单,全套进口原装设备,十五年致力于帮助留学生解决难题,业务范围有加拿大、英国、澳洲、韩国、美国、新加坡,新西兰等学历材料,包您满意。\r\n\r\n主要有文凭办理、毕业证购买、毕业证成绩单购买、文凭购买,毕业证办理业务。一比一还原国外大学毕业证,定制国外大学学历,制作国外大学文凭,复刻国外大学毕业证书。办理毕业证、办理文凭、 买大学毕业证、买大学文凭,海量学校供您选择 · 学校真实原版工艺 · 十年从业经验专业可靠 · 您值得信赖的合作商家!\r\n\r\n【关于学历材料质量】\r\n我们承诺采用的是学校原版纸张(原版纸质、底色、纹路)我们工厂拥有全套进口原装设备,特殊工艺都是采用不同机器制作,仿真度基本可以达到100%,所有成品以及工艺效果都可提前给客户展示,不满意可以根据客户要求进行调整,直到满意为止!提供美国毕业证制作、加拿大毕业证定做、美国文凭订购、加拿大大学毕业证、美国大学文凭办理,加拿大文凭办理等业务。\r\n【业务选择办理准则】\r\n一、工作未确定,回国需先给父母、亲戚朋友看下文凭的情况,办理一份就读学校的毕业证【微信号bwp0011】文凭即可\r\n二、回国进私企、外企、自己做生意的情况,这些单位是不查询毕业证真伪的,而且国内没有渠道去查询国外文凭的真假,也不需要提供真实教育部认证。鉴于此,办理一份毕业证【微信号bwp0011】即可\r\n三、进国企,银行,事业单位,考公务员等等,这些单位是必需要提供真实教育部认证的,办理教育部认证所需资料众多且烦琐,所有材料您都必须提供原件,我们凭借丰富的经验,快捷的绿色通道帮您快速整合材料,让您少走弯路。\r\n\r\n【成绩单有没有必要办理】\r\n成绩单的意义主要体现在证明学习能力、评估学术背景、展示综合素质、提高录取率,以及是作为留信认证申请材料的一部分。\r\n成绩单能够体现您的的学习能力,包括课程成绩、专业能力、研究能力。具体来说,成绩报告单通常包含学生的学习技能与习惯、各科成绩以及老师评语等部分,因此,成绩单不仅是学生学术能力的证明,也是评估学生是否适合某个教育项目的重要依据!\r\n\r\n留信网认证的作用:\r\n1:该专业认证可证明留学生真实身份\r\n2:同时对留学生所学专业登记给予评定\r\n3:国家专业人才认证中心颁发入库证书\r\n4:这个认证书并且可以归档倒地方\r\n5:凡事获得留信网入网的信息将会逐步更新到个人身份内,将在公安局网内查询个人身份证信息后,同步读取人才网入库信息\r\n6:个人职称评审加20分\r\n7:个人信誉贷款加10分\r\n8:在国家人才网主办的国家网络招聘大会中纳入资料,供国家高端企业选择人才\r\n\r\n留信网服务项目:\r\n1、留学生专业人才库服务(留信分析)\r\n2、国(境)学习人员提供就业推荐信服务\r\n3、留学人员区块链存储服务\r\n\r\n国外留学回国的学生都清楚学历认证【微信:bwp0011】的重要性,一些在留学期间因为意外情况被开除不能毕业的学生,即便在无学位的情况下,也想费尽心思申请一份学历认证为自己证明国外的学位情况。\r\n留学认证学历从最简单的层面来说是对你纪念学习生涯画上一个完美的句号,从另一种角度来说也是对自己的一种交代,更是一种学习能力的证明!\r\n\r\n留信网和中留服的区别:【微信:bwp0011】\r\n办理安大略艺术设计学院OCAD毕业证【微信:bwp0011】offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作\r\n留信网的主办单位是北京留信信息科学研究院,主要职责就是为留学归国人员提供留学生就业等人力资源服务,提供“境外校库”海外院校办学信息查询。留信认证主要是出具“留学生专业人才入库证明”,以及一个留信网网络查询留学经历数据分析报告。\r\n\r\n留服即中国留学服务中心,是教育部直属事业单位,主要从事出国留学、留学回国、来华留学以及教育国际交流与合作等领域的相关服务,其中国企,考公,落户,升学等都是需要留服认证的。\r\n\r\n两种认证用处有所差异,大家肯定都想做更有用的留服认证。须知,留服认证只有在正规大学或项目就读,顺利毕业取得学位的情况下才能认证通过,如果是留学未能完成学业的,没有取得毕业相关证书,则无法通过认证。\r\n\r\n在这种情况下,国外留学无法毕业的留学生如果想要直接认证,则只能选择留信认证了。这种方式可以给予因为各种原因在国外无法完成学业,被退学,被开除的同学更多选择的可能,更多证明留学经历学习背景的机会。\r\n办理安大略艺术设计学院OCAD毕业证【微信:bwp0011】offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。\r\n\r\n办理安大略艺术设计学院OCAD毕业证/学位证【qq:74100 3700】在读证明信/文凭证书、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作\r\n定制安大略艺术设计学院OCAD毕业证成绩单【qq:74100 3700】不同学院专业模版基本一致,不同年份版本有所区别,严格按照不同年份版本来定制。\r\n留学:一场跨越国界的成长之旅\r\n在人生的广阔画卷中,留学无疑是最为绚烂多彩的一笔。它不仅仅是一次地理上的迁徙,更是心灵与智慧的深度游历,是自我挑战与重塑的宝贵机遇。当飞机划过天际,远离熟悉的土地,每一位踏上留学征途的学子,都怀揣着梦想与不安,迈向了一个全新的世界。\r\n文化的碰撞与融合\r\n留学,首先是一场文化的盛宴。走进异国他乡,每一处风景、每一道菜肴、每一种语言,都是文化的独特印记\r\n总之,留学是一场充满挑战与机遇的旅程。它让学子们在文化的碰撞中拓宽视野,在学术的深耕中提升自我,在独立与成长的磨砺中变得坚韧不拔,在人际关系的构建中拓展世界。这段经历,将成为他们人生中最宝贵的财富之一,激励他们在未来的道路上勇往直前,不断探索未知的世界","tags":["安大略艺术设计学院ocad毕业证"],"url":"https://www.slideshare.net/slideshow/pc5yv2-pptx/273428119","userLogin":"2uewfxnc","userName":"2uewfxnc","viewCount":22},{"algorithmId":"4","displayTitle":"Bright Field Microbiology//ppt Microbiology","isSavedByCurrentUser":false,"pageCount":20,"score":0,"slideshowId":"273582035","sourceName":"LATEST","strippedTitle":"bright-field-microbiology-ppt-microbiology","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/untitledpresentation-1-241125110559-a0d13d16-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Bright microscopy is the simplest of all the optical microscopy illumination techniques.","tags":["general microbiology"],"url":"https://www.slideshare.net/slideshow/bright-field-microbiology-ppt-microbiology/273582035","userLogin":"KillerPrince","userName":"KillerPrince","viewCount":12},{"algorithmId":"4","displayTitle":"Introduction to Biomanufacturing process","isSavedByCurrentUser":false,"pageCount":18,"score":0,"slideshowId":"273506116","sourceName":"LATEST","strippedTitle":"introduction-to-biomanufacturing-process","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/1-chapter-1-updated-241121193102-10ccba8f-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"BIOPHARMACEUTICAL MANUFACTURING (BIOMANUFACTURING)\nBiomanufacturing, a specialization within biotechnology, is an advanced-technology\nmanufacturing industry responsible for making biopharmaceuticals (biologics).\nBiopharmaceuticals are any biotechnology-based therapeutics that structurally mimic\ncomponents found in a living organism. These can include:\n hormones\n growth factors\n blood proteins\n clotting factors\n enzymes\n antibodies\n DNA and RNA\n stem cells\nThe application of biopharmaceuticals in health and medicine are numerous:\n therapeutic proteins for treatment of disease\n vaccines to prevent disease\n protein or DNA-based diagnostics\n regenerative medicine technology\n gene therapy\nProduction of the first biopharmaceutical\nModern biomanufacturing began when recombinant human insulin was first commercially\nproduced and marketed in the United States in 1982. The effort leading up to this landmark\nevent began in the early 1970s when research scientists developed protocols to construct DNA\nvectors. The scientists cut out pieces of DNA then pasted them into small circular DNA\nmolecules known as plasmid DNA to create a new piece of DNA (recombinant DNA). This\nrecombinant DNA could be inserted into the bacterium Escherichia coli by the process of\ntransformation. If one of the pieces of the new DNA included a gene that produced an enzyme\nthat broke down a particular antibiotic, the bacterium containing the introduced gene would be\nresistant to that antibiotic. This provides a means of selection for the bacteria that take up the\nplasmid since the bacteria can now grow in a medium containing it the antibiotic","tags":["biomanufacturing","introduction","therapeutic proteins for treat"],"url":"https://www.slideshare.net/slideshow/introduction-to-biomanufacturing-process/273506116","userLogin":"gaithsamerali","userName":"gaithsamerali","viewCount":43},{"algorithmId":"4","displayTitle":"Sound -The Science Behind Sound and Vibrations.pptx","isSavedByCurrentUser":false,"pageCount":12,"score":0,"slideshowId":"273556852","sourceName":"LATEST","strippedTitle":"sound-the-science-behind-sound-and-vibrations-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/soundisproducedbyvibrations-241124084632-84692a6d-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Learning Objectives:\nTo describe how sound is produced.\nTo explain how human hear sounds.\nTo differentiate between the sounds produced by objects in terms of loudness and pitch.\n___________________________REMEMBER\nDon't listen to sounds which are too loud as it can damage your eardrums and impair you from hearing.\n\n\n","tags":[],"url":"https://www.slideshare.net/slideshow/sound-the-science-behind-sound-and-vibrations-pptx/273556852","userLogin":"arshaaji2022","userName":"arshaaji2022","viewCount":11},{"algorithmId":"4","displayTitle":"Stabilising forces in macromolecules. .","isSavedByCurrentUser":false,"pageCount":24,"score":0,"slideshowId":"273566331","sourceName":"LATEST","strippedTitle":"stabilising-forces-in-macromolecules","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/stabilisingforcesinmacromoleculescopycopy-241124220231-724eb1ba-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Stabilizing forces in macromolecules are essential for maintaining their structure and function. These forces can be broadly categorized into several types:\n\n### 1. **Covalent Bonds**\n - **Peptide Bonds**: In proteins, covalent bonds link amino acids together, forming a polypeptide chain.\n - **Glycosidic Bonds**: In carbohydrates, these bonds connect sugar units.\n - **Phosphodiester Bonds**: In nucleic acids, these bonds link nucleotides together in DNA and RNA.\n\n### 2. **Non-Covalent Interactions**\n - **Hydrogen Bonds**: These are weak interactions between a hydrogen atom covalently bonded to an electronegative atom and another electronegative atom. They are crucial in stabilizing secondary structures in proteins (e.g., α-helices and β-sheets) and base pairing in nucleic acids.\n - **Ionic Interactions**: Also known as electrostatic interactions, these occur between charged groups (e.g., between oppositely charged amino acid side chains).\n - **Van der Waals Forces**: These are weak, non-specific interactions that occur between all atoms, contributing to the overall stability of macromolecular structures.\n - **Hydrophobic Interactions**: Non-polar side chains in proteins tend to cluster together to avoid contact with water, driving the folding of proteins and stabilizing their three-dimensional structure.\n\n### 3. **Structural Elements**\n - **Disulfide Bonds**: Covalent bonds formed between cysteine residues, providing additional stability to the folded structure of proteins, particularly in extracellular environments.\n - **Metal Ion Coordination**: Certain macromolecules, especially proteins, can be stabilized by the binding of metal ions (e.g., zinc, iron), which can facilitate structural integrity and function.\n\n### 4. **Macromolecular Assembly**\n - **Quaternary Structure Stabilization**: In proteins with multiple subunits, interactions between these subunits (through non-covalent forces) are critical for maintaining the functional structure.\n - **Polymerization Forces**: In nucleic acids and polysaccharides, the formation of larger complexes or chains is stabilized by the aforementioned interactions.\n\n### 5. **Environmental Factors**\n - **pH and Ionic Strength**: Changes in pH and ionic concentration can affect ionic interactions and hydrogen bonding, influencing the stability of macromolecules.\n - **Temperature**: Higher temperatures can disrupt stabilizing interactions, leading to denaturation.\n\n### Summary\nThe stability of macromolecules is a result of a combination of covalent bonds and various non-covalent interactions. These forces enable macromolecules to maintain their structural integrity and perform their biological functions effectively. Understanding these stabilizing forces is crucial in fields such as biochemistry, molecular biology, and materials science.","tags":["biotechnology"],"url":"https://www.slideshare.net/slideshow/stabilising-forces-in-macromolecules/273566331","userLogin":"nesmasamad11","userName":"nesmasamad11","viewCount":13},{"algorithmId":"4","displayTitle":"structure and affinities of Gymnophiona and Stegocephalia.pptx","isSavedByCurrentUser":false,"pageCount":25,"score":0,"slideshowId":"273406278","sourceName":"LATEST","strippedTitle":"structure-and-affinities-of-gymnophiona-and-stegocephalia-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/structureandaffinitiesofgymnophionaandstegocephalia-241118152109-3add7fb9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"gymnophiona","tags":[],"url":"https://www.slideshare.net/slideshow/structure-and-affinities-of-gymnophiona-and-stegocephalia-pptx/273406278","userLogin":"SandeepRaghuvanshi6","userName":"Sandeep Raghuvanshi","viewCount":53},{"algorithmId":"4","displayTitle":"Cell division \u0026 Cell Cycle (Prepared by Taslima Khatun)","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"273467629","sourceName":"LATEST","strippedTitle":"cell-division-cell-cycle-prepared-by-taslima-khatun","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/celldivisioncellcycle-241120125925-6232d2ff-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Cell division and Cell Cycle.","tags":["#cell division #cell cycle"],"url":"https://www.slideshare.net/slideshow/cell-division-cell-cycle-prepared-by-taslima-khatun/273467629","userLogin":"taslimkhatuntaslima4","userName":"taslimkhatuntaslima4","viewCount":73},{"algorithmId":"4","displayTitle":"SM-Chordates, protochordates.ppt core