CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;9 of 9 results for author: <span class="mathjax">Allen, F I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Allen%2C+F+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Allen, F I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Allen%2C+F+I&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Allen, F I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04953">arXiv:2410.04953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04953">pdf</a>, <a href="https://arxiv.org/format/2410.04953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Focused helium ion beam nanofabrication by near-surface swelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sherry Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byrne%2C+D+O">Dana O. Byrne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04953v1-abstract-short" style="display: inline;"> The focused helium ion beam microscope is a versatile imaging and nanofabrication instrument enabling direct-write lithography with sub-10-nm resolution. Subsurface damage and swelling of substrates due to helium ion implantation is generally unwanted. However, these effects can also be leveraged for specific nanofabrication tasks. To explore this, we investigate focused helium ion beam induced sw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04953v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04953v1-abstract-full" style="display: none;"> The focused helium ion beam microscope is a versatile imaging and nanofabrication instrument enabling direct-write lithography with sub-10-nm resolution. Subsurface damage and swelling of substrates due to helium ion implantation is generally unwanted. However, these effects can also be leveraged for specific nanofabrication tasks. To explore this, we investigate focused helium ion beam induced swelling of bulk crystalline silicon and free-standing amorphous silicon nitride membranes using various irradiation strategies. We show that the creation of near-surface voids due to helium ion implantation can be used to induce surface nanostructure and create subsurface nanochannels. By tailoring the ion dose and beam energy, the size and depth of the swollen features can be controlled. Swelling heights of several hundred nanometers are demonstrated and for the embedded nanochannels, void internal diameters down to 30nm are shown. Potential applications include the engineering of texturized substrates and the prototyping of on-chip nanofluidic transport devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04953v1-abstract-full').style.display = 'none'; document.getElementById('2410.04953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09355">arXiv:2408.09355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09355">pdf</a>, <a href="https://arxiv.org/format/2408.09355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Atomic Engineering of Triangular Nanopores in Monolayer hBN: A Decoupled Seeding and Growth Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Byrne%2C+D+O">Dana O. Byrne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09355v1-abstract-short" style="display: inline;"> Nanopores in 2D materials are of significant interest in advanced membrane technologies aimed at the sensing and separation of ions and molecules. These applications necessitate 2D nanopores that are precise in size and shape, and abundant in number. However, conventional fabrication techniques often struggle to achieve both high precision and throughput. In this study, we introduce a decoupled se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09355v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09355v1-abstract-full" style="display: none;"> Nanopores in 2D materials are of significant interest in advanced membrane technologies aimed at the sensing and separation of ions and molecules. These applications necessitate 2D nanopores that are precise in size and shape, and abundant in number. However, conventional fabrication techniques often struggle to achieve both high precision and throughput. In this study, we introduce a decoupled seeding and growth approach designed to overcome this limitation. The method allows the controlled fabrication of ensembles of nanopores with narrow size distribution and is demonstrated for free-standing monolayer hexagonal boron nitride. Using light ion showering, we first create vacancy defect seeds. These seeds are then expanded into triangular nanopores through element-specific preferential atom removal under broad-beam electron irradiation in a transmission electron microscope. Nanopore density and size are controlled by the ion and electron irradiation doses, respectively. During the electron irradiation step, high-resolution imaging allows real-time tracking of the nanopore formation process, enabling the highest level of control. An additional workflow is introduced using thermal annealing in air for the nanopore growth step, delivering the most flexible platform for nanopore fabrication over larger areas with the significant benefit of concurrently removing surface hydrocarbon contamination to mitigate pore clogging and distortion. This study provides researchers with a novel approach to create ensembles of meticulously designed nanopores with well-controlled size and geometry, facilitating the development of next-generation membrane devices that will demand high precision and high throughput nanopore fabrication pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09355v1-abstract-full').style.display = 'none'; document.getElementById('2408.09355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02621">arXiv:2312.02621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02621">pdf</a>, <a href="https://arxiv.org/format/2312.02621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing defectivity beneath the hydrocarbon blanket in 2D hBN using TEM-EELS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Byrne%2C+D+O">Dana O. Byrne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciston%2C+J">Jim Ciston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02621v1-abstract-short" style="display: inline;"> The controlled creation and manipulation of defects in 2D materials has become increasingly popular as a means to design and tune new material functionalities. However, defect characterization by direct atomic imaging is often severely limited by surface contamination due to a blanket of hydrocarbons. Thus, analysis techniques are needed that can characterize