paper","isSavedByCurrentUser":false,"pageCount":45,"score":0,"slideshowId":"273418295","sourceName":"LATEST","strippedTitle":"sm-chordates-protochordates-ppt-core-paper","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/sm-chordatesprotochordates-241119031037-1daeddf3-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Chordates, protochordates","tags":[],"url":"https://www.slideshare.net/slideshow/sm-chordates-protochordates-ppt-core-paper/273418295","userLogin":"rakhibhrin","userName":"rakhibhrin","viewCount":104},{"algorithmId":"4","displayTitle":"Efficient calculation of theta functions attached to p-adic Schottky groups","isSavedByCurrentUser":false,"pageCount":25,"score":0,"slideshowId":"273492112","sourceName":"LATEST","strippedTitle":"efficient-calculation-of-theta-functions-attached-to-p-adic-schottky-groups-c9d5","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/talksga24-241121085525-5ab8bb6c-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"We describe an efficient iterative algorithm to compute theta functions of p-adic Schottky groups.","tags":["algorithms","p-adic methods","schottky"],"url":"https://www.slideshare.net/slideshow/efficient-calculation-of-theta-functions-attached-to-p-adic-schottky-groups-c9d5/273492112","userLogin":"mmasdeu","userName":"mmasdeu","viewCount":32},{"algorithmId":"4","displayTitle":"Different Breeds of Poultry and Livestock Animals","isSavedByCurrentUser":false,"pageCount":71,"score":0,"slideshowId":"273426145","sourceName":"LATEST","strippedTitle":"different-breeds-of-poultry-and-livestock-animals","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/breedsofpoultryandlivestock-241119082138-a29cdb19-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Agriculture sector, animal science","tags":["agriculture","animals","food"],"url":"https://www.slideshare.net/slideshow/different-breeds-of-poultry-and-livestock-animals/273426145","userLogin":"HoneyJylDucusin1","userName":"HoneyJylDucusin1","viewCount":64},{"algorithmId":"4","displayTitle":"Introduction of Microbiology - Microbiology for CMW and LHV","isSavedByCurrentUser":false,"pageCount":74,"score":0,"slideshowId":"273396669","sourceName":"LATEST","strippedTitle":"introduction-of-microbiology-microbiology-for-cmw-and-lhv","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/1introductionofmicrobiology-241118091753-e87c2d28-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"For Lady Health Visitors (LHV) and Community Midwifery (CMW)","tags":["lhv","cmw","introduction of microbiology"],"url":"https://www.slideshare.net/slideshow/introduction-of-microbiology-microbiology-for-cmw-and-lhv/273396669","userLogin":"AreeshaAhmad1","userName":"Areesha Ahmad","viewCount":118},{"algorithmId":"4","displayTitle":"Presentation on Breeding Garlic as Vegetable","isSavedByCurrentUser":false,"pageCount":19,"score":0,"slideshowId":"273463373","sourceName":"LATEST","strippedTitle":"presentation-on-breeding-garlic-as-vegetable","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/garlic-241120101447-1ccdc2b1-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Breeding Garlic","tags":["agriculture","plant breeding and genetics","vegetable breeding"],"url":"https://www.slideshare.net/slideshow/presentation-on-breeding-garlic-as-vegetable/273463373","userLogin":"MHassanAssadi","userName":"MHassanAssadi","viewCount":44},{"algorithmId":"4","displayTitle":"pilot plant scale up for solids general considerationations","isSavedByCurrentUser":false,"pageCount":20,"score":0,"slideshowId":"273541507","sourceName":"LATEST","strippedTitle":"pilot-plant-scale-up-for-solids-general-considerationations","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/generalconsiderationsforsolidsgcp-241123093505-bee1faf1-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"reporting responsibility\npersonels\nrawmaterials","tags":["gebe","solids pilot plant scaleup"],"url":"https://www.slideshare.net/slideshow/pilot-plant-scale-up-for-solids-general-considerationations/273541507","userLogin":"NagaChandrikaPallam","userName":"NagaChandrikaPallam","viewCount":31},{"algorithmId":"4","displayTitle":"Halliday General Physics 8e.-29(Current-produced magnetic field).ppt","isSavedByCurrentUser":false,"pageCount":27,"score":0,"slideshowId":"273393159","sourceName":"LATEST","strippedTitle":"halliday-general-physics-8e-29-current-produced-magnetic-field-ppt","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/hallidaygeneralphysics8e-241118063032-e00a4d37-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Re-edited by Dr. Tsun-Hsin Wang tsunhsinwang@gmail.com\nCopyright belongs to the original book which is available on Amazon https://a.co/d/fLt7Gxi ","tags":["physics"],"url":"https://www.slideshare.net/slideshow/halliday-general-physics-8e-29-current-produced-magnetic-field-ppt/273393159","userLogin":"ssuserfd013d","userName":"ssuserfd013d","viewCount":97},{"algorithmId":"4","displayTitle":"C13-Nuclear Magnetic Resonance(NMR) Spectroscopy.pdf","isSavedByCurrentUser":false,"pageCount":30,"score":0,"slideshowId":"273490813","sourceName":"LATEST","strippedTitle":"c13-nuclear-magnetic-spectroscopy-nmr-spectroscopy-pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/c13-nmrspectroscopy-241121075316-1de65263-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Carbon 13 Nuclear Magnetic Resonance Spectroscopy dealt with recognising different carbons in a molecule.","tags":["#spectroscopy","c13 nmr spectroscopy","carbon 13 nmr spectra"],"url":"https://www.slideshare.net/slideshow/c13-nuclear-magnetic-spectroscopy-nmr-spectroscopy-pdf/273490813","userLogin":"nileshr3","userName":"NILESH RAHATE","viewCount":59},{"algorithmId":"4","displayTitle":"Volvox-Life Cycle and rolling algae in bsc 1 sem","isSavedByCurrentUser":false,"pageCount":9,"score":0,"slideshowId":"273504928","sourceName":"LATEST","strippedTitle":"volvox-life-cycle-and-rolling-algae-in-bsc-1-sem","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/volvox-lifecycle-241121181445-ce8c591b-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Bsc algae","tags":["msc also"],"url":"https://www.slideshare.net/slideshow/volvox-life-cycle-and-rolling-algae-in-bsc-1-sem/273504928","userLogin":"BhagirathGogikar","userName":"Bhagirath Gogikar","viewCount":36},{"algorithmId":"4","displayTitle":"Fluorine and Phosphorus(19F and 31P) NMR.pdf","isSavedByCurrentUser":false,"pageCount":8,"score":0,"slideshowId":"273491162","sourceName":"LATEST","strippedTitle":"fluorine-and-phosphorus-19f-and-31p-nmr-pdf","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/19fand31pnmr-241121081011-066bd6f9-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Fluorine-19 or phosphorus-31 NMR (19F NMR or 31P NMR) spectroscopy provides a highly specific tool for identification of fluorine- or phosphorus-containing drugs and their metabolites in biological media as well as a suitable analytical technique for their absolute quantification.","tags":["heteronuclear nmr spectroscopy","19f and 31p nmr","fluorine and phosphorus nmr"],"url":"https://www.slideshare.net/slideshow/fluorine-and-phosphorus-19f-and-31p-nmr-pdf/273491162","userLogin":"nileshr3","userName":"NILESH RAHATE","viewCount":32},{"algorithmId":"4","displayTitle":"Functions of Law Enforcement Agencies.pptx","isSavedByCurrentUser":false,"pageCount":12,"score":0,"slideshowId":"273538755","sourceName":"LATEST","strippedTitle":"functions-of-law-enforcement-agencies-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/functionsoflawenforcementagencies-241123061451-12b4111e-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Following presentation explains about the functions of law enforcement agencies and function of police officials in general","tags":[],"url":"https://www.slideshare.net/slideshow/functions-of-law-enforcement-agencies-pptx/273538755","userLogin":"nivyag2","userName":"Nivya George","viewCount":23},{"algorithmId":"4","displayTitle":"Barophiles or piezophile - (extremophile). pptx","isSavedByCurrentUser":false,"pageCount":16,"score":0,"slideshowId":"273415240","sourceName":"LATEST","strippedTitle":"barophiles-or-piezophile-extremophile-pptx","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/barophiles-241119011548-c541fe3a-thumbnail.jpg?width=600\u0026height=600\u0026fit=bounds","description":"Barophiles are an extremophile which thrive in high pressure environments. \nHabitat - deep sea environments like ocean floor, hydrothermal vents, and oceanic trenches. ","tags":[],"url":"https://www.slideshare.net/slideshow/barophiles-or-piezophile-extremophile-pptx/273415240","userLogin":"leelavathis248","userName":"leelavathis248","viewCount":92}]},"secretUrl":"oiy1E5SIQXjS5R","shouldShowAds":true,"slides":{"host":"https://image.slidesharecdn.com","title":"A-super-Eddington-accreting-black-hole-1-5-Gyr-after-the-Big-Bang-observed-with-JWST","imageLocation":"s41550-024-02402-9-241104204417-8217e623","imageSizes":[{"quality":85,"width":320,"format":"jpg"},{"quality":85,"width":638,"format":"jpg"},{"quality":75,"width":2048,"format":"webp"}]},"smsShareUrl":"sms:?body=Check out this SlideShare : https://www.slideshare.net/slideshow/a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst/273014912","strippedTitle":"a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst","thumbnail":"https://cdn.slidesharecdn.com/ss_thumbnails/s41550-024-02402-9-241104204417-8217e623-thumbnail.jpg?width=640\u0026height=640\u0026fit=bounds","title":"A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST","totalSlides":12,"transcript":["Nature Astronomy\nnatureastronomy\nhttps://doi.org/10.1038/s41550-024-02402-9\nArticle\nAsuper-Eddington-accretingblackhole\n~1.5 GyraftertheBigBangobservedwith\nJWST\nHyewon Suh 1\n, Julia Scharwächter 1\n, Emanuele Paolo Farina 1\n,\nFederica Loiacono 2\n, Giorgio Lanzuisi 2\n, Günther Hasinger 3,4,5\n,\nStefano Marchesi 2,6,7\n, Mar Mezcua 8,9\n, Roberto Decarli 2\n,\nBrian C. Lemaux 1,10\n, Marta Volonteri11\n, Francesca Civano12\n, Sukyoung K. Yi 13\n,\nSan Han13\n, Mark Rawlings 1\n\u0026 Denise Hung 1\nRecentJamesWebbSpaceTelescope(JWST)observationshaverevealed\nasurprisinglyabundantpopulationoffaint,dustyactivegalacticnucleiat\nz ≈ 4–7.Togetherwiththepresenceofsupermassiveblackholesatz \u003e 6,\nthisraisesquestionsabouttheformationandgrowthhistoriesofearlyblack\nholes.Currenttheoriesfortheformationofseedblackholesfromthedeath\nofthefirststars(thatis,lightseeds)and/orthedirectcollapseofprimordial\ngasclouds(thatis,heavyseeds)stilllackobservationalconfirmation.Here\nwepresentLID-568,alow-mass(7.2 × 106\nM⊙)blackholehostingpowerful\noutflowsthatisobservedinanextremephaseofrapidgrowthatredshift\nz ≈ 4.ThisobjectissimilartootherJWST-discoveredfaintactivegalactic\nnucleipopulations,butisbrightinX-rayemissionandaccretingatmore\nthan4,000%ofthelimitatwhichradiationpressureexceedstheforceof\ngravitationalattractionoftheblackhole(thatis,super-Eddingtonaccretion).\nAnalysisofJWSTNear-InfraredSpectrographintegralfieldunitdatareveals\nspatiallyextendedHαemissionwithvelocitiesof~−600–−500 km s−1\nrelative\ntothecentralblackhole,indicativeofrobustnuclear-drivenoutflows.LID-\n568representsanelusivelow-massblackholeexperiencingsuper-Eddington\naccretionasinvokedbymodelsofearlyblackholeformation.Thisdiscovery\nshowcasesapreviouslyundiscoveredkeyparameterspaceandofferscrucial\ninsightsintorapidblackholegrowthmechanismsintheearlyuniverse.\nObservational surveys have identified several hundreds of luminous\nquasars at redshift z \u003e 6–7 (refs. 1–6). The presence of supermassive\nblack holes (SMBHs) with masses of 109–10\nM⊙ at such early cosmic\nepochschallengesmodelsofSMBHformationandgrowth,andraises\nquestionsabouttheoriginofseedblackholesandthemechanismsfor\ntheirrapidandextremegrowth.Althoughtheformationofseedblack\nholes remains observationally unconstrained, they are commonly\nthoughttooriginateinthefirstgalaxiesthroughseveralgasorstellar\nphysicalprocessesthatcangenerateblackholeswithmassesinexcess\nof102\nM⊙ (ref.7).Historically,modelshavebeendividedintolightand\nheavyseeds,withademarcationatabout103\nM⊙.Thelightestseedsare\ngenerallyassociatedwiththedeathofthefirststarswithinitialmasses\nof102–3\nM⊙ (refs.8,9).Thegrowthofsuchlightseedsatveryearlytime\nintotheobservedpopulationofSMBHsatslightlylatertimeischalleng-\ning,becauseblackholesformedinthismannerwouldhavetoaccrete\nattheEddingtonlimitfromthetimetheyareformeduptotheredshift\nReceived: 1 April 2024\nAccepted: 1 October 2024\nPublished online: xx xx xxxx\nCheck for updates\nA full list of affiliations appears at the end of the paper. e-mail: hyewon.suh@noirlab.edu\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nandPaschenemissionlines.TheNIRSpecandMIRIspectraofLID-568\nare shown in Fig. 1. However, LID-568 stands out as uniquely bright in\ntheX-rayregionrelativetothepopulationoffaintAGNsdiscoveredby\nJWST, which indicates a higher level of central accretion activity. The\nobserved 0.5–10 keV flux is 5.16 × 10−15\nerg cm−2\ns−1\n(ref. 27). Analysis\nof the X-ray spectrum (as inferred from the emission measured in\nthe 0.5–2 keV and 2–7 keV bands) allows us to measure the obscura-\ntion (hydrogen column density, log NH = 23.44 (−0.34 + 0.47) cm−2\n) a\nndtheabsorption-correctedluminosityinthe0.5–10 keVband(Meth-\nods).Theabsorption-correctedX-rayluminositysuggestsanAGNbolo-\nmetricluminosityoflog Lbol = 46.6 (−0.44 + 0.36) erg s−1\n,afactorof~100\nhigher than the average bolometric luminosities of JWST-discovered\nfaintAGNs.\nTheshapeofthemid-tofar-IRspectralenergydistribution(SED)\nofLID-568exhibitsanextremelyredIRcontinuumslopewithasingle\npower law of αλ ≈ 4.5 at λrest ≳ 1 μm (Extended Data Fig. 1). This charac-\nteristiccannotbeexplainedbythecurrentlyavailableIRSEDtemplates\natwhichtheyareobserved10\n,whichappearstobedifficult11\n.Thedirect\ncollapseofprimordialgascloudsintosupermassivestarsturninginto\nblack holes with initial masses of 104–6\nM⊙ (that is, heavy seed)12,13\nis\nan attractive alternative, as these heavy seeds can more rapidly grow\nintoSMBHsevenbymeansofslightlysub-Eddingtonaccretion.How-\never, the expected number densities for the sites where such super-\nmassive stars can form are low. Intermediate pathways where seeds\nof 103–4\nM⊙ form from very massive stars in pristine rapidly growing\nhalosorthroughstellarmergers,hierarchicalblackholemergersand\nstellar captures in dense stellar systems bridge these two extremes14\n.\nIt is also possible that heavy seeds originate from primordial black\nholes,eliminatingtheneedforthestellarandgas-basedprocesses15–17\n.\nWiththeunprecedentedsensitivityoftheJamesWebbSpaceTel-\nescope (JWST), it is now possible to extend studies to faint, low-mass\nsources at high redshifts (that is, z \u003e 3–4), an epoch when both black\nholesandgalaxiesarestillrapidlygrowingtheirmass,andsuchobser-\nvation can provide insights into the mechanisms seeding early black\nholes. JWST has recently discovered a new population of relatively\nfaint,compact,dust-reddenedsourcesatz \u003e 4usingvariousselection\ntechniquesinawidevarietyofextragalacticsurveys18–24\n.Theyarefound\nto have overmassive black holes with respect to the local black hole\nmass(MBH)–stellarmass(Mstellar)relationship,exhibiting10–100times\nhigherMBH/Mstellar ratios25\n.Mostofthesesourceshavenotbeendetected\ninX-rayobservations18–24\n;onlytwosourceswithX-ray-detectionshave\nbeenrecentlyreported26\n.Thisfaintpopulationislikelytorepresentthe\nmoderate accretion phase of active galactic nuclei (AGNs), which are\naccreting at ~20% of the Eddington rates, and are hosted by relatively\nlow-mass galaxies. Some of these sources are referred to as ‘little red\ndots’andarecharacterizedbyaredcontinuumintherest-frameopti-\ncalandamodestblueUVcontinuum.Suchsourcesexhibitprominent\nbroad Balmer emission lines, which implies that they are powered by\nAGNs.Theseredcompactsourcesaresurprisinglyabundant,being100\ntimesmorecommonthanUV-selectedquasarsatsimilarredshifts23\n.\nLID-568,anX-rayAGN,wasdiscoveredamongahiddenblackhole\npopulation identified as near-infrared-dropout (near-IR-dropout)\nX-ray sources from the Chandra-COSMOS Legacy Survey27,28\n. Similar\nto other faint AGNs discovered by JWST, LID-568 appears extremely\nred and compact in the IR, yet it remains invisible in any optical wave-\nlengthsandeveninthedeepestnear-IRimagingtakenwiththeHubble\nSpace Telescope (HST). Its spectroscopic redshift, zspec = 3.965, was\ndetermined from JWST Near-Infrared Spectrograph (NIRSpec) and\n(Mid-InfraredInstrument(MIRI)observations,basedonbroadHα,[S ii]\n10\nObserved wavelength (µm)\n0.1\n1.0\n10.0\n100.0\nlog\nFlux\n(µJy)\nGB + PL (Tdust = 655 K)\nJWST NIRSpec\nJWST MIRI\n3.0 3.5 4.0 4.5 5.0\nObserved wavelength (µm)\n0\n2\n4\n6\nHα\n[SII]\nOI\nCaII Paη\nPaζ\nPaε\n[SIII] [CI]\nPaδ\n[SII]\nFeII\n6 8 10 12\n0\n50\n100\n150\n200\nPaα\nBrγ\nz = 3.965\nFig.1|TheNIRSpecandMIRIspectraofLID-568.Left:Spitzer/IRAC3.6,4.5,5.8\nand8.0 μmphotometry(blackpoints)withthebest-fittingSEDmodel(blue),\nincludingapowerlaw(bluedotted)andgreybody(bluedashed)components,\nataspectroscopicredshiftofzspec = 3.965(Methods).Thehorizontalerrorbars\nrepresentthefilterbandwidth.TheJWSTNIRSpec(green)andMIRI(orange)\nspectraareoverplotted.Right:thespectraofLID-568obtainedwithMIRI(top)\nandNIRSpec(bottom),withthedetectedemissionlinesmarked.\n6 7 8 9 10\nlog MBH/M\n44\n45\n46\n47\n48\nlog\nL\nbol\n(erg\ns\n–1\n)\nLID-568\nL bol\n/L Edd\n= 1\n0.1\n0.01\nJWST AGNs\nMatthee+24 (4 \u003c z \u003c 6)\nHarikane+23 (4 \u003c z \u003c 7)\nMaiolino+23 (4 \u003c z \u003c 7)\nGreene+24 (z \u003e 5)\nUV-selected quasars\nFarina+22 (z \u003e 5.8)\nFig.2|AGNbolometricluminosity(Lbol)versusblackholemass(MBH)ofAGNs\nathighredshift.LID-568,withsuper-Eddingtonaccretion(Lbol/LEdd ≈ 41.5)atz ≈ 4,\nisshownasaredstar.ItsX-ray-derivedbolometricluminosityisapproximately\nafactorof100higherthanthatoffaintAGNsatz ≈ 4–7withlow-massblack\nholes18,20,23,24\nrecentlyfoundbyJWSTobservations.Forreference,UV-selected\nquasars5\natz \u003e 5.8arealsoshown.SystematicuncertaintiesonMBH associatedwith\ndifferentsingle-epochvirialcalibrationstypicallyhaveascatterof~0.3 dex.Error\nbarsrepresent1σuncertainties.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nforobscuredAGNandultraluminousinfraredgalaxies(ULIRGs)andis\nsubstantiallysteeperthanthoseofthefaintAGNsdiscoveredbyJWST\n(whichexhibitapower-lawslopeα𝜆 ≈ 2.0onaverage)19\n.Thedetection\nofX-rayandmid-IRemissionstronglysuggeststhatLID-568isindeeda\nheavilyobscuredAGN,withoutanapparentpresenceoftheunderlying\nhost galaxy features. The model SEDs for super-Eddington accretion\nsuggest a notable absence of rest-frame UV or even optical emission,\nwithatendencytobecomeprogressivelyredderintheIRastheEdding-\nton ratio increases29\n. However, contrasting perspectives have been\npresentedinotherstudies,indicatingthatsuper-Eddingtonaccretion\nmightleadtoanexcessofUVradiation,resultinginasignificantlybluer\ncontinuumslopeintherest-frameUV30,31\n.\nGiventhepoint-like,compactnatureofthissource,theextremely\nred colour primarily arises from the thermal emission originating in\na dust-obscured accretion disk, with negligible contribution from a\nhostgalaxy.BasedonIRSEDfittingthatemploysapowerlawandtwo\ngreybodies32\n(Methods and Extended Data Fig. 1), the dust tempera-\nture is substantially higher (655.53 K and 71.5 K) than what is typically\nobservedinstar-forminggalaxies(10–60 K).Thisindicatesthathotand\nwarm gas dominates the IR emission, with negligible evidence of star\nformationactivity.Thisisincontrasttothemajorityofdust-obscured\ngalaxies at high redshift, which often exhibit signs of powerful star-\nbursts. The derived total IR luminosity is log L8–1,000 μm ≈ 46.1 erg s−1\n,\nwhichiscomparabletotheAGNbolometricluminosity.Theestimated\ndust mass Mdust is ~2.95 × 106\nM⊙, which suggests that LID-568 con-\ntains less dust than the optically faint, dust-obscured galaxies at z ≈ 3\n(thatis,H-dropouts,HST-dark,NIR-dark)33,34\nthathavedustmassesof\n~1–4 × 108\nM⊙. Assuming the dust-to-stellar mass ratios of HST-dark,\ndust-obscuredgalaxiesatsimilarredshifts33\n,theinferredstellarmassof\nLID-568is~2 × 108\nM⊙,whichimpliesalow-mass(thatis,dwarf)galaxy.\nThe single-epoch virial black hole mass (MBH), derived from the\nbroad Hα emission line, is 7.2 (−5.4 + 10.8) × 106\nM⊙, which indicates a\nrather low-mass black hole (Methods and the left panel of Extended\nData Fig. 2). This yields an Eddington ratio (Lbol/LEdd) of 41.5, which\nimpliesextremesuper-Eddingtonaccretionactivity.InFig.2,weshow\nthat the black hole mass of LID-568 is comparable with those of faint\nAGNsdiscoveredbyJWSTatz ≈ 4–7.However,thenotablyhigherbolo-\nmetricluminosityofthisobjectplacesitwithinapreviouslyunexplored\nextremeaccretionregime.Ontheotherhand,thereisgrowingevidence\nthatAGNswithhighaccretionratesappeartohavesmallerbroad-line\nregion(BLR)sizesthanthosepredictedbythecanonicalradius–lumi-\nnosityrelationshipofsub-EddingtonAGNs35,36\n.Thisdiscrepancycould\npotentially lead to an overestimation of the single-epoch black hole\nmassbyasmuchas~0.3 dex,resultinginahigherEddingtonratio.\nThe ionized gas in LID-568 shows signs of a spatially unresolved\nnuclearoutflowwithvelocitiesof~−540 km s−1\n(Methodsandtheright\npanelofExtendedDataFig.2),whicharesimilartothevelocitiestraced\nby the spatially extended Hα emission. In Fig. 3, we present NIRSpec/\nIntegral Field Unit (IFU) channel maps of the Hα emission at differ-\nent velocity ranges chosen to best highlight the multiple kinematic\ncomponents observed around the central black hole (Extended Data\nFig. 3). The blue-shifted Hα emission (~−600–−500 km s−1\n) peaks at a\nprojected distance of 0.4″ (~3 kpc) to the north (B component) and 1″\n(~7 kpc)towardsthesouth(Dcomponent)fromthecentralbroad-line\ncomponent(Ccomponent),whereasthenorth-easterncomponentAis\nfoundatasimilarvelocitytothecentralcomponentC.Thecontinuum\nemissionassociatedwiththespatiallyextendedHαemissioncompo-\nnents are not detected. Although these components could be part of\ntheoutflow,amergerorigincannotbeexcluded.\nIftheextendedHαemissionsareassociatedwithoutflows,wecan\ninfer the AGN lifetime using the outflow velocity and radius. Consid-\nering that the outflow reaches ~7 kpc from the central black hole, we\nobtain the AGN lifetime as t = (7 kpc)/(540 km s−1\n) ≈ 1.2 × 107\nyr. This\nlifetimeisconsistentwiththelowerlimitsontotalaccretiontimescales\nset by Soltan arguments (that is, 107–9\nyr (ref. 37)) and indirect meas-\nurements of AGN phase timescales (~107–9\nyr (ref. 38)). Furthermore,\n–0.2\n0\n0.2\n0.4\n0.6\nFlux\n(µJy)\n–494 km s–1\n0 km s–1\nA B\nC\nD\n+494 km s–1\n–3,000 –2,000 –1,000 0 1,000 2,000 3,000\nVelocity (km s–1\n)\n0\n1\n2\n3\n4\nFlux\n(µJy)\nA\nB\nC\nD\nFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemissionlineregion.\nTop:eachmapshowstheHαemissionlinefluxesindifferentvelocitybins.\nThespatiallyextendedoutflowcomponentsBandDareatvelocityoffsets\nof~−600–−500 km s−1\nwithrespecttothecentralbroad-linecomponent(C),\nwhereascomponentAisfoundatasimilarvelocitytocomponentC.Bottom:\nNIRSpecspectraofeachcomponentareshownintheHαemissionlineregion,\nextractedfromcircularapertureswitharadiusof0.2″.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\ntheoretical studies39\nsuggest that super-Eddington phases might be\nsustained over timescales of a few tens of million years. This lifetime\nsuggeststhatasubstantialfractionofthemassgrowthofLID-568may\nhaveoccurredinasingle,super-Eddingtonaccretionepisode.