atomic scale defects despite the conta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02621v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02621v1-abstract-full" style="display: none;"> The controlled creation and manipulation of defects in 2D materials has become increasingly popular as a means to design and tune new material functionalities. However, defect characterization by direct atomic imaging is often severely limited by surface contamination due to a blanket of hydrocarbons. Thus, analysis techniques are needed that can characterize atomic scale defects despite the contamination. In this work we use electron energy loss spectroscopy to probe beneath the hydrocarbon blanket, characterizing defect structures in 2D hexagonal boron nitride (hBN) based on fine structure in the boron K-edge. Since this technique is performed in a transmission electron microscope, imaging can also be used to assess contamination levels and other factors such as tears in the fragile 2D sheets, which can affect the spectroscopic analysis. Furthermore, by locally probing individual areas, multiple regions on the same specimen that have undergone different defect engineering treatments can be investigated for systematic studies at increased throughput. For 2D hBN samples irradiated with different ions for a range doses, we find spectral signatures indicative of boron-oxygen bonding that can be used as a measure of sample defectiveness depending on the ion beam treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02621v1-abstract-full').style.display = 'none'; document.getElementById('2312.02621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05250">arXiv:2309.05250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05250">pdf</a>, <a href="https://arxiv.org/format/2309.05250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Iterative Phase Retrieval Algorithms for Scanning Transmission Electron Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Varnavides%2C+G">Georgios Varnavides</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribet%2C+S+M">Stephanie M. Ribet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeltmann%2C+S+E">Steven E. Zeltmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yue Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savitzky%2C+B+H">Benjamin H. Savitzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byrne%2C+D+O">Dana O. Byrne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dravid%2C+V+P">Vinayak P. Dravid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scott%2C+M+C">Mary C. Scott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05250v2-abstract-short" style="display: inline;"> Scanning transmission electron microscopy (STEM) has been extensively used for imaging complex materials down to atomic resolution. The most commonly employed STEM modality, annular dark-field imaging, produces easily-interpretable contrast, but is dose-inefficient and produces little to no discernible contrast for light elements and weakly-scattering samples. An alternative is to use STEM phase r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05250v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05250v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05250v2-abstract-full" style="display: none;"> Scanning transmission electron microscopy (STEM) has been extensively used for imaging complex materials down to atomic resolution. The most commonly employed STEM modality, annular dark-field imaging, produces easily-interpretable contrast, but is dose-inefficient and produces little to no discernible contrast for light elements and weakly-scattering samples. An alternative is to use STEM phase retrieval imaging, enabled by high speed detectors able to record full images of a diffracted STEM probe over a grid of scan positions. Phase retrieval imaging in STEM is highly dose-efficient, enabling the measurement of the structure of beam-sensitive materials such as biological samples. Here, we comprehensively describe the theoretical background, algorithmic implementation details, and perform both simulated and experimental tests for three iterative phase retrieval STEM methods: focused-probe differential phase contrast, defocused-probe parallax imaging, and a generalized ptychographic gradient descent method implemented in two and three dimensions. We discuss the strengths and weaknesses of each of these approaches by comparing the transfer of information using analytical expressions and numerical results for a white-noise model. This presentation of STEM phase retrieval methods aims to make these methods more approachable, reproducible, and more readily adoptable for many classes of samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05250v2-abstract-full').style.display = 'none'; document.getElementById('2309.05250v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19631">arXiv:2305.19631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19631">pdf</a>, <a href="https://arxiv.org/format/2305.19631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Roadmap for focused ion beam technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6flich%2C+K">Katja H枚flich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hobler%2C+G">Gerhard Hobler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wirtz%2C+T">Tom Wirtz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rius%2C+G">Gemma Rius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McElwee-White%2C+L">Lisa McElwee-White</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krasheninnikov%2C+A+V">Arkady V. Krasheninnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M">Matthias Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utke%2C+I">Ivo Utke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klingner%2C+N">Nico Klingner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osenberg%2C+M">Markus Osenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C3%B3rdoba%2C+R">Rosa C贸rdoba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djurabekova%2C+F">Flyura Djurabekova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manke%2C+I">Ingo Manke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P">Philip Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manoccio%2C+M">Mariachiara Manoccio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Teresa%2C+J+M">Jos茅 Mar谋a De Teresa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bischoff%2C+L">Lothar Bischoff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michler%2C+J">Johann