\nTo estimate the preburst mass of the black hole, we calculated\nthemassgrowthduringsuper-Eddingtonaccretionover12 Myrusing\ntheequationMBH(t − t0)/MBH(t0) = exp((1 − ϵ)λEdd(t − t0)/(ϵ × tEdd)),where\ntEdd = 450 Myrandtheradiativeefficiencyϵis0.1.Theestimatedblack\nhole mass before super-Eddington accretion is ~102\nM⊙ (that is, light\nseed). We note that this growth scenario is feasible only if the black\nhole remains embedded within a giant molecular cloud and accretes\ntheentirecloudwithoutsubstantiallyalteringtheBondiradiusdueto\nfeedback. As such, this represents a lower limit on the pre-accretion\nblack hole mass, which is consistent with a light seed but does not\nexcludethepossibilityofamorenuancedgrowthhistorywithshorter\naccretioneventshappeningonaheavierseed.Infact,itisalsopossible\nthattheoutflowcouldbeassociatedwithstellarfeedback-drivenout-\nflowsfromastarbursteventprecedingtheactivityintheblackhole.\nThe presence of potentially AGN-driven outflows, along with the\nlack of star-forming activity in LID-568, suggests that AGN feedback\nmayplayacrucialroleinregulatingand/orquenchingstarformation\nin this low-mass system at high redshift. This indicates the possibil-\nity of rapid and efficient growth of black holes relative to their host\ngalaxies. Theoretical models predict a ‘blowout’ dusty red quasar\nphase transitioning from a heavily obscured starburst, during which\nAGN-drivenoutflowsejectgasanddustfromthehostgalaxy,thereby\nquenching the star formation40\n. It is possible that LID-568 represents\natransientphasecharacterizedbyextremelyhighaccretionrateswith\npowerful outflows suppressing the star formation in its host galaxy.\nThis could explain the presence of overmassive black holes hosted\nin low-mass galaxies in the local Universe41\n, as well as those found by\nJWST at z \u003e 4 (ref. 25). Furthermore, the powerful AGN could produce\ndustinoutflowingwindsfromtheBLR(thatis,smokingquasar)42\n,and\nthiscouldpotentiallyaccountfortheabundantdustyAGNsobserved\nwithJWSTathighredshifts.\nLID-568 could potentially represent the long-sought-after\nlow-massblackholeundergoingrapidgrowththroughsuper-Eddington\naccretion.Thediscoveryofasuper-Eddingtonaccretingblackholeat\nz ≈ 4 unveils a missing key parameter space of the extreme accretion\nand provides new insights into the rapidly growing mechanisms of\ntheearlygrowthofblackholes43–45\n.Althoughtherarest,mostmassive\nSMBHsatz \u003e 6–7couldbeexplainedbyanoriginfromheavyseedswith\nsub-Eddingtonaccretion,theystillrequirecontinuousaccretionover\nseveralhundredmillionyears.Thepresenceofovermassiveblackhole\npopulationssuggeststhepossibilitythattheycouldexperienceinter-\nmittentburstsofsuper-Eddingtongrowthregardlessofwhetherthey\noriginate from heavy or light seeds45,46\n. Super-Eddington accretion is\nlikelytooccurepisodically,andthedetectionofLID-568mayrepresent\nonesuchepisodicaccretionphase.Futurestudiesonalargesampleof\nsuch objects will help to constrain the duty cycle of super-Eddington\naccretion and deepen our understanding of the mechanisms driving\nsuchhighlevelsofaccretion.\nMethods\nParent sample\nThe parent sample comprised a previously undiscovered population\nof black holes, identified as near-IR-dropout X-ray sources (that is,\ninvisible in the optical/near-IR bands) from the Chandra-COSMOS\nLegacy Survey27,28\n, which consists of 4,016 X-ray sources over a large\narea of ~2.2 deg2\n. We used the multiwavelength photometry from the\nmostrecentphotometriccataloguefromCOSMOS202047\nandHELP48\n,\ncontaining GALEX FUV, NUV, CFHT U, Subaru/Hyper Suprime-Cam\n(HSC) g, r, i, z, y, UltraVISTA Y, H, J, Ks, Spitzer/Infrared Array Camera\n(IRAC) 3.6 μm, 4.5 μm, 5.8 μm, 8.0 μm, Spitzer/Multiband Imaging\nPhotometerforSpitzer(MIPS)24 μm,70 μm,Herschel/Photodetector\nArrayCameraandSpectrometer100 μm,160 μmandHerschel/Spec-\ntralandPhotometricImagingReceiver250 μm,350 μm,500 μmpho-\ntometry.Wevisuallyinspectedalltheoptical/IRimagesandidentified\nthose without any optical counterparts within a 2″ radius, which cor-\nresponded to the uncertainty of the Chandra position. We excluded\nsources whose flux was contaminated by nearby bright sources and\npossible diffuse X-ray emission. This resulted in a final sample of\n62IR-dropoutX-raysources.Allsourcesweredetectedinoneormoreof\nSpitzer/IRAC(3.6,4.5,5.8,8.0 μm)bandsand26sourcesweredetected\nin Spitzer/MIPS 24 μm photometry. Ten sources had Herschel far-IR\ndetections.NoneofthesesourceshadacounterpartintheVeryLarge\nArray3 GHzsourcecatalogue49\n.\nALMAobservations\nSpitzer/IRAC (ALMA) band 7 (275–373 GHz) continuum observations\nfor all 62 IR-dropout X-ray sources were carried out in four observing\nblocks in November 2019 and January 2022 under the Cycle 7 pro-\ngramme 2019.1.01275.S (PI: Suh) with a total of 42 to 46 antennas. The\nobservations were centred on the Chandra X-ray positions with an\nintegration time of ~5 minutes per source. The data reduction was\nperformedusingthestandardALMApipelinev.2021.2.0.128(Common\nAstronomySoftwareApplications(CASA)v.6.2.1.7).Wemeasuredthe\nintegrated flux of all our targets using the imfit procedure from the\nCASA pipeline. The sources were modelled with a circular Gaussian\nprofile of variable total flux, centroid, width, axis and position angle.\nThe 870 μm flux of LID-568 was 545 ± 158 μJy, and the position of the\n870 μmemissionasmeasuredfromALMAwasingoodagreementwith\nthose of Spitzer/IRAC. In Supplementary Fig. 1, we show multiband\nimages of LID-568, which are invisible in the Subaru/HSC optical and\nUltraVISTAnear-IRimages.\nJWSTobservations\nWeobtainedJWST/NIRSpec50,51\nandMIRI/LRS52\nobservationsofLID-568\nundertheCycle1GOprogrammenumber1760(PI:Suh).TheNIRSpec/\nIFUobservationsweretakeninApril2023withthegrating/filtercom-\nbinationofG395M/F290LP.Thiscoveredthespectralrangeof3–5 μm\nwith an average spectral resolution of R ≈ 1,000. The field of view of\nthe IFU mode was ~3″ × 3″, with each spatial element in the resulting\nIFUdatacubeof0.1″ × 0.1″.WeusedtheNRSIRS2readoutmode,which\nimprovessignal-to-noiseratioandreducesdatavolume.Theobserva-\ntions were taken with 18 groups and one integration per exposure,\nusing a four-point medium cycling dither pattern, resulting in a total\nexposuretimeof1.45 h.\nThe NIRSpec/IFU data reduction was performed with the JWST\nScienceCalibrationpipelinev.1.11.4,usingtheCRDScontextjwst_1149.\npmap. We also added additional steps to improve the quality of the\nreduced data53\n. The reduction process consisted of three stages. The\nfirst stage accounted for detector-related issues, such as bias and\ndark subtraction, and cosmic ray flagging. At the end of this stage,\nthe groups were fitted to create two-dimensional count rate images\n(thatis,‘ratefiles’).Thesecondstageappliedtheflatfieldcorrection,\nwavelength and flux calibration. The calibrated exposures were then\nprocessedinthethirdstage,whereafurtherflaggingofcosmicrayswas\nappliedbeforebuildingthefinaldatacube.Beforerunningthesecond\nstage, we removed the detector low frequency noise 1/f affecting the\nrate files by subtracting from each spectral column its median value\nafter applying a sigma clipping54–56\n. We fixed a pipeline bug reported\nbytheSTScIHelpdeskbysettingallthesaturatedpixelsandthepixels\nwithbadflatfieldcorrectionto‘DO_NOT_USE’,whichremovesseveral\noutliers from the calibrated exposures. We removed the remaining\noutliers from the datacube by filtering out all the voxels with a jump\novercontiguouschannelspersistingforlessthanfourchannels,which\nis the typical width of these features. Finally, we subtracted the back-\ngroundasafunctionofthewavelengthbycalculatingthemedianover\nten spectra extracted from empty regions in the cube field of view in\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\neach channel. We note that the background increases as a function of\nthe wavelength, an expected effect due to an increase in the zodiacal\nand stray light57\n. We thus subtracted it channel by channel to obtain a\nbackground-freedatacube.\nThe MIRI/LRS slit spectroscopy observations were conducted in\nJanuary 2023 using a P750 disperser, covering a wavelength range of\n5–12 μm with a spectral resolution of R ≈ 100. The observations were\nperformedwith360groupsperintegrationinFAST/FULLmode,with\ntwo integrations per exposure using a two-point dither along the slit.\nThis resulted in a total exposure time of 1.1 h. The fully reduced data\nwere retrieved from the Mikulski Archive for Space Telescope, which\nwere processed using the JWST Science Calibration pipeline v.1.12.5,\nwiththeCRDScontextjwst_1135.pmap.\nX-rayluminosity\nTo compute the intrinsic X-ray luminosity in the 2–10 keV band, we\nused the XSpec software (v.12.13.0)58\nto fit the Chandra spectrum\nusingasimplepower-lawmodelwiththephotonindexfixedtoΓ = 1.9,\nmodified by both Galactic absorption (NH = 2.6 × 1020\ncm−2\n(ref. 59))\nand absorption at the redshift of the source, NH(z). The second\nabsorption component accounted for both nuclear absorption due\nto the gas orbiting in the proximity of the SMBH (that is, torus) and\nabsorption due to the interstellar medium in the host galaxy. The\ncolumndensitywasmeasuredaslog NH = 23.44 (−0.34 + 0.47),andthe\nabsorption-correctedrest-frame2–10 keVluminositywasdetermined\naslog (L2–10keV) = 44.79 (−0.33 + 0.27)(SupplementaryFig.2).\nTotakeintoaccountthemorecomplexabsorptionandreflection\nprocesses in the case of Compton-thick obscuration (NH \u003e 1024\ncm−2\n),\nwealsoderivedthecolumndensityandintrinsicX-rayluminosityusing\ntheMYtorusmodel60,61\n.Thismodelconsistsofthreecomponents:the\nobscuration along the line of sight, including Compton scattering,\nappliedtotheprimarypowerlaw,thereflectionandthefluorescence\nemission line complex. The relative strength of these components\nwasfixedtobethesame,andtheinclinationanglebetweenthelineof\nsight and the axis of the torus was set to 75° to ensure interception of\ntheobscuringtorus.Apower-lawphotonindexofΓ = 1.9wasassumed.\nThe column density and intrinsic X-ray luminosity derived from the\nMYtorus model were consistent with the standard power-law model,\nwellintheCompton-thinregime.Ifweallowedthephotonindextobe\na free parameter, the fit tended toward a softer power law (Γ = 2.4 for\nMYtorus and 2.9 for the simple power law) and, consequently, even\nhighercolumndensitiesandintrinsicluminosities:log L2–10keV = 45.08\nforMYtorusand45.5forthepowerlaw.Therefore,thechoiceofΓ = 1.9\nwasconservativeinestimatingintrinsicluminosity.\nSEDfitting\nThe SED fitting was performed using a modified approach based on\nref.62,utilizingthesameSEDlibrariesasthoseinAGNfitter63\n.Addition-\nally, we independently fitted the SED using CIGALE64\nand X-CIGALE65\n,\nthelatterofwhichincludedtheuseofX-rayfluxes.Despiteusingvari-\nous parametrizations and models for stellar populations, star forma-\ntion history, dust emission and attenuation, and AGN emission from\ndifferentSEDfittingcodes,wefoundthattheSEDofLID-568showsan\nunusuallyredIRcontinuumthatcannotbereproducedbyanycombina-\ntionofthemodelsandparametersused.\nWe further fitted the dust emission using the modified IR SED\nfitting code developed in ref. 32. We employed a composite mid-IR\npower law and two-temperature greybodies. We used a fixed value of\nthe emissivity (β = 1.5), and allowed the mid-IR power-law slope (α) as\na free parameter. The rest-frame observed photometric data (black)\nare presented alongside the best-fit IR SED (yellow) in the left panel\nof Extended Data Fig. 1. The SED is well fitted by a power law, and hot\ngreybody (655.5 K) and warm greybody (71.5 K) components, which\nare much hotter than what is typically observed in star-forming gal-\naxies (10–60 K). From the best fit, we derived the total IR luminosity\n(L8–1,000μm)andthedustmass.IntherightpanelofExtendedDataFig.1,\nwe show the SED of LID-568 overlaid on the SED templates66\nof the\nAGN-dominated local ULIRG (Mrk 231), the extreme local starburst\nULIRG (Arp 220) and the AGN dust torus model at redshift z = 3.965.\nThe IR SED shape of LID-568 seems to be consistent with the torus\nmodel spectrum, but cannot be explained by currently available IR\nSEDtemplatesofobscuredAGN/ULIRGs.\nAGNbolometricluminosity\nThe bolometric luminosity of AGNs can be estimated from the X-ray\nluminositybyapplyingasuitablebolometriccorrection67\n.Toaccurately\nestimate the total intrinsic luminosity radiated by the AGN accretion\ndisc, it is necessary to constrain the absorption-corrected intrinsic\nX-rayluminosity,asX-raysareoftenobscuredandmayincluderepro-\ncessedradiation.TheAGNbolometricluminosityofLbol = 46.59 erg s−1\nis derived using the absorption-corrected rest-frame 2–10 keV lumi-\nnosity by applying a luminosity-dependent bolometric correction as\ndescribedinref.67.\nWe also computed the AGN luminosity from the SED by integrat-\ning absorption-corrected total X-ray luminosity (L0.1–100keV) and the\nbest-fit AGN torus luminosity (L1–1,000μm) following ref. 62. To convert\nthe IR luminosity into a proxy for the intrinsic nuclear luminosity, we\nconsidered the geometry of the torus and its orientation by apply-\ning the following correction factors: the first correction is related\nto the covering factor, which represents the fraction of the primary\nUV-optical radiation intercepted by the torus (~1.5 (ref. 68)) and the\nsecond correction is due to the anisotropy of the IR dust emission,\nwhichisafunctionoftheviewingangle(~1.3(ref.69)).ThederivedAGN\nbolometricluminositywasLbol = 46.68 erg s−1\n,whichisconsistentwith\ntheX-ray-derivedbolometricluminosity.\nWe additionally derived the bolometric luminosity using the Hα\nluminosityfollowingref.18.Wecalculatedtherest-frame5,100 Ålumi-\nnosityfromHαluminosityusingtheequationinref.70.Thebolometric\nluminosity was estimated using the bolometric correction factor in\nref.71,Lbol = 10.33 × L5,100,tobe45.60 erg s−1\n,whichis~1 dexlowerthan\nthat derived from other methods (that is, X-ray luminosity and SED\nfitting). This indicates that the Hα emission could possibly be highly\nobscured, potentially leading to an underestimate of the Hα-derived\nblack hole mass by a factor of a few. However, we point out that when\nestimatingtheEddingtonratiousinganinternallyconsistentmethod\nbasedontheHαemissionforbothAGNbolometricluminosityandthe\nblackholemass,theblackholeisstillaccretingatthesuper-Eddington\naccretion level of ~4.4. We note that the bolometric correction factor\nfor Hα luminosity could be uncertain for those obscured AGNs with\nsuper-Eddington accretion at high redshifts. The estimated bolo-\nmetric luminosities obtained using various methods are shown in\nSupplementaryFig.3.\nBlackholemassandoutflows\nThesingle-epochvirialblackholemasswasestimatedusingthebroad\nHαemissionlinewidthandthelineluminosityfromtherest-frameUV/\nopticalspectraasaproxyforthecharacteristicvelocityandthesizeof\ntheBLR.TheNIRSpecspectrawereextractedfromacircularaperture\ncentred at the position of the BLR, with radius of 0.2″ (r = 2 pix). We\nutilized the mpfit routine for fitting the emission lines, employing a\nLevenberg–Marquardtleast-squaresminimizationalgorithmtoderive\nthebest-fitparametersandassesstheoverallfitquality72\n.Specifically,\nwe fitted and subtracted a power-law continuum (fλ) as a function of\nwavelength(λ),fλ ∝λ−a\n,fromthespectraandperformedasimultaneous\nfitwithacombinationofmultiplenarrowandbroadGaussiancompo-\nnentstobestcharacterizethelineshape.Forthenarrowemissionlines,\nwefittedthe[N ii]6,548,6,583 Ålineswithafixedratioof2.96,aswellas\nthe[S ii]6,716,6,731 Ådoublet,alongwithHα6,563 Å.Weconstrained\nthelinewidthsandrelativelinecentresofthenarrow-linecomponents\ntothenarrowHαemissionline.ThebroadHαlinewasbestfitwithtwo\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nbroad Gaussian components: one for the BLR and the other for the\nblue-shiftedoutflowcomponent.Wealsoincludedblue-shiftedbroad\nGaussiancomponentsforthe[S ii]6,716,6,731 Ådoublet.\nAdditionally, we investigated the inclusion of additional broad\nGaussian components for the [N ii] 6,548, 6,583 Å lines as outflow\ncomponents. We also tested the fit both with and without constrain-\ning the range of ratios of the [S ii] 6,716, 6,731 Å doublet. However,\nwe found no meaningful statistical improvement from adding these\nbroad Gaussian components. For the former, this lack of meaningful\nimprovementinthefitislikelytobeduetothe[N ii]componentsbeing\noverwhelmed by the much stronger Hα emission. For the latter, the\nblueward [S ii] emission appears to dominate the fit in that spectral\nregion, and, given the lower signal-to-noise ratio of both features, it\nis not surprising that a similar goodness of fit is returned by forcing\nthe ratio of the strength of the two components within the canonical\nallowablerange.Furthermore,changesinthefittingapproachdidnot\nappreciably affect the inferred black hole mass beyond the inherent\nrandomandsystematicuncertainties.\nFinally,wemeasuredthebroad-linewidthandthelineluminosity\nfromthebest-fitspectra.Theblackholemasswascomputedusingthe\nequation from ref. 70. Although the measurement uncertainties on\nMBH were relatively small (~0.1 dex), systematic uncertainties associ-\nated with different single-epoch virial calibrations carried a scatter\nof ~0.3 dex (refs. 35,36,73). We estimated the black hole mass to be\n7.2 (−5.4 + 10.8) × 106\nM⊙. The uncertainties of the black hole mass\nwere determined by the sum of the statistical and intrinsic scatter of\nthecalibrations.\nExtendedDataFig.2(left)showsthebest-fitmodelaroundtheHα,\n[N ii]and[S ii]region.Broadenedand/orshiftedcomponentsinemis-\nsion lines trace gas with different kinematics, potentially indicating\noutflows.WeinvestigatedpossiblesignsofoutflowsusingHαand[S ii]\nlines because [O iii], which typically serves as a tracer of outflows, is\nnotcoveredbyourdataset.InExtendedDataFig.2(right),wecompare\nthe blue-shifted Hα emission line with that of the [S ii] line compo-\nnents. Although we left the line widths and relative line centres of the\nblue-shifted components as free parameters, the broad blue-shifted\nemissionisevidentinboththeHαand[S ii]lines,exhibitingthesame\nbroad-line width and velocity offsets, which suggests that they are\nkinematicallycoupled.Fromthebest-fitmodel,weinferredaspatially\nunresolvedoutflowvelocityof~−540 km s−1\n.Similarvelocitiesareasso-\nciatedwiththespatiallyextendedHαemission(ExtendedDataFig.3),\nwhich could be part of the outflow or indicate ongoing merger activ-\nity. The mass of the ionized outflow as inferred from the blue-shifted\noutflow component of the broad Hα emission was 1.4 × 107\nM⊙, using\nequation (1) from ref. 74. Assuming an outflow velocity of −540 km s−1\nand that the extended Hα emission is representative of the outflow\nradius(thatis,rout = 1″(~7 kpc)),theoutflowratewas~3.1 M⊙ yr−1\n.\nEnvironment\nWe measured the environmental density surrounding LID-568 by\nemploying the Voronoi tessellation Monte Carlo mapping described\nin refs. 75,76. Briefly, this technique uses a weighted combination of\nspectroscopic and photometric redshifts to construct a galaxy over-\ndensitycubeinthin(7.5properMpc)slicesrunningfrom2 \u003c z \u003c 5.The\nmapping leverages the wealth of panchromatic imaging data from\nCOSMOS, as well as a large number of spectroscopic redshifts drawn\nfrom public surveys and proprietary data. The particular instance of\nthe Voronoi tessellation Monte Carlo mapping used in this work was\nidenticaltothatofref.77.\nAfter an overdensity cube had been constructed over the full\nredshift range, a source extractor-based post-processing technique,\nas described in ref. 76, was used to link detections of overdensities\nacross contiguous slices to search for coherent structure and esti-\nmatethemassofthedetectedstructure.Fordensitymappingatz \u003e 2,\nthis post-processing technique was trained on mock observations of\ncustom-built light cones to maximize the purity and completeness\nassociatedwiththedetectionofprotogroupsandprotoclusters.Atthe\nspatiallocationofLID-568,thespectroscopiccoverageintheCOSMOS\nfield was fairly sparse, and we estimated that our method was \u003e50%\ncomplete only for structures with z = 0 masses greater than 1014.5\nM⊙,\nthatis,massiveprotoclusters,atz ≈ 4.\nWe find no evidence that LID-568 is associated with an overden-\nsity of galaxies. The local overdensity at the location of LID-568 was\nlog (1 + δgal) = 0.11, which is approximately a 1σ fluctuation over the\nmean(galaxy)densityoftheuniverseattheseredshifts.Measuringthe\naverage overdensity in a cylindrical aperture of radius 1 proper Mpc\nand depth of Δz = 0.02 centred on the redshift of LID-568 recovered\na consistent value. Additionally, we detected no associated coherent\nstructurewithinΔz = 0.04andR \u003c 5properMpcofLID-568,whichindi-\ncatesthatitisnotlikelytobeembeddedinamassiveformingcluster.\nHowever,giventhepaucityofspectroscopicredshiftsinproximityto\nLID-568, we cannot rule out membership in a lower mass structure.\nWealsonotethat,atsuchredshifts,galaxy-tracedmethodscanfailto\ndetectmassiveoverdensitiesthatarewelltracedbyneutralhydrogen78\n.\nFuture spectroscopic observations of the surroundings of LID-568\nand similar sources will help to better quantify the environments in\nwhichtheyreside.\nDataavailability\nThe data for ALMA and JWST used in this study are publicly available\nthroughtheirrespectivedataarchives.Theseobservationsareassoci-\natedwiththeJWSTGOprogrammeno.1760andtheALMAprogramme\nno. 2019.1.01275.S. Other data generated and/or analysed during the\nstudy are available from the corresponding author upon reasonable\nrequest.\nReferences\n1. Mortlock, D. J. et al. A luminous quasar at a redshift of z=7.085.\nNature 474, 616 (2011).\n2. Bañados, E. et al. An 800-million-solar-mass black hole in a\nsignificant neutral Universe at a redshift of 7.5. Nature 553,\n473 (2018).\n3. Yang, J. et al. Probing early supermassive black hole growth\nand quasar evolution with near-infrared spectroscopy of\n37 reionization-era quasars at 6.3\u003cz\u003c7.64. Astrophys. J. 923,\n262 (2021).\n4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J.\n907, 1 (2021).\n5. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the\nepoch of reionization. II. Black hole masses, Eddington ratios, and\nthe formation of the first quasars. Astrophys. J. 941, 106 (2022).\n6. Fan, X., Bañados, E. \u0026 Simcoe, R. A. Quasars and the intergalactic\nmedium at cosmic dawn. Annu. Rev. Astron. Astrophys. 61,\n373 (2023).\n7. Rees, M. F. Quasars. Observatory 98, 210 (1978).\n8. Volonteri, M. The formation and evolution of massive black holes.\nScience 337, 544 (2012).\n9. Natarajan, P. Seeds to monsters: tracing the growth of black holes\nin the universe. Gen. Relativ. Gravit. 46, 1702 (2014).\n10. Volonteri, M. \u0026 Rees, M. J. Rapid growth of high-redshift black\nholes. Astrophys. J. 633, 624 (2005).\n11. Smith, B. D. et al. The growth of black holes from Population III\nremnants in the Renaissance simulations. Mon. Not. R. Astron.\nSoc. 480, 3762 (2018).\n12. Volonteri, M., Lodato, G. \u0026 Natarajan, P. The evolution of\nmassive black hole seeds. Mon. Not. R. Astron. Soc. 383,\n1079 (2008).\n13. Natarajan, P. et al. Unveiling the first black holes with JWST:\nmulti-wavelength spectral predictions. Astrophys. J. 838, 117\n(2017).