Michler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Castro%2C+O">Olivier De Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delobbe%2C+A">Anne Delobbe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunne%2C+P">Peter Dunne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dobrovolskiy%2C+O+V">Oleksandr V. Dobrovolskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frese%2C+N">Natalie Frese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6lzh%C3%A4user%2C+A">Armin G枚lzh盲user</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19631v3-abstract-short" style="display: inline;"> The focused ion beam (FIB) is a powerful tool for the fabrication, modification and characterization of materials down to the nanoscale. Starting with the gallium FIB, which was originally intended for photomask repair in the semiconductor industry, there are now many different types of FIB that are commercially available. These instruments use a range of ion species and are applied broadly in mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19631v3-abstract-full').style.display = 'inline'; document.getElementById('2305.19631v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19631v3-abstract-full" style="display: none;"> The focused ion beam (FIB) is a powerful tool for the fabrication, modification and characterization of materials down to the nanoscale. Starting with the gallium FIB, which was originally intended for photomask repair in the semiconductor industry, there are now many different types of FIB that are commercially available. These instruments use a range of ion species and are applied broadly in materials science, physics, chemistry, biology, medicine, and even archaeology. The goal of this roadmap is to provide an overview of FIB instrumentation, theory, techniques and applications. By viewing FIB developments through the lens of the various research communities, we aim to identify future pathways for ion source and instrumentation development as well as emerging applications, and the scope for improved understanding of the complex interplay of ion-solid interactions. We intend to provide a guide for all scientists in the field that identifies common research interests and will support future fruitful interactions connecting tool development, experiment and theory. While a comprehensive overview of the field is sought, it is not possible to cover all research related to FIB technologies in detail. We give examples of specific projects within the broader context, referencing original works and previous review articles throughout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19631v3-abstract-full').style.display = 'none'; document.getElementById('2305.19631v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This publication is based upon work from the COST Action FIT4NANO CA19140, supported by COST (European Cooperation in Science and Technology) https://www.cost.eu/. Financial support from COST Action CA19140 is acknowledged http://www.fit4nano.eu/ Version 3 has many text and language edits as well as layout tuning but no substantial new content</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09254">arXiv:2302.09254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09254">pdf</a>, <a href="https://arxiv.org/format/2302.09254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Specimens for Atom Probe Tomography Using a Combined Gallium and Neon Focused Ion Beam Milling Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanchard%2C+P+T">Paul T. Blanchard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R">Russell Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pappas%2C+D">David Pappas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+D">Deying Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Notte%2C+J+A">John A. Notte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruopeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minor%2C+A+M">Andrew M. Minor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanford%2C+N+A">Norman A. Sanford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09254v2-abstract-short" style="display: inline;"> We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09254v2-abstract-full').style.display = 'inline'; document.getElementById('2302.09254v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09254v2-abstract-full" style="display: none;"> We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision milling capability of the noble gas neon ion beam. Using a titanium-aluminum alloy and a layered aluminum/aluminum oxide material as test cases, we show that atom probe tips prepared using the combined gallium and neon ion approach are free from the gallium contamination that typically frustrates composition analysis of these materials due to implantation, diffusion, and embrittlement effects. We propose that by using a focused ion beam from a noble gas species, such as the neon ions demonstrated here, atom probe tomography can be more reliably performed on a larger range of materials than is currently possible using conventional techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09254v2-abstract-full').style.display = 'none'; document.getElementById('2302.09254v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13781">arXiv:2203.13781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13781">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Defect engineering of silicon with ion pulses from laser acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Redjem%2C+W">Walid Redjem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amsellem%2C+A+J">Ariel J. Amsellem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benndorf%2C+G">Gabriele Benndorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bin%2C+J">Jianhui Bin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bulanov%2C+S">Stepan Bulanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esarey%2C+E">Eric Esarey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+L+C">Leonard C. Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez%2C+J+F">Javier Ferrer Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lopez%2C+J+G">Javier Garcia Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geulig%2C+L">Laura Geulig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geddes%2C+C+R">Cameron R. Geddes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hijazi%2C+H">Hussein Hijazi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Q">Qing Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+V">Vsevolod Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kante%2C+B">Boubacar Kante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonsalves%2C+A">Anthony Gonsalves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meijer%2C+J">Jan Meijer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+K">Kei Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pong%2C+I">Ian Pong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Obst-Huebl%2C+L">Lieselotte Obst-Huebl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seidl%2C+P+A">Peter A. Seidl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simoni%2C+J">Jacopo Simoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schroeder%2C+C">Carl Schroeder</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13781v1-abstract-short" style="display: inline;"> Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon single crystals with ion pulses from a laser accelerator with ion flux levels up to 10^22 ions/cm^2/s. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13781v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13781v1-abstract-full" style="display: none;"> Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon single crystals with ion pulses from a laser accelerator with ion flux levels up to 10^22 ions/cm^2/s. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples that were locally pre-heated by high energy ions. We observe low energy ion fluences of ~10^16 cm^-2, about four orders of magnitude higher than the fluence of high energy (MeV) ions. In the areas of highest energy deposition, silicon crystals exfoliate from single ion pulses. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increase in areas with high ion flux much more than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Laser ion acceleration generates aligned pulses of high and low energy ions that expand the parameter range for defect engineering and doping of semiconductors with tunable balances of ion flux, damage rates and local heating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13781v1-abstract-full').style.display = 'none'; document.getElementById('2203.13781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07076">arXiv:2103.07076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07076">pdf</a>, <a href="https://arxiv.org/format/2103.07076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1431927621011946">10.1017/S1431927621011946 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast Grain Mapping with Sub-Nanometer Resolution Using 4D-STEM with Grain Classification by Principal Component Analysis and Non-Negative Matrix Factorization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pekin%2C+T+C">Thomas C Pekin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Persaud%2C+A">Arun Persaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rozeveld%2C+S+J">Steven J Rozeveld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+G+F">Gregory F Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciston%2C+J">Jim Ciston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minor%2C+A+M">Andrew M Minor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07076v1-abstract-short" style="display: inline;"> High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct electron detection. An electron probe size down to 0.5 nm in diameter is implemented and the sample investigated is a gold-palladium nanoparticle catalyst. Computatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07076v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07076v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07076v1-abstract-full" style="display: none;"> High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct electron detection. An electron probe size down to 0.5 nm in diameter is implemented and the sample investigated is a gold-palladium nanoparticle catalyst. Computational analysis of the 4D-STEM data sets is performed using a disk registration algorithm to identify the diffraction peaks followed by feature learning to map the individual grains. Two unsupervised feature learning techniques are compared: Principal component analysis (PCA) and non-negative matrix factorization (NNMF). The characteristics of the PCA versus NNMF output are compared and the potential of the 4D-STEM approach for statistical analysis of grain orientations at high spatial resolution is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07076v1-abstract-full').style.display = 'none'; document.getElementById('2103.07076v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02133">arXiv:1909.02133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02133">pdf</a>, <a href="https://arxiv.org/format/1909.02133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scriptamat.2019.11.039">10.1016/j.scriptamat.2019.11.039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+F+I">Frances I. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosemann%2C+P">Peter Hosemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balooch%2C+M">Mehdi Balooch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02133v1-abstract-short" style="display: inline;"> Helium-ion-induced swelling and blistering of single-crystal tungsten is investigated using a Helium Ion Microscope for site-specific dose-controlled irradiation (at 25 keV) with analysis by Helium Ion Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy (cross-sectioning by Focused Ion Beam milling). Our measurements show that the blister cavity forms at the depth of the heliu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02133v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02133v1-abstract-full" style="display: none;"> Helium-ion-induced swelling and blistering of single-crystal tungsten is investigated using a Helium Ion Microscope for site-specific dose-controlled irradiation (at 25 keV) with analysis by Helium Ion Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy (cross-sectioning by Focused Ion Beam milling). Our measurements show that the blister cavity forms at the depth of the helium peak and that nanobubbles coalesce to form nanocracks within the envelope of the ion stopping range, causing swelling of the blister shell. These results provide the first direct experimental evidence for the interbubble fracture mechanism proposed in the framework of the gas pressure model for blister formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02133v1-abstract-full').style.display = 'none'; document.getElementById('1909.02133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10