\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\n14. Volonteri, M., Habouzit, M. \u0026 Colpi, M. The origins of massive\nblack holes. Nat. Rev. Phys 3, 732 (2021).\n15. Kashlinsky, A. LIGO gravitational wave detection, primordial black\nholes, and the near-IR cosmic infrared background anisotropies.\nAstrophys. J. Lett. 823, 25 (2016).\n16. Hasinger, G. Illuminating the dark ages: cosmic backgrounds\nfrom accretion onto primordial black hole dark matter. J. Cosmol.\nAstropart. Phys. 07, 022 (2020).\n17. Cappelluti, N., Hasinger, G. \u0026 Natarajan, P. Exploring the\nhigh-redshift PBH-ΛCDM Universe: early black hole seeding, the\nfirst stars and cosmic radiation backgrounds. Astrophys. J. 926,\n205 (2022).\n18. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs\nat z=4–7: detection of 10 faint AGNs with MBH=106\n–108\nM⊙ and their\nhost galaxy properties. Astrophys. J. 959, 39 (2023).\n19. Kocevski, D. D. et al. Hidden little monsters: spectroscopic\nidentification of low-mass, broad-line AGNs at z\u003e5 with CEERS.\nAstrophys. J. 954, 4 (2023).\n20. Maiolino, R., et al. JADES. The diverse population of infant black\nholes at 4\u003cz\u003c11: merging, tiny, poor, but mighty. Preprint at\nhttps://arxiv.org/abs/2308.01230 (2023)\n21. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity\nAGN at z~5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys.\n677, 145 (2023).\n22. Furtak, L. J. et al. A high black-hole-to-host mass ratio in a lensed\nAGN in the early Universe. Nature 628, 57 (2024).\n23. Greene, J. E. et al. UNCOVER spectroscopy confirms the\nsurprising ubiquity of active galactic nuclei in red sources at z\u003e5.\nAstrophys. J. 964, 39 (2024).\n24. Matthee, J. et al. Little red dots: an abundant population of faint\nactive galactic nuclei at z~5 revealed by the EIGER and FRESCO\nJWST surveys. Astrophys. J. 963, 129 (2024).\n25. Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R. \u0026 Fan, X. JWST\nCEERS and JADES active galaxies at z=4–7 violate the local\nM●–M★ relation at \u003e3σ: implications for low-mass black holes and\nseeding models. Astrophys. J. 957, 3 (2003).\n26. Kocevski, D. D., et al. The rise of faint, red AGN at z\u003e4: a sample of\nlittle red dots in the JWST extragalactic legacy fields. Preprint at\nhttps://arxiv.org/abs/2404.03576 (2024).\n27. Civano, F. et al. The Chandra COSMOS Legacy survey: overview\nand point source catalog. Astrophys. J. 819, 62 (2016).\n28. Marchesi, S. et al. The Chandra COSMOS Legacy survey: optical/\nIR identifications. Astrophys. J. 817, 34 (2016).\n29. Pognan, Q., Trakhtenbrot, B., Sbarrato, T., Schawinski, K. \u0026\nBertemes, C. Searching for super-Eddington quasars using a\nphoton trapping accretion disc model. Mon. Not. R. Astron. Soc.\n492, 4058 (2020).\n30. Done, C., Davis, S. W., Jin, C., Blaes, O. \u0026 Ward, M. Intrinsic disc\nemission and the soft X-ray excess in active galactic nuclei. Mon.\nNot. R. Astron. Soc. 420, 1848 (2012).\n31. Tang, J.-J. et al. Rapid black hole growth at the dawn of the\nUniverse: a super-Eddington quasar at z=6.6. Mon. Not. R. Astron.\nSoc. 484, 2575 (2019).\n32. Casey, C. M. Far-infrared spectral energy distribution fitting for\ngalaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094 (2012).\n33. Xiao, M.-Y. et al. The hidden side of cosmic star formation at\nz\u003e3: bridging optically dark and Lyman-break galaxies with\nGOODS-ALMA. Astron. Astrophys. 672, A18 (2023).\n34. Gentile, F. et al. Illuminating the dark side of Cosmic star\nformation. III. Building the largest homogeneous sample of\nradio-selected dusty star-forming galaxies in COSMOS with\nPhoEBO. Astrophys. J. 962, 26 (2024).\n35. Du, P. et al. Supermassive black holes with high accretion rates in\nactive galactic nuclei. V. A new size-luminosity scaling relation for\nthe broad-line region. Astrophys. J. 825, 126 (2016).\n36. GRAVITY Collaboration et al. The size-luminosity relation of local\nactive galactic nuclei from interferometric observations of the\nbroad-line region. Astron. Astrophys. 684, 167 (2024).\n37. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200,\n115 (1982).\n38. Martini, P. \u0026 Weinberg, D. H. Quasar clustering and the lifetime of\nquasars. Astrophys. J. 547, 12 (2001).\n39. Lupi, A., Quadri, G., Volonteri, M., Golpi, M. \u0026 Regan, J. A.\nSustained super-Eddington accretion in high-redshift quasars.\nAstron. Astrophys. 686, 256 (2024).\n40. Hopkins, P. F., Hernquist, L., Cox, T. J. \u0026 Kereš, D. A cosmological\nframework for the co-evolution of quasars, supermassive black\nholes, and elliptical galaxies. I. Galaxy mergers and Quasar\nactivity. Astrophys. J. Suppl. 175, 356 (2008).\n41. Mezcua, M. et al. Overmassive black holes in dwarf galaxies out to\nz~0.9 in the VIPERS survey. Astrophys. J. Lett. 943, 5 (2023).\n42. Elvis, M., Marengo, M. \u0026 Karovska, M. Smoking quasars: a new\nsource for cosmic dust. Astrophys. J. 567, 107 (2002).\n43. Regan, J. A. et al. Super-Eddington accretion and feedback from\nthe first massive seed black holes. Mon. Not. R. Astron. Soc. 486,\n3892 (2019).\n44. Massonneau, W., Volonteri, M., Dubois, Y. \u0026 Beckmann, R. S.\nHow the super-Eddington regime regulates black hole growth in\nhigh-redshift galaxies. Astron. Astrophys. 670, A180 (2023).\n45. Volonteri, M., Silk, J. \u0026 Dubus, G. The case for supercritical\naccretion onto massive black holes at high redshift. Astrophys. J.\n804, 148 (2015).\n46. Juodžbalis, I. et al. A dormant, overmassive black hole in the early\nuniverse. Preprint at https://arxiv.org/abs/2403.03872 (2024).\n47. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the\nUniverse to z~10 from two complementary catalogs. Astrophys. J.\nSuppl. 258, 11 (2022).\n48. Shirley, R. et al. HELP: the herschel extragalactic legacy project.\nMon. Not. R. Astron. Soc. 507, 129 (2021).\n49. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum\ndata and source catalog release. Astron. Astrophys. 602, 1 (2017).\n50. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on\nthe James Webb Space Telescope. I. Overview of the instrument\nand its capabilities. Astron. Astrophys. 661, 80 (2022).\n51. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the\nJames Webb Space Telescope. III. Integral-field spectroscopy.\nAstron. Astrophys. 661, 82 (2022).\n52. Kendrew, S. et al. The mid-infrared instrument for the James Webb\nSpace Telescope, IV: the low-resolution spectrometer. Publ.\nAstron. Soc. Pac. 127, 623 (2015).\n53. Loiacono, F. et al. A quasar-galaxy merger at z~6.2: black hole\nmass and quasar properties from the NIRSpec spectrum. Astron.\nAstrophys. 685, 121 (2024).\n54. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting\ngalaxies at 5.3\u003cz\u003c6.9 and direct evidence for local reionization by\ngalaxies. Astrophys. J. 950, 66 (2023).\n55. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment\nof a dual AGN at z~3.3 revealed by JWST/NIRSpec IFS. Astron.\nAstrophys. 679, 89 (2023).\n56. Rauscher, B. J. NSClean: an algorithm for removing correlated\nnoise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136,\n015001 (2024).\n57. Rigby, J. et al. The science performance of JWST as characterized\nin commissioning. Publ. Astron. Soc. Pac. 135, 8001 (2023).\n58. Arnaud, K. A. XSPEC: the first ten years. Astron. Data Anal. Softw.\nSyst. 101, 17 (1996).\n59. Kalberia, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey\nof Galactic HI. Final data release of the combined LDS and\nIAR surveys with improved stray-radiation corrections. Astron.\nAstrophys. 440, 775 (2005).\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\n60. Murphy, K. D. \u0026 Yaqoob, T. An X-ray spectral model for\nCompton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc.\n397, 1549 (2009).\n61. Lanzuisi, G. et al. The Chandra COSMOS Legacy Survey:\nCompton-thick AGN at high redshift. Mon. Not. R. Astron. Soc.\n480, 2578 (2018).\n62. Suh, H. et al. Multi-wavelength properties of type 1 and type\n2 AGN host galaxies in the Chandra-COSMOS Legacy Survey.\nAstrophys. J. 872, 168 (2019).\n63. Calistro Rivera, G., Lusso, E., Hennawi, J. F. \u0026 Hogg, D. W.\nAGNfitter: a Bayesian MCMC approach to fitting spectral energy\ndistribution of AGNs. Astrophys. J. 833, 98 (2016).\n64. Boquien, M. et al. CIGALE: a python Code Investigating GALaxy\nEmission. Astron. Astrophys. 622, 103 (2019).\n65. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to\ninfrared. Mon. Not. R. Astron. Soc. 491, 740 (2020).\n66. Polletta, M. et al. Spectral energy distributions of hard X-ray\nselected active galactic nuclei in the XMM-Newton medium deep\nsurvey. Astrophys. J. 663, 81 (2007).\n67. Marconi, A. et al. Local supermassive black holes, relics of active\ngalactic nuclei and the X-ray background. Mon. Not. R. Astron.\nSoc. 351, 169 (2004).\n68. Gilli, R., Comastri, A. \u0026 Hasinger, G. The synthesis of the cosmic\nX-ray background in the Chandra and XMM-Newton era. Astron.\nAstrophys. 463, 79 (2007).\n69. Lusso, E. et al. The bolometric output and host-galaxy properties\nof obscured AGN in the XMM-COSMOS survey. Astron. Astrophys.\n534, 110 (2011).\n70. Greene, J. E. \u0026 Ho, L. C. Estimating black hole masses in active\ngalaxies using the Hα emission line. Astrophys. J. 630, 122 (2005).\n71. Richards, G. T. et al. Spectral energy distributions and\nmultiwavelength selection of type 1 quasars. Astrophys. J. Suppl.\n166, 470 (2006).\n72. Suh, H. et al. No significant evolution of relations between black\nhole mass and galaxy total stellar mass up to z~2.5. Astrophys. J.\n889, 32 (2020).\n73. Trakhtenbrot, B. \u0026 Netzer, H. Black hole growth to z=2 − I.\nImproved virial methods for measuring MBH and L/LEdd. Mon. Not.\nR. Astron. Soc. 427, 1096 (2012).\n74. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec\nview of the z=1.59 obscured quasar XID2028. Astron. Astrophys.\n672, 128 (2023).\n75. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from\nthe dark, a massive proto-cluster at z~4.57. Astron. Astrophys. 615,\n77 (2018).\n76. Hung, D. et al. Establishing a new technique for discovering\nlarge-scale structure using the ORELSE survey. Mon. Not. R.\nAstron. Soc. 491, 5524 (2020).\n77. Lemaux, B. C. et al. The VIMOS Ultra Deep Survey: the reversal\nof the star-formation rate – density relation at 2\u003cz\u003c5. Astron.\nAstrophys. 662, 33 (2022).\n78. Newman, A. B. et al. A population of ultraviolet-dim protoclusters\ndetected in absorption. Nature 606, 475 (2022).\nAcknowledgements\nH.S., J.S., E.P.F., B.C.L., M.R. and D.H. are supported by the international\nGemini Observatory, a program of NSF NOIRLab, which is managed\nby the Association of Universities for Research in Astronomy (AURA)\nunder a cooperative agreement with the National Science Foundation,\non behalf of the Gemini partnership of Argentina, Brazil, Canada,\nChile, the Republic of Korea and the United States. F.L. acknowledges\nsupport from the INAF 2023 mini-grant ‘Exploiting the powerful\ncapabilities of JWST/NIRSpec to unveil the distant Universe’. M.M.\nacknowledges support from the Spanish Ministry of Science and\nInnovation through the project PID2021-124243NB-C22. This work\nwas partially supported by the programme Unidad de Excelencia\nMaría de Maeztu CEX2020-001058-M. S.K.Y. acknowledges support\nfrom the Korean National Research Foundation (2020R1A2C3003769,\n2022R1A6A1A03053472) and the IBS computing centre for the\nsuper-Eddington accretion project. This work is based on observations\nmade with the NASA/ESA/CSA JWST. The data were obtained from\nthe Mikulski Archive for Space Telescopes at the Space Telescope\nScience Institute, which is operated by the Association of Universities\nfor Research in Astronomy, Inc., under NASA contract NAS 5-03127 for\nJWST. These observations are associated with programme no. 1760.\nSupport for programme no. 1760 was provided by NASA through a\ngrant from the Space Telescope Science Institute, which is operated\nby the Association of Universities for Research in Astronomy, Inc.,\nunder NASA contract NAS 5-03127. This paper makes use of the\nfollowing ALMA data: ADS/JAO.ALMA#2019.1.01275.S. ALMA is a\npartnership of ESO (representing its member states), NSF (United\nStates) and NINS (Japan), together with NRC (Canada), MOST and\nASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the\nRepublic of Chile. The Joint ALMA Observatory is operated by ESO,\nAUI/NRAO and NAOJ. The National Radio Astronomy Observatory\nis a facility of the National Science Foundation operated under\ncooperative agreement by Associated Universities, Inc.\nAuthorcontributions\nH.S. was the principal investigator of the JWST and ALMA proposals,\nled the analysis and interpretation of the results, and drafted the\npaper. H.S. and G.H. performed the sample selection. J.S. contributed\nto the analysis of the JWST NIRSpec IFU data and the interpretation\nof the results. F.L. reduced the JWST NIRSpec IFU data and wrote the\nrelevant section. G.L. and S.M. analysed the X-ray data and wrote\nthe relevant section. B.C.L. and D.H. performed all analysis relating\nto the environment and B.C.L. wrote the relevant section. S.K.Y. and\nS.H. performed simulations and provided discussions on black hole\ngrowth. E.P.F., M.M., R.D. and M.V. helped with the interpretation\nof the results and provided comments on the analysis. All authors\ncontributed to the discussion of the presented results and the\npreparation of the paper.\nCompetinginterests\nThe authors declare no competing interests.\nAdditionalinformation\nExtended data is available for this paper at https://doi.org/10.1038/\ns41550-024-02402-9.\nSupplementary information The online version contains\nsupplementary material available at https://doi.org/10.1038/s41550-\n024-02402-9.\nCorrespondence and requests for materialsshould be addressed to\nHyewon Suh.\nPeer review information Nature Astronomy thanks John Regan and the\nother, anonymous, reviewer(s) for their contribution to the peer review\nof this work.\nReprints and permissions informationis available at\nwww.nature.com/reprints.\nPublisher’s note Springer Nature remains neutral with regard to\njurisdictional claims in published maps and institutional affiliations.\nOpen Access This article is licensed under a Creative Commons\nAttribution-NonCommercial-NoDerivatives 4.0 International License,\nwhich permits any non-commercial use, sharing, distribution and\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nreproduction in any medium or format, as long as you give appropriate\ncredit to the original author(s) and the source, provide a link to the\nCreative Commons licence, and indicate if you modified the licensed\nmaterial. You do not have permission under this licence to share\nadapted material derived from this article or parts of it. The images\nor other third party material in this article are included in the article’s\nCreative Commons licence, unless indicated otherwise in a credit\nline to the material. If material is not included in the article’s Creative\nCommons licence and your intended use is not permitted by statutory\nregulation or exceeds the permitted use, you will need to obtain\npermission directly from the copyright holder. To view a copy of this\nlicence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.\n© The Author(s) 2024\n1\nInternational Gemini Observatory/NSF NOIRLab, Hilo, HI, USA. 2\nINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy.\n3\nInstitute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany. 4\nDESY, Hamburg, Germany. 5\nDeutsches Zentrum für Astrophysik, Görlitz,\nGermany. 6\nDepartment of Physics and Astronomy, Clemson University, Clemson, SC, USA. 7\nDipartimento di Fisica e Astronomia (DIFA) Augusto Righi,\nUniversità di Bologna, Firenze, Italy. 8\nInstitute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Spain. 9\nInstitut d’Estudis Espacials de\nCatalunya (IEEC), Edifici RDIT, Campus UPC, Castelldefels, Spain. 10\nDepartment of Physics and Astronomy, University of California, Davis, Davis, CA, USA.\n11\nInstitut d’Astrophysique de Paris (UMR 7095: CNRS \u0026 Sorbonne Universite), Paris, France. 12\nNASA Goddard Space Flight Center, Greenbelt, MD, USA.\n13\nDepartment of Astronomy and Yonsei University Observatory, Yonsei University, Seoul, Republic of Korea. e-mail: hyewon.suh@noirlab.edu\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.1|SEDfit.Left:therest-frameobservedphotometricdata\n(black)with1σuncertainties,alongwiththebest-fitmodel(yellow).Themodel\nincludesapower-law(greendashed),ahotgreybody(655 K;greendotted),anda\nwarmgreybody(71 K;orange)components.Right:Overlayoftheobserveddata\n(black)withtheSEDtemplates61\noftheAGN-dominatedlocalULIRG(Mrk231),\ntheextremelocalstarburstULIRG(Arp220),andtheAGNdusttorusmodelat\nredshiftz = 3.965.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.2|Hαbroad-linefitting.Left:TheJWSTNIRSpecspectrum\n(grey)withthebest-fitmodel(black).Thespectrumisextractedfromacircular\napertureofradius0.2″centeredonthecentralbroad-lineregion.Thepower-law\ncontinuum(black),narrow-linecomponents(green),broad-linecomponents\n(orange),andoutflowcomponents(blue)areindicated.Dottedverticallines\nmarkthelinecentersofthenarrow-linecomponents.Right:Comparisonofthe\nblue-shifted(outflow)lineprofilesoftheH𝛼 + [NII]and[SII]invelocityspace.\nTheblue-shifted(outflow)componentsareobservedatavelocityof~−540 km/s\nrelativetosystemic.\n ","Nature Astronomy\nArticle https://doi.org/10.1038/s41550-024-02402-9\nExtendedDataFig.3|JWSTNIRSpec/IFUchannelmapsfortheHαemission\naroundLID-568.Eachmapwascreatedbyaveraging3neighboringchannels.\nThemapsareshowninsingle-channelstepscorrespondingtovelocitystepsof\n165 km/s.Thevelocitymarkedineachmapindicatesthecentralvelocityofthe\n3-channelaveragerelativetothe0 km/smapcenteredat3.259 μm.Spatialoffsets\ninarcsecondsareshownrelativetotheAGNlocation.\n "],"twitterShareUrl":"https://twitter.com/intent/tweet?via=SlideShare\u0026text=A+super-Eddington-accreting+black+hole+~1.5%E2%80%89Gyr+after+the+Big+Bang+observed+w...+by+%40Cienctec1+https%3A%2F%2Fwww.slideshare.net%2Fslideshow%2Fa-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst%2F273014912","type":"document","slideDimensions":{"height":791,"width":595},"topReadSlides":[],"user":{"id":"25614791","isFollowing":false,"login":"sacani","name":"Sérgio Sacani","occupation":"Supervisor de Geologia na Halliburton","organization":"Halliburton","photo":"https://cdn.slidesharecdn.com/profile-photo-sacani-48x48.jpg?cb=1726012592","photoExists":true,"shortName":"Sérgio Sacani"},"views":23843},"_nextI18Next":{"initialI18nStore":{"en":{"common":{"ad":{"fallbackText":"Ad for Scribd subscription","label":"Ad","close":"Close Ad","dismiss_in":"Dismiss in","ad_info_title":"Why are you seeing this?","ad_info_description":"We use ads to keep content free and accessible for everyone. You can remove them by \u003c2\u003esigning up\u003c/2\u003e for a SlideShare subscription."},"error":{"favorite_add":"We couldn't add SlideShare to favorites","favorite_remove":"We couldn't remove SlideShare from favorites","follow":"There was a problem following this user","unfollow":"There was a problem un-following this user","save":"Unable to save this item at this time.","remove_save":"We couldn't remove from your saved items"},"header":{"hamburger_menu_aria_label":"Open navigation menu","logo":{"alt":"SlideShare a Scribd company logo","title":"Return to the homepage"},"home":"Home","explore":"Explore","search":{"placeholder":"Search","aria_label":"Search SlideShare","button":"Submit Search"},"upload":"Upload","login":"Login","signup":{"label":"Download free for 30 days","title":"Signup now for a SlideShare account"},"user":{"aria_label":"User Settings","clipboards":"My Clipboards","uploads":"My Uploads","analytics":"Analytics","settings":"Account Settings","support":"Support","logout":"Logout"}},"footer":{"link":{"about":"About","support":"Support","terms":"Terms","privacy":"Privacy","copyright":"Copyright","cookie":"Cookie Preferences","privacyRights":"Do not sell or share my personal information"},"language_selector":{"aria_label":"Change Language","hidden_text":"Current Language"},"copyright":"SlideShare from Scribd","social":{"rss":{"aria_label":"Slideshare on RSS Feed","title":"RSS"},"twitter":{"aria_label":"Slideshare on Twitter","title":"Twitter"}}},"app_notification_banner":{"notification_text":"We've updated our privacy policy.","notification_link_text_desktop":"Click here to review the details.","notification_link_text_mobile":"Tap here to review the details."},"privacy_policy_explicit_opt_in_modal":{"modal_title":"We've updated our privacy policy.","modal_content_paragraph_one":"We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.","modal_content_paragraph_two":"You can read the details below. By accepting, you agree to the updated privacy policy.","modal_content_paragraph_three":"Thank you!","modal_action_assertive":"Accept and continue","modal_action":"View updated privacy policy","modal_action_error":"We've encountered a problem, please try again."},"actions":{"addToSaved":"Save for later","all_saved":"All Saved","back":"Back","close":"Close","cancel":"Cancel","save":"Save","saved":"Saved","submit":"Submit","next":"Next","previous":"Previous","removeSaved":"Remove from saved","scrollLeft":"Scroll Left","scrollRight":"Scroll Right","save_to_new_list_success":"Saved to "},"form":{"required":"Required"},"slideshow_card":{"slideshow_type":{"document":"Document","infographic":"Infographic","presentation":"Presentation","documents":"Documents","infographics":"Infographics","presentations":"Presentations","downloads":"Downloads","likes":"Likes"},"slideshow_type_unit":{"presentation":"Slide","document":"Page","infographic":"Page"},"pages_count_one":"{{count}} page","pages_count_other":"{{count}} pages","slides_count_one":"{{count}} slide","slides_count_other":"{{count}} slides","screen_reader_text":"{{title}} by {{author}}","screen_reader_text_extended":"{{title}} by {{author}}, has {{slideCount}} slides with {{viewCount}} views.","view_one":"view","view_other":"views"},"image_alt":{"studying":"Abstract image of a woman sitting on books and studying on a laptop"},"items":{"count_one":"{{count}} item","count_other":"{{count}} items"},"time":{"second_one":"{{count}} second","second_other":"{{count}} seconds"},"timeSince":{"minutes_ago":"{{count}} min. ago","hours_ago_one":"{{count}} hour ago","hours_ago_other":"{{count}} hours ago","days_ago_one":"{{count}} day ago","days_ago_other":"{{count}} days ago","months_ago_one":"{{count}} month ago","months_ago_other":"{{count}} months ago","years_ago_one":"{{count}} year ago","years_ago_other":"{{count}} years ago"},"see_more":"See more","see_less":"See Less","yes":"Yes","no":"No","signup":"Sign Up"},"player":{"actions":{"all_saved":"All Saved","clip":"Clip Slide","copy_text":"Copy text","copy_text_success":"Text copied to clipboard","copy_text_error":"Failed to copy the text. Please try again!","download_presentation":"Download presentation","download_slide":"Download slide","download_document":"Download document","download_page":"Download page","download_now":"Download now","download":"Download","favorite":"Favorite","remove_favorite":"Remove favorite","remove_like":"Remove like","like":"Like","follow":"Follow","unfollow":"Unfollow","more_options":"More options","share":"Share","save_slide":"Save slide","saved":"Saved","remove_from_list":"Remove from list {{listname}}","removed_from_list":"Saved item has been removed from the List","removed_from_list_error":"Could not remove the saved item from list","save_error":"Unable to save this item at this time.","save_to_new_list":"New list","save_to_list":"Save to list {{listname}}","scroll_view":"Scroll view","scroll_view_description":"Vertically scroll through all slides","slideshow_view":"Slideshow view","slideshow_view_description":"View one slide at a time","no_saved_lists":"You don't have any lists created yet."},"ads":{"label":"Ad","skip":"Skip to next slide","skip_countdown":"You can skip to the next slide in","continue_in":"Continue in","change_volume":"Change Volume","download_read_ad_free":"Download to read ad-free","scroll":"Scroll to read more"},"ad_block_interstitial":{"title_1":"Keep SlideShare free —","title_2":"please disable your ad blocker.","button_label":"Show me how","message":"Hate ads? Join Scribd to browse SlideShare and Scribd ad-free.","cta":"Try Scribd for free"},"author":{"by":"by","follow":"Follow","following":"Following","keynoteAuthor":"Keynote Author"},"download":{"success":"Your SlideShare is downloading."},"editors_notes":"Editor's Notes","end_of_reading":{"loading":"Loading in","title":"Check these out next","next_slideshares":"Next SlideShares","upcoming_slideshare":"Upcoming SlideShare"},"first_clip":{"title":"You just clipped your first slide!","description":"Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips."},"metadata":{"at":"at","aiTag":{"descriptionLabel":"AI-enhanced description","descriptionTooltipTitle":"AI-Enhanced Description","descriptionTooltip":"Leveraging AI technology, we've optimized the description for improved clarity.","titleLabel":"AI-enhanced title","titleTooltipTitle":"AI-Enhanced Title","titleTooltip":"Leveraging AI technology, we've optimized the title for improved clarity.","titleAndDescriptionLabel":"AI-enhanced title and description","titleAndDescriptionTooltipTitle":"AI-Enhanced Title and Description","titleAndDescriptionTooltip":"Leveraging AI technology, we've optimized the title and description for improved clarity."},"download":{"bottomSheetTitle":"Download format","label_short":"Download","label":"Download now","description":"Download to read offline","download_count":"Downloaded {{count}} times"},"download_as":"Download as {{formatTypes}}","free_download":"Free Download","readMore":"Read more","readLess":"Read less","more":"more","category":{"label":"Category","description":"View the featured presentations, documents and infographics in the"},"dateFormat":"MMM. D, YYYY","most_read":"Most read","pages":"Pages","page":"Page"},"navigation":{"next_slide":"Next Slide","previous_slide":"Previous Slide","slide_count_of_total_count":"\u003cspan data-cy='current-slide-number' class='current-slide-number j-current-slide'\u003e{{slideCount}}\u003c/span\u003e of \u003cspan class='total-slides j-total-slides'\u003e{{totalCount}}\u003c/span\u003e","view_fullscreen":"View Fullscreen","zoom_in":"Zoom In","zoom_out":"Zoom Out"},"new_clipboard_modal":{"title":"Create a clipboard","name":{"label":"Name","placeholder":"Best of Slides","error":"Name cannot be blank"},"description":{"label":"Description","placeholder":"Add a brief description so other know what your clipboard is about."},"visibility":{"label":"Visibility","description":"Others can see my Clipboard"}},"select_clipboard_modal":{"title":"Select a clipboard","message":"Looks like you've already clipped this slide","button":"Create a clipboard"},"share":"Share SlideShare","rec":{"related":"Related slideshows","recommended_for_you":"Recommended for you","descTooltipTitle":"About the slideshow","recommended":{"title":"Recommended","shortTitle":"Recommended"},"relatedContent":{"title":"More Related Content","shortTitle":"More Related Content"},"featured":{"title":"Featured","shortTitle":"Featured"},"forYou":{"title":"Slideshows for you","shortTitle":"Slideshows for you"},"alsoLiked":{"title":"Viewers also liked","shortTitle":"Viewers also liked"},"latest":{"title":"Recently uploaded","shortTitle":"Recently uploaded"},"moreFromUser":{"title":"More from {{name}}","shortTitle":"More from uploader"},"similarTo":{"title":"Similar to {{title}}","shortTitle":"Similar to"},"whatsHot":{"title":"What's hot","shortTitle":"What's hot"}},"scribd":{"books":{"label":"Ebook","title":"Related Books"},"audioBooks":{"label":"Audiobook","title":"Related Audiobooks"},"error":{"title":"Oops! Something went wrong.","description":"We're sorry, but we can't find any related content at this time.","button":"Try again"},"freeWithTrial":"Free with a 30 day trial from {{brand}}","viewAll":"View All"},"error":{"clipboard":"We couldn't create your clipboard","save":"We couldn't save this item","unsave":"We couldn't remove from your saved items","blocked":"This user has blocked you","private_content":"Private content!","privacy_explanation":"This content has been marked as private by the uploader.","enter_password":"Enter password","file_protected":"This file is password protected.","password_incorrect":"The password is incorrect.","private_presentation":"Private Presentation","private_content_message":"This uploaded file has been marked private by the author. Sorry!","removed_content_title":"Uploaded Content Removed","removed_content_message":"The uploaded content has been removed and is no longer available.","redirect_message":"Redirecting to the homepage in","something_went_wrong_title":"Sorry! The page could not be loaded.","something_went_wrong_message":"This is probably a temporary error. Just refresh the page and retry. If the problem continues, please check back in 5-10 minutes.","not_found_title":"Sorry! We could not find what you were looking for.","not_found_message":"Don't worry, we will help you get to the right place. Are you looking for:"},"save_to_new_list_modal":{"title":"Add to a new list","list_name_input_label":"What would you like to name this list?","list_privacy_label":"Make list private","cancel_button_label":"Cancel","save_list_button_label":"Save","success":"Saved to ","error":"We couldn't save this item to {{listname}}"},"confirm_remove_save_modal":{"title":"This saved item is also in a list.","description":"Removing from saved will also delete the item from your lists","cancel_button_label":"Cancel","delete_button_label":"Delete"},"seo_metadata_test":{"description_suffix":"Download as a PDF or view online for free"}},"metadata":{"gallery_view":"Gallery","gallery_view_label":"Gallery View","like_one":"like","like_other":"likes","likeWithCount_one":"{{count}} like","likeWithCount_other":"{{count}} likes","view_one":"view","view_other":"views","saved_one":"saved","saved_other":"saved","from_embeds":"From embeds","number_of_embeds":"Number of embeds","on_slideshare":"On Slideshare","total_views":"Total views","split_char":",","decimal_point":".","show_more":"Show More","likes":{"empty_message":"Be the first to like this","loading_message":"Loading..."},"slide_one":"slide","slide_other":"slides","slide_count_of_total":"of"},"report":{"more":"More options","share":"Share","report":"Report","edit":"Edit","viewAnalytics":"View Analytics","flag_as_inappropriate":"Report as inappropriate","error":"There was an error while reporting this slideshow. Please try again.","flag":"Flag","copyright_complaint":"Copyright Complaint","select_a_reason":"Select a reason","select_your_reason":"Select your reason for reporting this presentation as inappropriate.","none":"None","porn":"Pornographic","defamatory":"Defamatory","ultraviolence":"Extremely Violent or Promotes Terrorism","hate_speech":"Hate Speech","offensive":"Offensive Language or Threatening","spam":"Spam or Scam","form":{"title":"Report content","description":"If you are the copyright owner of this document and want to report it, please visit the \u003cCustomLink href='example.com'\u003ecopyright infringement notice page\u003c/CustomLink\u003e to submit a report.","error_category":"Select a category to submit your report","error_subtype":"Select a sub-category to submit your report","default_subtype":"Select an option...","category":{"illegal":{"label":"Illegal","description":"Content that breaks the law or promotes illegal activities.","subtypes":{"child_exploitation":"Minor Exploitation","child_sexual_abuse_material":"Child Sexual Abuse","dangerous_products_or_services":"Dangerous Products/Services","non_violent_crime":"Non-Violent Offenses","sex_related_crime":"Sexual Offenses","violent_crime":"Violent Offenses","terrorism":"Terrorism","general":"Other"}},"explicit":{"label":"Explicit","description":"Content that is graphic, offensive, or disturbing.","subtypes":{"sexually_explicit_content":"Sexually Explicit","shocking_content":"Shocking or Disturbing","general":"Other"}},"dangerous_and_deragatory":{"label":"Dangerous \u0026 Derogatory","description":"Content that encourages harmful, threatening, or hateful behavior.","subtypes":{"menacing":"Threatening Behavior","incitement":"Inciting Violence or Hatred","self_harm":"Self-harm","general":"Other"}},"deceptive_and_fraudulent":{"label":"Deceptive \u0026 Fraudulent","description":"Content that intentionally misleads, deceives, or engages in fraudulent activities.","subtypes":{"academic_integrity":"Academic Dishonesty","misinformation":"Spreading False Information","general":"Other"}},"guideline_ignoring":{"label":"Intellectual Property","description":"Content that uses someone else's protected work without permission.","subtypes":{"ip_infringement_copyright":"IP infringement (copyright)","ip_infringement_non_copyright":"IP infringement (non-copyright)","general":"Other"}},"privacy":{"label":"Privacy","description":"Content that misuses personal information.","subtypes":{"privacy_general":"General Privacy","privacy_child":"Child Privacy"}},"spam":{"label":"Spam","description":"Unsolicited and repetitive content that disrupts your experience."},"low_quality":{"label":"Low Quality","description":"Content that fails to meet minimum standards for clarity, relevance, or completeness."}}}},"share_modal":{"close":"Close","embed_title":"Embed","embed_size":"Size (px)","link":"Link","start":"Start on","title":"Share this SlideShare","share_facebook":"Share on Facebook","share_linkedin":"Share on Linkedin","share_twitter":"Tweet on Twitter"},"next_slideshow":{}}},"initialLocale":"en","ns":["common","player","metadata","report","share_modal","next_slideshow"],"userConfig":null},"_sentryTraceData":"8d415d32d5054fdea2154309c608c24b-b446746d2a69b00c-1","_sentryBaggage":"sentry-environment=production,sentry-public_key=7e7cafa2920448ed81ac67de08abbeed,sentry-trace_id=8d415d32d5054fdea2154309c608c24b,sentry-sample_rate=1,sentry-transaction=%2Fslideshow%2F%5Btitle%5D%2F%5Bid%5D,sentry-sampled=true"},"__N_SSP":true},"page":"/slideshow/[title]/[id]","query":{"title":"a-super-eddington-accreting-black-hole-1-5-gyr-after-the-big-bang-observed-with-jwst","id":"273014912"},"buildId":"34d87f1e259ccc2522816c4af0afbdd34048dee6","assetPrefix":"https://public.slidesharecdn.com","runtimeConfig":{"assetPrefix":"https://public.slidesharecdn.com"},"isFallback":false,"isExperimentalCompile":false,"gssp":true,"locale":"en","locales":["en","de","es","pt","fr"],"defaultLocale":"en","domainLocales":[{"domain":"www.slideshare.net","defaultLocale":"en"},{"domain":"de.slideshare.net","defaultLocale":"de"},{"domain":"es.slideshare.net","defaultLocale":"es"},{"domain":"pt.slideshare.net","defaultLocale":"pt"},{"domain":"fr.slideshare.net","defaultLocale":"fr"}],"scriptLoader":[]}</script></body></html>